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1 Overview of Complexity

1.1 Definitions

Algorithm Complexity: the number of operations (+,−,×, /,≥, sometimes b c) required to run
the algorithm in the worst case, up to a constant multiple, as a function of properties of the
inputs to the algorithm.

Problem Complexity: the complexity of the best possible algorithm to solve the given problem.

The notion of complexity is used to provide a basis of comparison for algorithms. In particular,
complexity provides a measure (at least mostly) agnostic to computer speed, which varies with time
and technological process. Also, the complexity of an algorithm is able to take into consideration
the worst-case performance of an algorithm, whereas empirical results would not necessarily capture
this important aspect.

Naturally, determining the complexity of many problems is difficult; proving an upper bound
on the complexity of a problem is simply a matter of providing a single algorithm that solves the
problem, while proving a lower bound is a matter of establishing that all algorithms that solve the
problem cannot achieve a certain complexity. For some problems, this analysis is approachable.
This is the case for sorting, where we are given a list of n items and are asked to sort them in
ascending order. An information theoretical proof shows that the complexity of this problem is
Ω(n log n). Many sorting algorithms have complexity O(nlogn), so they are asymptotically best
possible algorithms.

A couple differing philosophies exist regarding the list of operations to count. Arithmetic models
measure complexity by counting (+,−, ∗, /,≥) operations. Other operations may also be included,
such as b c 1 and

√
; however, it turns out that including b c has no significant influence on

complexity of most algorithms, and
√

, though fundamental, is of limited value in complexity
analysis.

When we talk about complexity, we usually assume WLOG that inputs are integer-valued and
bounded. Numbers are represented in computers with finite accuracy, and we can always transform
rationals to integers by multiplying a large enough integer. When we say an algorithm is polynomial,
we are also saying that the size of output is polynomial in the size of of input2.

1.2 Examples

Weaving Problem We seek to find the number of ”under” operations necessary to create a weave,
like the weave found on a pie. Here, an ”under” operation would comprise of lifting a strand
of the dough to move a perpendicular strand of dough under it: essentially, creating one
weave. For an n×m weave, a naive algorithm takes O(bnm2 c) ”under” operations. However,
the concrete complexity is attained by an algorithm that runs in O(bnm4 c) [?].

1Ceiling function can be calculated with floor function: dae =

{
a if a = bac
ba+ 1c otherwise

.

2It is not obvious whether during the execution of the algorithm the data remain polynomial length, Edmonds
proved some result for Gaussian elimination.
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Linear Programming

max cTx

s.t. Ax = b

x ≥ 0,

where A ∈ Zm×n has rank m. The basic solutions xB are giving by some full rank m ×m
sub-matrix B of A:

xB = B−1b,

whose length are proved to be polynomial in the size of input.

LP can be viewed as a discrete optimization problem, where we optimize over the set of basic
feasible solutions, of which there exist at most

(
n
m

)
. the Simplex algorithm, in turn, can be

viewed as a clever way of searching over the set of basic feasible solutions.

Two known classes of polynomial algorithms that solve LP’s are ellipsoid methods and interior
point methods. Both make use of continuous techniques: they know a priori that the optimal
solution to LP can be written in a # of digits that is polynomial in log ∆, where ∆ is the
largest subdeterminant of A3, and so ensuring a fixed rate of convergence towards the optimal
solution per iteration will lead to termination in weakly-polynomial time. In practice however,
it may take a large number of iterations for either method to reach the terminating accuracy.
However, interior-point methods are used by solvers such as CPLEX as a pre-processor to
choose a good initial basis from which to initiate the Simplex algorithm.

2 Nonlinear Optimization

In Nonlinear Optimization problems, both the feasible region and the objective function can be
messy, and the optimal solution is no longer guaranteed to an extreme point of the feasible region.
If both the objective function and the feasible region are convex, then the problem is called convex ;
this class of problems is much easier and is well studied.

A non-linear function can be represented via an oracle that can return the value of the function
at some given input, perhaps through a table look-up:

x̄→ oracle→ f(x̄).

Whenever we give the oracle a x̄ of ε-accuracy4 to our intended input, the oracle tells us the value
of f(x̄) ε-accurate to the intended output.

Bisection algorithms approach one-dimensional non-linear optimization in a way similar to
binary search and ellipsoid method. The function is assumed to be unimodal, that is, there exists
an x∗ ∈ S (the feasible region) at which f attains a minimum (maximum) and f is nondecreasing
(nonincreasing) on the interval {x ∈ S : x ≥ x∗} and nonincreasing (nondecreasing) on the interval
{x ∈ S : x ≤ x∗}. The algorithm operates by evaluating the two endpoints and the midpoint of
the feasible region; the values are compared, and half of the feasible region is discarded at each
iteration.

3the number of digits is also polynomial in log |bmax|
4an ε-accuracy number is given with ≤ dlog2

1
ε
e bits
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2.1 The Allocation Problem

We first consider simple resource allocation problem (SRA):

(SRA)

max
∑n

j=1 fj(xj)

s.t.
∑n

j=1 xj = B

xj ≥ 0 j = 1, . . . , n
xj ∈ Z j = 1, . . . , n,

where the fj ’s are concave functions, making the objective function concave separable. We can
replace ”=” in the first constraint by ”≤” without much changing the complexity of and solution to
the problem. Also, in the special case where the fj ’s are all linear, that is, fj(x) = wjx, j = 1, . . . , n,
the SRA problem reduces to an equally-weighted instance of the knapsack problem.

SRA can be solved optimally with a greedy algorithm in weakly polynomial time. Essentially,
beginning at x = 0, we increment the variables by one unit at a time, in each iteration choosing
the variable that provides the largest immediate gain, until the single constraint has been satisfied.
So, for given general concave functions fj , j = 1, . . . , n, we must first calculate the increments

∆i
j := fj(i+ 1)− fj(i), i = 1, . . . , B.

At each iteration, set xj∗ ← xj∗ + 1, where j∗ = arg maxj∈{1,...,n}∆
xj
j . Every iteration we pick

the largest of n increments, which can be done in O(log2 n) time through the method of binary
heaps, and we repeat this for B iterations. Thus, the complexity of this algorithm is O(B log2 n),
which is not strongly polynomial.

It turns out this greedy algorithm extends to quite a large class of more general resource
allocation problems.

2.2 Extensions of SRA

Allocation with upper bounds

max
∑n

j=1 fj(xj)

s.t.
∑n

j=1 xj = B

xj ≤ uj j = 1, . . . , n
xj ≥ 0 j = 1, . . . , n, integer

The above greedy algorithm applies when we only increase the components that have not
reached their upper bounds.

Allocation with generalized upper bounds Suppose the indexes {1, . . . , n} are partitioned
into k disjoint sets S1 ∪ S2 · · · ∪ Sk. Consider

max
∑n

j=1 fj(xj)

s.t.
∑n

j=1 xj = B∑
j∈Sp xj ≤ up p = 1, . . . , k

xj ≥ 0 j = 1, . . . , n, integer
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Again, the above algorithm solves this problem optimally.

Allocation with nested upper bounds Suppose we have some nested sets of indexes {1, . . . , n} =
S0 ⊃ S1 ⊃ · · · ⊃ Sk (note strict containment). Consider

max
∑n

j=1 fj(xj)

s.t.
∑n

j=1 xj = B∑
j∈Sp xj ≤ up p = 0, . . . , k

xj ≥ 0 j = 1, . . . , n, integer

Same deal..

General allocation problem (GAP) This is the most general case, which encompasses all pre-
vious examples and a more complex nested structure. The formulation is:

(GAP)

max
∑n

j=1 fj(xj)

s.t.
∑n

j=1 xj = B

s.t.
∑

j∈A xj ≤ r(A) A ⊂ E
xj ≥ 0 j = 1, . . . , n, integer.

We call the constraints {
∑

j∈A xj ≤ r(A), A ⊆ E} polymatroidal constraints., if r : 2E → R,
for E = {1, . . . , n}, is a submodular rank function, that is, r(φ) = 0 and for all A,B ⊂ E,

r(A) + r(B) ≥ r(A ∪B) + r(A ∩B).

The polymatroid defined by the rank function r, is the polytope {x|
∑

j∈A xj ≤ r(A), A ⊆ E}.

2.2.1 A Lower Bound with the Comparison Model [Hoc94]

First let’s look at the 1-d version of the problem, given a concave function f , consider

max f(x)
s.t. x ≤ B

x ≥ 0
x ∈ Z

Finding the optimal x amounts to finding where the sequence ∆1,∆2, . . . ,∆B start to become
negative. Binary search solves the problem with O(dlog2Be) operations5 .

We can give an information theoretic lower bound for solving this one-dimensional problem.
Consider a decision tree with every evaluation of the increments splitting the range of potential
solutions offered at that node into two parts. Any algorithm can be viewed as a walk from the
root to one of the B + 1 leaves, where leaf i, i = 0, 1, ..., B represents the outcome at which f(i)
attains its maximum. The decision tree hence has depth at least dlog2(B + 1)e; the complexity of
any algorithm, in turn, must be at least Ω(log2B). A similar argument applies to sorting, where
there are n! leaves in the decision tree for a problem with n input numbers, and hence the depth is
no less than O(log2(n!)) = O(n log2 n).

5the operations can be (1) comparisons or (2) arithmetic calculations to find the mid point of the search region
or (3) oracle calls to the function.
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Now let’s extend this argument to a reformulation of the more general model. Specifically, let’s
call this the Generalized Allocation Comparison Problem:

(GACP)

max
∑n

j=1 fj(xj) + cxn+1

s.t.
∑n+1

j=1 xj = B

xj ≥ 0 j = 1, . . . , n
xj ∈ Z j = 1, . . . , n.

Solving the GACP is essentially equivalent to finding, for each fj , j = 1, . . . , n, the last increment
greater than or equal to c in [0, Bn ] (otherwise we would opt to increase xn+1 instead). Hence
Ω(n log2

B
n ) is the lower bound on the complexity of the algorithm.

2.2.2 The Algebraic-Tree Model Lower Bound [Hoc94]

In the arithmetic model of computation, we rely on Renegar’s lower bound proof ([R87]) for find-
ing ε-accurate roots of polynomials of fixed degree ≥ 2. In particular, Renegar shows that the
complexity of identifying an ε-accurate real root of such a polynomial in an interval [O,R] is of
complexity Ω(log log R

ε ), even if the polynomial is monotone in that interval. Now, let p1, . . . , pn
be n monotone non-increasing (over [0, R]) polynomials that each take the value c exactly once in
the interval [0, Bn ]. Since the choice of these polynomials is arbitrary, the lower bound on finding
the n roots of these n polynomials must be Ω(n log log B

nε), according to Renegar. However if we
set fj(xj) =

∫ xj
0 pj(x)dx, then the fjs are polynomials of degree ≥ 3. Thus, the problem,

(GACPε)

max
∑

j fj(xj · ε) + c · xn+1 · ε∑n+1
j=1 xj = B

ε

xj ≥ 0 j = 1, . . . , n+ 1
xj ∈ Z j = 1, . . . , n+ 1,

has an optimal solution x such that y = ε ·x, which is also an (nε)-accurate vector of roots solving
the system,

p1(y1) = c
p2(y2) = c

...
pn(yn) = c.

Given our design of the functions fj , the fact that the solution to GACPε is also a approximation
of this set of polynomials follows from the KKT conditions of GACPε, as well as the proximity
theorem to be derived in the following section.

2.2.3 The Floor Operation

[MST91] proved a lower bound on the complexity of finding ε-accurate square roots that assumes

the floor, b c, operation. In our notation this lower bound is Ω(
√

log log B
ε ). Hence, even with this
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additional operation the problem cannot be solved in strongly polynomial time.

Floor operation can be important, as in the following example:

min
1

2
x2

1 +
1

2
(a− 1)x2

2

s.t x1 + x2 = b

x1, x2 ≥ 0 integers,

where the parameter a > 0. You can compute analytically that the optimal x∗2 = bBa c.

2.3 Proximity-Scaling Algorithm for the General Allocation Problem

Consider the general allocation problem:

(GAP)

max
∑n

j=1 fj(xj)

s.t.
∑n

j=1 xj = B∑
j∈A xj ≤ r(A) A ⊂ E

xj ≥ `j j = 1, . . . , n, integer.

For this section, we use ei to denote the ith standard basic vector for i = 1, . . . , n and e =∑n
i=1 ei.

2.3.1 The Greedy Algorithm

It is well know that GAP can be solved optimally by a greedy algorithm:

Algorithm 1 Greedy

0. x← `, B ← B −
∑

j `j , E ← {1, . . . , n}.

1. Find i such that ∆i(xi) = maxj∈E ∆j(xj) (where ∆j(xj) = fj(xj + 1)− fj(xj)).

2. If x + ei is feasible then xi ← xi + 1 and B ← B − 1;
Else, E ← E \ {i}.

3. If B = 0, output x and stop.
Else if E = ∅, output “no feasible solution” and stop.
Else, go to step 1.

Complexity: Algorithm 1 will clearly conduct B iterations, each of which requires finding the
minimum ∆j(xj) and testing the feasibility of a given solution vector. Using the structure of binary
heaps, this will require O(log n) operations to update the binary heap of ∆j(xj) for j = 1, . . . , n,
and O(F ) running time for the feasibility check. Thus, the total complexity of this greedy algorithm
is O (B(log n+ F )), which is pseudo-polynomial due to the input B.
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2.3.2 The Greedy(s) Algorithm

Consider improving the running time by scaling the largest increment of xi’s to be s units (s
integer). This intuition gives us the Greedy(s) algorithm. Note that Greedy(s) does not solve GAP
optimally, but it provides a feasible output x(s), which is later shown to be related to an optimal
solution of GAP via the proximity theorem.

Algorithm 2 Greedy(s)

0. x← `, B ← B −
∑

j `j , δ ← 0, E ← {1, . . . , n}.

1. Find i such that ∆i(xi) = maxj∈E ∆j(xj) (where ∆j(xj) = fj(xj + 1)− fj(xj)).

2. If x + s · ei is feasible then xi ← xi + s, B ← B − s, δi ← s;
Else, find the largest integer δ such that x+ δ ·ei is feasible, and let xi ← xi+ δi, B ← B− δi,
δi ← δ, E ← E \ {i}.

3. If B = 0, output xs, δ, and stop.
Else if E = ∅, output “no feasible solution” and stop.
Else, go to step 1.

Complexity: The running time of each iteration in Greedy(s) is the similar to Greedy except
for F . In Greedy(s), F is the complexity of determining δi, the tightest slack to infeasibility.
However, the number of iterations in Greedy(s) is reduced to O(Bs ). Therefore, the complexity of
Greedy(s) is O

(
B
s (log n+ F )

)
.

For the output of Greedy(s), xs, we have the proximity theorem:

Theorem 1 (Hoc94). If there is a feasible solution to GAP then there exists an optimal solution
x∗ such that x∗ > xs − δ ≥ xs − s · e

Based on this proximity theorem we can derive the Proximity-scaling Algorithm solving GAP.

2.3.3 The Proximity-Scaling Algorithm for GAP

Algorithm 3 Proximity-scaling algorithm for GAP

0. s← dB/2ne.

1. If s = 1 call Greedy. Output x∗, and stop. Else, continue.

2. Call Greedy(s). Let the output be xs and δ.
`← xs − δ, s← ds/2e.
Go to step 1.

Complexity: There are dlog2
B
2ne iterations, each calls Greedy(s) once with s = Ω(Bn ). So the

complexity of the proximity-scaling algorithm is O
(
log(Bn )n(log n+ F )

)
.
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This proximity-scaling algorithm leads to the fastest algorithms known for all special cases of
the general allocation problem ([Hoc94]). The complexity expressions of the algorithm for the
different cases are:

1. For the simple resource allocation problem SRA, O(n log B
n ).

2. For the generalized upper bounds resource allocation problem (GUB), O(n log B
n ).

3. For the nested problem, O(n log n log B
n ).

4. For the tree constrained problem, O(n log n log B
n ).

The complexity bounds for SRA and GUB are also shown to be best possible in the comparison
model.

2.4 Proximity-scaling for separable convex (concave) optimization over linear
constraints

Now, we can generalize away from the single constraint of GAP. The formulation of separable
convex minimization programming over general linear constraints is:

(RP)

min
∑n

j=1 fj(xj)

s.t. Ax ≥ b
`j ≤ xj ≤ uj j = 1, . . . , n.

Here, A ∈ Rm×n and the fj ’s are convex functions, making the objective convex separable.

We use T (n,m,∆) to denote the running time for solving a linear programming problem with
constraints Ax ≥ b such that (n, m, ∆) are the column size, row size and the largest sub-
determinant of A.

2.4.1 Convex Piecewise Linear Minimization Over Linear Constraints

Suppose we further assume that the fj ’s are convex piecewise linear functions. Let’s introduce the
following notation for j = 1, . . . , n:

Nj : the number of affine segments that make up fj in the interval [`j , uj ];

cjp: the slope of the pth segment of fj ;

δjp: the length of interval for the pth segment of fj .

Now we can express the variable xj as xj =
∑Nj

p=0 zjp, where zj0 = `j and 0 ≤ zjp ≤ δjp, for

j = 1, . . . , Nj . Let vector z = [z10, z11, . . . , z1Nj , z20, . . . , zn0, . . . , znNn ]T . And let Aj denote the jth



IEOR 290G Scribe Notes 9

Figure 1: An example of a piecewise linear function

column of matrix A. Then Ax = Ãz where Ã have Nj multiples of column Aj for j = 1, . . . , n.
That is, Ã = [A1, A1, . . . , A1, A2, . . . , A2, . . . , An, . . . , An]. By changing variables x to z, we arrive
at the following linear programming problem:

(LP)

min
∑n

j=1

∑Nj
p=1 cjpzjp

s.t. Ãz ≥ b
0 ≤ zjp ≤ δjp j = 1, . . . , n, p = 1, . . . , Nj

zj0 = `j j = 1, . . . , n.

Since the columns of Ã are merely duplicates of the columns of A, we may make a few obser-
vations:

1. The largest sub-determinant of Ã is the same as that of A.

2. Any sub-matrix with non-zero determinant cannot contain duplicate columns. Therefore, in
any basic feasible solution, at most one zjp is not on the boundary for each j. Moreover, as the
fj ’s are convex, for each j the objective coefficients cjp are increasing in p = 1, . . . , Nj . Hence,
the optimal solution for (LP) must have the form (zj0, . . . , zjNj ) = (`j , δj1, . . . , δjp−1, zjp, 0, . . . , 0)
for some 1 ≤ p ≤ Nj and 0 ≤ zjp ≤ δjp.

Therefore, the basic optimal solution of (LP) is consistent with an optimal solution of (RP) if
fj ’s are convex piecewise linear, implying that the minimization problem over linear constraints is
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solvable as an LP in this case. The complexity here would be T (Nn,m,∆), where N = maxj Nj .
We may also consider the corresponding integer valued problem:

(IP)

min
∑n

j=1 fj(xj)

s.t. Ax ≥ b
lj ≤ xj ≤ uj j = 1, . . . , n

xj ∈ Z j = 1, . . . , n,

Let ∆ be the value of the largest subdeterminant of A where A ∈ Rn×m. We may alternatively
define F (x) =

∑n
j=1 fj(xj) and represent the objective as minF (x).

Our approach to solving this problem involves designing a scaled problem, RP-s, and approxi-
mating the functions fj with analogous piecewise linear functions fL:s

j that agree with fj at integer
multiples of s. Furthermore, we introduce variables {zj1, . . . , zjNj} for each xj , effectively splitting
each xj into Nj increments that are 1

s times the length of the original range of xj . With these new
variables, we can redefine each xj as follows:

xj = s

⌊
lj
s

⌋
+ s

Nj∑
p=1

zjp

0 ≤ zjp ≤ 1

Nj =

⌈
uj − lj
s

⌉
Having broken up the variables xj into discrete parts, we may now linearize the objective

functions accordingly, basically affording each zjp with an objective coefficient equal to the ”average

slope” of fj over the range of xj represented by zjp. To this end, define ∆
(p)
j as follows:

∆
(p)
j = fj

(
s

(
b lj
s
c+ p

))
− fj

(
s

(
b lj
s
c+ p− 1

))
, for p = 1, . . . , Nj

We can see that fL:s
j (zj) =

∑n
j=1 fj

(
sb ljs c

)
+
∑n

j=1

∑Nj
p=1 ∆

(p)
j zjp. Now, we may define a new

linear problem that effectively emulates the RP at integer multiples of s:

(RP-s)

min
∑n

j=1 f
L:s
j (zj)

s.t. Az ≥ b
s

lj
s ≤ xj ≤ uj

s j = 1, . . . , n

In the case of IP, we would need to acknowledge that b
s may not necessarily be integer-valued,

and would have to make the modification:

(IP-s)

min
∑n

j=1 f
L:s
j (xj)

s.t. Ax ≥ bbs c
lj
s ≤ xj ≤ uj

s j = 1, . . . , n
xj ∈ Z j = 1, . . . , n.
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While an optimal solution to IP-s may not be feasible to IP, we can assert that the distance
between an optimal solution to IP-s and IP is bounded. Furthermore, we note that, upon making
the transformation from the variables xj to the variables zj1, . . . , zjNj , RP-s and IP-s can be
solved as linear programming problems. Should the original problem IP represent a network flow
problem, then the fact that the node-arc adjacency matrix A is totally unimodular implies that
the constraint matrix of this new, linear programming formulation is also totally unimodular, as
we are only duplicating its columns.

2.4.2 Proximity Theorems

Now, we present present proximity theorems that allow us to bound the distances of the optimal
solutions of IP and RP from those of IP-s and RP-s, respectively. These will then allow us to
design a proximity scaling algorithm for this problem analogous to the one used to solve GAP.

Let FL:s(x) =
∑n

j=1 f
L:s
j (xj).

Theorem 2 (Proximity Theorem). Let x(s) be the optimal solution to FL:S(x) (the scaled problem).
Then there exists an optimal solution, x∗, to the original problem such that ||x(s) − x∗||∞ ≤ n∆s.

Theorem 3. Let x(1) be the optimal solution to an integer problem. Then there exists a continuous
optimal solution x(ε) such that ||x(1) − x(ε)||∞ ≤ n∆.

2.4.3 The Proximity Scaling Algorithm

The proximity scaling algorithm essentially works by initially splitting each xj into 4n∆ pieces. It
then solves the associated RP-s (or IP-s). If the answer obtained from this is accurate enough,
it terminates. Otherwise it shrinks the feasible interval (using the proximity theorem) for each
variable, and further splits the functions into smaller pieces.

Algorithm 4 The Proximity Scaling Algorithm

0. Let U = max{uj − lj}. If the original problem is IP, set ε = 1; otherwise we are solving RP
to ε-accuracy.

1. Set s =
⌈

U
4n∆ε

⌉
ε

2. Solve RP-S or IP-S to get an optimal solution x(s).
If s = ε, STOP and return x(s).

3. Set lj = max{lj , xsj − n∆s}.
Set uj = min{uj , xsj + n∆s}.

4. Set s =
⌈
s
2ε

⌉
ε and go to step 2.

Each iteration of the algorithm must solve an LP (or IP in the case of IP-S) that has complexity
T (4n2∆,m,∆) where 4n2∆ is the number of variables, m is the number of constraints, and ∆ is
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the value of the largest subdeterminant. The algorithm then iterates O(log U
4n∆ε), times, leading

to an overall complexity of O
[
(log U

4n∆ε)T (4n2∆,m,∆)
]
.

A corollary of the result of the complexity of this algorithm is that convex separable minimiza-
tion over totally unimodular constraints is polynomial time solvable (in integers or with ε-accuracy).

2.4.4 Application to Convex Cost Network Flows

Let G = (V,A) be a graph with |V | = n and |A| = m. Suppose we are trying to find the minimum
cost flow on this graph where the cost on an arc is a convex function fij(xij) of the flow xij along
that arc. We can use the proximity scaling algorithm to find the optimal flow.

The naive approach would be to solve the minimum cost network flow (MCNF) each time we
scale the problem. We would be solving an MCNF on a multigraph with 4n arcs replacing each
arc in the original graph (∆ = 1 since the constraint matrix is always totally unimodular). This
would give a total complexity O(log U

4mMCNF (multigraph with 4nm arcs)) for solving the original
problem.

However, there have been other implementations that are smarter and give lower complexities.
One such implementation has complexity O(log ‖b‖∞m(m + n log n)) where ‖b‖∞ is the absolute
value of the largest supply/demand in the graph. Note that this is similar in form to the running
time for the linear case of MCNF O(log nm(m+ n log n)).

Another algorithm developed by Menoux has complexity O(log ||U ||∞mn2). And one by Kan-
zanan and McCormick has complexity O(mn log n log(nc)), where c is related to the slope of the
function near the bounds.

2.5 Nonseparable Convex Minimization

While separable convex minimization over linear constraints was shown to be not much harder
than linear optimization, nonseparable convex minimization is much more difficult in general. Even
quadratic nonseparable minimization is not necessarily solvable in strongly polynomial time.

2.5.1 The Quadratic Case

Although separable convex quadratic problems may be solvable in strongly polynomial time, the
question of strong polynomiality of nonseparable quadratic continuous optimization problems is
open. While it is possible that the nonseparable optimization problem is solvable in strongly
polynomial time, it is at least as hard as the question of strong polynomiality of linear programming
(this insight is due to I. Adler). To see this, observe that the problem of feasibility of linear
programming {Ax = b,x ≥ 0} 6= ∅? is equivalent to the following quadratic nonseparable convex
problem subject only to nonnegativity constraints:

min
x≥0

(Ax− b)T (Ax− b)
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Certain nonseparable convex continuous problems, as well as nonseparable quadratic convex
continuous problems are solvable in polynomial time as follows. A solution approximating the
optimal objective value to the convex continuous problem is obtainable in polynomial time, provided
that the gradient of the objective functions are available and that the value of the optimal solution
is bounded in a certain interval. Such work, based on the Ellipsoid method, is described by A. S.
Nemirovsky and D. B. Yudin (1983). In the quadratic case, exact solutions are possible. The best
running time reported to date is by Monteiro and Adler, O(m3L), where L represents the total
length of the input coefficients and m the number of variables.

2.5.2 Integer Non-Separable Quadratic Optimization

The case for the integer problems that are nonseparable, even if convex, is harder. Nonseparable
quadratic integer problems are NP-hard, To see this consider the following known reduction from
the independent set problem. The maximization of the weight of an independent set in a graph
is formulated as follows: Given a graph G = (V,E) with nonnegative weights Wv for each v ∈ V ,
find a subset of vertices U ⊆ V such that for any i, j ∈ U, {i, j} 6∈ E, and such that the total
weight W (U) =

∑
v∈U Wv is maximum. The weighted independent set problem can be posed as

the quadratic maximization problem:

max
x∈B|V |

∑
v∈V

Wvxv −
∑
{u,v}∈E

W (V ) · xu · xv

Let x∗ be the optimal solution. The maximum weight independent set is then {v|x∗v = 1}.Note
that the reduction also applies for the unweighted case. So even in the absence of the flow balance
constraints, the integer problem is NP-hard.

2.5.3 Separation Scheme for Specific Quadratic Minimization

We illustrate one general purpose technique for nonseparable problems that we call a “separating
scheme”. The technique relies on converting the objective function into a separable function (e.g. by
diagonalizing the matrix Q in the quadratic case). This implies a transformation of variables which
affects the constraints. If the new constraints are such that they form a totally unimodular matrix
then the proximity-scaling algorithm by [HS90] for separable convex optimization over totally uni-
modular constraints can be employed to obtain an optimal integer solution. This proximity-scaling
algorithm solves, at each iteration, the scaled problem in integers using linear programming.

Consider the nonseparable problem:

min F (x)
s.t. Ax = b

0 ≤ x ≤ u
x ∈ Zn.
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Suppose there exists an invertible n × n matrix U such that F (Ux) is a separable function.
Then the newly stated problem is:

min F (y)
s.t. AU−1y = b

0 ≤ U−1y ≤ u
U−1y ∈ Zn.

Now, if the matrix U is totally unimodular, then the integrality requirement is preserved. If the

new matrix of constraints

[
AU−1

U−1

]
is totally unimodular, then the nonseparable flow problem is

solvable in polynomial time and in integers using the proximity-scaling algorithm.

Consider now the separating scheme for quadratic objective functions. The formulation of a
quadratic nonseparable problem on box constraints is as follows:

max
∑n

i=1 dixi +
∑n

i=1

∑n
j=1 qij · xi · xj

s.t. `i ≤ xi ≤ ui i = 1, . . . , n
xi ∈ Z i = 1, . . . , n.

The idea of making the problem separable so that the resulting constraint matrix is totally
unimodular is translated here to finding a totally unimodular matrix U , so that for the matrix
Q = (qij), U

−1QU is a diagonal matrix. [BW90] used this approach for a problem of electric
distribution systems where only box constraints are present.

[Bal95] has further identified several classes of matrices Q where a “diagonalizing” scheme with
a totally unimodular matrix exists. The two classes are:

(1) Diagonally dominant matrices, qii ≥
∑

i 6=j |qij |.

(2) Matrices with forest structure: These are matrices with a partial order on the positive coef-
ficients inducing a forest.

For both these classes, with A empty, there are polynomial algorithms. Also if the constraint

matrix,

[
AU−1

U−1

]
is totally unimodular then still integer solutions can be obtained in polynomial

time. Continuous solutions can be obtained in polynomial time if the largest subdeterminant of
the constraint matrix is bounded by a polynomial ([HS90]).
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2.6 The Convex Cost Closure Problem

The minimum closure problem defined on a graph G = (V,A) with weights wj ∀j ∈ V is defined
as follows:

min
∑
j∈V

wjxj

subject to xi − xj ≤ 0 (i, j) ∈ A
l ≤ xj ≤ u j ∈ V
xj integer j ∈ V

Let V + ≡ {j ∈ V |wi > 0}, and V − ≡ {i ∈ V |wi ≤ 0}. We construct an s, t-graph Gst as follows.
Given the graph G = (V,A) we set the capacity of all arcs in A equal to ∞. We add a source s, a
sink t, set As of arcs from s to all nodes i ∈ V + (with capacity us,i = wi), and set At of arcs from
all nodes j ∈ V − to t (with capacity uj,t = |wj | = −wj). The graph Gst = {V ∪{s, t}, A∪As ∪At}
is a closure graph (a closure graph is a graph with a source, a sink, and with all finite capacity arcs
adjacent only to either the source or the sink.) This construction is illustrated in Figure 2.

!" #"

$"

%"

G = (V,A) 

-wj ≥ 0  Wi > 0 ∞ 

Figure 2: Visual representation of Gst.

Proposition 1. For (S, T ) a min (s, t)-cut, T is a minimum weight closure.

Proof.

C(S, T ) =
∑

j∈T∩V +

wj +
∑

i∈S∩V −
(1)

=
∑

j∈T∩V +

wj −

 ∑
k∈V −:wk<0

wk −
∑

p∈T∩V +:wp<0

wp

 (2)

=
∑

j∈T∩V +

wj −
∑
k∈V −

wk︸ ︷︷ ︸
W−

+
∑

p∈T∩V −
(3)

=
∑
j∈T

wj −W− (4)
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Since W− is a constant term, we can solve the problem by finding the minimum value of the
left side summation:

min
T⊂V

∑
j∈T

wj (5)

If we have a finite cut, the arcs from the cut can go from s→ t or from t→ s, but not in between
other arcs because they have infinite capacity. S goes to nodes which have positive weight.

Now, we are interested in the convex cost closure (ccc) problem where the weight for every node
j ∈ V is given by a convex function fj(xj). Further, we restrict xj to be within the range [l, u] and
to be integral.

min
∑
j∈V

fj (xj)

subject to xi − xj ≤ 0 (i, j) ∈ A
l ≤ xj ≤ u j ∈ V
xj integer j ∈ V

Note that integrality is not a real restriction since the constraint matrix is totally unimodular
so the solution is guaranteed to be integer. The idea in solving this problem is to reduce it to its
binary version.

Proposition 2. If node weights are linear functions, then in an optimal solution every xi is either
l or u.

Proof. Observe that the problem can be converted to the minimum closure problem by translating
the x variables as follows. For every node i ∈ V , yi = xi−l

u−l , which yields

min
∑
i∈V

wiyi

subject to yi − yj ≤ 0, (i, j) ∈ E
0 ≤ yi ≤ 1 i ∈ V

Since the constraint matrix is totally unimodular, the optimal solution is guaranteed to be integer.
Hence, every yi is either 0 or 1. To get the optimal solution to the original problem we solve for xi
and find that

xi =

{
l if yi = 0

u if yi = 1
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We therefore conclude that solving (ccc) with a linear objective is no more interesting than solving
the minimum closure problem.

Now, for α ∈ [min
j∈V

lj ,max
j∈V

uj ], we are going to define the following problem:

min
∑
j∈V

f
′
j (α)xj

subject to xi − xj ≤ 0 (i, j) ∈ A
xj ∈ {0, 1} (6)

We define f ′j(α) as follows:

f ′j(α) = fj(α+ 1)− fj(α) = wj if α ∈ [lj , uj ]

f ′j(α) =

{
−W, if α < lj

W, if α > uj
if α /∈ [lj , uj ]

where W =
∑

j∈V :α∈[lj ,uj ]

|wj |. This definition follows from the fact that we do not want to include

values outside our domain.

Let x(α) be an optimal solution, Sα = {x(α)
j = 1}. Let Sα be a minimal minimum closet set.

Solving (ccc) with a convex nonlinear objective is not nearly as straight-forward. We introduce
the notion of a threshold theorem, which allows us to improve run-time complexity by solving a
related problem that prunes the search space.

2.6.1 The Threshold Theorem

Definition 1. The graph Gα is constructed as follows. Let the weight at node i be the derivative
of wi evaluated at α: w′i (α) ≈ limh→0

wi(α+h)−wi(α)
h .

Figure 3: An illustration of Gα
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Definition 2. Let a minimal minimum closed set on a graph be a minimum closed set that does
not contain any other minimum closed set.

We now present the threshold theorem as follows.

Theorem 4. An optimal solution to (ccc) on G, x∗, satisfies

x∗i ≥ α if i ∈ S∗α
x∗i < α if i ∈ S̄∗α

where S∗α is a minimal minimum weight closed set in Gα.

Figure 4: An illustration of the threshold theorem (1)

Proof. For sake of contradiction, let S∗α be a minimal minimum weight closed set on Gα, and let
there be a subset S0

α ⊆ S∗α such that at an optimal solution x∗j < α for all j ∈ S0
α. Subsequently,

the optimal value for every node i ∈ S∗α\S0 has weight ≥ α. (See Figure 4.)

Recall that the problem requires that xi ≤ xj for all (i, j) ∈ A. As a consequence, there cannot
be a node in S0

α that is a successor of a node in S∗α\S0
α, otherwise the constraint will be violated.

Since S∗α is a closed set and there are no nodes in S∗α\S0
α that have successors in S0

α, S∗α\S0
α must

be a closed set. But this S∗α\S0
α cannot be a minimum closed set, otherwise we would violate the

assumption that S∗α is a minimal minimum closed set (since S∗α\S0
α ⊂ S∗α). Therefore, it must be

the case that:

∑
j∈S∗α\S0

α

w′j (α) >
∑
j∈S∗α

w′j (α)

=
∑
j∈S0

α

w′j (α) +
∑

j∈S∗α\S0
α

w′j (α)

which implies that ∑
j∈S0

α

w′j (α) < 0 .
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Figure 5: An illustration of the threshold theorem (2)

Next we observe that increasing the values x∗i to α for all i ∈ S0 does not violate the constraint
that x∗i ≤ x∗j , since by construction x∗i ≤ α < x∗j for all j ∈ S∗ and (i, j) ∈ A.

Figure 6: An illustration of the threshold theorem (3)

Since the node weights w() are convex functions, their sum W is also a convex function. Further,
we note that the derivative a convex function is monotone nondecreasing, and for any ε > 0, if
W ′ (α) < 0 then W (α− ε) > W (α). (See Figure 7.) Therefore, if for all i ∈ S0

α we increase the
value of x∗i to α, we will strictly reduce the weight of the closure. This is a contradiction on the
assumption that x∗ is optimal and S∗α is a minimum closed set.
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α-ε α

f(α-ε)

f(α)
f’(α) < 0

f(x) = x2

Figure 7: Properties of convex function

2.6.2 A Naive Algorithm for Solving (ccc)

The Threshold Theorem can be used to solve the convex cost closure problem by testing all values
of α ∈ [l, u]. The optimal value for node i ∈ V is x∗i = α such that i ∈ S∗α−1 and i ∈ S̄∗α. The
running time for this algorithm is (u− l) O(min s-t cut). Since u = 2log2 u and l = 2log2 l, we note
that this is an exponential-time algorithm.

2.6.3 Solving (ccc) in Polynomial Time Using Binary Search

Thanks to the threshold theorem we get some information from α and the solution for every α.
Thus, we can apply a more efficient algorithm for solving the problem.

We can improve the running time by using a binary search as follows. Pick a node v ∈ V . Solve
for S∗α, choosing α to be the median of u and l. If v ∈ S∗α, then by the Threshold Theorem we
know that x∗v > α, and we set α to the median of u−l

2 and u. Otherwise, let α be the median of l

and u−l
2 . We repeat the process, performing binary search on α until we find the optimal solution.

Algorithm 5 (below) describes the procedure in greater detail.

The binary search for every variable takes O(log2 (u− l)) time to compute, and we must do
this a total of n times (once for each node in V ). Hence, this method reduces our running time to
n log2 (u− l) O(min s-t cut), which is polynomial.

2.6.4 Solving (ccc) Using Parametric Minimum Cut

Hochbaum and Queyranne provide further run-time improvements for optimally solving (ccc) in
[HQ03]. This section summarizes their result.

From G we construct a parametric graph Gλ by introducing a source node s and sink node t.
We add an arc from s to every node j ∈ V with capacity max{0, f ′j (λ)}, and an arc from i to j
with capacity −min{0, w′j (λ)}. We make the following observations.

1. Every arc in Gλ has nonnegative capacity.
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Algorithm 5 Binary search algorithm for (ccc)

Require: G = (V,A) is a closure graph, where node weights w () are convex functions
1: procedure Binary Search(G, l0, u0)
2: for v = 1, . . . , n do
3: l← l0, u← u0

4: while u− l > 0 do
5: α← l + du−l2 e . Set α to the median of u and l
6: S∗α ← source set of minimum s− t cut on Gα
7: if v ∈ S∗α then
8: l← l + du−l2 e . α is the new lower bound on x∗v
9: else

10: u← l + du−l2 e . α is the new upper bound on x∗v
11: end if
12: end while
13: x∗v ← α
14: end for
15: return x∗ = [x∗1, . . . , x

∗
n]

16: end procedure

2. In the residual graph of Gλ, every node in V is connected to either the source or the sink
(not both).

3. Arcs adjacent to the source have capacities that are monotone nondecreasing in λ, and arcs
adjacent to the sink have capacities that are monotone nonincreasing as a function of λ.

Gs

t

i
j

17

fj(l) gj(l)

Figure 8: Parametric capacity graph

Let Sλ be the source set of a minimum cut in Gλ; equivalently, Sλ is a minimum closed set on
Gλ. As we increase λ in the interval [l, u], we find that the size of the source set Sλ increases, and
Sλ is a subset of source sets corresponding to higher values of λ. More formallly,

Sλ ⊆ Sλ+1 for all λ.

Definition 3. For any node v ∈ V , the node shifting breakpoint is defined as the largest value λ
such that v is in the source set Sλ, and the smallest value λ̄ such that v is not in the minimum
closed set (Sλ̄). Note that λ̄ = λ+ 1. Further,
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x∗v = min
x∈[λ,λ̄]

wv (x)

If we can find the node shifting breakpoint for each node v ∈ V , then we can construct the
optimal solution to (ccc) as shown in Algorithm 6. Hochbaum and Queyranne show that this
problem reduces to solving the parametric minimum cut problem on G [HQ03]. Conveniently,
Gallo, Grigoriadis, and Tarjan provide a method that solves this problem in the same running time
as a single minimum closure (or maximum flow) problem [GGT89].

Algorithm 6 Breakpoint method for solving (ccc)

Require: G = (V,A) is a closure graph, where node weights w () are convex functions
1: procedure Breakpoint(G,wv for v = 1, . . . , n)
2: Call (the modified) Parametric-Cut to find a set of up to n breakpoints λ1, . . . , λn
3: for v = 1, . . . , n do
4: minv = arg minx∈[l,u]wv(x)
5: Let the optimal value of xv fall in the interval (λvi−1, λvi ]
6: Then x∗v is determined by

x∗v =


λvi−1 + 1 if minv ≤ λvi−1

λvi if minv ≥ λvi
minv if λvi−1 ≤ minv ≤ λvi

7: end for
8: return x∗ = [x∗1, . . . , x

∗
n]

9: end procedure

The first step of the algorithm requires solving the parametric cut problem on G to find
the set of node shifting breakpoints. Following the method outlined in [GGT89], this requires

O
(
mn log n2

m + n log (u− l)
)

time to compute, where the second term corresponds to finding the

minimum for each node weight function using binary search. Since determining the optimal solution
x∗ takes time linear in n, the total running time of the algorithm is

O

(
mn log

n2

m
+ n log (u− l)

)
.

If the node weight functions are quadratic we can find the minimum of each function in constant

time, and the complexity of the algorithm reduces to O
(
mn log n2

m

)
; this is equivalent to solving

maximum flow (or minimum s− t cut) on a graph.
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2.7 The Convex S-Excess Problem and Hochbaum’s Algorithm

The convex s-excess problem is a special case of MRF where the separation functions are linear
functions. Given a directed graph G = (V,A), the convex s-excess problem is formulated as follows:

(convex s-excess)

min
∑

i∈V fi(xi) +
∑

(i,j)∈A uijzij
s.t. xi − xj ≤ zij , (i, j) ∈ A

`i ≤ xi ≤ ui, i ∈ V, integer
zij ≥ 0, (i, j) ∈ A.

Here, the fi are convex. The convex s-excess problem is a relaxation of the convex cost closure
(CCC) problem, where the partial order constraint xi ≤ xj is relaxed and the amount of violation
to the partial order constraint, reflected in the zij variable, is penalized in the objective function.

One application of convex s-excess is in image segmentation, as shown by Hochbaum in [Hoc01].
Note that although the graph employed in the image segmentation problem is a grid, convex s-excess
permits arbitrary directed graphs.

In [Hoc01], Hochbaum devises an efficient algorithm to solve the convex s-excess problem that
is provably the fastest possible. This algorithm relies on solving another subproblem, the s-excess
problem:

(s-excess)

min
∑

j∈V f
′
j(α)xj +

∑
(i,j)∈A uijzij

s.t. xi − xj ≤ zij ∀(i, j) ∈ A
xj ∈ B ∀j ∈ V
zij ∈ B ∀(i, j) ∈ A.

This problem is effectively a specification of the convex s-excess. This problem can by solved by
creating a parametric graphGst(α) = (Vst, Ast) for some scalar integer value of α ∈ [mini∈V `i,maxi∈V ui],
from the original graph G. To this end, Vst = V ∪ {s, t} and Ast = A ∪ As ∪ At. The appended
node s is called the source node and t is called the sink node. The respective sets of source adjacent
arcs and sink adjacent arcs are defined as As = {(s, i) : i ∈ V } and At = {(i, t) : i ∈ V }. Each arc
(i, j) ∈ Ast has an associated nonnegative capacity cij . For arcs (i, j) ∈ A, cij = uij . Each arc in
As = {(s, i)}i∈V has capacity csi = −min{0, f ′i(α)} and each arc in At = {(i, t)}i∈V has capacity
cit = max{0, f ′i(α)}, where f ′i(α) = fi(α+ 1)− fi(α), the right sub-gradient of fi(xi) at argument
α on the integer grid. Note that, for any given value of α, either csi = 0 or cit = 0. Then, the
s-excess problem can be solved by finding a minimum cut (S∗, S̄∗) on this graph Gst and setting
xi = 0∀i ∈ S∗ and xi = 1∀i ∈ S̄∗.

A key idea in Hochbaum’s algorithm is the following threshold theorem (analogous to the
similarly-named theorem for (ccc)), which links the optimal solution of the convex s-excess problem
with the minimum cut partitions in Gst(α):

Theorem 5. (Threshold Theorem) For any given α, let S∗ be the maximal source set of the
minimum cut in graph Gst(α). Then there is an optimal solution x∗ to the convex s-excess problem
satisfying:



IEOR 290G Scribe Notes 24

x∗j

{
> α ∀j ∈ Sα
≤ α ∀j /∈ Sα.

An important property of Gst(α) is that the capacities of source adjacent arcs are non-increasing
functions of α (due to the convexity of functions fi(xi)), the capacities of sink adjacent arcs are
non-decreasing functions of α (due to the convexity of functions fi(xi)), and the capacities of all
the other arcs are constants. This implies the following nested cut property :

Lemma 1. (Nested Cut Property [GGT89, Hoc01]) For any two parameter values α1 ≤ α2, let
S∗α1

and S∗α2
be the respective maximal source set of the minimum cuts of Gst(α1) and Gst(α2),

then S∗α1
⊇ S∗α2

.

According to the nested cut property, the dynamic of the minimum cuts in Gst(α) as α increases
from mini∈V `i to maxi∈V ui works as follows: initially, all nodes in V are in the source set, as α
increases, some nodes jump from the source set to the sink set, and those nodes in the sink set will
never jump back to the source set as α continues to grow. Ultimately, all nodes will join the sink
set. As a result, in order to solve the minimum cuts in Gst(α) for all values of α, it is sufficient to
find the ”key” values of α at which at least one node jumps from source set to sink set. We call
these values as breakpoints:

Definition 4. A value of α is a breakpoint if S∗α ⊃ S∗α+1.

Let α1 < α2 < . . . < αq be the list of breakpoints. Thus we have V = S∗α1
⊃ S∗α2

⊃ . . . ⊃
S∗αq ⊃ S∗αq+1

= ∅. According the nested cut property, we have q = O(n). For each node i ∈ V , if
i ∈ Sαj \ Sαj+1 , we have x∗i = αj .

In [Hoc01], Hochbaum shows that it is possible to solve for all breakpoints on the parametric

graph Gst(α) in time O(nm log n2

m + n logU), where U = maxi{ui − `i}. Note that O(nm log n2

m )
is the complexity of a single minimum s, t-cut. Hochbaum’s algorithm is fastest possible for con-
vex s-excess since the convex s-excess problem generalizes the minimum cut problem on a graph,
of complexity O(nm log n2

m ), and the problem of finding the minimum of n convex functions, of
complexity O(n logU).

2.8 Properties of Cut Functions of a Parametric Graph

A parametric graph Gst(α) is a capacitated s, t-graph where the capacities of source and sink
adjacent arcs are functions of a parameter α, and satisfies the following properties:

1. The capacities of arcs that are not adjacent to source or sink are constants.

2. The capacities of source adjacent arcs are non-increasing functions of α.

3. The capacities of sink adjacent arcs are non-decreasing functions of α.
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Note that it can also be the case that the capacities of source adjacent arcs are non-decreasing
functions of α and the capacities of sink adjacent arcs are non-increasing functions of α.

We are interested in the minimum cut partitions in Gst(α) for different values of α. Besides the
nested cut property introduced above, the minimum cut partitions in Gst(α) have some additional
interesting properties. We define Cα̂(α) as the cut capacity function of α with respect to the
minimum cut partition generated at the value of α̂. The set of cut capacity functions have the
following properties:

1. Let α1 < α2 < . . . αq be the list of breakpoints. Cαj (α)−Cαj−1(α) is monotone non-increasing.
This property is called ”breakpoint-concavity”.

2. If there are two or more breakpoints in [α`, αu], then α∗, the intersection of Cα`(α) and
Cαu(α), “separates” the breakpoints in the interval [α`, αu], in that [α`, α

∗] and [α∗, αu] each
contains at least one breakpoint.

3. The complexity of finding the intersection α∗, is the same as the complexity of finding the
value for which the sum of the derivatives of convex functions is equal to k (Same as finding the
minimum of a sum of convex functions (for the capacities of the source and sink adjacent arcs)
plus a linear function (for the constant capacities of the non-source and non-sink adjacent
arcs).

2.9 Applications of Markov Random Fields

Consider a graph G = (V,A) and a set of possible values X . In the following examples, we consider
problems of the form:

(MRF) min
x∈Xn

n∑
i∈V

Gi(xi) +
∑

(i,j)∈A

Fij(xi − xj), (7)

where the Gi’s and Fij ’s can take a number of forms. Note that this is a generalization of the convex
s-excess problem. Figure 9 provides the complexity of solving the MRF problem conditioned on a
few example forms for these functions.

Figure 9: Complexity of the MRF problem given various forms for the Gi and Fij functions [Hoc13].
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2.9.1 Multiway Cut

Given a pre-determined set of ”terminal” nodes {s1, . . . , sk}, the multiway cut problem is that
of that of choosing the minimum weight subset of arcs in A such that the removal of this subset
partitions the graph into k subgraphs, each of which contains exactly one of the terminals s1, . . . , sk.
In the case where k = 2, this is clearly the minimum cut problem, and so can be solved in polynomial
time. However, this problem is NP-hard for general k.

We may represent this problem as an MRF by setting Gi(xi) = 0∀i and Fij(xi − xj) to be the
dirac function, taking value uij (the weight of arc (i, j) ∈ A) when xi = xj , and zero otherwise.
Additionally, we would fix xs1 = s1, . . . , xsk = sk to ensure that there will be k cuts. Since this
formulation falls into the final category of MRF problems denoted in Figure 9, we can see that
solving MRF problems with linear Gi and generic nonlinear Fij must be at least as hard as solving
the multiway cut problem, that is to say, it is NP-hard as well.

2.9.2 Isotonic Regression [Hoc01]

Another, more hopeful example of the use of MRF is in the case of isotonic regression, also re-
ferred to as statistical inference. In this problem, the goal is to estimate a generic monotonically
nondecreasing function f : R→ R, given a series of noisy samples {(x̂i, ŷi) ∈ R× R}k∈K .

Since f is nonparametric and nothing is assumed about it other than its monotonicity, we can
only estimate the function at the points {x̂k}k∈K . We denote our estimates {yk}k∈K . Now, we
may define deviation penalties Gk(yk − ŷk) for each point estimated in order to force our estimates
to reflect the samples as closely as possible. For example, we may set Gk to be the absolute value
function. Then, for any x̂i ≥ x̂j , we could set the bilinear cross function:

Fij(yi − yj) =

{
M(yi − yj), yi − yj < 0

0, otherwise,
(8)

where M is some large coefficient to keep the model from selecting yi < yj for x̂i ≥ x̂j . If
the functions Gk are each Lipschitz with parameter Lk, then we may define M =

∑
k∈K Lk.

Alternatively, we may include the constraints yi ≥ yj explicitly and instead use extant algorithms
for the convex closure problem. We can see that this problem is effectively the MRF on a graph
that is a path; that is, the graph is composed of a node for every data point, and arcs tracing a
simple path passing through every node.

2.9.3 Image Segmentation [Hoc13]

In the image segmentation (IS) problem, we are given a picture composed of a grid of pixels, some
of which have been corrupted. The goal, assuming that the original picture was not merely random
noise and was of some object, is to reconstruct the picture by selecting the proper colors for the
pixels, using information from surrounding pixels as well as the possibly incorrect color of the pixel
as we are given it. Effectively, we make the assumption that adjacent pixels are likely to be similarly
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colored (since the pixels are in a grid, we define adjacency to be directly above, below, or to the
right or left of another pixel), and so may use that to decide when to deviate from the picture that
we are originally given.

To that extent, we may define the MRF problem over a graph G = (V,A), where the set of
nodes V has a node xi for each pixel i and there are two arcs (i, j), (j, i) for every two adjacent
pixels i, j (as the pixels are arranged in a grid, we define two pixels as adjacent if one is directly
above the other or to the left/right of the other). We let each pixel take values in some set X
denoting the possible colors and refer to the a priori color of each pixel i as ri ∈ X. Then, we may
define the separation penalty functions Fij similarly as above:

Fij(xi − xj) =

{
a(xi − xj), xi − xj < 0

0, otherwise,
(9)

and the deviation penalty functions Gi(xi − ri) as some convex function, possibly a quadratic or
weighted absolute value function b| · |. Clearly, our choice of a, b signals the incentive to deviate
from the given colors ri. Figure 10 shows the effects of increasing the ratio S = a

b .

Figure 10: Impact of increasing the penalty for separation vs. that for deviation [Hoc13].

Modifying the set X also has an impact. Figure 11 shows an example of the effects of increasing
k = |X|.
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Figure 11: The impact of a larger set of possible colors [Hoc13].

2.9.4 Ising Model [KS80]

The concept of the MRF may seem somewhat detached from its name, as there does not seem to be
any mention of randomness, the Markovian property, or even fields of any sort. Interestingly, the
origins of MRF came from German scientist Ernst Ising in the 1920’s, who was looking to develop
a mathematic model of ferromagneticism in substances, i.e. the propensity of certain substances
to turn into magnets at certain temperatures. To this end, he modeled a substance as a set of
particles I arranged in a grid (not necessarily 2-dimensional), not unlike the one we defined in the
previous section for the pixels in an image, each with a certain spin ωi ∈ {+,−}. Let σ(ωi) be an
indicator that takes the value 1 if wi = + and -1 otherwise. Adjacent particles had a certain level
of impact on each other, and there was assumed to be an underlying magnetic field that impacted
the spin of particles as well. To this end, for some configuration of spins ω = (ω1, . . . , ω|I|) ∈ Ω (Ω
denotes the set of all possible configurations), Ising defined the energy measure:

U(ω) = −

H∑
i∈I

σ(ω) + J
∑
i∈I

∑
j∈N(i)

σ(ωi), σ(ωj)

 (10)

Here, the constant J is a property of the material that determines the tendency for neighboring
spins to align, the constant H is the intensity of the underlying magnetic field, and N(i) represents
the set of particles neighboring particle i. Ising then assigned a likelihood measure on these states:

e−
1
kT
U(ω),

as well as the Gibbs probability measure:
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P (ω) =
e−

1
kT
U(ω)

Z
, Z =

∑
ω∈Ω

e−
1
kT
U(ω), (11)

where T is the temparature and k is some universal constant.

Although this probability measure may seem a bit arbitrary, it has a number of benefits in the
context of the original problem; namely, it has explicit ties to the entropy of the distribution of
configuration and gives the model a Markovian property, from which the MRF derives its name.
However, these are beyond the scope of this class. Ising himself was ultimately unable to make
any meaningful computations in anything beyond the one-dimensional version of this model before
being forced out of Germany in 1936, but contemporary tools in MRF make the problem much
more tractable in higher dimensions (one can immediately see the similarity of this model to the IS
problem from the previous section). The model itself faded into obscurity in the physics literature
with the introduction of the more complicated Heisenberg model in the 1930’s, but clearly remains
of mathematical interest and practical use up to the present day.

3 Approximation Algorithms

In this section, we will cover approximation algorithms for several intractable graph problems, such
as the set cover, as well as analogous problems on planar graphs. We also provide approximation
algorithms for metric covering and packing problems and the Knapsack problem. First, we state
some definitions and a result regarding approximation schemes:

Definition 5. A Polynomial-Time Approximation Scheme (PTAS) delivers a (1+ε)-approximation
for every fixed ε.

Definition 6. A Fully-Polynomial-Time Approximation Scheme (FPTAS) delivers a (1 + ε)-
approximation in time polynomial in both n and 1

ε .

Theorem 6 (GJ 1979). Unless P = NP, there is no FPTAS for the strongly NP-complete problems.

3.1 The Set Cover Problem

Given an universal set I of m elements to be covered and a collection of sets Sj ⊆ I, j ∈ J =
{1, . . . , n} with each set having a weight wj associated with it, the set cover problem is to identify
the smallest weight collection of sets so that all elements of I are included in their union (or
“covered”). We define:

xj =

{
1 if Sj is selected
0 otherwise

aij =

{
1 if item i belongs to set Sj
0 otherwise
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(SC)

Min
∑n

j=1wjxj
s.t.

∑n
j=1 aijxj ≥ 1 i = 1, . . . ,m

xj ∈ B j = 1, . . . , n.

3.1.1 The Greedy Algorithm for the Set Cover Problem

A greedy algorithm is the most natural heuristic for set cover. It works by selecting one set at a time
that covers the most elements among the uncovered ones. Johnson and Lovász ([Joh74], [Lov75])
were the first to demonstrate that the greedy algorithm is a H(d)- approximation algorithm for the
unweighted set cover problem, where H(d) =

∑d
i=1

1
i and d is the size of the largest set. H(d) is

bounded by 1 + log d.

Chvátal [Chv79] extended the applicability of the greedy algorithm to the weighted set cover.
This version of greedy selects a set with the minimum ratio of weight to remaining coverage.
Chvátal proved that this greedy algorithm is still a H(d)-approximation algorithm. Although the
algorithm is easily stated, its analysis is far from trivial. That analysis is particularly instructive as
it introduces the use of linear programming duality in approximations which we will present next.
The formal statement of the greedy is,

Algorithm 7 The Greedy Algorithm [Chvátal]

1. Set CG = ∅; S1
j = Sj , j ∈ J ; I = {1, . . . ,m}; k = 0.

2. k ← k + 1. Select a set Sjk , such that
wjk
|Skjk |

= min
j∈J

wj
|Skj |

.

3. Set CG ← CG ∪ {jk} , J ← J \ {jk} and Sk+1
j = Skj \ Skjk , j ∈ J , I ← I \ Skjk .

4. If I = ∅, stop and output cover CG. Else, go to Step 2.

Consider the linear programming relaxation of (SC), with the upper bound xj ≤ 1 constraints
omitted (an optimal solution will satisfy those constraints automatically). The dual problem is

(SC-dual)
Max

∑m
i=1 yi

s.t.
∑m

i=1 aijyi ≤ wj j = 1, . . . , n
yi ≥ 0 i = 1, . . . ,m.

The analysis of Greedy relies on allocating the weights of the set selected by the greedy heuristic
to the elements covered and interpreting those as a form of dual, not quite feasible, solution.

Theorem 7. The greedy heuristic is a H(d)-approximation algorithm.

Proof. To prove the desired result, it suffices to show that for any cover C, indicated by the
characteristic vector {xj}, and a cover delivered by the greedy CG,
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∑
j∈C
H(d)wj =

n∑
j=1

H(d)wjxj ≥
∑
j∈CG

wj . (12)

Applying this inequality to C∗, the optimal cover, yields that the value of the solution delivered
by the greedy is at most H(d) times the value of the optimal solution. To prove (12), it is sufficient
to find an “almost feasible” dual solution y such that,

m∑
i=1

aijyi ≤ H(|Sj |)wj j = 1, . . . , n (13)

and so that the weight of the sets selected is accounted for by y,

m∑
i=1

yi =
∑
j∈CG

wj . (14)

Such y satisfying these inequalities is feasible within a factor of H(d), and it satisfies (12) since,

n∑
j=1

H(d)wjxj
(13)

≥
n∑
j=1

(

m∑
i=1

aijyi)xj =

m∑
i=1

(

n∑
j=1

aijxj)yi ≥
m∑
i=1

yi
(14)
=

∑
j∈CG

wj . (15)

Let Skj be the set Sj with the remaining elements at the beginning of iteration k, and its size,

|Skj | = skj . The dual vector y that will satisfy (13) and (14) has yi for the average price paid by
the greedy to cover an element i. Whenever a set is selected, its weight is divided evenly among
the elements it has newly covered, For each i ∈ I let k = k(i) be the iteration index in which i is
covered for the first time by Sjk. Assign yi =

wjk
skjk

.

Let the sets greedy selects in the first k iterations be {1, 2, . . . , k}. Since k is the index for which
the ratio is minimum

wjk

skjk
≤ wj

skj
∀j. (16)

Assume that there are t iterations altogether. Then
∑

j∈CG wj =
∑t

j=1wj . Each element i ∈ I
belongs to one set Skk , k = 1, . . . , t, so for i ∈ Skk , yi =

wjk

skjk
. (14) now follows as,

m∑
i=1

yi =
t∑

k=1

∑
i∈Skk

yi =
t∑

k=1

skk(
wk

skk
) =

t∑
k=1

wk.

To prove (13), observe that Sj ∩ Skk = Skj \ S
k+1
j and I =

⋃t
k=1 S

k
k . Hence,

m∑
i=1

aijyi =

t∑
k=1

∑
i∈Sj∩Skk

yi =

t∑
k=1

∑
i∈Skj \S

k+1
j

yi =

t∑
k=1

(
skj − sk+1

j

) wk
skk
.
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For a given set Sj , let p+ p(j) be the largest index such that spj > 0, then

m∑
i=1

aijyi =

p∑
k=1

(skj − sk+1
j )

wk

skk

(16)

≤ wj

p∑
k=1

skj − s
k+1
j

skj
.

We now use the inequality
skj−s

k+1
j

skj
≤ H(skj )−H(sk+1

j ) to establish,

m∑
i=1

aijyi ≤ wj
p∑

k=1

(
H(skj )−H(sk+1

j )
)
≤ wjH(s1

j ).

The greedy algorithm is thus an O(log n)-approximation algorithm for any set cover. This
matches the recently proved lower bound for approximating the set cover [F95]. Still considerably
better results are possible for special cases. Consider for instance the performance of the greedy
algorithm on high coverage instances of unweighted set cover.

3.1.2 The LP Algorithm for Set Cover

A different approximation algorithm - one which is duality based - was devised for the set cover
problem by Hochbaum [Hoc82]. This was motivated by an approximation to the unweighted vertex
cover problem by Gavril (reported as private communication in [GJ79]). Gavril’s algorithm is
based on the idea of solving for a maximal (not necessarily maximum) matching, and taking both
endpoints of the edges in the matching. The number of edges in the maximal matching |M |, is a
lower bound on the optimum, |V C∗|. This is because a single vertex cannot cover two edges in
M . On the other hand, if we pick both endpoints of each matched edge we get a feasible cover,
V CM , as otherwise there would be an edge with both endpoints unmatched, and therefore this
edge could be added to the matching M - contradicting its maximality. These two statements lead
to the inequalities,

|V CM | = 2|M | ≤ 2|V C∗|. (17)

Hence, this cover is at most twice the optimal cover.

The extension of this idea to the weighted case and to the set cover problem was inspired by an
alternative way of viewing the maximal matching algorithm as a feasible dual solution. To see that,
consider the dual of the linear programming relaxation of the unweighted vertex cover problem.

(VC-LP)

Min
∑

j∈V xj
s.t. xi + xj ≥ 1 ∀ (i, j) ∈ E

0 ≤ xj ≤ 1 ∀ j ∈ V.
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(VC-dual)

Max
∑

(i,j)∈E yij
s.t.

∑
(i,j)∈E yij ≤ 1 ∀ j ∈ V

yij ≥ 0 ∀ (i, j) ∈ E.

An integer feasible solution to (V C − dual) is a matching in the graph. Consider a feasible
solution to the dual, ȳ, and let x̄j = 1 whenever the dual constraint is binding,

∑
(i,j)∈E ȳij = 1.

We show that the solution x̄ is a feasible vertex cover. To that end, we introduce the concept of
maximality: a feasible solution to (VC-dual), ȳ, is said to be maximal if there is no feasible solution
y such that yij ≥ ȳij and

∑
(i,j)∈E yij >

∑
(i,j)∈E ȳij .

Lemma 2. Let ȳ be a maximal feasible solution to (V C−dual). Then the set V C = {i|
∑

(i,j)∈E ȳij =
1} is a feasible solution to (V C).

Proof. Suppose (i∗, j∗) is not covered. Then this edge can be added to the matching, violating
maximality assumption.

For the weighted vertex cover problem we have the dual LP

(VC-dual)

Max
∑

(i,j)∈E yij
s.t.

∑
(i,j)∈E yij ≤ wj ∀ j ∈ V

yij ≥ 0 ∀ (i, j) ∈ E.

Lemma 3. Let ȳ be a maximal feasible solution to (V C−dual). Then the set V C = {i|
∑

(i,j)∈E ȳij =
wi} is a feasible solution to (V C).

Proof. Suppose that V C is not a feasible cover. Then there is an edge [u, v] which is uncovered,
i.e.,

∑
(u,j)∈E yuj < wu and

∑
(v,j)∈E yvj < wv.

Let δ = Min {wu −
∑

(u,j)∈E yuj , wv −
∑

(v,j)∈E yvj}. Then the vector, y = ȳ + δ · euv (for
euv denoting the vector of all zeros except for a 1 in the uv entry), is a feasible solution satisfying,
yij ≥ ȳij and

∑
(i,j)∈E yij >

∑
(i,j)∈E ȳij . This contradicts the maximality of ȳ. Hence every edge

must be covered by V C and VC is therefore a feasible cover.

Consider now the generalization of this approach for the set cover problem.

Definition 7. A feasible solution to (SC − dual) ȳ is said to be maximal if there is no feasible
solution y such that yi ≥ ȳi and

∑n
i=1 yi >

∑n
i=1 ȳi.

Algorithm 8 The LP-algorithm [Hochbaum]

1. Find a maximal dual feasible solution for (SC), ȳ.

2. Output the cover CH = {j|
∑n

i=1 aij ȳi = wj}.

Lemma 4. CH is a feasible solution to (SC).
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Proof. The proof is an obvious extension of Lemma 2: Consider an element q that is not covered.
Let δ = Min j|q∈Sj{wj −

∑n
j=1 aij ȳi} > 0. Then the vector, y = ȳ + δ · eq, is a feasible solution

contradicting the maximality of ȳ.

Let C∗ be the optimal cover. Define for any set cover C, w(C) =
∑

j∈C wj . The following
lemma shows that the the LP- algorithm is a maxi{

∑
j aij}- approximation algorithm due to the

dual constraint being binding for every j ∈ CH .

Lemma 5. w(CH) ≤ maxi{
∑

j aij}w(C∗).

Proof. First, w(CH) =
∑

j∈CH wj =
∑

j∈CH (
∑m

i=1 aijyi). Using the weak duality theorem we get
that for any solution to the linear programming relaxation, and in particular for the optimal solution
x∗, ∑

j∈CH (
∑m

i=1 aijyi) ≤ maxi{
∑

j∈CH aij}
∑m

i=1 yi ≤ maxi{
∑

j∈CH aij}
∑n

j=1 wjx
∗
j

≤ maxi{
∑

j∈CH aij}w(C∗).

Now the value of the optimal solution to the linear programming relaxation is a lower bound to
the optimal integer solution. It follows that,
w(CH) ≤ maxi{

∑
j∈CH aij}w(C∗).

This proves a slightly stronger approximation factor as we can consider the row sums restricted
only to those sets in the cover (alternatively the row sums are calculated in the submatrix of the
columns in the cover). For instance, if the cover CH has only one set covering each element, then
it is optimal. Let the maximum number of sets covering an element, maxi{

∑
j aij} be denoted by

f .

An immediate corollary of the f -approximation is that the LP-algorithm is a 2-approximation
algorithm for the (weighted) vertex cover problem.

Corollary 1. The LP-algorithm is a 2-approximation algorithm for the vertex cover problem.

Proof. (V C) is a special case of (SC) with each element - an edge - belonging to precisely two
“sets” representing its endpoints. Hence,

∑
j aej = 2 for all edges e ∈ E.

The implementation of the LP-algorithm proposed in [Hoc82] used the optimal dual solution
as a maximal feasible solution. Still, the role of the dual solution is only to aid the analysis of the
algorithm. It need not be generated explicitly by the algorithm:

Algorithm 9 The rounding algorithm II [Hochbaum]

1. Solve optimally the linear programming relaxation of (SC). Let an optimal solution be {x∗j}

2. Output the cover CH = {j|x∗j > 0}. Equivalently, set xHj =
⌈
x∗j

⌉
.
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The rounding algorithm is indeed a special case of the LP-algorithm as x∗j > 0 implies that
the corresponding dual constraint is binding by complementary slackness optimality conditions,∑m

i=1 aijyi = wj .

A minor variation of the rounding algorithm is still a f -approximation algorithm. We replace
Step 2 by:

Step 2’ : Output the cover CH = {j|x∗j ≥ 1
f }.

The feasibility of this cover is obvious, as in any fractional solution x corresponding to a cover C,∑n
j=1 xj ≥ 1, and there are at most f positive entries per such inequality. So at least one must

be at least as large as the average 1
f . This rounding algorithm (rounding II) will always produce a

cover no larger than the rounding algorithm. It does not offer any advantage though in terms of
worst case analysis. Moreover, for any cover produced by an approximation algorithm, it is easy to
prune it of unnecessary extra sets, and leave a “prime” cover, which is a minimal cover. Although
a prime cover can only be a better solution, this approach has not provided guaranteed tighter
approximation factors.

3.1.3 The Feasible Dual Approach

Solving the linear programming relaxation of set cover can be done in polynomial time. Yet, much
more efficient algorithms are possible that find a feasible and maximal dual solution. The advantage
of such algorithms is in the improved complexity. The approximation ratios derived are the same
as for the dual optimal solution.

Bar-Yehuda and Even [BYE81] devised an efficient algorithm for identifying a maximal feasible
dual solution to be used in the LP-algorithm. The idea is to identify a feasible primal constraint
and then to increase its dual variable till at least one of the dual constraints becomes binding.

As before, the derivation of the dual solution is implicit and exists only in order to analyze the
approximation factor. This dual information is placed in square brackets in the description of the
algorithm to stress that it is not an integral part of the procedure.

Algorithm 10 The Dual-feasible Algorithm [Bar-Yehuda and Even]

1. Set C = ∅; I = {1, . . . ,m}; [y = 0].

2. Let i ∈ I. Let wj(i) = minaij=1wj . [yi = wj(i)]; C ← C ∪ {j(i)}.

3. {update} For all j such that aij = 1, wj ← wj − wj(i), I ← I \ Sj(i).

4. If I = ∅, stop and output cover C. Else go to Step 1.

Throughout this procedure the updated wjs remain nonnegative. The weights wj are in fact the
reduced costs corresponding to the solution y, and at each iteration they quantify the amount of
slack in the dual constraint. In this sense, the algorithm is dual-feasible - throughout the procedure
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it maintains the feasibility of the dual vector y. For any set added to the cover, the updated value
of the reduced cost is 0, i.e. the corresponding dual constraint is binding. The resulting dual vector
is maximal since each element belongs to some set in the cover, and therefore to some set with a
binding dual constraint. Hence there is no vector that is larger or equal to y in all its components
which is feasible, unless it is equal to y.

Lemma 5 applies to the cover delivered by the dual-feasible I algorithm, namely, dual-feasible is a
f -approximation algorithm to the set cover problem. The complexity of the dual-feasible algorithm
is O(mn), which is linear in the size of the input matrix, and hence a considerable improvement to
the complexity of the respective linear program.

As in corollary 1, this algorithm is a 2-approximation to the vertex cover problem.

3.2 Approximating the Multicover Problem

In this section we present variations of the LP-algorithm, the rounding algorithm and the dual-
feasible algorithm that also work for the multicover problem (MC). The description of the dual-
feasible algorithm and its analysis are from [HH86]. Consider the linear programming relaxation
of the multicover problem and its dual:

(MCR)

MC∗ = Min
∑n

j=1wjxj
s.t.

∑n
j=1 aijxj ≥ bi i = 1, . . . ,m

0 ≤ xj ≤ 1 j = 1, . . . , n

MC∗ obviously bounds from below the optimal value to the multicover problem. The dual to
the linear programming relaxation above reads:

MC-dual

Max
∑m

i=1 biyi −
∑n

j=1 vj
s.t.

∑m
i=1 aijyi − vj ≤ wj j = 1, . . . , n

yi, vj ≥ 0 i = 1, 2, . . . ,m, j = 1, . . . , n

Here, a feasible dual solution (ȳ, v̄) is called maximal if it satisfies:
(i) There is no other dual feasible solution (y, v) such that yi ≥ ȳi, vi ≥ v̄i and

∑m
i=1 biyi−

∑n
j=1 vj >∑m

i=1 biȳi −
∑n

j=1 v̄j .
(ii) v̄j = 0 whenever

∑m
i=1 aijyi < wj .

(iii)
∑m

i=1 ȳi ≤
∑m

i=1 biȳi −
∑n

j=1 v̄j

With this definition of maximality, the following LP algorithm works as a f -approximation
algorithm, where f = maxi{

∑
j aij}.

Lemma 6. The LP-algorithm is a f -approximation algorithm for (MC).

Proof. First, we establish that CH is a feasible multicover. Consider an uncovered element (row)
q. Notice that for the problem to be feasible, a necessary condition is that every row i has at least
bi sets covering it. Let δ = Min j|q∈Sj{δj = wj −

∑n
j=1 aij ȳi and δj > 0}. Since there must be
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Algorithm 11 The LP-algorithm for multicover

1. Find a maximal dual feasible solution for (MC), ȳ, v̄.

2. Output the cover CH = {j|
∑n

i=1 aij ȳi − v̄j = wj}.

at least bq sets that q belongs to, and at most bq − 1 of them are in CH , it follows that δ is well
defined. Now set, y = ȳ + δ · eq and v = v̄ +

∑
j∈cH|q∈Sj

δej.

It is easy to verify that the vector (y,v) is a feasible solution, thus contradicting property (i)
of the maximality of (ȳ, v̄). This is because the first term has increased by bqδ at least whereas the
second term has increased by (bq − 1)δ at most, thus contributing to a net increase of the objective
function by at least δ.

Now (ȳ, v̄) is a feasible dual solution, hence the weak duality theorem applies:

∑
i∈I

biȳi ≤ min

∑
j∈J

wjxj

+
∑
j∈J

v̄j ≤ MC∗ +
∑
j∈J

v̄j .

From that and property (iii), ∑
i∈I

yi ≤ MC∗. (18)

Using the construction of CH :

∑
j∈CH

wj +
∑
j∈CH

vj =
∑
j∈CH

∑
i∈I

aij ȳi =
∑
i∈I

∑
j∈CH

aij

 ȳi

≤

max
i∈I

∑
j∈CH

aij

 ·∑
i∈I

ȳi ≤ f ·MC∗.

The last inequality follows from 18 and the definition of f . Recalling that the v̄j ’s are nonnegative
and that MC∗ ≤ w(C∗) where w(C∗) is the value of the optimal integer solution, we derive the
stated result.

A rounding algorithm is also a f -approximation algorithm. It offers the advantage of a smaller
weight multicover.

Algorithm 12 The Rounding Algorithm [Hall and Hochbaum]

1. Solve the linear programming relaxation of (MC) optimally. Let an optimal solution be {x∗j}

2. Output the cover CH = {j|x∗j ≥ 1
f }.
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The feasibility of this cover is obvious, as in any fractional solution x corresponding to a cover
C,
∑n

j=1 aijxj ≥ bi. So at least bi entries must be at least as large as the average 1
f .

Next we present a dual-feasible algorithm that delivers a f -approximate solution to the mul-
ticovering problem. This algorithm has a better complexity than the one requiring to solve the
relaxation optimally.

The input to the algorithm is the matrix A and the vectors b and w. The output is COVER
– the indices of the sets selected and a vector (yi, i = 1, . . . ,m; vj , j = 1, . . . , n) that will later be
proved to constitute a feasible dual solution.

Algorithm 13 The Dual-feasible MC Algorithm

1. (initialize) vj = 0, j ∈ J. yj = 0, i ∈ J. COVER = ∅.

2. Let i ∈ I. Let wk = min{wj |j ∈ J-COVER and aij = 1}. (k is the minimum cost column
covering row i.) If no such minimum exists, stop - the problem is infeasible.

3. Set yi ← yi+wk. COVER← COVER∪{k}. For all j ∈ J such that aij = 1 set wj ← wj−wk.
If wj < 0 then vj ← vj − wj and wj ← 0.

4. Set bi ← bi − 1, i = 1, . . . ,m. For all i′ such that bi′ = 0, I ← I − {i′}. If I = ∅ stop, else go
to Step 1.

The algorithm repeats Step 1 at most n times, since if following n iterations the set I is not yet
empty, then there is no feasible solution. This could occur for instance if the amount of required
coverage exceeds the number of covering sets, n. At each iteration there are at most (max{n,m})
operations resulting in a total complexity of O (max{n,m} · n).

The output of the algorithm is the set COVER of indices of the selected sets that multicover
all elements, or a statement that the problem is infeasible. We shall now prove that dual vector
derived is maximal and satisfies the three properties.

In the proofs of the facts that follow we shall use the notation Sj = {i|aij = 1}, i.e., Sj denotes

the jth set.

• For each j ∈ COVER, wj =
∑

i∈Sj yi − vj .

Proof. By construction wj + vj =
∑
i∈Sj

yi.

•
∑

i∈Sj yi ≤ wj + vj ∀j ∈ J.

Proof. This follows from Fact 1 and from Step 1 since the minimum cost column is always
selected.

• The output of the algorithm (y,v) =
(
{yi}mi=1, {vj}nj=1

)
is a feasible solution to the dual

problem.
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Proof. First yi, vj are always nonnegative. This follows since yi is equal to a cost wj during
one of the iterations and the w′js are always maintained as nonnegative numbers. Each vj
is a sum of positive numbers and hence nonnegative as well. Finally, Fact 2 establishes the
feasibility with respect to the constraints.

• vj = 0 for all j ∈ J-COVER. This fact follows from the selection made at Step 1 of the
algorithm.

The following lemma is useful in the proof of property (iii).

Lemma 7.
∑

j∈COVER vj ≤
∑

i∈I(bi − 1)yi (note that bi ≥ 1, i ∈ I).

Proof. The values of the left-hand side and the right hand side of the inequality vary during the
algorithm’s iteration.

We let the value of vj and yi after iteration t be denoted by v
(t)
j and y

(t)
i respectively. Let T be

the number of iterations. We shall prove by induction on t that∑
j∈COVER

v
(t)
j ≤

∑
i∈I

(bi − 1)y
(t)
i , i = 1, . . . , T.

For t = 1 the left-hand side is zero and the right-hand side nonnegative. We shall assume by
induction that the inequality holds for t = 1, . . . , l − 1 and prove for l.

Let M = wk be the minimum column cost selected at iteration l; then the right-hand side

increases by (bi − 1) ·M with yi increasing by M . Each v
(l)
j might be increased by at most M

compared to the previous iteration but for no more than (bi − 1) columns. This is the case since a

cost of a column could become negative (thus triggering the increase in v
(l)
j ), only if it is already

bi columns or more covering row i in COVER, then this row would have been removed from the
set I, and thus could not be considered at iteration l. Therefore the inequality is preserved at each
iteration and hence the desired result.

From the proof of the theorem it follows that the heuristic solution value does not in fact exceed

(max
i∈I

∑
i∈COVER

aij) times the value of the optimum. This quantity could be much smaller than f .

The derivation of the dual vector as a by-product of the heuristic also provides a certificate
of optimality for the selected set COVER (or any other solution) satisfying

∑
i∈COVERwj =∑n

i=1 biyi −
∑n

j=1 vj .

3.3 A Persistency-Derived Approximation for Vertex Cover (VC) and Indepen-
dent Sets (IS)

3.3.1 Preprocessing the graph

Let G = (V, E) be a graph with node weight wi for all i ∈ V .
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1. Double all nodes such that for all i ∈ V we add i′ ∈ V ′

2. For (i, j) ∈ E, add an edge between i and j′ and between i′ and j′ with infinite weight

3. Add a source node s and a sink node t. For all node i ∈ V add weighted edge (s, i) and (i′, t)
of weight wi

4. Solve the minimum s-t cut problem on this graph. Let S be the source set and T the sink
set. Let us define C = (V ∩ T ) ∪ (V ′ ∩ S)

i

j

i′

j′

s twj

wi

wj

wi

Let X∗ be such that:

X∗j = 1 if j ∈ C and j′ ∈ C

X∗j =
1

2
if j ∈ C or j′ ∈ C but not both

X∗j = 0 otherwise

X∗ is a half integral optimal solution for the LP relaxation of (V C) (see monotonization)

Let us define three sets of nodes:

V1 = {j|X∗j = 1}

V 1
2

= {j|X∗j =
1

2
}

V0 = {j|X∗j = 0}

Let H = (V 1
2
, E 1

2
) be the subgraph induced by V 1

2
.let CA be the solution of solving (V C) on H

with heuristic A. If C∗ is a minimum weight vertex cover on G = (V,E) we can prove:

w(V1 ∪ CA)

w(C∗)
≤ w(V1) + w(CA)

w(V1) + 1
2w(v 1

2
)

≤
w(V1) + w(V 1

2
)

w(V1) + 1
2w(v 1

2
)

≤ 2

Let ISA be the solution of solving (IS) on H with heuristic A. If IS∗ is a minimum weight
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vertex cover on G = (V,E) we can prove:

w(V0 ∪ ISA)

w(IS∗)
≤ w(V0) + w(ISA)

w(V0) + 1
2w(v 1

2
)

≤ 2
w(ISH)

V 1
2

3.3.2 Results on unweighted graphs

Let δ be the average degree on an unweighted graph G = (V,E), we have a 2
δ+1 -approximation for

(IS)

Algorithm 14 Greedy

• Remove a node of smallest indegree

• At iteration i, chose Vi of minimum degree, delete Vi and all this neighbors from the graph,
deleting di + 1 node from G
The sum of the degrees over G is reduced by at least di(di + 1)

Let g = |S| be the number of iteration of Greedy,

g∑
i=1

di(di + 1) ≤ n ∗ δ

g∑
i=1

di + 1 = n

By summation Cauchy Schwarz gives n(δ + 1) ≥
∑g

i=1(di + 1)2 ≥ n2

g . Therefore g ≥ n
δ+1

Theorem 8. Using preprocessing (solve LP-relaxation)for any graph H with average degree δ, it
takes O(δn3/2) steps to find an IS of size greater or equal than 2

δ+1 times the optimal solution.

Proof. To find IS, we solve a minimum cut problem on a simple unit capacity graph, Dinic’s
algorithm finds a solutipon in O(m

√
n), since m is O(nδ), the complexity is O(δn3/2).

The size of ths IS delivered b preprocessing and greedy on V 1
2

is |V0|+
|V 1

2
|

δH+1

We can state the following facts:

1. Since G is connected, δ ≥
δH |V 1

2
|+|V0|+|V1|
n

2. |V0| ≥ |V1|
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Proof. Suppose not, the objective value at optimal is: |V0| + 1
2 |V 1

2
|. Note that xi = 1

2 is

feasible
1

2
(|V0|+ |V1|+ |V 1

2
) > |V0|+

1

2
|V 1

2

Our first solution is not optimal. Contradiction

Proof of approximation bound

By fact 1 in class, we know that

2
1

δH |V 1
2
|+|V1|+|V0|

|V 1
2
|+|V1|+|V0| + 1

≥ 2

δ + 1
.

Now want to show

|V0|+
|V 1

2
|

δH+1

|V0|+ 1
2 |V 1

2
|
≥ 2

1
δH |V 1

2
|+|V1|+|V0|

|V 1
2
|+|V1|+|V0| + 1

,

which is equivalent to

|V0|+
|V 1

2
|

δH+1

|V0|+ 1
2 |V 1

2
|
≥ 2

|V 1
2
|+ |V1|+ |V0|

(δH + 1)|V 1
2
|+ 2|V1|+ 2|V0|

.

That is,

|V0|
(

(δH + 1)|V 1
2
|+ 2|V1|+ 2|V0|

)
+ |V 1

2
|
(
|V 1

2
|+ 2|V1|

δh + 1
+

2|V0|
δh + 1

)
≥ |V0|

(
2|V 1

2
|+ 2|V1|+ 2|V0|

)
+ |V 1

2
|
(
|V 1

2
|+ |V1|+ |V0|

)
.

After canceling the terms, the inequality becomes

(δh − 1)|V0||V 1
2
| − δH − 1

δH + 1
|V 1

2
||V1| −

δH − 1

δH + 1
|V 1

2
||V0| ≥ 0.

Multiplying both side by (δH + 1):

(δ2
h − 1)|V0||V 1

2
| − (δH − 1)|V 1

2
|(|V1|+ |V0|) ≥ 0.

By fact 2: |V0| ≥ |V1|, we can see that
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(δ2
h − 1)|V0||V 1

2
| − (δH − 1)|V 1

2
|(|V1|+ |V0|) ≥ (δ2

h − 1)|V0||V 1
2
|+ 2(1− δH)|V 1

2
||V0|

= (δ2
h − 2δH + 1)|V 1

2
||V0|

≥ 0.

Therefore, the inequality is true.

3.4 Results for easily colorable graphs

An easily colorable graph is a graph G = (V,E) where it is possible to find in a polynmial time a
k-coloration (V1, V2, . . . , Vk) partitioning V such that no two adjacent nodes are contained in the
same subset subset Vi.

Let Vk be such that : w(Vk) = max
i∈{1...k}

{w(Vi)}. Then, V1 ∪ V2 ∪ · · · ∪ Vk−1 is a vertex cover of

weight less than or equal to k−1
k w(V )

Let CA be this solution, we have the following result:

w(CA)

C∗1
2

≤
k−1
k w(V 1

2
)

1
2w(V 1

2
)
≤ 2− 2

k

Graph of minimum degree d

For G = (V,E) a graph and D(G) the largest d such that G contains a subgraph in which all
vertices have a degree larger than d, it has been proven that every g can be colored in D(G) + 1
colors. Let us consider the following algorithm:

Algorithm 15 NeighborLimit

0. d = 0 L = ∅

1. if G = ∅
Then STOP
Else pick v ∈ V of smallest degree

2. d← max(d, deg(v))

3. Remove v and all edges incident to v of G
Append v to L

This algorithm outputs a sequence of (v1, . . . , vn) such that vi has been removed at the ith

iteration and has at most d neighbors in vi+1, . . . , vn.
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Therefore by working backward, we can assign colors to each vertex with D(G) + 1 colors.
Starting from vn, assign to each node the smallest index color possible. as vi has at most d
neighbors colored already, there exist a feasible color for vi

Theorem 9 (Brook’s Theorem). If G = (V,E) is a connected graph of max degree ∆, ∆ ≥ 3 and
G is not a complete graph, then there exists a ∆-coloration of G

There exists a constructive proof, an algorithm in O(∆n) that finds the ∆-coloration

→ 2− 2
∆ -approximation for (V C)

→ 2
∆ -approximation for (IS)

Planar Graphs

As another instance, planar graphs are 4-colorable (this is not easily proven, but a proof for the
5-colorability of planar graphs is given in a subsequent section). Therefore we get:

→ 1.5-approximation for (V C)

→ 1
2 -approximation for (IS)

3.5 A Shifting Strategy for Covering and Packing

We are given a set of n points in d dimensions. We would like to cover them with hyper-spheres
that have diameter D. We are seeking the covering which uses the fewest hyper-spheres.

Theorem 10. There is a polynomial approximation scheme Hd such that, for every ` ≥ 1,
Hd
` delivers a cover of the given n points in Rd by d-dimensional balls of diameter D in time

o(`d(`
√
d)d(2n)d(`

√
d)d+1), with approx factor (1 + 1

` )
d.

We will prove this result in a series of steps. We will show that if we divide up a dimension into
strips of width `D and have an algorithm that solves the problem approximately on each strip with
factor α, then the solution we get by combining the solutions on the strips makes the approximation
factor no worse than (1 + 1

` )α. This recursion, coupled with an appropriate base case, is sufficient
for the theorem.

Lemma 8. In a square of width `D, we can solve to optimality in time o(n4`2).

Proof. We use brute force. With (`
√

2)2 = 2`2 disks we can cover the side length `d completely.
Two points determine a disk, so there are at most 2

(
n
2

)
disk positions to worry about. Thus, we

need to check at most
(
n2

2`2

)
subsets.

Now assume we have an algorithm A which solves the problem approximately on strips of width
`D. Assume that A has approximation ratio α. We start by dividing up the box into strips of
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length `D. We call this partition S0 and calculate the result of A on strips in this partition. Then
we shift the strips over by D and repeat. We call this partition S1. We continue until we have
done this ` times. Since we have shifted ` times, we have the same strips as S0. We will consider
the best solution among

{A(S0),A(S1), . . . ,A(S`−1)}.

Lemma 9. The best solution among {A(S0),A(S1), . . . ,A(S`−1)} will have approximation ratio
(1 + 1

` )α.

Proof. Fix an arbitrary partition Si. Let |OPTj | be the number of disks of OPT that cover points
in the jth strip. Let |OPT(j)| be the optimal number of disks required to cover the jth strip.
Naturally, |OPT(j)| ≤ |OPTj |. Furthermore, we have∑

j

|OPTj | ≤ |OPT|+ |DBLi|.

Here, |DBLi| is the set of disks in OPT which are double counted because they cross between two
strips. Since the balls have diameter D and we are shifting by D every time, it must be the case
that every disk is double-counted at most once, so∑

i

|DBLi| ≤ |OPT |.

Thus, by pigeonhole principle, there exists i such that |DBLi| ≤ 1
` |OPT|. Thus, for this i,∑

j

|OPTj | ≤ (1 +
1

`
)|OPT|.

If we have an α approximation for each strip, then

A(Si) ≤ α
∑
j

|OPTj | ≤ α(1 +
1

`
)|OPT|.

This lemma implies the theorem directly since we can solve recursively by breaking down the
problem in each dimension.

3.6 Approximation Algorithms for NP-Complete Problems on Planar Graphs

This section comes from the presentation “Approximation Algorithms for NP-Complete Problems
on Planar Graphs” by Marius Knabben. Essentially, we apply the idea of shifting to planar graphs.
The “shifting” occurs between levels of outerplanarity.

Definition 8. A graph is p-outerplanar if it can be drawn in the plane without crossing of edges
and by removing all vertices that belong to the outer face the resulting graph is p− 1-outerplanar.
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Algorithm 16 Shifting for Planar Graphs

Input: The graph G and k
for i = 1, . . . , k + 1 do

Gi is constructed by deleting all the level(i, (k + 1) + i, 2(k + 1) + i, . . .) nodes of G.
Gi is composed of multiple components Gi1 to Gim which are at most k outerplanar.
for j = 1, . . . ,m do

Sij = Max Independent Set(Gij).
end for
Si = ∪jSij .

end for
S = maxi S

i

Output: S.

• We now have four approximate solutions (S1 to S4).

• In at least one of those four subgraphs at most 1/4 of all nodes of G are deleted.

• This subgraph’s solution is at least 3/4 optimal.

• Reintroducing k: the solution is k/(k + 1) optimal.

This idea applies to many problems. For example:

• Minimum Vertex Cover

• Minimum Dominating Set

• Minimum Edge Dominating Set

3.7 A FPTAS for Knapsack Problem

Consider the Knapsack problem:

(KP)

max
∑n

j=1 pjxj
s.t.

∑n
j=1 ajxj ≤ B

xj ∈ B, j = 1, . . . , n
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The Knapsack Problem is solved with Dynamic Programming in time o(nB).

Let pj(k) =
⌊pj
k

⌋
. The Scaled Knapsack Problem is as follows:

(SKP)

max
∑n

j=1 pj(k)xj
s.t.

∑n
j=1 ajxj ≤ B

xj ∈ B, j = 1, . . . , n

Let S(k) be the optimal solution to the scaled Knapsack problem. Let S∗ be the optimal
solution to the original knapsack problem.

∑
j∈S(k)

pj ≥
∑
j∈S(k)

k
⌊pj
k

⌋
≥
∑
j∈S∗

k
⌊pj
k

⌋
≥
∑
j∈S∗

(pj − k)

≥
∑
j∈S∗

pj − k|S∗|

The approximation ratio is

ε ≤ k|S∗|
P ∗

≤ kn

Pmax
.

The running time is

o(n2Pmax

k
) = o(n3 1

ε
).

4 Planar Graphs

4.1 Heawood’s 5-color theorem (1890)

Proposition 3. If a graph is k-critical, then the minimum degree node in the graph has degree
≥ k − 1.

Proposition 4. In a planar graph, there exists a node of degree ≤ 5.

Theorem 11. Every planar graph is 5-colorable.

Proof. The proof is by induction on n, the number of nodes in graph G. If n ≤ 5 then the graph is
5-colorable. Now, assume all graphs with n nodes are 5-colorable and let G(V,E) be a graph with
n+ 1 nodes.
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By the induction hypothesis, G − {v} is 5-colorable for any v ∈ V . Assuming, by way of
contradiction, that G is not 5-colorable, we can say that it is 6-critical, so that the minimum degree
node has degree ≥ 5. However, since G is also planar there exists a node with degree ≤ 5. Then
the minimum degree node v ∈ G has degree exactly 5.

Since G−{v} is 5-colorable, there exists a partitioning of V −{v} into 5 sets of different colors,
(V1, V2, V3, V4, V5). G is not 5-colorable, v must be adjacent to at least one vertex in each set. Since
v has degree of 5, it is adjacent to exactly one vertex in each set. G is a planar graph, therefore we
can label neighbors of v in clockwise order as v1, v2, v3, v4 and v5, where vi ∈ Vi.

v

v1

v2

v3v4

v5

P1,3

Figure 12: There exists a path from v1 to v3.

Let Gi,j be the the subgraph of G induced by nodes in Vi ∪ Vj . vi and vj must be in the
same connected component of Gi,j , since otherwise we may flip the colors in one of the components
to assign vi and vj the same color and thus contradict the statement that v must be adjacent
to exactly one node of each color. Thus, there exists a path Pi,j from vi to vj in Gi,j , for all
i, j ∈ {1, 2, 3, 4, 5}, i 6= j.
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v1

1

1

1

3

3

3

v3

v1

3

1

1

1

3

3

v3

Figure 13: If v1 and v3 are in two different connected components of G1,3 we can flip colors in one
component to assign the same color to v1 and v3.

In this spirit, consider G1,3 and G2,4. As we have numbered the nodes in a clockwise fashion,
v2 is separated from v4 in G by the cycle {v, P1,3, v}. Specifically, the cycle will encircle v2, so, due
to the planarity of G, there cannot exist a path from v2 to v4 in G2,4. Therefore v2 and v4 must be
in two different connected components, leading in a contradiction. Thus, G is 5-colorable.

4.2 Geometric Dual of Planar Graph

The geometric dual of a planar graph is defined by construction:

1. Place a node in each face, including the exterior face.

2. Two nodes are adjacent if the corresponding faces share an edge. Self-loops are allowed (when
the same face appears on both sides of an edge.

The original planar graph G is called the primal and the newly constructed graph G∗ is called
the dual. The dual of a planar graph is still planar.

The following are some interesting points regarding the primal and dual relationship:

1. The number of nodes in the dual = the number of faces in the primal.

2. For simple graphs, the number of edges in the primal ≤ the number of edges in the dual.

3. If there exists no path of length ≥ 2 that separates any 2 faces, then the dual of the dual
graph is the primal.
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Figure 14: Geometric Dual of a Graph

4.3 Minimum s-t cut: Undirected planar graph

Given a graph G = (V,E), an undirected planar embedded graph, c : E → R, a weight function on
edges e ∈ E such that no negative cost cycles are defined inside G and G∗, and two nodes s, t ∈ V ,
consider a cut (S, V \ S) such that s ∈ S, t /∈ S. Let’s define δ(S) as the set of edges crossing the
cut. We want to find a cut that minimizes:

c(δ(S)) =
∑
e∈δ(S)

c(e) (19)

The idea here is to use the dual graph G∗. Assume without loss of generality that G is connected.
A min-cut in G is simple (i.e. both sides of the cut are connected) so in the dual G∗ it corresponds
to a minimum length simple cycle that separates nodes s and t. Here we consider c(e) as the
length/weight of the edge in the dual graph, in a one-to-one correspondence. Hence, in order to
obtain the minimum cut in the primal graph G, we are looking for the minimum length separating
s-t cycle in G∗.

Let f and g be two faces in G∗ such that f is incident to node s and g to node t. Let P ∗ be a
shortest f -to-g path in G∗. We can make the following observations:

1. Any cycle separating s and t crosses P ∗.

2. There exists a minimum length cycle that separates s and t and crosses P ∗ exactly once.

In order to find such a minimum length cycle, we duplicate the nodes along P ∗, obtaining
two copies of every node of P ∗. Performing this transformation, the new graph has a unique face
containing nodes s and t. Then, we can compute the shortest path Pi for every pair of copies of
nodes i along P ∗. The shortest Pi defines the minimum length cycle separating s and t in G∗ and
thus, it corresponds to a minimum s-t cut in the primal G.
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Figure 15: Shortest path from face f to g in G∗

Figure 16: Minimum length cycle separating s and t that crosses P ∗ exactly once

4.3.1 Reif ’s Algorithm (1983)

Reif’s algorithm consists of a “Divide and conquer” approach for solving the shortest path problems.
The central idea is that shortest cycles do not cross so the original problem can be separated into
sub-problems.

Figure 17: Reif’s algorithm “Divide and conquer” approach.
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Starting with the middle vertex v of P ∗, we separate the problem into two new sub-problems.
A new source s

′
and sink t

′
nodes are added to each sub-problem and the procedure is repeated.

Running time:

1. Paths are shorter by a factor of 2.

2. Depth of the recursion ≤ logn.

3. Single source shortest path (SSSP) algorithm for planar graphs O(nlogn).

Overall complexity O(nlogn).

4.3.2 Modified Multiple source shortest path

We can use a modified version of the Multiple source shortest path (MSSP) algorithm for planar
graphs developed in [?] to compute the shortest path between every pair of copies of each node of
P ∗ in a complexity of O(nlogn). This particular implementation exploits the fact that each pair of
nodes lies on the same face of the planar graph.

Running time:

1. Find P ∗ in O(n).

2. MSSP (planar graph implementation) in O(nlogn).

3. Number of pairs O(n).

Overall complexity O(nlogn), same as Reif’s “Divide and conquer” algorithm.

Currently, the best known algorithm is due to [?] with a complexity of O(nloglogn). It uses the
same overall idea and also applies a decomposition scheme for solving the multiple shortest path
problems and FR-Dijkstra’s algorithm.

4.4 s-t Planar Flow Network

We define a s-t planar flow network as a planar graph where nodes s and t are on the exterior face
(or on the same face which can then be embedded as an exterior face).

Dual construction

1. Add a (t, s) arc with infinite capacity.

2. Obtain the dual G∗ of the graph.

3. Call the two nodes in the two faces created by the new edge s∗ (new face), and t∗ (external
face).
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Figure 18: s-t Planar Flow Network and its dual graph G∗

4.5 Minimum s-t cut in an Undirected Weighted Planar Flow Network

In an undirected s-t planar flow network we can exploit the structure of the dual graph G∗ in
order to obtain the minimum s-t cut in the primal G, transforming the original minimum length
separating cycle problem into a shortest path problem.

We observe:

1. Weight of edge in dual = Capacity of edge in primal.

2. Any path between s∗ and t∗ corresponds to a cut separating s and t.

3. Capacity of cut in primal G = Cost of path in dual G∗.

4. Shortest path between s∗ and t∗ corresponds to a minimum cut separating s and t in G.

Assuming that there are no negative cost cycles in G∗, Dijkstra’s Algorithm can be applied to
find the shortest path from s∗ to t∗. The best running time for Dijkstra’s Algorithm (Fibonacci
heaps implementation) is O(m+ nlogn). Then, since m < 3n (planar graph, Euler’s formula), we
have that the total complexity of the algorithm is O(3n+ nlogn) = O(nlogn).

Note that the above algorithm for minimum cut in planar graphs makes no use of the max flow
and thus, the cut does not by itself give the max flow in the network.

4.6 Max flow in s-t planar graph

Shown by Hassin in 1981 [?] that max flow can also be derived from shortest path labels. In the
original graph we define:
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Figure 19: s-t Planar Flow Network minimum cut obtained as shortest s∗-t∗ path in G∗.

1. Uij = flow capacity of arc (i, j).

2. Xij = flow from node i to node j.

In an undirected graph, the flow capacity for an edge is (0, Uij) for both directions. Therefore
−Uij ≤ Xij ≤ Uij .

Consider the edge (i, j) in the direction i to j, let i∗ be a dual node in the face to the left of
the arc and j∗ to the right. Define d(i∗) the shortest path from s∗ to i∗ in G∗, then:

Xij = d(i∗)− d(j∗) (20)

Proposition 5. Xij = d(i∗)− d(j∗) are feasible flows.

Proof.

1. The capacity constraints are satisfied: Since d(i∗) is the shortest path from s∗ to i∗ in the
dual graph, d(i∗) satisfies the shortest path optimality condition:

d(i∗) ≤ d(j∗) + ci∗,j∗ (capacity of cut in primal = cost of path in dual) (21)

d(i∗) ≤ d(j∗) + Uij (22)

d(j∗) ≤ d(i∗) + Uij (23)

−Uij ≤ Xij ≤ Uij (24)

2. The flow balance constraints are satisfied: For a node i, let’s label its neighbors 1, 2, .., p and
create the dual graph with nodes 1∗, 2∗, .., p∗ (see Figure 20).
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Thus, we have:

Xi1 = d(1∗)− d(2∗) (25)

Xi2 = d(2∗)− d(3∗) (26)

... (27)

Xip = d(p∗)− d(1∗) (28)

Sum up all the equation we have:
∑p

k=1Xik = 0.

Figure 20: Dual graph for max-flow.



IEOR 290G Scribe Notes 56

For the edges on the shortest path in G∗, we identify the minimum cut. Then, the flow on the
cut edges is saturated:

Flow value = cut capacity = max flow

We use Dijkstra’s Algorithm to find the shortest path, which is also the max flow.

The complexity of the algorithm is O(nlogn) as we justified in minimum cut algorithm. Hence,
we obtain the same complexity when solving min cut or max flow in a undirected weighted s-t
planar flow network.

Figure 21: Maximum s-t flow.
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