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Abstract—In partitioning, clustering, and grouping problems, a typical goal is to group together similar objects, or pixels in the case of

image processing. At the same time, another goal is to have each group distinctly dissimilar from the rest and possibly to have the

group size fairly large. These goals are often combined as a ratio optimization problem. One example of such a problem is a variant of

the normalized cut problem, another is the ratio regions problem. We devise here the first polynomial time algorithms solving optimally

the ratio region problem and the variant of normalized cut, as well as a few other ratio problems. The algorithms are efficient and

combinatorial, in contrast with nonlinear continuous approaches used in the image segmentation literature, which often employ

spectral techniques. Such techniques deliver solutions in real numbers which are not feasible to the discrete partitioning problem.

Furthermore, these continuous approaches are computationally expensive compared to the algorithms proposed here. The algorithms

presented here use as a subroutine a minimum s; t-cut procedure on a related graph which is of polynomial size. The output consists of

the optimal solution to the respective ratio problem, as well as a sequence of nested solutions with respect to any relative weighting of

the objectives of the numerator and denominator.

Index Terms—Grouping, image segmentation, graph theoretic methods, partitioning.

Ç

1 INTRODUCTION

A major challenge in the field of imaging is vision
grouping, or segmentation. The purpose of grouping

and segmentation is to recognize and delineate, automati-
cally, the salient objects in an image. Image segmentation is
equivalent to partitioning the set of pixels forming the
image, or to clustering, its pixels. High quality clustering is
often defined by multiple attributes. As an optimization
problem, this requires attaining more than one objective.
The motivation for studying the ratio problems here is as
examples of setting an optimization criterion involving two
different goals. Our primary focus is on the ratio regions
problem and the variant of normalized cut problem as both
of these problems have been perceived to be NP-hard. We
demonstrate here that these problems are in fact poly-
nomially solvable. We then seek to provide insights as to
what differentiates easy ratio problems from hard ones.

All problems addressed here address two different goals
in the objective. The first goal in the variant of normalized
cut, discussed in the paper by Sharon et al. [27], is to select a
group of pixels that is as dissimilar to the remainder of the
image as possible. The second goal is to maximize the
similarity of the pixels within the group. These two
objectives are combined in [27] as a minimization of the
ratio of the first function to the second. For the ratio regions
problem, discussed in the paper of Cox et al. [7], the first
goal is the same—to have the selected group’s pixels as

dissimilar to the remainder of the image as possible. The
second goal is to maximize the number of pixels within the
selected set. Here as well, the combined objective is
presented as a ratio of the two functions [7].

The reason why these two problems, as well as other
bipartitioning optimization problems such as ratio cuts and
normalized cuts, employ two goals in the objective function
is that a direct and efficient method, based on the single
goal of minimum cut, that selects a set that is as dissimilar
as possible from the rest of the graph, does not work well in
practice. The optimal solution tends to consist of a small
subset of the graph—frequently a singleton node. This
phenomenon was noted by Shi and Malik [25] and others.
The second goal seeks to attain a group of pixels which is
relatively large in size by giving weight to the similarity
within the set, or the number of nodes within the set. A
number of criteria were devised in order to compensate and
correct for the phenomenon of small segments—the notions
of normalized cut [25], variant normalized cut [27], and ratio
regions [7] are some of them.

1.1 A Graph Representation of Image Segmentation

A graph theoretical framework is suitable for representing
image segmentation and grouping problems. The image
segmentation problem is presented on an undirected graph
G ¼ ðV ;EÞ, where V is the set of pixels andE are the pairs of
adjacent pixels for which similarity information is available.
Typically, one considers a planar image with pixels ar-
ranged along a grid. The four-neighbor setup is a commonly
used adjacency rule with each pixel having four neighbors—
two along the vertical axis and two along the horizontal axis.
This setup forms a planar grid graph. The eight-neighbor
arrangement is also used, but then the planar structure is no
longer preserved, and complexity of various algorithms
increases, sometimes significantly. Planarity is also not
satisfied for three-dimensional images, and in general
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clustering problems there is no grid structure and thus the
respective graphs are not planar. The algorithms presented
here do not assume any specific property of the graph G—
they work for general graphs.

The edges in the graph representing the image carry
similarity weights. There is a great deal of literature on how
to generate similarity weights, and we do not discuss this
issue here. We only use the fact that similarity is inversely
increasing with the difference in attributes between the
pixels. In terms of the graph, each edge ½i; j� is assigned a
similarity weight wij that increases as the two pixels i and j
are perceived to be more similar. Low values of wij are
interpreted as dissimilarity. However, in some contexts, one
might want to generate dissimilarity weights independently.
In that case, each edge has two weights, wij for similarity,
and ŵij for dissimilarity.

1.2 Notations and Preliminaries

Consider an undirected graph G ¼ ðV ;EÞ. We use the
common notation of n ¼ jV j the number of nodes and m ¼
jEj the number of edges in the graph G.

Let the weights of the edges in the graph be wij for
½i; j� 2 E. If the edges have two sets of weights, these will be
denoted by w

ð1Þ
ij and w

ð2Þ
ij .

A bipartition of the graph is called a cut, ðS; �SÞ ¼
f½i; j�ji 2 S; j 2 �Sg, where �S ¼ V n S. We define the capacity

of a cut ðS; �SÞ as CðS; �SÞ ¼
P

i2S;j2 �S wij. More generally, for

any pair of sets A;B � V we define the set of edges going

between these two sets as ðA;BÞ ¼ f½i; j�ji 2 A; j 2 Bg. And

the capacity of ðA;BÞ is CðA;BÞ ¼
P

i2A;j2B wij. We define

the capacity of a set A � V to be CðAÞ ¼ CðA;AÞ ¼P
i;j2A wij. For inputs with two sets of edge weights, w

ð1Þ
ij

and w
ð2Þ
ij , we let C1ðA;BÞ ¼

P
i2A;j2B w

ð1Þ
ij and C2ðA;BÞ ¼P

i2A;j2B w
ð2Þ
ij .

Given a partition of a graph into k disjoint components,
fV1; . . . ; Vkg the k-cut value isCðV1; . . . ; VkÞ ¼ 1

2

Pk
i¼1 CðVi; �ViÞ.

The problem of partitioning a graph to k nonempty
components that minimize the k-cut value is called the
minimum k-cut. (This problem is polynomial time solvable
for fixed k [12].)

Let di ¼
P
½i;j�2E wij denote the sum of edge weights

adjacent to node i. The weight of a subset of nodes B � V is

denoted by dðBÞ ¼
P

j2B dj referred to as the volume of B.

Note that, with the notation above, dðBÞ ¼ CðB; V Þ.
Let D be a diagonal matrix n� n, with dii ¼ di ¼P
½i;j�2E wij. Let W be the weighted node-node adjacency

matrix of the graph where Wij ¼Wji ¼ wij. The matrix D�
W is called the Laplacian of the graph and is known to be

positive semidefinite [14].

1.3 Overview of Results

Two applications of a methodology that generates efficient
algorithms for ratio problems are illustrated: One is for the
problem of “normalized cut variant,” which is to minimize
the ratio of the similarity between the set of objects and its
complement and the similarity within the set of objects. The
second problem is that of “ratio regions,” which is to
minimize the ratio of the similarity between the set of
objects and its complement and the number (or weight) of
the objects within the set. The algorithms described provide,

in addition to an optimal solution to the ratio problem, the
set of all solutions corresponding to all possible relative
weighting of the two objectives. These solutions are often
more informative than the optimal solution to the ratio
problem alone, as illustrated, for example, in Fig. 6.

A list of problems which are amenable to the methodol-
ogy paradigm presented here are summarized in Table 1.

In this table, qi denotes an arbitrary weight assigned to
node i.

We discuss here also hard ratio problems, including the
Cheeger constant, the graph expander, the ratio regions,
and the normalized cut problems. We provide some insight
as to the distinguishing features that make these problems
hard to solve.

The paper is organized as follows: We begin with a
discussion of a collection of ratio problems (and sum of two
ratios problems) and their relationship to each other, in
Section 2. In Section 3, we present the general purpose
solution technique for ratio problems that have “monotone”
formulations, and apply it to the variant normalized cut
problem. In Section 5.1, we apply the technique for the ratio
regions problem.

2 SEVERAL RATIO PROBLEMS

We describe here four types of ratio problems: the normal-
ized cut and its relation to the variant normalized cut
problem, the graph expander problem and its relation to the
ratio regions problem, the densest subgraph problem, and
the “ratio cut” problem.

2.1 The Normalized Cut and Normalized Cut0

Problems

Shi and Malik addressed in their work on segmentation [25]
an alternative criterion to replace minimum cut procedures.
This is because the minimum cut in a graph with edge
similarity weights creates a bipartition that tends to have
one side very small in size. To correct for this unbalanced
partition they proposed several types of objective functions,
one of which is the normalized cut, which is a bipartition of
V , ðS; �SÞ, minimizing:

min
S�V

CðS; �SÞ
dðSÞ þ

CðS; �SÞ
dð �SÞ

: ð1Þ

In such an objective function, the one ratio with the smaller
value of dðÞ will dominate the objective value—it will
always be at least 1

2 of the objective value. Therefore, this
type of objective function drives the segment S and its
complement to be approximately of equal size. Indeed, like

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. X, XXXXXXX 2010

TABLE 1
Ratio Optimization Problems in Image Segmentation



the balanced cut problem, the problem was shown to be
NP-hard [25] by reduction from set partitioning.

A variant of the bipartition problem which discourages a

very small set in the output is the quantity hG ¼
min CðS;V nSÞ

minfdðSÞ;dð �SÞg , also known as the Cheeger constant [5], [6].

Variants of the Cheeger constant have the denominator

equal to minfjSj; jV n Sjg or minfCðS; SÞ; Cð �S; �SÞg. The

Cheeger constant is approximated by the second largest

eigenvalue of a certain related adjacency matrix of the

graph. This eigenvalue �1 is related to the Cheeger constant

by the inequalities: 2hG � �1 � h2
G=2. Computing the value

of the Cheeger constant is NP-hard as it is closely related to

finding the expander ratio of a graph. Again it drives to a

roughly equal or balanced partition of the graph. A

minimization of the Cheeger constant (via a relaxation)

has also been employed in an image segmentation context

by Grady and Schwartz [13].
Instead of the sum of two ratios objective, there are other

related optimization problems used for image segmentation.
Sharon et al. [27] define a variant of the normalized cut as

min
S�V

CðS; �SÞ
CðS; SÞ :

This objective function is equivalent to minimizing one term
in (1). To see this, note that:

CðS; �SÞ
CðS; SÞ ¼

CðS; �SÞ
dðSÞ � CðS; �SÞ

¼ 1
dðSÞ
CðS; �SÞ � 1

:

Therefore, minimizing this ratio is equivalent to maximiz-
ing dðSÞ

CðS; �SÞ which in turn is equivalent to minimizing the
reciprocal quantity CðS; �SÞ

dðSÞ , which is the first term in (1). The
optimal solution in the bipartition S will be the one set for
which the value of the similarity within, CðS; SÞ, is the
greater between the set and its complement.

Sharon et al. [27] state that:

A salient segment in the image is one for which the
similarity across its border is small, whereas the similarity
within the segment is large (for a mathematical description,
see Methods). We can thus seek a segment that minimizes
the ratio of these two expressions. Despite its conceptual
usefulness, minimizing this normalized cut measure is
computationally prohibitive, with cost that increases ex-
ponentially with image size.

One of our contributions here is to show that the problem
of minimizing this ratio, called here the normalized cut0

problem, is in fact solvable in polynomial time and with a
combinatorial algorithm.

The typical solution approach used when addressing
optimization problems for image segmentation is to approx-
imate the problem objective by a nonlinear (quadratic)
expression for which the eigenvectors of an associated
matrix form an optimal solution. Let binary variables xi for
i 2 V be defined so that xi ¼ 1 if node i in the selected side of
the cut—the segment. The following nonlinear formulation
has been used by Sharon et al. and others [27], [28], [25]:

min
xi2f0;1g

P
wijðxi � xjÞ2P
wijxi � xj

¼ xTLx

xTWx
;

where L is the Laplacian matrix of the graph and W is the
edge weight matrix as defined in Section 1.2. Once the
constraints on the discrete values of x, xi 2 f0; 1g, are
relaxed, the relaxed formulation’s optimal solution is an
eigenvector and thus can be solved optimally with spectral
techniques. The use of spectral techniques involves several
computational hurdles: The Laplacian matrices are of size
n� n, where n is the number of pixels. These are very large
matrices for which the computation of eigenvector solution,
even for small images and, even with the use of advanced
sparse matrix computation techniques, is extremely challen-
ging. Moreover, spectral techniques engage real number
computations which trigger numerical difficulties. Finally,
the exact solution to the nonlinear problem is a vector of
real numbers, whereas the original problem is discrete and
binary. So, there is a further heuristic step of how to convert
the continuous solution into binary values.

This normalized cut0 problem (which does not include
the “balanced” requirement) is, however, polynomial time
solvable. We show an algorithm solving the problem in the
same complexity as a single minimum s; t-cut on a related
graph on OðnþmÞ nodes and OðnþmÞ edges for n the
number of pixels in the image, and m adjacency pairs,
which in images is typically OðnÞ. Another approach in [20]
generates a different, slightly smaller, graph.

2.2 Ratio Regions and Expanders

Consider the objective function minjSj	n2
CðS; �SÞ
jSj . This value of

the optimal solution, for a graph G, is known as the
expansion ratio of G. This problem is NP-hard as the limit
on the size of jSj makes it difficult and drives the solution
toward a balanced cut, which, as noted above, is a known
NP-hard problem. The objective function can also be
written as minS�V

CðS; �SÞ
minfjSj;j �Sjg .

A variant of this problem was addressed under the name
ratio regions by Cox et al. [7]. The ratio region problem is
motivated by seeking a segment, or region, where the
boundary is of low cost and the segment itself has high
node weight:

min
S�V

CðS; �SÞ
jSj : ð2Þ

Note that this formulation does not contain the constraint
jSj 	 n

2 which is present in the expander ratio problem.
Hence, the segments’ sizes are not necessarily balanced. The
ratio regions problem studied by Cox et al. is restricted to
planar graphs and thus, in the context of images, to planar
grid images with four neighbors only. In the case of planar
graphs, the length of the path along the boundary of the
region is the same as the capacity of a cut in the dual graph.
This observation is key to the algorithm in [7]. For graph
nodes of weight qi, the problem is generalized to

min
S�V

CðS; �SÞP
i2S qi

:

Cox et al. [7] showed how to solve the weighted problem on
planar graphs where all node weights are positive.
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This weighted problem, for any general graph and for
arbitrary weights (positive or negative), is shown here to be
polynomial time solvable in the complexity of a single
minimum cut. This result is not new as the problem is, in
fact, equivalent to a binary and linear version of the Markov
Random Fields problem, called the maximum s-excess
problem in [16]. It is interesting to note that the pseudoflow
algorithm in [16] is set to solve the maximum s-excess
problem directly.

2.3 Densest Subgraph

Sarkar and Boyer [24] defined the problem minS�V
CðS;SÞ
jSj .

This objective is of interest for weights that reflect

dissimilarity. In that case, the goal is to minimize the

dissimilarity within the selected segment while the size of

the segment tends to be large. For similarity weights, the

objective would be to maximize this quantity. This problem

has been known for a long time as the maximum density

subgraph. The density of a subgraph induced by the subset

of nodes D is CðD;DÞ
jDj . The maximum density subgraph is the

subgraph induced by S that maximizes

max
S�V

CðS; SÞ
jSj :

Both this minimization problem and its maximization
version were shown to be solvable in polynomial time by
Goldberg [10]. Gallo et al. [9] showed how the problem
would be solved as a parametric minimum s; t-cut in the
complexity of a single s; t-cut.

A node weighted version of the problem is maxS�V
CðS;SÞ
qðSÞ .

This problem is solved by a minor extension of the densest

subgraph approach in the same runtime.

2.4 “Ratio Cuts”

This problem was introduced by Wang and Siskind [29]. In
the ratio cut problem, each edge has two weights associated
with it. Wang and Siskind studied the case where w

ð1Þ
ij are

positive and w
ð2Þ
ij are equal to 1 for all ½i; j� 2 E. So, this

objective is to find a cut minimizing the cut value divided
by the number of edges in the cut. The rationale for this
objective is to try and increase the number of edges in the
cut and, hence, the size of the cluster/segment. The goal is
to minimize the ratio

min
S�V

C1ðS; �SÞ
C2ðS; �SÞ

:

This problem was shown in [29] to be at least as hard as
the sparsest cut problem and therefore NP-hard. On the
other hand, for planar graphs, Wang and Siskind demon-
strated that the problem is solvable in polynomial time. The
algorithm makes multiple calls to a nonbipartite matching
algorithm that runs in polynomial time but is not efficient:
For planar graphs, the �-question, discussed and defined in
Section 3.2, is solved by finding a maximum weight
nonbipartite matching in a related graph. The procedure of
[29] makes repeated calls to solving nonbipartite matching
problems, where, for each value of �, another graph has to
be constructed. This is the main source of inefficiency of the
technique, that is, to have to construct a separate graph for

each call without being able to take advantage of the
solution for the previous calls. This contrasts with other
polynomial time algorithms reported here.

3 THE SOLUTION APPROACH

3.1 Monotone Integer Programming Formulation

The solution approach begins with a formulation of the
problem as an integer linear programming problem with
monotone inequalities constraints. It was shown in [18] that
any integer programming formulation on monotone con-
straints has a corresponding graph where the minimum cut
solution maps to an optimal solution to the integer
programming problem. Thus, the formulation is solvable
in polynomial time.

To convert the ratio objective to a linear objective, we
utilize a well-known reduction of the ratio problem to a
linearized optimization problem.

3.2 Linearizing Ratio Problems

A general approach for maximizing a fractional (or, as it is
sometimes called, geometric) objective function over a
feasible region F , minx2F

fðxÞ
gðxÞ , is to reduce it to a sequence

of calls to an oracle that provides the yes/no answer to the
�-question:

Is there a feasible subset x 2 F such that ðfðxÞ �
�gðxÞ < 0Þ?

If the answer to the �-question is yes, then the optimal
solution has a value smaller than �. Otherwise, the optimal
value is greater than or equal to �. A standard approach is
then to utilize a binary search procedure that calls for the
�-question OðlogðUF ÞÞ times in order to solve the problem,
where U is an upper bound on the value of the numerator
and F an upper bound on the value of the denominator.

Therefore, if the linearized version of the problem, that
is, the �-question, is solved in polynomial time, then so is
the ratio problem. Note that the number of calls to the linear
optimization is not strongly polynomial but rather, if binary
search is employed, depends on the logarithm of the
magnitude of the numbers in the input. In some cases,
however, there is a more efficient procedure. Several
examples are the densest subgraph problem which has an
efficient parametric procedure [9], the Fast-PD MRF that
exploits information coming not only from the original MRF
problem, but also from a dual problem [23], and the
dynamic graph cuts approach that suggests using the flow
obtained during the computation of the max-flow corre-
sponding to a particular problem instance for solving a
similar (or subsequent) instance of the problem by
dynamically updating the solution of the previous one [21].

It is important to note that not all ratio problems are
solvable in polynomial time. One prominent example is
the ratio cuts discussed in Section 2.4. For that problem,
the linearized version is NP-hard by reduction from
maximum cut.

It is also important to note that linearizing is not always
the right approach to use for a ratio problem. For example,
the ratio problem of finding a partition of a graph to
k components minimizing the k-cut between components
for k � 2 divided by the number of components k always
has an optimal solution with k ¼ 2 which is attained by a,
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polynomial time, minimum two-cut algorithm. On the other
hand, the linearized problem is NP-hard to solve since it is
equivalent to solving the minimum k-cut problem. (It can,
however, be solved in polynomial time for fixed k by the
algorithm in [12].)

4 THE NORMALIZED CUT FORMULATION

We first provide a formulation for the problem,

minS�V
C1ðS; �SÞ
C2ðS; SÞ

:

This is a slight generalization of normalized cut0 problem in
permitting different similarity weights for the numerator,
wij, and denominator, w0ij.

We begin with an integer programming formulation of
the problem. Let

xi ¼
1; if i 2 S;
0; if i 2 �S:

�

We define two additional sets of binary variables: zij ¼ 1 if
exactly one of i or j is in S; yij ¼ 1 if both i or j are in S. Thus,

zij ¼ 1; if i 2 S; j 2 �S; or i 2 �S; j 2 S;
0; if i; j 2 S or i; j 2 �S;

�

yij ¼
1; if i; j 2 S;
0; otherwise:

�

With these variables, the following is a valid formulation
(NC) of the normalized cut problem:

ðNCÞ min

P
wijzijP
w0ijyij

;

subject to xi � xj 	 zij for all ½i; j� 2 E;
xj � xi 	 zji for all ½i; j� 2 E;
yij 	 xi for all ½i; j� 2 E;
yij 	 xj;
1 	

P
½i;j�2E yij 	 jEj � 1;

xj binary j 2 V ;
zij binary ½i; j� 2 E;
yij binary i; j 2 V :

To verify the validity of the formulation, notice that the
objective function drives the values of zij to be as small as
possible and the values of yij to be as large as possible. With
the constraints, zij cannot be 0 unless both end points i and j
are in the same set. On the other hand, yij cannot be equal to
1 unless both end points i and j are in S.

The sum constraint ensures that at least one edge is in the
segment S and at least one edge is in the complement—the
background. Otherwise, the ratio is undefined in the first
case, and the optimal solution is to choose the trivial
solution S ¼ V in the second. Instead of including explicitly
the sum constraint in the formulation, we replace it by
setting some edge in the feature to serve as “seed” and some
edge in the background to serve as “seed.” Adding seeds is
an approach often used in segmentation, see, e.g., [3], [13].
The latter demonstrated that the segmentation solution is
largely independent of the choice of the “seed” nodes.
Moreover, it suggested automatically choosing the nodes

with maximum degree since a node of high degree will be in
the interior of a region or in an area of uniform intensity in
the context of image processing. Since, for both the feature
and its complement, the cut value is the same, the solution
will always be in terms of the larger segment in the
bipartition that is likely to contain higher total similarity
weights. We thus replace the sum constraint by automatically
setting yi
j
 ¼ 1 and yi0j0 ¼ 0 for some pair of edges in the
feature and the background, respectively.

Excluding the sum constraint, the problem formulation
(NC) is easily recognized as a monotone integer program-
ming with up to three variables per inequality according to
the definition provided in Hochbaum’s work [18]. Such linear
optimization problems were shown there to be solvable as a
minimum cut problem on a certain associated graph.

4.1 Linearizing the Objective Function

Consider the ratio objective function for the normalized

cut0 minS�V
C1ðS; �SÞ
C2ðS;SÞ . Because this objective function is a

ratio, we first “linearize” the problem. A linearization

procedure is to set it as calls to the �-question which asks

whether minS�V
C1ðS; �SÞ
C2ðS;SÞ < �. The �-question for the normal-

ized cut0 problem can be stated as the following linear

optimization question:
Is there a feasible subset V 0 � V such that

X
½i;j�2E

wijzij � �
X
½i;j�2E

w0ijyij < 0?

One possible approach for using the solution to the
�-question in order to solve the ratio problem is to utilize a
binary search procedure that calls for the �-question
OðlogðUF ÞÞ times in order to solve the problem, where U ¼P
½i;j�2E wij and F ¼

P
½i;j�2E w

0
ij for the weights at the

denominator w0ij.
With the construction of the graph, we observe that one

can instead use a parametric approach which is signifi-
cantly more efficient. Several applications of parametric
maximum flow, or minimum cut, in computer vision have
been suggested in [17] and [22]. We note that the �-question
is the following monotone optimization problem:

ð�-NCÞmin
P
½i;j�2E wijzij � �

P
½i;j�2E w

0
ijyij;

subject to xi � xj 	 zij for all ½i; j� 2 E;
xj � xi 	 zji for all ½i; j� 2 E;
yij 	 xi for all ½i; j� 2 E;
yij 	 xj;
yi
j
 ¼ 1 and yi0j0 ¼ 0;
xj binary j 2 V ;
zij binary ½i; j� 2 E;
yij binary i; j 2 V :

If the optimal value of this problem is negative, then the

answer to the �-question is yes; otherwise the answer is no.

This problem (�-NC) is an integer optimization problem on

a totally unimodular constraint matrix. That means that we

can solve the linear programming relaxation of this problem

and get a basic optimal solution that is integer. Instead, we

will use a much more efficient algorithm described in [18]

which relies on the monotone property of the constraints.
There is an alternative formulation to the linearized

optimization problem which does not introduce the vari-
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ables zij and removes the constraints. This formulation can be
thought of as a special case of MRF, as presented in [17], with
piecewise linear “energy” (or “separation”) functions:

f ð1Þð�Þ ¼ 0; if � 	 0;
�; if � > 0;

�

f ð2Þð�Þ ¼ 0; if � 	 0;
M � �; if � > 0;

�

where M � 1. A sufficiently large value of M is M ¼P
ij wij þ �

P
ij w

0
ij.

The problem is then the following MRF problem:

ðMRF-�-NCÞ
min

P
½i;j�2E wij

�
f ð1Þðxi � xjÞ þ f ð1Þðxj � xiÞ

�
þ ½
P
½i;j�2E f

ð2Þðyij � xiÞ þ fð2Þðyij � xjÞ�
� �

P
ij w

0
ij � yij;

subject to xj binary j 2 V ; yij binary i; j 2 V :

This MRF formulation was shown in [17] to be solvable in
polynomial time, through solving a parametric min-cut. The
resulting construction is identical to the one presented next.

4.2 Solving the �-Question with a Minimum Cut
Procedure

We construct a directed graph G0 ¼ ðV 0; A0Þ with a set of
nodes V 0 that has a node for each variable xi and a node for
each variable yij. The nodes yij carry a negative weight of
��wij. The arc from xi to xj has capacity w0ij and so does the
arc from xj to xi, as in our problem wij ¼ wji. The two arcs
from each edge-node yij to the end point nodes xi and xj
have infinite capacity. Fig. 1 shows the basic gadget in the
graph G0 for each edge ½i; j� 2 E.

We claim that any finite cut in this graph that has yi
j
 on
one side of the bipartition and yi0j0 on the other corresponds
to a feasible solution to the problem �-NC. Let the cut
ðS; T Þ, where T ¼ V 0 n S, be of finite capacity CðS; T Þ. We
set the value of the variable xi or yij to be equal to 1 if the
corresponding node is in S, and 0 otherwise. Because the
cut is finite, then yij ¼ 1 implies that xi ¼ 1 and xj ¼ 1.

Next, we claim that, for any finite cut, the sum of the
weights of the yij nodes in the source set and the capacity of
the cut is equal to the objective value of problem�-NC. Notice
that if xi ¼ 1 and xj ¼ 0, then the arc from the node xi to node
xj is in the cut and therefore the value of zij is equal to 1.

We next create a source node s and connect all yij nodes
to the source with arcs of capacity �w0ij. The node yi
j
 is
then shrunk with a source node s, and therefore also its end

points nodes are effectively shrunk with s. The node yi0j0

and its end points nodes are analogously shrunk with the

sink t. We denote this graph illustrated in Fig. 2, G0st.

Theorem 4.1. A minimum s; t-cut in the graph G0st, ðS; T Þ,
corresponds to an optimal solution to �-NC by setting all of

the variables whose nodes belong to S to 1 and zero otherwise.

Proof. Note that, whenever a node yij is in the sink set T , the

arc connecting it to the source is included in the cut. Let

the set of x variable nodes be denoted by Vx and the set

of y variable nodes, excluding yi
j
 , be denoted by Vy. Let

ðS; T Þ be any finite cut in G0st with s 2 S and t 2 T and

capacity CðS; T Þ.

CðS; T Þ ¼
X

yij2T\Vy
�w0ij þ

X
i2Vx\S;j2Vx\T

wij

¼
X
v2Vy

�w0v �
X

yij2S\Vy
�w0ij þ

X
xi2Vx\S;xj2Vx\T

wij

¼ �W 0 þ
X

i2Vx\S;j2Vx\T
wij �

X
yij2S\Vy

�w0ij

2
4

3
5:

This proves that, for a fixed constant W 0 ¼
P

v2Vy w
0
v,

the capacity of a cut is equal to a constant W 0� plus the
objective value corresponding to the feasible solution.
Hence, the partition ðS; T Þminimizing the capacity of the
cut minimizes also the objective function of �-NC. tu

4.3 A Parametric Procedure for Solving
Normalized Cut0

The capacities of the source-adjacent arcs in the graph G0st
are monotone increasing with �. As the value of � increases,

the source set of the respective minimum cuts is nested.

This is called the nestedness lemma in [16]. Although the

capacity of the cut is increasing with an increase in the

value of �, the set of nodes in the source set can be

incremented only n0 ¼ jV 0j times. We call the values of �

where the source set expands by at least one node the break

points of the parametric cut. Let the break points be

�1 > �2 > � � � > �‘, with corresponding minimal source sets,
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Fig. 1. The basic gadget in the graph representation.

Fig. 2. The graph G0st with edge ½1; 2� as source seed and edge ½4; 5� as
sink seed.



S1 � S2 � � � � � S‘.1 As a result of the nestedness lemma,
‘ 	 n0 for a graph on n0 nodes since there can be no more
than n0 different nested source sets. The capacity value of
the minimum cut is increasing as a function of increasing
values of � along a piecewise linear concave curve.

Theorem 4.2. All break points of the density graph can be found

by solving a parametric minimum cut problem where the

source-adjacent capacities of arcs are linear functions of the

parameter, �.

Gallo et al. [9] showed how to find all of the break points
and the corresponding minimum cuts in the same complex-
ity as that required to solve a single minimum s; t-cut
problem with the push-relabel algorithm of [11]. The
pseudoflow algorithm for maximum flow and minimum
cut (see [16]) also finds the parametric break points in the
complexity of a single minimum s; t-cut. Once all of the
break points are generated, we search for the largest value
of � among the break points so that the optimal value of
�-NC is negative, or equivalently, the minimum s; t-cut
value that is strictly less than �W 0.

To summarize, let T ðn;mÞ be the running time required
to solve the minimum cut problem on a graph with n nodes
and m arcs. In the graph G0st, the number of nodes is
n0 ¼ nþm, where m is the number of adjacencies or edges
in the image graph. The number of arcs in G0st, m

0 ¼ jA0j, is
OðmÞ. For a general graph, this running time is Oðm2 logmÞ
with either the pseudoflow algorithm or the push-relabel
algorithm. The degree of each node is constant for imaging
applications so, for that context, m0 ¼ OðnÞ and n0 is OðnÞ
and the running time is Oðn2 lognÞ.
Theorem 4.3. The normalized cut problem is solvable in the

running time of a minimum s; t-cut problem, T ðn0;m0Þ.
Remark. It may be desirable to solve (�-NC) without

specifying a source and a sink. The problem is then to
partition the graph G0st to two nonempty components so
that the cut separating them is minimum. This problem
is the directed minimum two-cut problem. It was
shown by Hao and Orlin [15] that the directed
minimum two-cut problem is solved in the same
complexity as a single minimum s; t-cut problem, with
the push-relabel algorithm. (This was shown to hold
also for the pseudoflow algorithm.)

In order to solve the normalized cut0 problem, the
algorithm produces a sequence of nested solutions for all
possible values of the parameter �. Each such solution
represents a different weighting of the cut objective
versus the similarity objective. As the value of the �
grows, the similarity part of the objective is more
prominent and the optimal solution S� expands.
Although the normalized cut ratio problem’s optimal
solution comprises of a single connected component, the
sequence of optimal solutions to the range of parameter
values is not necessarily formed of a single connected
component. Such solutions could be more meaningful in
medical images, for instance, where lesions are the
features sought, but they often appear as disjoint
components in the image. In fact, we show in the
experiments in Section 5.1 that choosing a break point
which does not correspond to the optimal ratio, produces
visually best results as compared to the segmentation
corresponding to the minimum ratio.

4.4 Experiments with Normalized Cut

The normalized cut procedure was implemented using the
pseudoflow algorithm [16], which solves the minimum
s; t-cut problem (and the maximum flow problem.) The
pseudoflow algorithm is fast in theory and in practice [4],
and is currently the fastest algorithm on standard and
nonstandard benchmark problems. The code and its
parametric version are available for download at http://
riot.ieor.berkeley.edu/riot/Applications/Pseudoflow. The
segmentation was performed on a 32-bits Windows Vista
(SP1) machine with 2.00 GHz Intel Core 2 Duo CPU ðT7300Þ
and 2 GBytes of memory. The results presented in Figs. 3c
and 4c were computed in 0.413 and 0.291 seconds,
respectively. The segmentation results obtained using the
pseudoflow algorithm were compared to the results
obtained when the images were segmented with the
implementation provided by Shi [26] and is based on [25].

Figs. 3 and 4 depict the NC-segmentation results for the
two different implementations ([25] and [4]). Figs. 3a and 4a
are the original images, the images in Figs. 3b and 4b are the
normalized cut segmentations resulting from using Shi and
Malik’s algorithm, and the images in Figs. 3c and 4c are the
normalized cut0 segmentations through our algorithm. The
similarity weight for two adjacent nodes i; j is a function of
the distance between the input color (or gray levels) vi; vj of
the two nodes, dðvi; vjÞ, e��dðvi;vjÞ for a constant �.

Since the algorithm of Shi and Malik seeks to optimize
the normalized cut criterion, as defined by (1), we choose
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1. A source set S is minimal if there is no other minimum cut with a
source set strictly contained in S.

Fig. 3. Normalized cut segmentation. (a) The input to the normalized cut
procedure. (b) The output using Shi’s implementation, and (c) the output
using the algorithm described here.

Fig. 4. Normalized cut segmentation. (a) The input to the normalized cut
procedure. (b) The output using Shi’s implementation, and (c) the output
using the algorithm described here.



here the value of the objective in (1) as a performance
measure as to the quality of the segmentation. The values of
that objective for the segmented images are given in Table 2.
Although the algorithm here solves, optimally, the normal-
ized cut0 and not the normalized cut problem it gives better
(lower) results in terms of the normalized cut objective.

5 THE RATIO REGIONS FORMULATION

5.1 Solving the Ratio Regions Problem

The linearization of the weighted ratio regions problem, is
an instance of the s-excess problem in [16]. For this reason,
we provide here only a sketch of the algorithm for solving
the problem.

As before, we formulate the problem first. Let

xi ¼
1; if i 2 S;
0; if i 2 �S:

�

Let zij ¼ 1; if exactly one of i or j is in S:

zij ¼ 1; if i 2 S; j 2 �S; or i 2 �S; j 2 S;
0; if i; j 2 S or i; j 2 �S:

�

Let the similarity weight on each edge be wij and the
weight of node (pixel) j be dj. With these parameters, the
ratio regions (RR) problem formulation becomes

ðRRÞ min

P
wijzijP
qjxj

;

subject to xi � xj 	 zij for all ½i; j� 2 E;
xj � xi 	 zij for all ½i; j� 2 E;
xj binary j 2 V ;
zij binary ½i; j� 2 E:

The corresponding �-question is

ð�-RRÞmin
P
½i;j�2E wijzij �

P
j2V �qjxj;

subject to xi � xj 	 zij for all ½i; j� 2 E;
xj � xi 	 zij for all ½i; j� 2 E;
xj binary j 2 V ;
zij binary ½i; j� 2 E:

Again, an alternative definition of the linearized problem
as an MRF problem is using the definitions of f ð1Þ and M as
in Section 4.1. The corresponding MRF-�-RR formulation is
given by:

ðMRF-�-RRÞ
min

P
½i;j�2E wij

�
f ð1Þðxi � xjÞ þ f ð1Þðxj � xiÞ

�
��
P

j2V �qjxj;
subject to xj binary j 2 V :

The graph constructed for that problem is of the same
size as the original graph G. Each node representing a
variable xj has an arc going to sink node with capacity �qj.

One variable node, xs, is selected arbitrarily as correspond-
ing to a source “seed.”

The graph G0st shown in Fig. 5 has OðnÞ nodes and OðmÞ
arcs. The algorithm solving the problem is then a simple
parametric cut algorithm in that graph, with runtime
T ðn;mÞ. Furthermore, the parametric s; t-cut algorithm
delivers the sequence of optimal nested solutions for all
values of �, as well as the optimal solution to the ratio
problem, in runtime T ðn;mÞ.

5.2 Experiments with Ratio Regions

Similarly to the normalized cut procedure, the Ratio Region
algorithm was implemented using the pseudoflow algo-
rithm [16]. The running time for segmenting Figs. 6c and 6d
were 1.838 and 2.242 seconds, respectively. The segmenta-
tion results obtained using the pseudoflow algorithm were
compared to the results reported by Cox et al. [7].

Fig. 6 presents the RR-segmentation results. Fig. 6a is the
original image; Fig. 6b is the segmentation reported in [7].
Figs. 6c and 6d are the segmentation results, utilizing the
algorithm here, for two different � values. The � value for
Fig. 6c is the optimal value of � for the minimum ratio
region objective. The � value used for achieving the
segmentation depicted in Fig. 6d was chosen to be 4 � 10�7.
The similarity weights wij used here are the same as defined
in [7] and are based on the histogram of the absolute
gradient, jxi � xjj. If X is the random variable of the
absolute gradient of all the edges, than wij is defined by:

wij ¼ Prob X > jxi � xjj
� �

We use the ratio region objective value, as defined in (2),
as a performance measure for evaluating the ratio regions
results. This measure for the segmentation results in Figs. 6b,
6c, and 6d are given in Table 3.

In evaluating the results, it should be noted that the
algorithm in this paper aims at giving an exact solution for a
given segmentation criterion, rather than suggesting better
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TABLE 2
Normalized Cut Measure for Image Segmentation

Fig. 5. The graph G0st for the ratio regions problem with node xs serving
as source seed.



segmentation scheme. Therefore, while the visual quality of
the segmentation through minimization of the ratio regions
measure in Fig. 6c is not representative of what might be
perceived as the “feature,” it is the optimal solution and, in
that regard, casts doubt on the use of the ratio regions
criterion as stated. On the other hand, the linear combination
of the numerator and denominator with the choice of � as in
Fig. 6d provides a good quality visual for the image here.

6 THE MAXIMUM DENSITY PROBLEM

For formulating the maximum density problem, as before
let xi and yij be:

xi ¼
1; if i 2 S;
0; if i 2 �S;

�

and

yij ¼
1; if i; j 2 S;
0; otherwise:

�

Then, the linearized maximum density problem corre-
sponding � question is

ð�-MDÞ max
P
½i;j�2E wijyij �

P
j2V �xj;

subject to yij 	 xj for all ½i; j� 2 E;
yij 	 xj for all ½i; j� 2 E;
xj binary j 2 V ;
yij binary i; j 2 V :

The corresponding MRF formulation of the linearized
version, with f ð2Þ and M as in Section 4.1, is

ðMRF-�-MDÞ min
P

j2V �xj

þ
P
½i;j�2E wij½

P
½i;j�2E f ð2Þðyij � xiÞ þ f ð2Þðyij � xjÞ�;

xj binary j 2 V ;
yij binary i; j 2 V :

The �-question is presented as a minimum s; t-cut
problem on an unbalanced bipartite graph Gb. As illustrated
in Fig. 7, the graph Gb is constructed so that nodes
representing the edges yij of the graph G are on one side of
the bipartition and nodes representing the nodes, xi, of G are
on the other. Each node on Gb representing an edge of G is
connected with infinite capacities arcs to the nodes repre-
senting its end nodes on G. For example, the corresponding
node on Gb to the edge y23 on G is connected to the nodes in
Gb that correspond to the nodes x2 and x3 on G (details are
available in [19]). That bipartite graph has mþ n nodes, and
m0 ¼ OðmÞ arcs. The complexity of a single minimum s; t-cut
in such graph is, therefore, Oðm2 logmÞ. This complexity,
however, can be improved as discussed next.

The number of iterations required by the push-relabel
algorithm or the pseudoflow algorithm is bounded by a
function of the length of the longest residual path in the
graph—Oðm0n0Þ—where m0 is the number of arcs in the
bipartite graph and n0 is the maximum residual path length.
In the �-network constructed for the �-question, this length
n0 is at most 2nþ 2 as each path alternates between the two
sets in the partition.

This fact is used by Ahuja et al. [1], who devised improved
push-relabel algorithms for unbalanced bipartite graphs.
Among those, the most efficient for parametric minimum cut
is an adaptation of the parametric push-relabel algorithm of
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TABLE 3
Ratio Regions Measure for Image Segmentation

Fig. 7. The graph for solving the densest Region Problem.

Fig. 6. Ratio Regions segmentation. (a) The input. (b) The output using
Cox’s implementation. (c) The optimal ratio region segmentation using
the algorithm here. (d) A segmentation using the linearized problem for
� ¼ 4 � 10�7.



Gallo et al. with runtime Oðm0n0 logðn02m0 þ 2ÞÞ. This runtime
translates to Oðmn logðn2

m þ 2ÞÞ for the parametric problem
solving the minimum density problem on a general graph,
improving on the Oðm2 logmÞ complexity for a direct
application of the parametric cut algorithm.

7 CONCLUSIONS

We show here that several ratio problems used in image
segmentation can be solved in polynomial time using a
parametric minimum cut procedure. This is done here
particularly efficiently with the pseudoflow algorithm.
Algorithms for solving a variant of normalized cut, ratio
regions, and the maximum density problem are detailed.

The segmentation results presented are competitive with
other algorithms for normalized cut and ratio regions.
Moreover, these solutions have much better (lower)
objective value compared to other algorithms.
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