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1 Introduction

We will begin the study of network flow problems with a review of the formulation of linear pro-
gramming (LP) problems. Let the number of decision variables, xj’s, be N , and the number of
constraints be M . LP problems take the following generic form:

min
∑N

j=1 cjxj

s.t.
∑N

j=1 ai,jxj ≤ bi ∀i ∈ {1, . . . ,M}
xj ≥ 0 ∀j ∈ {1, . . . , N} (1)

Integer linear programming (ILP) has the following additional constraint:

xj integer ∀j ∈ {1, . . . , N} (2)

It may appear that ILP problems are simpler than LP problems, since the solution space in
ILP is countably finite while the solution space in LP is infinite; one obvious solution to ILP is
enumeration, i.e. systematically try out all feasible solutions and find one with the minimum cost.
As we will see in the following ILP example, enumeration is not an acceptable algorithm as, even
for moderate-size problems, its running time would be extremely large.

1.1 Assignment problem

In words, the assignment problem is the following: given n tasks to be completed individually by n
people, what is the minimum cost of assigning all n tasks to n people, one task per person, where
ci,j is the cost of assigning task j to person i? Let the decision variables be defined as:

xi,j =

{
1 if person i takes on task j
0 otherwise

(3)

The problem can now be formulated as:

min
∑n

j=1

∑n
i=1 ci,jxi,j

s.t.
∑n

j=1 xi,j = 1 ∀i = 1, ..., n∑n
i=1 xi,j = 1 ∀j = 1, ..., n

xi,j ≥ 0 xi,j integer (4)

The first set of constraints ensures that exactly one person is assigned to each task; the second
set of constraints ensures that each person is assigned exactly one task. Notice that the upper bound
constraints on the xij are unnecessary. Also notice that the set of constraints is not independent
(the sum of the first set of constraints equals the sum of the second set of constraints), meaning
that one of the 2n constraint can be eliminated.

While at first it may seem that the integrality condition limits the number of possible solutions
and could thereby make the integer problem easier than the continuous problem, the opposite is
actually true. Linear programming optimization problems have the property that there exists an
optimal solution at a so-called extreme point (a basic solution); the optimal solution in an integer
program, however, is not guaranteed to satisfy any such property and the number of possible integer
valued solutions to consider becomes prohibitively large, in general.

Consider a simple algorithm for solving the Assignment Problem: It enumerates all possible
assignments and takes the cheapest one. Notice that there are n! possible assignments. If we
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consider an instance of the problem in which there are 70 people and 70 tasks, that means that
there are

70! = 1197857166996989179607278372168909

8736458938142546425857555362864628

009582789845319680000000000000000

≈ 2332

different assignments to consider. Our simple algorithm, while correct, is not at all practical! The
existence of an algorithm does not mean that there exits a useful algorithm.

While linear programming belongs to the class of problems P for which “good” algorithms exist
(an algorithm is said to be good if its running time is bounded by a polynomial in the size of the
input), integer programming belongs to the class of NP-hard problems for which it is considered
highly unlikely that a “good” algorithm exists. Fortunately, as we will see later in this course,
the Assignment Problem belongs to a special class of integer programming problems known as the
Minimum Cost Network Flow Problem, for which efficient polynomial algorithms do exist.

The reason for the tractability of the assignment problem is found in the form of the constraint
matrix. The constraint matrix is totally unimodular (TUM). Observe the form of the constraint
matrix A:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · ·
1 0 · · ·
0

... · · ·
...

...

1
...

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

We first notice that each column contains exactly two 1’s. Notice also that the rows of matrix A
can be partitioned into two sets, say A1 and A2, such the two 1’s of each column are in different
sets. It turns out these two conditions are sufficient for the matrix A to be TUM. Note that simply
having 0’s and 1’s are not sufficient for the matrix to be TUM. Consider the constraint matrix for
the vertex cover problem:

A =

⎡
⎢⎣

0 · · · 1 0 · · · 1
0 1 0 · · · 1 0 · · ·
...

⎤
⎥⎦ (6)

Although this matrix also contains 0’s and 1’s only, it is not TUM. In fact, vertex cover is an
NP-complete problem. We will revisit the vertex cover problem in the future. We now turn our
attention to the formulation of the generic minimum cost network flow problem.

1.2 Basic graph definitions

• A graph or undirected graph G is an ordered pair G := (V,E). Where V is a set whose
elements are called vertices or nodes, and E is a set of unordered pairs of vertices of the form
[i, j], called edges.
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• A directed graph or digraph G is an ordered pair G := (V,A). Where V is a set whose
elements are called vertices or nodes, and A is a set of ordered pairs of vertices of the form
(i, j), called arcs. In an arc (i, j) node i is called the tail of the arc and node j the head of
the arc. We sometimes abuse of the notation and refer to a digraph also as a graph.

• A path (directed path) is an ordered list of vertices (v1, . . . , vk), so that (vi, vi+1) ∈ E
((vi, vi+1) ∈ A) for all i = 1 . . . , k. The length of a path is |(v1, . . . , vk)| = k.

• A cycle (directed cycle) is an ordered list of vertices v0, . . . , vk, so that (vi, vi+1) ∈ E
((vi, vi+1) ∈ A) for all i = 1, 2, . . . , n and v0 = vk. The length of a cycle is |(v0, . . . , vk)| = k.

• A simple path (simple cycle) is a path (cycle) where all vertices v1, . . . , vk are distinct.

• An (undirected) graph is said to be connected if, for every pair of nodes, there is an (undi-
rected) path starting at one node and ending at the other node.

• A directed graph is said to be strongly connected if, for every (ordered) pair of nodes (i, j),
there is a directed path in the graph starting in i and ending in j.

• The degree of a vertex is the number of edges incident to the vertex. In the homework
assignement you will prove that

∑
v∈V degree(v) = 2|E|.

• In a directed graph the indegree of a node is the number of incoming arcs taht have that node
as a head. The outdegree of a node is the number of outgoing arcs from a node, that have
that node as a tail.

Be sure you can prove, ∑
v∈V

indeg(v) = |A|,
∑
v∈V

outdeg(v) = |A|.

• A tree can be characterized as a connected graph with no cycles. The relevant property for
this problem is that a tree with n nodes has n− 1 edges.

Definition: An undirected graph G = (V, T ) is a tree if the following three properties are
satisfied:

Property 1: |T | = |V | − 1.
Property 2: G is connected.
Property 3: G is acyclic.

(Actually, it is possible to show, that any two of the properties imply the third).

• A graph is bipartite if the vertices in the graph can be partitioned into two sets in such a way
that no edge joins two vertices in the same set.

• A matching in a graph is set of graph edges such that no two edges in the set are incident to
the same vertex.
The bipartite (nonbipartite) matching problem, is stated as follows: Given a bipartite (nonbi-
partite) graph G = (V,E), find a maximum cardinality matching.
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2 Totally unimodular matrices

An m × n matrix is said to be unimodular if for every submatrix of size m × m the value of its
determinant is 1, 0, or −1. A matrix, A, is said to be totally unimodular if the determinant of every
square submatrix is 1, 0 or −1.

Consider the general linear programming problem with integer coefficients in the constraints,
right-hand sides and objective function:

(LP)

max cx

subject to Ax ≤ b

Recall that a basic solution of this problem represents an extreme point on the polytope defined
by the constraints (i.e. cannot be expressed as a convex combination of any two other feasible
solutions). Also, if there is an optimal solution for LP then there is an optimal, basic solution. If
in addition A is totally unimodular we have the following result.

Lemma 2.1. If the constraint matrix A in LP is totally unimodular and the vector b is integer, then
there exists an integer optimal solution. In fact every basic or extreme point solution is integral.

Proof. If A is m× n, m < n, a basic solution is defined by a nonsingular, m×m square submatrix
of A, B = (bij), called the basis, and a corresponding subset of the decision variables, xB , called
the basic variables, such that

xB = B−1b.

By Cramer’s rule, we know

B−1 =
CT

det(B)
,

where C = (cij) is an m×m matrix, called the cofactor matrix of B. Each cij is the determinant of
a submatrix formed by by deleting row i and column j from B; this determinant is then multiplied
by an appropriate sign coefficient (1 or −1) depending on whether i+ j is even or odd. That is,

Cij = (−1)i+j · det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,1 . . . b1,j−1 X b1,j+1 . . . b1,m
...

...
...

...
...

...
...

bi−1,1 . . . bi−1,j−1 X bi−1,j+1 . . . bi−1,m

X X X X X X X
bi+1,1 . . . bi+1,j−1 X bi+1,j+1 . . . bi+1,m

...
...

...
...

...
...

...
bm,1 . . . bm,j−1 X bm,j+1 . . . bm,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, since the determinant is a sum of terms each of which is a product of entries of the submatrix,
then all entries in C are integer. In addition, A is totally unimodular and B is a basis (so |det(B)| =
1). Therefore, all of the elements of B−1 are integers. So we conclude that any basic solution
xB = B−1b is integral.

Although we will require all coefficients to be integers, the lemma also holds if only the right
hand sides vector b is integer.

This result has ramifications for combinatorial optimization problems. Integer programming
problems with totally unimodular constraint matrices can be solved simply by solving the linear
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programming relaxation. This can be done in polynomial time via the Ellipsoid method, or more
practically, albeit not in polynomial time, by the simplex method. The optimal basic solution is
guaranteed to be integral.

The set of totally unimodular integer problems includes network flow problems. The rows (or
columns) of a network flow constraint matrix contain exactly one 1 and exactly one -1, with all the
remaining entries 0. A square matrix A is said to have the network property if every column of A
has at most one entry of value 1, at most one entry of value −1, and all other entries 0.

Lemma 2.2. If the constraint matrix A has at most one 1 and at most one −1 in each column
(row) than A is totally unimodular.

Proof. The proof is by induction on k, the size of the submatrix of A. For k = 1 the determinant
value is the value of the entry, which is in {−1, 0, 1} as required.

Consider a k×k submatrix of A, Bk. If Bk has a column of all zeros, then det(Bk) = 0. If every
column of Bk has exactly one 1 and one −1, them det(Bk) = 0, since the sum of all rows is zero.
Therefore there exists a column of Bk with exactly one 1, or exactly one −1. The determinant is
then 1× det(Bk−1) in the first case, and −1× det(Bk−1) in the second case, which is −1, 0 or 1 by
the inductive assumption.

3 Minimum cost network flow problem

We now formulate the Minimum Cost Network Flow Problem. In general,

Problem Instance: Given a network G = (N,A), with a cost cij , upper bound uij , and lower
bound lij associated with each directed arc (i, j), and supply bv at each node. Find the
cheapest integer valued flow such that it satisfies: 1) the capacity constraints on the arcs, 2)
the supplies/demands at the nodes, 3) that the flow is conserved through the network.

Integer Programming Formulation: The problem can be formulated as an IP in the following
way:

min
∑n

j=1

∑n
i=1 cijxij

subject to
∑

k∈N xik −
∑

k∈N xki = bi ∀i ∈ N

lij ≤ xij ≤ uij , xij integer, ∀(i, j) ∈ A

The first set of constraints is formed by the flow balance constraints. The second set is formed
by the capacity constraints. Nodes with negative supply are sometimes referred to as demand
nodes and nodes with 0 supply are sometimes referred to as transshipment nodes. Notice that
the constraints are dependent (left hand sides add to 0, so that the right hand sides must add
to for consistency) and, as before, one of the constraints can be removed.

The distinctive feature of this matrix of the flow balance constraint matrix is that each column
has precisely one 1 and one −1 in it. Can you figure out why?

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · ·
0 −1 · · ·
1 0

0
...

−1 ...
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)
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It turns out that all extreme points of the linear programming relaxation of the Minimum Cost
Network Flow Problem are integer valued (assuming that the supplies and upper/lower bounds are
integer valued). This matrix, that has one 1 and one −1 per column (or row) is totally unimodular
and therefore MCNF problems can be solved using LP techniques. However, we will investigate
more efficient techniques to solve MCNF problems, which found applications in many areas. In
fact, the assignment problem is a special case of MCNF problem, where each person is represented
by a supply node of supply 1, each job is represented by a demand node of demand 1, and there are
an arc from each person j to each job i, labeled by ci,j , that denotes the cost of person j performing
job i.

Example of general MCNF problem - the chairs problem

We now look at an example of general network flow problem, as described in handout #2. We
begin the formulation of the problem by defining the units of various quantities in the problem:
we let a cost unit be 1 cent, and a flow unit be 1 chair. To construct the associated graph for
the problem, we first consider the wood sources and the plants, denoted by nodes WS1,WS2 and
P1, . . . , P4 respectively, in Figure 1a. Because each wood source can supply wood to each plant,
there is an arc from each source to each plant. To reflect the transportation cost of wood from
wood source to plant, the arc will have cost, along with capacity lower bound (zero) and upper
bound (infinity). Arc (WS2, P4) in Figure 1a is labeled in this manner.

(0, inf, 190)
P4

P3

P2

P1

WS1

WS2

wood source

S

P4’

P3’

P2’

P1’

plant plant’

(250, 250, 400)

(0, inf, 40)

(800, inf, 150)
(800, inf, 0)

(a) wood source & plants

(500, 1500, 0)Ch

SF

Au

NY

P4’

P3’

P2’

P1’

(500, 1500, -1800)

city

(0, 250, 400)

D

plant’
(0, 250, -1400)

(b) plants & cities

Figure 1: Chair Example of MCNF

It is not clear exactly how much wood each wood source should supply, although we know that
contract specifies that each source must supply at least 800 chairs worth of wood (or 8 tons). We
represent this specification by node splitting: we create an extra node S, with an arc connecting
to each wood source with capacity lower bound of 800. Cost of the arc reflects the cost of wood
at each wood source. Arc (S,WS2) is labeled in this manner. Alternatively, the cost of wood can
be lumped together with the cost of transportation to each plant. This is shown as the grey color
labels of the arcs in the figure.

Each plant has a production maximum, production minimum and production cost per unit.
Again, using the node splitting technique, we create an additional node for each plant node, and
labeled the arc that connect the original plant node and the new plant node accordingly. Arc
(P4, P4′) is labeled in this manner in the figure.

Each plant can distribute chairs to each city, and so there is an arc connecting each plant to
each city, as shown in Figure 1b. The capacity upper bound is the production upper bound of
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the plant; the cost per unit is the transportation cost from the plant to the city. Similar to the
wood sources, we don’t know exactly how many chairs each city will demand, although we know
there is a demand upper and lower bound. We again represent this specification using the node
splitting technique; we create an extra node D and specify the demand upper bound, lower bound
and selling price of each unit of each city by labeling the arc that connects the city and node D.

plant’

P4

P3

P2

P1

(0, inf, 0)

Ch

SF

Au

NY

P4’

P3’

P2’

P1’

city

D
WS1

WS2

plant

wood source

S

(a) circulation arc

(-M)

P4

P3

P2

P1

(0, inf, 0)

(M)
WS1

WS2

plant

wood source

S

Ch

SF

Au

NY

P4’

P3’

P2’

P1’

city

D

plant’

(b) drainage arc

Figure 2: Complete Graph for Chair Example

Finally, we need to relate the supply of node S to the demand of node D. There are two ways
to accomplish this. We observe that it is a closed system; therefore the number of units supplied
at node S is exactly the number of units demanded at node D. So we construct an arc from node
D to node S, with label (0,∞, 0), as shown in Figure 2a. The total number of chairs produced will
be the number of flow units in this arc. Notice that all the nodes are now transshipment nodes —
such formulations of problems are called circulation problems.

Alternatively, we can supply node S with a large supply of M units, much larger than what
the system requires. We then create a drainage arc from S to D with label (0,∞, 0), as shown in
Figure 2b, so the excess amount will flow directly from S to D. If the chair production operation
is a money losing business, then all M units will flow directly from S to D.

3.1 Transportation problem

A problem similar to the minimum cost network flow, which is an important special case is called
the transportation problem: the nodes are partitioned into suppliers and consumers only. There
are no transhippment nodes. All edges go directly from suppliers to consumers and have infinite
capacity and known per unit cost. The problem is to satisfy all demands at minimum cost. The
assignment problem is a special case of the transportation problem, where all supply values and all
demand values are 1.

The graph that appears in the transportation problem is a so-called bipartite graph, or a graph
in which all vertices can be divided into two classes, so that no edge connects two vertices in the
same class:

(V1 ∪ V2;A) ∀(u, v) ∈ A

u ∈ V1, v ∈ V2 (8)

A property of bipartite graphs is that they are 2-colorable, that is, it is possible to assign each
vertex a “color” out of a 2-element set so that no two vertices of the same color are connected.

An example transportation problem is shown in Figure 3. Let si be the supplies of nodes in V1,
and dj be the demands of nodes in V2. The transportation problem can be formulated as an IP
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warehouses

P1

P2

P3

W5

W4

W3

W2

W1

(180)

(150)

(-120)

(-100)

(-160)

(-80)

(-150)

(280)

(0, inf, 4)

plants

Figure 3: Example of a Transportation Problem

problem as follows:

min
∑

i∈V1,j∈V2
ci,jxi,j

s.t.
∑

j∈V2
xi,j = si ∀i ∈ V1

−∑i∈V1
xi,j = −dj ∀j ∈ V2

xi,j ≥ 0 xi,j integer (9)

Note that assignment problem is a special case of the transportation problem. This follows from
the observation that we can formulate the assignment problem as a transportation problem with
si = dj = 1 and |V1| = |V2|.

3.2 The maximum flow problem

Recall the IP formulation of the Minimum Cost Network Flow problem.

( MCNF)
Min cx

subject to Tx = b Flow balance constraints
l ≤ x ≤ u, Capacity bounds

Here xi,j represents the flow along the arc from i to j. We now look at some specialized variants.
The Maximum Flow problem is defined on a directed network with capacities uij on the arcs,

and no costs. In addition two nodes are specified, a source node, s, and sink node, t. The objective is
to find the maximum flow possible between the source and sink while satisfying the arc capacities.
If xi,j represents the flow on arc (i, j), and A the set of arcs in the graph, the problem can be
formulated as:

(MaxFlow)

Max V
subject to

∑
(s,i)∈A xs,i = V Flow out of source∑
(j,t)∈A xj,t = V Flow in to sink∑
(i,k)∈A xi,k −

∑
(k,j)∈A xk,j = 0, ∀k 	= s, t

li,j ≤ xi,j ≤ ui,j, ∀(i, j) ∈ A.

The Maximum Flow problem and its dual, known as the Minimum Cut problem have a number
of applications and will be studied at length later in the course.

3.3 The shortest path problem

The Shortest Path problem is defined on a directed, weighted graph, where the weights may be
thought of as distances. The objective is to find a path from a source node, s, to node a sink node,
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t, that minimizes the sum of weights along the path. To formulate as a network flow problem, let
xi,j be 1 if the arc (i, j) is in the path and 0 otherwise. Place a supply of one unit at s and a
demand of one unit at t. The formulation for the problem is:

(SP)

Min
∑

((i,j)∈A di,jxi,j
subject to

∑
(i,k)∈A xi,k −

∑
(j,i)∈A xj,i = 0 ∀i 	= s, t∑

(s,i)∈A xs,i = 1∑
(j,t)∈A xj,t = 1

0 ≤ xi,j ≤ 1

This problem is often solved using a variety of search and labeling algorithms depending on the
structure of the graph.

3.4 The single source shortest paths

A related problem is the single source shortest paths problem (SSSP). The objective now is to find
the shortest path from node s to all other nodes t ∈ V \ s. The formulation is very similar, but
now a flow is sent from s, which has supply n− 1, to every other node, each with demand one.

(SSSP)

Min
∑

(i,j)∈A di,jxi,j
subject to

∑
(i,k)∈A xi,k −

∑
(j,i)∈A xj,i = −1 ∀i 	= s∑

(s,i)∈A xs,i = n− 1

0 ≤ xi,j ≤ n− 1, ∀(i, j) ∈ A.

But in this formulation, we are minimizing the sum of all the costs to each node. How can
we be sure that this is a correct formulation for the single source shortest paths problem? In the
next theorem we show that there exists an optimal solution x∗ where the positive flow arcs form
a branching rooted in s. A branching is a directed spanning tree with all arcs directed down from
the root, and the indegree of each node other than the root is 1. A property of a branching is that
there is a unique path in the branching from s to every node. This path necessarily carries to every
node i a flow amount equal to the number of nodes in the subtree rooted in i. Now if the unique
path in the branching from s to a node i is not shortest, then there is a shorter path to which
we can transfer one unit of flow from s to i from the path in the branching to the shorter path
and therefore generate a feasible flow for (SSSP) that is strictly lower in value, thus contradicting
optimality.

Theorem 3.1 (Branching theorem). Given a directed graph G = (V,A), there exists an optimal
solution x∗ij to a single-source shortest paths problem on G with source node s ∈ V such that

indegA+(i) = 1 ∀ i ∈ V \ {s}
where A+ = {(i, j) ∈ A | x∗ij > 0}.
Proof. Let x∗ij be an optimal solution to a single-source shortest path problem on G with source
node s. Furthermore let x∗ij be an optimal solution that minimizes the sum of indegrees with respect
to the arcs in the solution set A+ ∑

i∈V \{s}
indegA+(i).

We will show that this optimal solution that minimizes the sum of indegrees cannot contain a node
of indegree strictly greater than 1 by contradiction. This is equivalent to claiming that the sum
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of indegrees is n − 1, which is the minimum possible in a connected graph. Let the level of node
v ∈ V be equal to the length (in terms of number of arcs) of the shortest path in A+ from s to v.

Let i0 be a node with indegree greater than 1 such no nodes in any path from s to i0 have
indegree greater than 1. That is, i0 is a lowest index level node of indegree > 1. Intuitively, i0 is
the “first” node we encounter with indegree greater than 1. Therefore there are at least two paths
from s to i0. At least one of the incoming flows to i0 is from its “parent”, a node in one level above
that of i0. Denote this parent node of i0 by m and it has indegree of 1. Since each node interior to
the path from s to i0 via m is of indegree 1, and all nodes other than s have demand of 1 unit, the
incoming flows to these nodes is strictly greater than the flow out of each of these nodes. That is,
the flows on this path from s to i0 are monotone decreasing.

Let the other incoming flow to i come from node n, and find a path from s to node n in A+.
The total cost of both paths, via m and via n, to i0 must be the same, as otherwise we can move the
bottleneck amount (the smallest flow along an arc on the path) from the more expensive path to
the cheaper and get a strictly better solution, which contradicts optimality. We can now subtract
the amount x∗mi0

on arcs of the path from s to i via m and still each arc will have non-negative
flow, and arc (m, i0) will have 0 flow. Now add the amount x∗mi0

to the flow on the path from s to
node n and then to i0. This transformation preserves the flow balance at all nodes on the paths
and at node 0 and therefore this is a feasible solution. It does not create any new positive flow
arc and therefore it does not change the indegree of any node except for i0. Since the cost of both
paths must be the same, this is an optimal solution with a strictly smaller indegree of node i0,
and therefore smaller sum of indegrees. This is illustrated in Figure 4 where p is the first node p
common to both paths, possibly s. That is, p is the highest indexed level common ancestor.

p

n

i0

m

x∗pn x∗pm

x∗ni 0 x∗mi0

(a) The bottleneck flows are
x∗
mi0 and x∗

ni0 .

p

n

i0

m

x∗pn + x∗mi0 x∗pm − x∗mi0

x∗ni 0 + x∗mi0

(b) The value of the objective function is un-
changed by moving x∗

mi0 to the other path, but
indegA+(i0) has reduced by 1.

Figure 4: A simplified pair of equal-cost paths from p to i0.

Here is an alternative proof: Consider two paths from s to i0, via m and via n. For either of
these paths define the bottleneck arc as the arc with the smallest amount of flow, and the bottleneck
flow as the amount of flow on the bottleneck. Let x∗ij be an arc that carries the smaller bottleneck
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amount on either one of the two paths. We now subtract the amount x∗ij from the path that contains
the bottleneck arc (i, j) and add it to the other. Arc (i, j) then carries a zero flow, flow balance
and non-negativity are preserved, and no new positive flow arc is created. Thus we found another
optimal solution with strictly smaller sum of indegrees (or equivalently, smaller size of |A+|) which
is a contradiction,

The same theorem may also be proved following Linear Programming arguments by showing
that a basic solution of the algorithm generated by a linear program will always be acyclic in the
undirected sense.

3.5 The bipartite matching problem

A matching is defined as M , a subset of the edges E, such that each node is incident to at most one
edge in M . Given a graph G = (V,E), find the largest cardinality matching. Maximum cardinality
matching is also referred to as the Edge Packing Problem. (We know that M ≤ 
V2 �.)

Maximum Weight Matching: We assign weights to the edges and look for maximum total
weight instead of maximum cardinality. (Depending on the weights, a maximum weight matching
may not be of maximum cardinality.)

Smallest Cost Perfect Matching: Given a graph, find a perfect matching such that the sum of
weights on the edges in the matching is minimized. On bipartite graphs, finding the smallest cost
perfect matching is the assignment problem.

Bipartite Matching, or Bipartite Edge-packing involves pairwise association on a bipartite graph.
In a bipartite graph, G = (V,E), the set of vertices V can be partitioned into V1 and V2 such that
all edges in E are between V1 and V2. That is, no two vertices in V1 have an edge between them, and
likewise for V2. A matching involves choosing a collection of arcs so that no vertex is adjacent to
more than one edge. A vertex is said to be “matched” if it is adjacent to an edge. The formulation
for the problem is

(BM)

Max
∑

(i,j)∈E xi,j
subject to

∑
(i,j)∈E xi,j ≤ 1 ∀i ∈ V

xi,j ∈ {0, 1}, ∀ (i, j) ∈ E.

Clearly the maximum possible objective value is min{|V1|, |V2|}. If |V1| = |V2| it may be possible
to have a perfect matching, that is, it may be possible to match every node.

The Bipartite Matching problem can also be converted into a maximum flow problem. Add
a source node, s, and a sink node t. Make all edge directed arcs from, say, V1 to V2 and add a
directed arc of capacity 1 from s to each node in V1 and from each node in V2 to t. Now maximize
the flow from s to t. The existence of a flow between two vertices corresponds to a matching. Due
to the capacity constraints, no vertex in V1 will have flow to more than one vertex in V2, and no
vertex in V2 will have a flow from more than one vertex in V1.

Alternatively, one more arc from t back to s with cost of -1 can be added and the objective
can be changed to maximizing circulation. Figure 5 depicts the circulation formulation of bipartite
matching problem.

The problem may also be formulated as an assignment problem. Figure 6 depicts this formula-
tion. An assignment problem requires that |V1| = |V2|. In order to meet this requirement we add
dummy nodes to the deficient component of B as well as dummy arcs so that every node dummy
or original may have its demand of 1 met. We assign costs of 0 to all original arcs and a cost of 1
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Figure 5: Max-flow with circulation arc formulation of Maximum Cardinality Bipartite Matching

to all dummy arcs. We then seek the assignment of least cost which will minimize the number of
dummy arcs and hence maximize the number of original arcs.

Figure 6: Assignment formulation of Maximum Cardinality Bipartite Matching

The General Matching, or Nonbipartite Matching problem involves maximizing the size of a
collection of edges so that no two edges share an endpoint. This problem cannot be converted to
a flow problem, but is still solvable in polynomial time.

Another related problem is the weighted matching problem in which each edge (i, j) ∈ E has
weight wi,j assigned to it and the objective is to find a matching of maximum total weight. The
mathematical programming formulation of this maximum weighted problem is as follows:

(WM)

Max
∑

(i,j)∈E wi,jxi,j
subject to

∑
(i,j)∈E xi,j ≤ 1 ∀i ∈ V

xi,j ∈ {0, 1}, ∀ (i, j) ∈ E.

3.6 Summary of classes of network flow problems

There are a number of reasons for classifying special classes of MCNF as we have done in Figure 7.
The more specialized the problem, the more efficient are the algorithms for solving it. So, it
is important to identify the problem category when selecting a method for solving the problem
of interest. In a similar vein, by considering problems with special structure, one may be able to
design efficient special purpose algorithms to take advantage of the special structure of the problem.
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Max-Flow

Bipartite-Matching

Weighted Bipartite-Matching

Transportation

Shortest Paths Assignment

(No Costs)

Transshipment (No capacities)

MCNF

Figure 7: Classification of MCNF problems

Note that the sets actually overlap, as Bipartite Matching is a special case of both the Assign-
ment Problem and Max-Flow.

3.7 Negative cost cycles in graphs

One of the issues that can arise in weighted graphs is the existence of negative cost cycles. In this
case, solving the MCNF problem gives a solution which is unbounded, there is an infinite amount
of flow on the subset of the arcs comprising the negative cost cycle.

This problem also occurs if we solve the shortest paths problem as MCNF with upper bounds
on the flow on the arcs. To see this, say we modify the formulation with an upper bound on the
flow of 1. Then, we can still have a MCNF solution that is not the shortest path, as shown in the
Figure 8. In this problem the shortest path is (s, 1, t) while the solution to MCNF is setting the
variables (x2,4, x4,3, x3,2, xs,1, x1,t) = 1. These solutions are clearly different, meaning that solving
the MCNF problem is not equivalent to solving the shortest path problem for a graph with negative
cost cycles.

Even if we can detect the existence of cycles in the graph on the positive flow arcs (which have
flow of 1 unit, as this is the upper bound), and remove them, the remaining path is not necessarily
shortest. An example of such a case is provided in Figure 9.



IEOR 266 notes: Updated 2018 14

s t

2

3 4

1

0

1

0

-5

0

0

1

Figure 8: Example of problem with Negative Cost Cycle.

s t
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Figure 9: Example of a shortest path problem with negative cost cycle where removing the cycle
does not give a shortest path.

All shortest paths algorithms must therefore have the capability for detecting negative cost
cycles in the network. We will see that later on in the course.

4 Other network problems

4.1 Eulerian tour

We first mention the classical Königsberg bridge problem. This problem was known at the time
of Euler, who solved it in 1736 by posing it as a graph problem. The graph problem is, given an
undirected connected graph, is there a path that traverses all edges exactly once and returns to the
starting point. A graph where there exists such path is called an Eulerian graph. (You will have
an opportunity to show in your homework assignment that a connected graph is Eulerian if and
only if all node degrees are even.)

Arbitrarily select edges forming a trail until the trail closes at the starting vertex. This must
happen since every vertex that is visited along this trail has an unvisited edge to leave it. If there
are still unused edges in the graph, go to a vertex that has a positive, and hence even, degree. It
is better to find such a node among those nodes already visited, but not mandatory. Start a new
tour from that vertex until coming back to it. This subtour can then be inserted to the prior tour
(if that was a vertex already visited) to create an expanded tour that traverses all the edges in the
union of these tours. repeat this until there is no vertex of positive degree in the graph of unused
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edges.
For this algorithm we will use the adjacency list representation of a graph, the adjacency lists

will be implemented using pointers. That is, for each node i in G, we will have a list of neighbors
of i. In these lists each neighbor points to the next neighbor in the list and the last neighbor points
to a special character to indicated that it is the last neighbor of i:

n(i) = (i1 � i2 � · · ·� ik �)

di = |{n(i)}|

We will maintain the set of edges in the tour ET . We also have an ordered list Tour, and a tour
pointer pT that tells us where to insert the nodes that we add to the tour. Finally, we maintain a
pointer fp that maintains the index of the first node in the tour that may have positive degree in
the tour.

NEEDS REDOING!!
Pseudocode

u← 1 (“initial” node in the tour)
Tour ← (1, )
pT ← 2 (index at which to insert in tour)
fp← 1 (index of first positive degree node in tour)
ET ← ∅ (edges in tour)
While ET 	= E do

Select node v ← n(u) such that [u, v] /∈ ET
du ← du − 1
dv ← dv − 1
Insert u in Tour at index pT

pT ← pT + 1
ET ← ET ∪ {[u, v]}
If dv > 0 then

u← v
else - (find first node u in the tour with du > 0)

while dT [fp] = 0
fp← fp+ 1

u← T [fp]
pT ← fnd

end if
end while
done
The algorithm traverses each edge twice. Once to extend the tour and once to check for positive

degree nodes. The pointer fp point to node T [fp]. This is the first node in the tour that may have
a positive degree, since fp is increased only if the degree of fp points to a node with degree zero.

4.1.1 Eulerian walk

An Eulerian walk is a path that traverses all edges exactly once (without the restriction of having
to end in the starting node). It can be shown that a graph has an Eulerian walk or Eulerian path
if and only if there are exactly 0 or 2 nodes of odd degree.
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4.2 Chinese postman problem

The Chinese Postman Problem is closely related to the Eulerian walk problem.

4.2.1 Undirected chinese postman problem

Optimization Version: Given a connected graph G = (V,E) with weighted edges, traverse all
edges at least once, so that the total distance traversed is minimized.

This can be solved by first, identifying the odd degree nodes of the graph and constructing a
complete graph with these nodes and the shortest path between them as the edges. Then if we can
find a minimum weight perfect matching of this new graph, we can decide which edges to traverse
twice on the Chinese postman problem and the problem reduces to finding an Eulerian walk.

Decision Version: Given an edge-weighted graph G = (V,E), is there a tour traversing each edge
at least once of total weight ≤M?

For edge weights = 1, the decision problem with M = |E| = m is precisely the Eulerian Tour
problem. It will provide an answer to the question: Is this graph Eulerian?

4.2.2 Directed chinese postman problem

Given a strongly connected directed graph G = (V,A) with weighted arcs, traverse all arcs at least
once, so that the total distance traversed is minimized.

Note that the necessary and sufficient condition of the existence of a directed Eulerian tour is
that the indegree must equal the outdegree on every node. If this condition is not satisfied then
there is a non-empty subset of excess nodes, in which the indegree exceeds the outdegree and the
excess is equal to the difference, and a non-empty subset of deficit nodes, in which the outdegree
exceeds the indegree and the deficit is equal to this difference. Construct a transportation problem
graph with the set of supply nodes equal to the set of excess nodes where the supplies are equal to
the respective excesses, and a set of demand nodes equal to the set of deficit nodes with demands
equal to the respective deficits. It is known that the total excesses must be equal to the total deficits
(reader’s challenge: prove this). Therefore the total supply is equal to the total demand. For every
pair of excess node and deficit node find the respective shortest path in the graph between these
two nodes and assign the cost of this shortest path as the cost of the respective arc between the
two nodes. Now find the minimum cost solution to the transportation problem. For arc (i, j) in
the transportation graph with flow fij, add the arcs on the shortest path from i to j fij times to
the graph. When done, the indegree of each node is equal to the outdegree, and this was done at
total minimum cost.

4.2.3 Mixed chinese postman problem

Chinese Postman Problem with both directed and undirected edges. Surprisingly, this problem is
intractable.

4.3 Hamiltonian tour problem

Given a graph G = (V,E), is there a tour visiting each node exactly once?
This is a NP-complete decision problem and no polynomial algorithm is known to determine

whether a graph is Hamiltonian.
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4.4 Traveling salesman problem (TSP)

Optimization Version: Given a graph G = (V,E) with weights on the edges, visit each node
exactly once along a tour, such that we minimize the total traversed weight.

Decision version: Given a graph G = (V,E) with weights on the edges, and a number M , is
there a tour traversing each node exactly once of total weight ≤M?

4.5 Vertex packing problems (Independent Set)

Given a graph G = (V,E), find a subset S of nodes such that no two nodes in the subset are
neighbors, and such that S is of maximum cardinality. (We define neighbor nodes as two nodes
with an edge between them.)

We can also assign weights to the vertices and consider the weighted version of the problem.

4.6 Maximum clique problem

A “Clique” is a collection of nodes S such that each node in the set is adjacent to every other node
in the set. The problem is to find a clique of maximum cardinality.

Recall that given G, Ḡ is the graph composed of the same nodes and exactly those edges not
in G. Every possible edge is in either G or Ḡ. The maximum independent set problem on a graph
G, then, is equivalent to the maximum clique problem in Ḡ.

4.7 Vertex cover problem

Find the smallest collection of vertices S in an undirected graph G such that every edge in the
graph is incident to some vertex in S. (Every edge in G has an endpoint in S).

Notation: If V is the set of all vertices in G, and S ⊂ V is a subset of the vertices, then V −S
is the set of vertices in G not in S.

Lemma 4.1. If S is an independent set, then V \ S is a vertex cover.

Proof. Suppose V \S is not a vertex cover. Then there exists an edge whose two endpoints are not
in V \ S. Then both endpoints must be in S. But, then S cannot be an independent set! (Recall
the definition of an independent set – no edge has both endpoints in the set.) So therefore, we
proved the lemma by contradiction.

The proof will work the other way, too:
Result: S is an independent set if and only if V − S is a vertex cover.
This leads to the result that the sum of a vertex cover and its corresponding independent set is

a fixed number (namely |V |).
Corollary 4.2. The complement of a maximal independent set is a minimal vertex cover, and vice
versa.

The Vertex Cover problem is exactly the complement of the Independent Set problem.
A 2-Approximation Algorithm for the Vertex Cover Problem: We can use these results to

construct an algorithm to find a vertex cover that is at most twice the size of an optimal vertex
cover.

(1) Find M , a maximum cardinality matching in the graph.
(2) Let S = {u |u is an endpoint of some edge inM}.
Claim 4.3. S is a feasible vertex cover.



IEOR 266 notes: Updated 2018 18

Proof. Suppose S is not a vertex cover. Then there is an edge e which is not covered (neither of
its endpoints is an endpoint of an edge in M). So if we add the edge to M (M ∪ e), we will get a
feasible matching of cardinality larger than M . But, this contradicts the maximum cardinality of
M .

Claim 4.4. |S| is at most twice the cardinality of the minimum V C

Proof. Let OPT = optimal minimal vertex cover. Suppose |M | > |OPT |. Then there exists an
edge e ∈M which doesn’t have an endpoint in the vertex cover. Every vertex in the V C can cover
at most one edge of the matching. (If it covered two edges in the matching, then this is not a
valid matching, because a match does not allow two edges adjacent to the same node.) This is a
contradiction. Therefore, |M | ≤ |OPT |. Because |S| = 2|M | , the claim follows.

4.8 Edge cover problem

This is analogous to the Vertex cover problem. Given G = (V,E), find a subset EC ⊂ E such that
every node in V is an endpoint of some edge in EC, and EC is of minimum cardinality.

As is often the case, this edge problem is of polynomial complexity, even though its vertex analog
is NP-hard.

4.9 b-factor (b-matching) problem

This is a generalization of the Matching Problem: given the graph G = (V,E), find a subset of
edges such that each node is incident to at most b edges. Therefore, the Edge Packing Problem
corresponds to the 1-factor Problem.

4.10 Graph colorability problem

Given an undirected graph G = (V,E), assign colors c(i) to node i ∈ V , such that ∀(i, j) ∈ E; c(i) 	=
c(j).

Example – Map coloring: Given a geographical map, assign colors to countries such that two
adjacent countries don’t have the same color. A graph corresponding to the map is constructed
as follows: each country corresponds to a node, and there is an edge connecting nodes of two
neighboring countries. Such a graph is always planar (see definition below).

Definition – Chromatic Number: The smallest number of colors necessary for a coloring is
called the chromatic number of the graph.

Definition – Planar Graph: Given a graph G = (V,E), if there exists a drawing of the graph
in the plane such that no edges cross except at vertices, then the graph is said to be planar.

Theorem 4.5 (4-color Theorem). It is always possible to color a planar graph using 4 colors.

Proof. A computer proof exists that uses a polynomial-time algorithm (Appel and Haken (1977)).
An “elegant” proof is still unavailable.

Observe that each set of nodes of the same color is an independent set. (It follows that the
cardinality of the maximum clique of the graph provides a lower bound to the chromatic number.) A
possible graph coloring algorithm consists in finding the maximum independent set and assigning
the same color to each node contained. A second independent set can then be found on the
subgraph corresponding to the remaining nodes, and so on. The algorithm, however, is both
inefficient (finding a maximum independent set is NP-hard) and not optimal. It is not optimal for
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the same reason (and same type of example) that the b-matching problem is not solvable optimally
by finding a sequence of maximum cardinality matchings.

Note that a 2-colorable graph is bipartite. It is interesting to note that the opposite is also true,
i.e., every bipartite graph is 2-colorable. (Indeed, the concept of k-colorability and the property of
being k-partite are equivalent.) We can show it building a 2-coloring of a bipartite graph through
the following breadth-first-search based algorithm:

Initialization: Set i = 1, L = {i}, c(i) = 1.
General step: Repeat until L is empty:

• For each previously uncolored j ∈ N(i), (a neighbor of i), assign color c(j) = c(i)+1 (mod 2)
and add j at the end of the list L. If j is previously colored and c(j) = c(i) + 1(mod 2)
proceed, else stop and declare graph is not bipartite.

• Remove i from L.

• Set i = first node in L.

Termination: Graph is bipartite.

Note that if the algorithm finds any node in its neighborhood already labeled with the opposite
color, then the graph is not bipartite, otherwise it is. While the above algorithm solves the 2-color
problem in O(|E|), the d-color problem for d ≥ 3 is NP-hard even for planar graphs (see Garey and
Johnson, page 87).

4.11 Minimum spanning tree problem

Definition: An undirected graph G = (V, T ) is a tree if the following three properties are satisfied:
Property 1: |T | = |V | − 1.
Property 2: G is connected.
Property 3: G is acyclic.

(Actually, it is possible to show that any two of the properties imply the third).
Definition: Given an undirected graph G = (V,E) and a subset of the edges T ⊆ E such that

(V, T ) is tree, then (V, T ) is called a spanning tree of G.
Minimum spanning tree problem: Given an undirected graph G = (V,E), and costs c : E →R,

find T ⊆ E such that (V, T ) is a tree and
∑

(i,j)∈T c(i, j) is minimum. Such a graph (V, T ) is a
Minimum Spanning Tree (MST) of G.

The problem of finding an MST for a graph is solvable by a “greedy” algorithm in O(|E|log|E|).
A lower bound on the worst case complexity can be easily proved to be |E|, because every arc must
be looked up at least once. The open question is to see if there exists a linear algorithm to solve
the problem (a linear time randomized algorithm was devised by Klein and Tarjan, but so far
no deterministic algorithm has been provided; still, there are “almost” linear time deterministic
algorithms known for solving the MST problem).

5 Complexity analysis

5.1 Measuring quality of an algorithm

Algorithm: One approach is to enumerate the solutions, and select the best one.
Recall that for the assignment problem with 70 people and 70 tasks there are 70! ≈ 2332.4

solutions. The existence of an algorithm does not imply the existence of a good algorithm!
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To measure the complexity of a particular algorithm, we count the number of operations that
are performed as a function of the ‘input size’. The idea is to consider each elementary operation
(usually defined as a set of simple arithmetic operations such as {+,−,×, /,<}) as having unit
cost, and measure the number of operations (in terms of the size of the input) required to solve a
problem. The goal is to measure the rate, ignoring constants, at which the running time grows as
the size of the input grows; it is an asymptotic analysis.

Traditionally, complexity analysis has been concerned with counting the number of operations
that must be performed in the worst case.

Definition 5.1 (Concrete Complexity of a problem). The complexity of a problem is the complexity
of the algorithm that has the lowest complexity among all algorithms that solve the problem.

5.1.1 Examples

Set Membership - Unsorted list: We can determine if a particular item is in a list of n items
by looking at each member of the list one by one. Thus the number of comparisons needed
to find a member in an unsorted list of length n is n.
Problem: given a real number x, we want to know if x ∈ S.
Algorithm:
1. Compare x to si
2. Stop if x = si
3. else if i← i+ 1 < n goto 1 else stop x is not in S

Complexity = n comparisons in the worst case. This is also the concrete complexity of
this problem. Why?

Set Membership - Sorted list: We can determine if a particular item is in a list of n elements
via binary search. The number of comparisons needed to find a member in a sorted list of
length n is proportional to log2 n.
Problem: given a real number x, we want to know if x ∈ S.
Algorithm:
1. Select med = 
first+last

2 � and compare smed to x
2. If smed = x stop, output x ∈ S.
3. If smed < x then first ← med + 1 {S = (smed+1, . . . , slast)}, else last ← med − 1
{S = (sfirst, . . . , smed−1)}.

4. If first < last go to 1, else stop, output x /∈ S.
Complexity: after kth iteration n

2k−1 elements remain. We are done searching for k such that
n

2k−1 ≤ 2, which implies:
log2 n ≤ k

Thus the total number of comparisons is at most log2 n.
Aside: This binary search algorithm can be used more generally to find the zero in a monotone

increasing and monotone nondecreasing functions.
Matrix Multiplication: The straightforward method for multiplying two n× n matrices takes

n3 multiplications and n2(n − 1) additions. Algorithms with better complexity (though not
necessarily practical, see comments later in these notes) are known. Coppersmith and Wino-
grad (1990) came up with an algorithm with complexity Cn2.375477 where C is very large, but
independent of n. Indeed, the constant term C is so large that in their paper Coppersmith
and Winograd admit that their algorithm is impractical in practice.

Forest Harvesting: In this problem we have a forest divided into a number of cells. For each
cell we have the following information: Hi - benefit for the timber company to harvest, Ui
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- benefit for the timber company not to harvest, and Bij - the border effect, which is the
benefit received for harvesting exactly one of cells i or j. This produces an m by n grid. The
way to solve is to look at every possible combination of harvesting and not harvesting and
pick the best one. This algorithm requires (2mn) operations.
An algorithm is said to be polynomial if its running time is bounded by a polynomial in the
size of the input. All but the forest harvesting algorithm mentioned above are polynomial
algorithms.
An algorithm is said to be strongly polynomial if the running time is bounded by a polynomial
in the size of the input and is independent of the numbers involved; for example, a max-flow
algorithm whose running time depends upon the size of the arc capacities is not strongly
polynomial, even though it may be polynomial (as in the scaling algorithm of Edmonds and
Karp). The algorithms for the sorted and unsorted set membership have strongly polynomial
running time. So does the greedy algorithm for solving the minimum spanning tree problem.
This issue will be returned to later in the course.

Sorting: We want to sort a list of n items in nondecreasing order.
Input: S = {s1, s2, . . . , sn}
Output: si1 ≤ si2 ≤ · · · ≤ sin
Bubble Sort: n′ = n

While n′ ≥ 2
i = 1
while i ≤ n′ − 1

If si > si+1 then t = si+1, si+1 = si, si = t
i = i+ 1

end while
n′ ← n′ − 1

end while
Output {s1, s2, . . . , sn}

Basically, we iterate through each item in the list and compare it with its neighbor. If the
number on the left is greater than the number on the right, we swap the two. We repeat this
operation for each number in turn in the array. we repeat the process. At the end of the first
pass, the last number in the newly ordered list is in the correct location - that is, it is greater
or equal than all the preceding elements. This last number can then be removed from the
array to be sorted and placed permanently in the last position of the sorted array. At the
end of the second pass, the last and the penultimate numbers are in the correct positions.
And so forth. This “invariant” proves the correctness of the algorithm. These iterations are
repeated for one number at a time and therefore at most n times. The size of the array to
be sorted is n in the first iteration and the number of comparisons n− 1. There are n− 2 in
the second iteration, and n− i comparisons in the ith iteration.
The complexity complexity of this algorithm is therefore

∑n
k=2(k− 1) = n(n− 1)/2 = O(n2).

Merge sort (a recursive procedure):
Sort(Ln): (this procedure returns Lsort

n sorted in ascending order)
begin

If n < 2
return Lsort

n

else
partition Ln into L�n/2�, L�n/2� (Ln = L�n/2� ∪ L�n/2�)
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Call Sort(L�n/2�) (to get Lsort
�n/2�)

Call Sort(L�n/2�) (to get Lsort
�n/2�)

Call Merge(Lsort
�n/2�, L

sort
�n/2�)

end if
end

Merge(L1,L2): (this procedure returns Lsort)
begin

Lsort ← empty − list
While (length(L1)> 0 and length(L2)> 0)

if first(L1) ≤ first(L2)
add first(L1) to end of Lsort

remove first(L1) from L1

else
add first(L2) to end of Lsort

remove first(L2) from L2

end if
end while
if length(L1) > 0

append L1 to the end of Lsort

if length(L2) > 0
append L2 to Lsort

end if
return Lsort

end

In words, the merge sort algorithm is as follows:
1. If the input sequence has fewer than two elements, return.
2. Partition the input sequence into two halves.
3. Sort the two subsequences using the same algorithm.
4. Merge the two sorted subsequences to form the output sequence.

Analysis:

Size of list Comparisons

2 n/2

4 3 · n/4
8 7 · n/8
. . . . . .

n n− 1

We have at most most log2 n levels, with at most n comparisons on each. Therefore we
perform at most n log2 n comparisons.
An alternative way to find the number of comparisons is as follows. The work done in sorting
a list of n elements is the work done to sort two lists of size n/2 each, and the work done to
merge the two lists which is n.

f(n) = 2 f
(n
2

)
+ n

Using f(1) = 1, we can solve the above recurrence relation, and obtain f(n) = n log2 n.
We conclude that the complexity complexity of this algorithm is: n log2 n.
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5.2 Growth of functions

n �log n� n− 1 2n n!

1 0 0 2 1
3 2 2 8 6
5 3 4 32 120
10 4 9 1024 3628800
70 7 69 270 ≈ 2332

We are interested in the asymptotic behavior of the running time.

5.3 Definitions for asymptotic comparisons of functions

We define for functions f and g,
f, g : Z+ → [0,∞) .

1. f(n) ∈ O(g(n)) if ∃ a constant c > 0 such that f(n) ≤ cg(n), for all n sufficiently large.
2. f(n) ∈ o(g(n)) if, for any constant c > 0, f(n) < cg(n), for all n sufficiently large.
3. f(n) ∈ Ω(g(n)) if ∃ a constant c > 0 such that f(n) ≥ cg(n), for all n sufficiently large.
4. f(n) ∈ ω(g(n)) if, for any constant c > 0, f(n) > cg(n), for all n sufficiently large.
5. f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).
Examples:
• Bubble sort has complexity O(n2)
• Merge sort has complexity O(n log n)
• Matrix multiplication has complexity O(n3)

5.4 Properties of asymptotic notation

We mention a few properties that can be useful when analyzing the complexity of algorithms.

Proposition 5.2. f(n) ∈ Ω(g(n)) if and only if g(n) ∈ O(f(n)).

The next property is often used in conjunction with L’hôpital’s Rule.

Proposition 5.3. Suppose that limn→∞
f(n)
g(n) exists:

lim
n→∞

f(n)

g(n)
= c .

Then,

1. c <∞ implies that f(n) ∈ O(g(n)).

2. c > 0 implies that f(n) ∈ Ω(g(n)).

3. c = 0 implies that f(n) ∈ o(g(n)).

4. 0 < c <∞ implies that f(n) ∈ Θ(g(n)).

5. c =∞ implies that f(n) ∈ ω(g(n)).

An algorithm is good or polynomial-time if the complexity is O(polynomial(length of input)).
This polynomial must be of fixed degree, that is, its degree must be independent of the input length.
So, for example, O(nlogn) is not polynomial.
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5.5 Caveats of complexity analysis

One should bear in mind a number of caveats concerning the use of complexity analysis.

1. Ignores the size of the numbers. The real model is a poor one when dealing with very
large numbers, as each operation is given unit cost, regardless of the size of the numbers
involved. But multiplying two huge numbers, for instance, may require more effort (and
time) than multiplying two small numbers.

2. Is worst case. So complexity analysis does not say much about the average case. Tradition-
ally, complexity analysis has been a pessimistic measure, concerned with worst-case behavior.
The simplex method for linear programming is known to be exponential (in the worst case),
while the ellipsoid algorithm is polynomial; but, for the ellipsoid method, the average case
behavior and the worst case behavior are essentially the same, whereas the average case be-
havior of simplex is much better than it’s worst case complexity, and in practice is preferred
to the ellipsoid method.

Similarly, Quicksort, which has O(n2) worst case complexity, is often chosen over other sorting
algorithms with O(n log n) worst case complexity. This is because QuickSort has O(n log n)
average case running time and, because the constants (that we ignore in the O notation)
are smaller for QuickSort than for many other sorting algorithms, it is often preferred to
algorithms with “better” worst-case complexity and “equivalent” average case complexity.

3. Ignores constants. We are concerned with the asymptotic behavior of an algorithm. But,
because we ignore constants (as mentioned in QuickSort comments above), it may be that an
algorithm with better complexity only begins to perform better for instances of inordinately
large size.

Indeed, this is the case for the O(n2.375477) algorithm for matrix multiplication, that is
“. . . wildly impractical for any conceivable applications.” 1

4. O(n100) is polynomial. An algorithm that is polynomial is considered to be “good”. So
an algorithm with O(n100) complexity is considered good even though, for reasons already
alluded to, it may be completely impractical.

Still, complexity analysis is in general a very useful tool in both determining the intrinsic
“hardness” of a problem and measuring the quality of a particular algorithm.

5.6 A sketch of the ellipsoid method

We now outline the two key features of the ellipsoid method. A linear programming problem may
be formulated in one of two ways - a primal and dual representation. The first key feature combines
both formulations in a way that forces all feasible solutions to be optimal solutions.

Primal Problem:
max{cTx : Ax ≤ b, x ≥ 0} (10)

Dual Problem:
min{bT y : yTA ≥ c, y ≥ 0} (11)

The optimal solution satisfies:
cTx = bT y (12)

1See Coppersmith D. and Winograd S., Matrix Multiplication via Arithmetic Progressions. Journal of Symbolic Compu-
tation, 1990 Mar, V9 N3:251-280.
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We create a new problem combining these two formulations:

Ax ≤ b

x ≥ 0

yTAT ≥ c

y ≥ 0

bT y ≤ cTx

Note that by weak duality theorem bT y ≥ cTx, so with the inequality above this gives the desired
equality. Every feasible solution to this problem is an optimal solution. The ellipsoid algorithm
works on this feasibilty problem as follows:

1. If there is a feasible solution to the problem, then there is a basic feasible solution. Any
basic solution is contained in a sphere (ellipsoid) of radius n2logL, where L is the largest
subdeterminant of the augmented constraint matrix.

2. Check if the center of the ellipsoid is feasible. If yes, we are done. Otherwise, find a constraint
that has been violated.

3. This violated constraint specifies a hyperplane through the center and a half ellipsoid that
contains all the feasible solutions.

4. Reduce the search space to the smallest ellipsoid that contains the feasible half ellipsoid.

5. Repeat the algorithm at the center of the new ellipsoid.

Obviously this algorithm is not complete. How do we know when to stop and decide that the
feasible set is empty? It’s proved that the volume of the ellipsoids scales down in each iteration
by a factor of about e−1/2(n+1) , where n is the number of linearly independent constraints. Also
note that a basic feasible solution only lies on a grid of mesh length (L(L− 1))−1. Because when
we write a component of a basic feasible solution as the quotient of two integers, the denominator
cannot exceed L (by Cramer’s Rule). Therefore the component-wise difference of two basic feasible
solutions can be no less than (L(L−1))−1. Given this, it can be shown that the convex hull of basic
feasible solutions has volume of at least 2−(n+2)L. While the volume of the original search space is
2×n2L2. Therefore the algorithm terminates in O(n2 logL) iterations. The ellipsoid method is the
first polynomial time algorithm for linear programming problems. However, it is not very efficient
in practice.

6 Graph representations

There are different ways to store a graph in a computer, and it is important to understand how
each representation may affect or improve the complexity analysis of the related algorithms. The
differences between each representation are based on the way information is stored, so for instance,
one representation may have a characteristic X very handy but characteristic Y may be very oper-
ation intensive to obtain, while an alternative representation may favor readiness of characteristic
Y over characteristic X.

6.1 Node-arc adjacency matrix

This representation is relevant since it is the natural representation of the flow balance constraints
in the LP formulation of Network Flow problems. This representation consists on a n by m matrix,
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so that each of its rows correspond to a node and each of its columns correspond to an arc. The
(i, j)th entry of the Node-arc adjacency matrix is {1,-1}, if ith node is the start-point or endpoint
(respectively) of the jth edge and {0} otherwise.

As mentioned in an earlier lecture, the node-arc adjacency matrix is totally unimodular.
The density of a node-arc adjacency matrix is 2

n

6.2 Node-node adjacency matrix

This representation consists on a n by n matrix, so that each of its rows and each of its columns
correspond to a node and the row-column intersections correspond to a (possible) edge. The (i, j)th

entry of the Node-Node Adjacency Matrix is 1, if there is an edge from the ith node to the jth node
and 0 otherwise. In the case of undirected graphs it is easy to see that the Node-Node Adjacency
Matrix is a symmetric matrix.

The network is described by the matrix N , whose (i, j)th entry is nij , where

nij =

{
1 if (i, j) ∈ E
0, otherwise

Figure 10 depicts the node-node adjacency matrices for directed and undirected graphs.

From

N =

j

i 1

To

(a) node-node adjacency matrix for
a directed graph

Node

Node

N =

j

i 1

j

i

1

(b) node-node adjacency matrix for
an undirected graph

Figure 10: Node-node adjacency matrices

Note: For undirected graphs, the node-node adjacency matrix is symmetric. The density of
this matrix is 2|E|

|V |2 for an undirected graph, and |A|
|V |2 , for a directed graph. If the graph is complete,

then |A| = |V | · |V − 1| and the matrix N is dense.

Is this matrix a good representation for a breadth-first-search? (discussed in the next section).
To determine whether a node is adjacent to any other nodes, n entries need to be checked for each
row. For a connected graph with n nodes and m edges, n − 1 ≤ m ≤ n(n − 1)/2, and there are
O(n2) searches.

6.3 Node-arc adjacency list

Consider a tree, which is a very sparse graph with |E| = |V |− 1. If we represent an undirected tree
using the matrices described above, we use a lot of memory. A more compact representation is to
write each node and its associated adjacency list.

This representation consists on n linked lists, each one corresponding to a node (i) and storing all
the nodes (j) for which the edge (i,j) is present in the graph. The importance of this representation
is that it is the most space efficient and it normally leads to the most efficient algorithms as well.
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Node Adjacent Nodes

1 Neighbors of node 1
2 Neighbors of node 2
...

...
n Neighbors of node n

Such a representation requires 2 |E|+ |V | memory spaces as opposed to |E| · |V | memory spaces
for the matrix representation.

There are 2 entries for every edge or arc, this results in O(m + n) size of the adjacency list
representation. This is the most compact representation among the three presented here. For
sparse graphs it is the preferable one.

6.4 Comparison of the graph representations

6.4.1 Storage efficiency comparison

Representation Storage Non-Zeros Density Notes

Node-Arc Matrix O(mn) O(2m) 2/n Inefficient

Node-Node Matrix O(n2) O(m) m/n2 Efficient for Dense Graphs

Node-Arc List O(m+ n) 0 1 Efficient for Sparse Graphs

6.4.2 Advantages and disadvantages comparison

Representation Advantages Disadvantages

Node-Arc Matrix Nice Theoretical Properties Not efficient in practice

Node-Node Matrix Existence of edge in O(1) time List neighbors in O(n) time

Node-Arc List List neighbors in O(deg(i)) time Existence of edge in O(deg(i)) time

7 Graph search algorithms

Given a graph G = (V,A) and a source node s ∈ V , we want to check if all the nodes ∈ V can
be reached by s using only the arcs ∈ A. Essentially we want the list of all nodes reachable from
s and possibly also the path from s to each node. As seen on class, this set of paths must form
a tree, this follows from the correctness-proof of the LP formulation of the single source shortest
path problem.

7.1 Generic search algorithm

A generic search algorithm starts with the special node, designates it as the root of a tree, and
places it in a list L. The algorithm then selects at each iteration a node from the list, and find a
neighbor (out-neighbor for a directed graph), if exists, and adds it to the list. The process continues
until all nodes have been visited, or all edges (arcs) have been scanned. The selection mechanism
from the list differentiates between search algorithms.

In the procedure below NE(v) is a neighbor of node v in the graph induced by the set of edges
E. For a directed graph, the same algorithm applies with N+

A (v) referring to an out-neighbor of v
with respect to the set of arcs A.

Pseudocode for a generic search algorithm
L← {root}, V ← V \ {root};
While L 	= ∅

Select v ∈ L (use selection rule);
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If there exists NE(v) = u, u ∈ V \ L,
L← L ∪ {u}; V ← V \ {u}; E ← E \ {[v, u]};

else L← L \ {v};
end if

end while

Two basic methods that are used to define the selection mechanism are Breadth-First-Search
(BFS) and Depth-First-Search (DFS).
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Figure 11: Graph to be searched

7.2 Breadth first search (BFS)

Breadth-first-search employs a first-in-first-out (FIFO) strategy and is usually implemented using
a queue. To obtain the pseudocode of BFS we only need to modify the pseudocode for the generic
search so that when we remove the edge (u, v) from L we remove it from the start of L.

In breadth-first-search, the graph is searched in an exhaustive manner; that is, all previously
unscanned neighbors of a particular node are tagged and added to the end of the reachability list
(L), and then the previously unscanned neighbors of the next node in the list are added, etc.

The original graph, rearranged in a breadth-first-search, shows the typically short and bushy
shape of a BFS tree as shown in Figure 12.
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Figure 12: Solid edges represent the BFS tree of the example graph. The dotted edges cannot be
present in a BFS tree.

Note that the BFS tree is not unique and depends on the order in which the neighbors are
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visited. Not all edges from the original graph are represented in the tree. However, we know that
the original graph cannot contain any edges that would bridge two nonconsecutive levels in the
tree. By level we mean a set of nodes such that the number of edges that connect each node to the
root of the tree is the same.

Consider any graph. Form its BFS tree. Any edge belonging to the original graph and not
in the BFS can either be from level i to level i + 1; or between two nodes at the same level. For
example, consider the dotted edge in Figure 12 from node 5 to node 6. If such an edge existed in
the graph, then node 6 would be a child of node 5 and hence would appear at a distance of 2 from
the root.

Note that an edge forms an even cycle if it is from level i to level i+1 in the graph and an odd
cycle if it is between two nodes at the same level.

Theorem 7.1 (BFS Property 1). The level of a node, d(v), is the distance from s to v.

Proof. First, it is clear that every element reachable from s will be explored and given a d.
By induction on d(v), Q remains ordered by d, and contains only elements with d equal to k

and k + 1. Indeed, elements with d = k are dequeued first and add elements with d = k + 1 to
Q. Only when all elements with d = k have been used do elements with d = k + 2 start being
introduced. Let “stage k” be the period where elements with d = k are dequeued.

Then, again by induction, at the beginning of stage k, all nodes at distance from s less than k
have been enqueued, and only those, and they contain their correct value. Assume this for k. Let
v be a node at distance k + 1. It cannot have been enqueued yet at the beginning of stage k, by
assumption, so at that point d(v) = ∞. But there exists at least one node u at distance k that
leads to u. u is in Q, and d(u) = k by assumption. The smallest such u in Q will give v its value
d(v) = d(u) + 1 = k + 1. Nodes at distance more than k + 1 have no node at distance k leading to
them and will not be enqueued.

Corollary 7.2 (BFS Property 2). For undirected graphs 	 ∃{i, j} : |d(i)− d(j)| > 1
(i.e. neighbors must be in adjacent levels)
For directed graphs 	 ∃(i, j) : d(j) > d(i) + 1
(i.e. Can’t skip levels in forward arcs)

Claim 7.3 (BFS Complexity). BFS runs in O(m+ n) time.

7.3 Depth first search (DFS)

Depth-first-search employs a last-in-first-out (LIFO) strategy and is usually implemented using a
stack. To obtain the pseudocode of BFS we only need to modify the pseudocode for the generic
search so that when we remove the edge (u, v) from L we remove it from the end of L.

In depth-first-search, one searches for a previously unscanned neighbor of a given node. If such
a node is found, it is added to the end of the list and is scanned out from; otherwise, the original
node is removed from the list, and we scan from the node now at the end of the list.

The same graph, rearranged in a depth-first-search demonstrates the typically long and skinny
shape of a DFS tree as shown in Figure 13.

Claim 7.4 (DFS Complexity). DFS runs in O(m+ n) time.
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Figure 13: DFS tree of the example graph

7.4 Applications of BFS and DFS

7.4.1 Checking if a graph is strongly connected

Definition 7.5. A graph is strongly connected if we can reach all nodes ∈ V starting from any
other node ∈ V .

Naive Algorithm

00: SC(G)

01: For every node in V do

02: R <-- DFS(G,v); //or BFS

03: If R not equal to V then STOP AND OUTPUT "FALSE"

04: OUTPUT "TRUE"

Since DFS/BFS take O(m+ n) time and we have O(n) executions, the complexity of the naive
algorithm is O(mn).

Claim 7.6. Checking strong connectivity in any graph takes O(m+ n) time.

Proof.
For Undirected Graphs

Only one run of DFS or BFS is needed; since, if from any arbitrary node v we can reach all other
nodes ∈ V , then we can reach any node from any other node at least through a path containing
node v.

For Directed Graphs
From an arbitrarily node v run one DFS or BFS, if it can reach all the other nodes ∈ V , then
“flip/reverse” all the edges in G and run once more BFS/DFS starting again from v. It the second
time again v can reach all the other nodes ∈ V , then this means that in the original graph every
node can reach v. Finally, if every node can reach v, and v can reach every other node, then every
node can reach any other node through a path containing v.
In any case we will call DFS/BFS once or twice respectively and this will take O(m+ n) time.
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7.4.2 Checking if a graph is acyclic

Definition 7.7. A graph is acyclic if it does not contain cycles.

Claim 7.8. Checking if a graph is acyclic takes O(m+ n) time.

Proof. Run DFS from an arbitrarily node, if there is an arc to a node already visited, then the
graph contains a cycle. This takes O(m+ n) time.

Although we can use also BFS to detect cycles, DFS tends to find a cycle ’faster’. This is
because if the root is not part of the cycle BFS still needs to visit all of its neighbors; while DFS
will move away from the root (and hopefully towards the cycle) faster. Also, if the cycle has length
k then BFS needs at least to explore floor(k/2) levels.

7.4.3 Checking if a graph is bipartite

Definition 7.9. A graph is bipartite if V can be partitioned into two sets such that all edges/arcs
in E/A have an endpoint on each of the two sets.

Claim 7.10. Checking if a graph is bipartite takes O(m+ n) time.

Proof. We know that a graph is bipartite if and only if it does not contains a an odd cycle. So we
can run BFS from an arbitrary node v, and if it contains an edge between nodes in the same level
then the graph has an odd cycle, and thus it is not bipartite.

Similarly, we can determine if a graph has an odd cycle: An edge found from a node to a child
(of a previously processed node) in the next level. There is another way of detecting an odd cycle;
By assigning two alternating colors to nodes visited with any search algorithm: if there is an edge
from a node of a given color then the neighbor gets the second color. If an edge is discovered
between two nodes of same color, then there is an odd cycle.

8 Shortest paths

8.1 Introduction

Consider graph G = (V,A), with cost cij on arc (i, j). There are several different, but related,
shortest path problems:

• Shortest s− t path: Find a shortest path from s to t (single pair).

• Single source shortest paths: Find shortest path from s to all nodes.

• All pairs shortest paths: Find the SP between every pair of nodes.

Additionally, we differentiate between shortest paths problems depending on the type of graph
we receive as input.

We will begin by considering shortest paths (or longest paths) in Directed Acyclic Graphs
(DAGs).



IEOR 266 notes: Updated 2018 32

8.2 Properties of DAGs

A DAG is a Directed Acyclic graph, namely, there are no directed cycles in the graph.

Definition 8.1. A Topological ordering is the assignments of numbering to the nodes 1, 2, · · · , n
such that all arcs go in the forward direction:

(i, j) ∈ E ⇒ i < j

It should be noted that a DAG can have O(n2) arcs. We can construct such graph by the
following construction: Given a set of nodes, number them arbitrarily and add all arcs (i, j) where
i < j.

8.2.1 Topological sort and directed acyclic graphs

Given a directed graph (also called a digraph), G = (N,A), we wish to topologically sort the nodes
of G; that is, we wish to assign labels 1, 2, . . . , |N | to the nodes so that (i, j) ∈ A ⇒ i < j.

A topological sort does not exist in general, and a trivial example to show this is a graph with
two nodes, with directed edges from each node to the other. It does, however, always exist for
acyclic graphs. To prove this, the following definition and lemma will be useful.

Definition 8.2. A (graph) property, P , is hereditary if the following is true: given a graph G
with property P , any subgraph of G also has property P .

Some examples of hereditary properties:
• Bipartiteness.
• Having no directed cycles (i.e. acyclic, or a DAG)
Examples of non-hereditary properties:
• Connectivity.
• Being an Eulerian graph.

Lemma 8.3. In DAG, G, there always exists a node with in-degree 0. (Similarly, a DAG always
has a node with out-degree 0.)

Proof. Assume by contradiction that G there is no node with in-degree 0. We arbitrarily pick
a node i in G, and apply a Depth-First-Search by visiting the predecessor nodes of each such
node encountered. Since every node has a predecessor, when the nodes are exhausted (which must
happen since there are a finite number of nodes in the graph), we will encounter a predecessor which
has already been visited. This shows that there is a cycle in G, which contradicts our assumption
that G is acyclic.

Theorem 8.4. There exists a topological sort for a digraph G if and only if G is a DAG (i.e. G
has no directed cycles).

Proof.
[Only if part] Suppose there exists a topological sort for G. If there exists cycle (i1,...,ik,i1), then,
by the definition of topological sort above, i1 < i2 < ... < ik < i1, which is impossible. Hence, if
there exists a topological sort, then G has no directed cycles.
[If part] In a DAG, the nodes can be topologically sorted by using the following procedure. Assign-
ing a node with in-degree 0 the lowest remaining label (by the previous lemma, there always exists
such a node). Removing that node from the graph (recall that being a DAG is hereditary), and
repeat until all nodes are labeled. The correctness of this algorithm is established by induction on
the label number. The pseudocode for the algorithm to find a topological sort is given below.
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Topological sort (pseudocode):
i← 1
While V 	= ∅

Select v ∈ V with in-degreeV (v) = 0
label(v)← i
i← i+ 1
V ← V \ {v}; A← A \ {(v,w) ∈ A}
update in-degrees of neighbors of v

end while
Note that the topological sort resulting from this algorithm is not unique. Further note that

an alternative approach works also: Take a node with out-degree 0, assign it the highest remaining
label, remove it from the graph, and repeat until no nodes remain.

An example of the topological order obtained for a DAG is depicted in Figure 14. The numbers
in the boxes near the nodes represent a topological order.
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Figure 14: An example of topological ordering in a DAG. Topological orders are given in boxes.

Consider the complexity analysis of the algorithm. We can have a very loose analysis and say
that each node is visited at most once and then its list of neighbors has to be updated (a search of
O(m) in the node-arc adjacency matrix, or O(n) in the node-node adjacency matrix, or the number
of neighbors in the adjacency list data structure). Then need to find among all nodes one with
indegree equal to 0. This algorithm runs in O(mn) time, or if we are more careful it can be done
in O(n2). The second factor of n is due to the search for a indegree 0 node. To improve on this
we maintain a ”bucket” or list of nodes of indegree 0. Each time a node’s indegree is updated, we
check if it is 0 and if so add it to the bucket. Now to find a node of indegree 0 is done in O(1), just
lookup the bucket in any order. Updating the indegrees is done in O(m) time total throughout the
algorithm, as each arc is looked at once. Therefore, Topological Sort can be implemented to run in
O(m) time.

8.3 Properties of shortest paths

The Shortest Path Problem (henceforth SP problem) on a digraph G = (V,A) involves finding the
least cost path between two given nodes s, t ∈ V . Each arc (i, j) ∈ A has a weight assigned to it,
and the cost of a path is defined as the sum of the weights of all arcs in the path.

The property proved in the next proposition is a rephrasing of the principle of optimality (first
stated by Richard Bellman in 1952), that serves to justify dynamic programming algorithms.

Proposition 8.5. If the path (s = i1, i2, . . . , ih = t) is a shortest path from node s to t, then
the subpath (s = i1, i2, . . . , ik) is a shortest path from source to node ik, ∀ k = 2, 3, . . . , h − 1.
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Furthermore, for all k1 < k2 the subpath (ik1 , ik1+1, . . . , ik2) is a shortest path from node ik1 to ik2 .

Proof. The properties given above can be proved by a contradiction-type argument.

Proposition 8.6. Let the vector �d represent the shortest path distances from the source node. Then

1. d(j) ≤ d(i) + cij, ∀ (i, j) ∈ A.

2. A directed path from s to k is a shortest path if and only if d(j) = d(i) + cij , ∀ (i, j) ∈ P .

The property given above is useful for backtracking and identifying the tree of shortest paths.

Given the distance vector �d, we call an arc eligible if d(j) = d(i)+ cij . We may find a (shortest)
path from the source s to any other node by performing a breadth first search of eligible arcs. The
graph of eligible arcs looks like a tree, plus some additional arcs in the case that the shortest paths
are not unique. But we can choose one shortest path for each node so that the resulting graph of
all shortest paths from s forms a tree.

Aside: When solving the shortest path problem by linear programming (MCNF formulation), a
basic solution is a tree. This is because a basic solution is an independent set of columns; and a
cycle is a dependent set of columns (therefore “a basic solution cannot contain cycles”).

Given an undirected graph with nonnegative weights. The following analogue algorithm solves
the shortest paths problem:

The String Solution: Given a shortest path problem on an undirected graph with non-negative
costs, imagine physically representing the vertices by small rings (labeled 1 to n), tied to
other rings with string of length equaling the cost of each edge connecting the corresponding
rings. That is, for each arc (i, j), connect ring i to ring j with string of length cij.

Algorithm: To find the shortest path from vertex s to all other vertices, hold ring s and let
the other nodes fall under the force of gravity.

Then, the distance, d(k), that ring k falls represents the length of the shortest path from s
to k. The strings that are taut correspond to eligible arcs, so this arcs will form the tree of
shortest paths.

8.4 Alternative formulation for SP from s to t

We have already seen how to model the single source shortest path problem as a Minimum Cost
Network Flow problem. Here we will give an alternative mathematical programming formulation
for the SP problem.

max d(t)

d(j) ≤ d(i) + cij ∀(i, j) ∈ A

d(s) = 0

Where the last constraint is needed as an anchor, since otherwise we would have an infinite number
of solutions. To see this, observe that we can rewrite the first constraint as d(j)− d(i) ≤ cij ; thus,
given any feasible solution d, we can obtain an infinite number of feasible solutions (all with same
objective value) by adding a constant to all entries of d.

This alternative mathematical programming formulation is nothing else but the dual of the
minimum-cost-network-flow-like mathematical programming formulation of the shortest path prob-
lem.



IEOR 266 notes: Updated 2018 35

8.5 Shortest paths on a directed acyclic graph (DAG)

We consider the single source shortest paths problem for a directed acyclic graph G.
We address the problem of finding the SP between nodes i and j, such that i < j, assuming

the graph is topologically ordered to start with. It is beneficial to sort the graph in advance, since
we can trivially determine that there is no path between i and j if i > j; in other words, we know
that the only way to each node j is by using nodes with label less than j. Therefore, without loss
of generality, we can assume that the source is labeled 1, since any node with a smaller label than
the source is unreachable from the source and can thereby be removed.

Given a topological sorting of the nodes, with node 1 the source, the shortest path distances
can be found by using the recurrence,

d(j) = min
(i,j)∈A

1≤i<j

{d(i) + cij} .

The validity of the recurrence is easily established by induction on j. It also follows from property
8.6. The above recursive formula is referred to as a dynamic programming equation (or Bellman
equation).

What is the complexity of this dynamic programming algorithm? It takes O(m) operations
to perform the topological sort, and O(m) operations to calculate the distances via the given
recurrence (we obviously compute the recurrence equation in increasing number of node labels).
Therefore, the distances can be calculated in O(m) time. Note that by keeping track of the i’s that
minimize the right hand side of the recurrence, we can easily backtrack to reconstruct the shortest
paths.

It is important how we represent the output to the problem. If we want a list of all shortest
paths, then just writing this output takes O(n2) (if we list for every node its shortest path). We
can do better if we instead just output the shortest path tree (list for every node its predecessor).
This way the output length is O(m).

Longest Paths in DAGs:
If we want instead to find the longest path in a DAG, then one possible approach would be to
multiply by−1 all the arc costs and use our shortest path algorithm. However, recall that solving the
shortest path problem in graphs with negative cost cycles is “a very hard problem”. Nevertheless, if
the graph where we want to find the longest path is a DAG, then it does not have cycles. Therefore
by multiplying by −1 the arc costs we cannot create negative cycles. In conclusion, our strategy
will indeed work to find the longest path in a DAG. Alternatively we can find the longest path
from node 1 to every other node in the graph, simply by replacing min with max in the recurrence
equations give above.

8.6 Applications of the shortest/longest path problem on a DAG

Maximizing Rent
See the handout titled Maximizing Rent: Example.
The graph shown in Figure 15 has arcs going from the arrival day to the departure day with
the bid written on the arcs. It is particularly important to have arcs with cost 0 between
consecutive days (otherwise we would not allow the place to be empty for some days–which is
NOT our objective, what we want is to maximize the rent obtained!). These arcs are shown
as dotted arcs in the graph. To find the maximum rent plan one should find the longest
path in this graph. The graph has a topological order and can be solved using the shortest
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path algorithm. (Note that the shortest and longest path problems are equivalent for acyclic
networks, but dramatically different when there are cycles.)
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Figure 15: Maximizing rent example

Equipment Replacement Minimize the total cost of buying, selling, and operating the equip-
ment over a planning horizon of T periods.

See the handout titled The Equipment Replacement Problem.

Lot Sizing Problem Meet the prescribed demand dj for each of the periods j = 1, 2, ..., T by
producing, or carrying inventory from previous production runs. The cost of production
includes fixed set up cost for producing a positive amount at any period, and a variable per
unit production cost at each period. This problem can be formulated as a shortest path
problem in a DAG (AM&O page 749) if one observes that any production will be for the
demand of an integer number of consecutive periods ahead. You are asked to prove this in
your homework assignment.

Project Management - Critical Path Method (CPM)
See the handout titled Project Formulation for Designer Gene’s Relocation.

This is a typical project management problem. The objective of the problem is to find the
earliest time by which the project can be completed.

This problem can be formulated as a longest path problem. The reason we formulate the
problem as a longest path problem, and not as a shortest path problem (even though we want
to find the earliest finish time) is that all paths in the network have to be traversed in order
for the project to be completed. So the longest one will be the “bottleneck” determining the
completion time of the project.

We formulate the problem as a longest path problem as follows. We create a node for each
task to be performed. We have an arc from node i to node j if activity i must precede activity
j. We set the length of arc (i, j) equal to the duration of activity i. Finally we add two spacial
nodes start and finish to represent the start and the finish activities (these activities with
duration 0). Note that in this graph we cannot have cycles, thus we can solve the problem as
a longest path problem in an acyclic network.

Now we give some notation that we will use when solving this type of problems. Each node
is labeled as a triplet (node name, time in node, earliest start time). Earliest start time of
a node is the earliest time that work can be started on that node. Hence, the objective can
also be written as the earliest start time of the finish node.
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Then we can solve the problem with our dynamic programming algorithm. That is, we
traverse the graph in topological order and assign the label of each node according to our
dynamic programming equation:

tj = max
(i,j)
{ti + cij},

where ti is the earliest start time of activity i; and cij is the duration of activity i.

To recover the longest path, we start from node tfinish, and work backwards keeping track of
the preceding activity i such that tj = ti + cij . Notice that in general more than one activity
might satisfy such equation, and thus we may have several longest paths.

Alternatively, we can formulate the longest path as follows:

min tfinish

tj ≥ ti + cij ∀(i, j) ∈ A

tstart = 0

From the solution of the linear program above we can identify the longest path as follows.
The constraints corresponding to arcs on the longest path will be satisfied with equality.
Furthermore, for each unit increase in the length of these arcs our objective value will increase
also one unit. Therefore, the dual variables of these constraints will be equal to one (while
all other dual variables will be equal to zero–by complementary slackness).

The longest path (also known as critical path) is shown in Figure 16 with thick lines. This
path is called critical because any delay in a task along this path delays the whole project
path.
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Figure 16: Project management example. Notation (activity, duration, earliest-start-time).

Binary knapsack problem

Problem: Given a set of items, each with a weight and value (cost), determine the subset
of items with maximum total weight and total cost less than a given budget.
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The binary knapsack problem’s mathematical programming formulation is as follows.

max
n∑

j=1

wjxj

n∑
j=1

vjxj ≤ B

xj ∈ {0, 1}
The binary knapsack problem is a hard problem. However it can be solved as a longest path
problem on a DAG as follows.

Let fi(q) be the maximum weight achievable when considering the first i items and a budget
of q, that is,

fi(q) = max

i∑
j=1

wjxj

i∑
j=1

vjxj ≤ q

xj ∈ {0, 1}
Note that we are interested in finding fn(B). Additionally, note that the fi(q)’s are related
with the following dynamic programming equation:

fi+1(q) = max{fi(q), fi(q − vi+1) + wi+1}.
The above equation can be interpreted as follows. By the principle of optimality, the maximum
weight I can obtain, when considering the first i+ 1 items will be achieved by either:

1. Not including the i+1 item in my selection. In which case my total weight will be equal
to fi(q), i.e. equal to the maximum weight achievable with a budget of q when only
considering only the first i items; or

2. Including the i+ 1 item in my selection. In which case my total weight will be equal to
fi(q − vi+1) + wi+1, i.e. equal to the maximum weight achievable when considering the
first i items with a budget of q − vi+1 plus the weight of this i+ 1 object.

We also have the the boundary conditions:

f1(q) =

{
0 0 ≤ q < v1

w1 B ≥ q ≥ v1
.

The graph associated with the knapsack problem with 4 items, w = (6, 8, 4, 5), v = (2, 3, 4, 4),
and B=12 is given in Figure 17. (The figure was adapted from: Trick M., A dynamic
programming approach for consistency and propagation of knapsack constraints.)

Note that in general a knapsack graph will have O(nB) nodes and O(nB) edges (each node
has at most two incoming arcs), it follows that we can solve the binary knapsack problem in
time O(nB).

Remark: The above running time is not polynomial in the length of the input. This is
true because the number B is given using only logB bits. Therefore the size of the input for
the knapsack problem is O(n logB + n logW ) (where W is the maximum wi). Finally, since,
B = 2logB , then a running time of O(nB) is really exponential in the size of the input.
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Figure 17: Graph formulation of a binary knapsack problem.

8.7 Dijkstra’s algorithm

Dijkstra’s algorithm is a special purpose algorithm for finding shortest paths from a single source,
s, to all other nodes in a graph with non-negative edge weights.

Dijkstra’s algorithm assigns distance labels (from node s) to all other nodes in the graph.
Node labels are either temporary or permanent. Initially all nodes have temporary labels. At any
iteration, a node with the least distance label is marked as permanent, and the distances to its
successors are updated. This is continued until no temporary nodes are left in the graph.

We give the pseudocode for Dijkstra’s algorithm below. Where P is the set of nodes with
permanent labels, and T of temporarily labeled nodes. Let s = 1.

begin
N+(i) := {j|(i, j) ∈ A};
P := {1};T := V \ {1};
d(1) := 0 and pred(1) := 0;
d(j) := c1j and pred(j) := 1 for all j ∈ A(1),
and d(j) :=∞ otherwise;
while P 	= V do

begin
(Node selection, also called FINDMIN)
let i ∈ T be a node for which d(i) = min{d(j) : j ∈ T};
P := P ∪ {i};T := T \ {i};
(Distance update)
for each j ∈ N+(i) do

if d(j) > d(i) + cij then
d(j) := d(i) + cij and pred(j) := i;

end
end

We start from one invariant of Dijkstra’s algorithm. Let ik be the node that joins P in iteration
k, and dk() the node labels at iteration k. The invariant states that the labels of the nodes that
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join P can only go up.

Claim 8.7 (Invariant 1 of Dijkstra’s algorithm). For every index k, k = 1, . . . , n − 1, dk(ik) ≤
dk+1(ik+1).

Proof. At iteration k, dk(ik) ≤ dk(ik+1), since ik had the lowest label among the temporary nodes
at iteration k.
dk+1(ik+1) = min{dk(ik+1), d

k(ik) + cik ,ik+1
} ≥ dk(ik).

A second invariant of Dijkstra’s algorithm is that the labels of nodes dk(i) at iteration k are
the shortest paths labels on paths that include only nodes of P k as intermediate nodes. Here P k

is the set of permanent nodes at iteration k.

Claim 8.8 (Invariant 2 of Dijkstra’s algorithm). The labels of all nodes at iteration k, dk(), are
the shortest paths labels on paths that include only nodes of P k as intermediate nodes.

Proof. By induction on iteration number k. Obviously holds for k = 1 for P 1 = {s}. Assume for k
and prove for k + 1.

By induction dk() are the shortest paths labels on paths that include only nodes of P k as
intermediate nodes. Consider iteration k + 1. The shortest paths that include only nodes of P k+1

as intermediate nodes, either include only nodes of P k, or else they include also ik+1. If the shortest
path to node i contains only nodes of P k, then dk(i) = dk+1(i) is the correct length by the induction
hypothesis. (Note that because of the previous claim, the label of ik+1 is the largest among nodes
of P k+1.) Otherwise, labels of i that change in iteration k + 1 must include also ik+1, and ik+1 is
the last node and direct predecessor of i. The length of such paths is dk(ik+1) + cik+1,i, which by
induction on dk(ik+1) include only nodes of P k, and now node ik+1 is included as well.

Theorem 8.9 (The correctness of Dijkstra’s algorithm). Once a node joins P its label is the
shortest path label: dk(ik+1) is the shortest path label of ik+1.

Proof. Denote i∗ = ik+1. P = P k, T = V \ P .
Suppose not, then the shortest path length d∗(i∗) < dk(i∗) and on any shortest path to i∗ there must
be nodes of T . Consider, one such shortest path to i∗. Let j1 be the first node of T on this shortest
path to i∗. Then the section of the path from s to j1 has only nodes of P as intermediate nodes and
is of length dk(j1). Hence, d

k(j1) ≥ dk(i∗). Since the sub path from j1 to i∗ must be of non-negative
length, this path must be at least as long as dk(i∗). Contradiction with d∗(i∗) < dk(i∗).

Complexity Analysis
There are two major operations in Dijkstra’s algorithm :
Find minimum, which has O(n2) complexity; and
Update labels, which has O(m) complexity.
Therefore, the complexity of Dijkstra’s algorithm is = O(n2 +m).

There are several implementations that improve upon this running time.
One improvement uses Binary Heaps: whenever a label is updated, use binary search to insert

that label properly in the sorted array. This requires O(log n). Therefore, the complexity of
finding the minimum label in temporary set is O(m log n), and complexity of the algorithm is
O(m+m log n) = O(m log n).
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Another improvement is Radix Heap which has complexity O(m+n
√
logC) where C = max(i,j)∈Acij .

Note that this complexity is not strongly polynomial.
Currently, the best strongly polynomial implementation of Dijkstra’s algorithm uses Fibonacci

Heaps and has complexity O(m + n log n). Since Fibonacci heaps data structure is difficult to
program, this implementation is not used in practice.

It is important to stress that Dijkstra’s algorithm does not work correctly in the presence of
negative edge weights. In this algorithm once a node is included in the permanent set it will not be
checked later again, but because of the presence of negative edge that is not correct. The problem
is that the distance label of a node in the permanent set might be reduced after its inclusion in the
permanent set (when considering negative cost arcs).

See Figure 18 for an example such that Dijkstra’s algorithm does not work in presence of
negative edge weight. Using the algorithm, we get d(3) = 3. But the actual value of d(3) is 2.
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Figure 18: Network for which Dijkstra’s algorithm fails

8.8 Bellman-Ford algorithm for single source shortest paths

This algorithm can be used in networks that contain negative weight edges. Such algorithms must
be able to detect the existence of negative cost cycles which will have to be part of the correctness
proof. The algorithm is simple, consisting of n “pulses”, where a pulse is the update of labels along
all m arcs.
Input: A (general) graph G = (V,A), and a source node s = 1.
Output: Single source shortest paths from 1.
Pseudocode
Initialize : d(1) := 0, d(i) :=∞, i = 2, . . . , n
Repeat n times

Pulse : ∀ (i, j) ∈ A, d(j) := min{d(j), d(i) + Cij}

To track the paths one needs to record the argument of the predecessor of each node for which
the label is updated. To prove the algorithm’s correctness we will use the following lemma.

Lemma 8.10. If there are no negative cost cycles in the network G = (N,A), then there exists a
simple shortest path from s to any node i (a path that uses at most n− 1 arcs).

Proof. Suppose that G contains no negative cycles. Observe that at most n − 1 arcs are required
to construct a path from s to any node i. To prove the observation, consider a path, P , from s to
i which has more than n− 1 arcs and therefore traverses at least one node twice. Such path must
contain a cycle a cycle.
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P = s→ i1 → i2 → . . .→ (ij → ik → . . .→ ij)→ i� → . . .→ i.

Since G has no negative length cycles, the length of P is no less than the length of P̄ where

P̄ = s→ i1 → i2 → . . .→ ij → ik → . . .→ i� → . . .→ i.

Thus, we can remove all cycles from P and still retain a shortest path from s to i. Since the
final path is simple, and thus acyclic, it must have no more than n− 1 arcs.

Theorem 8.11 (Invariant of the algorithm). After pulse k, all shortest paths from s of length k
(in terms of number of arcs) or less have been identified.

Proof. Notation : dk(j) is the label d(j) at the end of pulse k.
By induction. For k = 1, obvious. Assume true for k, and prove for k + 1.
Let (s, i1, i2, ..., i�, j) be a shortest path to j using k + 1 or fewer arcs.
It follows that (s, i1, i2, ..., i�) is a shortest path from s to i� using k or fewer arcs.
After pulse k + 1, dk+1(j) ≤ dk(i�) + ci�,j.
But dk(i�) + ci�,j is the length of a shortest path from s to j using k + 1 or fewer arcs, so we

know that dk+1(j) = dk(i�) + ci�,j.

Thus, the d()̇ labels are correct after pulse k + 1.

Note that the shortest paths identified in the theorem are not necessarily simple. They may
use negative cost cycles.

Theorem 8.12. If there exists a negative cost cycle, then there exists a node j such that dn(j) <
dn−1(j) where dk(i) is the label at iteration k.

Proof. Suppose not, then for all nodes, dn(j) = dn−1(j), since the labels cannot strictly decrease,
and also labels never increase.
Let (i1− i2− ...− ik − i1) be a negative cost cycle, and denote ik+1 = i1. For all nodes in the cycle
dn(ij) = dn−1(ij).

From the optimality conditions, dn(ir+1) ≤ dn−1(ir) + Cir ,ir+1 where r = 1,...,k, (for r = k we
get dn(i1) ≤ dn−1(ik) + Cik,i1 ).

We sum up these inequalities and get,
∑k

j=1 dn(ij) ≤
∑k

j=1 dn−1(ij) +
∑k

j=1Cij ,ij+1.

Since dn(ij) = dn−1(ij), the above inequality implies that 0 ≤ ∑k
j=1Cij ,ij+1. But this contra-

dicts the assumption that this cycle is of negative length,
∑k

j=1Cij−1,ij < 0. That is, we get an
inequality which says that 0 is less than a negative number which is a contradiction.

Corollary 8.13. The Bellman-Ford algorithm identifies a negative cost cycle if one exists.

By running n pulses of the Bellman-Ford algorithm, we either detect a negative cost cycle (if
one exists) or find a shortest path from s to all other nodes i.

Corollary 8.14. The Bellman-Ford algorithm is correct.

A consequence of Bellman-Ford algorithm is that finding a negative cost cycle in a graph, or
proving that none exists, can be done in polynomial time. Interestingly, finding the most negative
cost cycle is NP-hard (reduction from Hamiltonian Cycle problem), but finding a negative cost
cycle can be done in polynomial time.
Remark: Minimizing mean cost cycle is also polynomially solvable.
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Complexity Analysis
Complexity = O(mn) since each pulse is O(m), and we have n pulses.
Note that it suffices to apply the pulse operations only for arcs (i, j) where the label of i changed in
the previous pulse. Thus, if no label changed from the previous iteration, then we are done, even
if the iteration number is less than n.

8.9 Floyd-Warshall algorithm for all pairs shortest paths

The Floyd-Warshall algorithm is designed to solve all pairs shortest paths problems for graphs
that may contain negative cost arcs. As all algorithms for shortest paths on general graphs, this
algorithm will detect negative cost cycles, if exist.

The algorithm maintains a matrix (dik) such that at iteration j, dik is the shortest path from i
to k using nodes 1, 2, ...j as intermediate nodes. After the algorithm terminates, assuming that no
negative cost cycle is present, the shortest path from nodes i to k is dik.
Pseudocode

Input: An n× n matrix [cij ]
Output: An n× n matrix [dij ] is the shortest distance from i to j under [cij ];

An n× n matrix [eij ] is an index of an intermediate node in the path from i to j.
begin

for all i 	= j do dij := cij ;
for i = 1, . . . , n do dii :=∞;
for j = 1, . . . , n do

for i = 1, . . . , n, i 	= j, do
for k = 1, . . . , n, k 	= j, do

dik := min {dik, dij + djk}
eik :=

{
j if dik > dij + djk

eik otherwise
end

The main operation in the algorithm is: Pulse j : dik = min{dik, dij + djk}. This operation is
sometimes referred to as a triangle operation (see Figure 19).

Figure 19: Triangle operation: Is the (dotted) path using node j as intermediate node shorter than
the (solid) path without using node j?

Invariant property of Floyd-Warshall Algorithm:
After iteration k, dij is the shortest path distance from i to j involving a subset of nodes in
{1, 2, . . . , k} as intermediate nodes.

Complexity Analysis
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At each iteration we consider another node as intermediate node → O(n) iterations.
In each iteration we compare n2 triangles (for n2 pairs) → O(n2).
Therefore complexity of the Floyd-Warshall algorithm = O(n3).

See the handout titled All pairs shortest paths.

At the initial stage, dij = cij if there exist an arc between node i and j
dij =∞ otherwise
eij = 0

First iteration : d24 ← min(d24, d21 + d14) = 3
e24 = 1
Update distance label

Second iteration : d41 ← min(d41, d42 + d21) = −2
d43 ← min(d43, d42 + d23) = −3
d44 ← min(d44, d42 + d24) = −1
e41 = e43 = e44 = 2
No other label changed

Note that we found a negative cost cycle since the diagonal element of matrix D, d44 = −1 ≤ 0.
Negative dii means there exists a negative cost cycle since it simply says that there exists a path
of negative length from node i to itself.

8.10 D.B. Johnson’s algorithm for all pairs shortest paths

See the handout titled All pairs shortest paths - section 1.2.

This algorithm takes advantage of the idea that if all arc costs were nonnegative, we can find
all pairs shortest paths by solving O(n) single source shortest paths problems using Dijkstra’s
algorithm. The algorithm converts a network with negative-cost arcs to an equivalent network
with nonnegative-cost arcs. After this transformation, we can use Dijkstra’s algorithm to solve n
SSSP (and get all-pairs shortest paths APSP).

D.B. Johnson’s algorithm (G = (V,A) arc costs cij for (i, j) ∈ A)
1. Add a node s to V and arcs from s to each node j ∈ V with costs csj = 0.
2. Use Bellman-Ford algorithm to find the shortest paths from node s ∈ V to every other node.

If a negative cost cycle is detected by the algorithm, then terminate at this step. Otherwise,
let d(i) be the shortest distance from s to node i.

3. Convert the arc costs in the original graph to nonnegative costs by setting c′ij = cij+d(i)−d(j).
4. Apply Dijkstra’s algorithm n times to the graph G with arc costs c′.
We comment that if there is a node in V so that all nodes are reachable from it, it can serve as

node s. Also note that with the setting of the costs of the arcs from s to 0 it implies that all labels
d(i) are non-positive. It is however correct to set the costs of these arcs to any quantity other than
0.

The correctness of the algorithm follows from the claims below.

Claim 8.15. In step 1, adding node s to the graph does not create or remove negative cost cycles.
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Proof. Since s only has outgoing arcs, then it cannot be part of any cycle; similarly the added arcs
cannot be part of any cycle. Therefore we have not created any more cycles in G. Finally, if G
contained a negative cycle, this cycle remains unchanged after adding s to G.

Claim 8.16. The costs c′ satisfy, c′ij ≥ 0∀(i, j) ∈ A.

Proof. Since d(i) are shortest path labels. They must satisfy cij + d(i) ≥ d(j) (Proposition 2 in
Lecture 9). This implies that c′ij = cij + d(i) − d(j) ≥ 0

Let dPc (s, t) be the distance of path P from s to t with the costs c.

Claim 8.17. For every pair of nodes s and t, and a path P , dPc (s, t) = dPc′(s, t)− d(s)+ d(t). That
is, minimizing dc(s, t) is equivalent to minimizing dc′(s, t).

Proof. Let the path from s to t, be P = (s, i1, i2, .., ik, t).
The distance along the path satisfies,

dPc′(s, t) = csi1 + d(s)− d(i1) + csi2 + d(i1)− d(i2) . . . + csik + d(ik)− d(t) = dPc (s, t) + d(s)− d(t).

Here all the d(i) terms cancel out except for the first and last terms. Thus the length of all
paths from s to t, when using costs c′ instead of costs c, change by the constant amount d(s)−d(t).

Therefore, the distances of path P when using c and c′ are related as follows:

dPc′(s, t) = dPc (s, t) + d(s)− d(t).

Thus, minP dPc′(s, t) = minP dPc (s, t)+ constant. Hence minimizing dc′(s, t) is equivalent to
minimizing dc(s, t).

Complexity Analysis
step 1: Add s and n arcs → O(n) step 2: Bellman-Ford → O(mn).
step 3: Updating c′ij for m arcs → O(m).
step 4: Dijkstra’s algorithm n times → O(n(m+ n log n)).
Total complexity: O(n(m+ n log n)).

So far this complexity is the best strongly polynomial complexity established for the all-pairs
shortest paths problem (on general graphs).

8.11 Matrix multiplication algorithm for all pairs shortest paths

The algorithm

Consider a matrix D with dij = cij if there exists an arc from i to j, ∞ otherwise.
Let dii = 0 for all i. Then we define the “dot” operation as

D
(2)
ij = (D �DT )ij = min{di1 + d1j , . . . , din + dnj}.

D
(2)
ij represents the shortest path with 2 or fewer edges from i to j .

D
(3)
ij = (D �D(2)T )ij = shortest path with number of edges ≤ 3 from i to j

...

D
(n)
ij = (D �D(n−1)T )ij = shortest path with number of edges ≤ n from i to j



IEOR 266 notes: Updated 2018 46

Complexity Analysis
One matrix “multiplication” (dot operation) → O(n3)
n multiplications leads to the total complexity O(n4)

By doubling, we can improve the complexity to O(n3log2n). Doubling is the evaluation

of D
(n)
ij from its previous matrices that are powers of two.

“Doubling”: Improving Matrix Multiplication
Improving complexity by Doubling (binary powering):
D(4) = D(2) �D(2)T

D(8) = D(4) �D(4)T

...
D(2k) = D(2k−1) �D(2k−1)T

Stop once k is such that 2k > n (i.e. need only calculate up to k = �log2n�).
Then, D(n) can be found by “multiplying” the appropriate matrices (based on the binary

representation of n) that have been calculated via doubling. Or we can compute D(2k), where
k = �log2n� and it will be equal to D(n) since D(n) = D(n) �DT ( because the shortest path
may go through at most n nodes).
⇒ Complexity of algorithm with doubling is (n3log2n).

Back-tracking:

To find the paths, construct an ′e′ matrix as for Floyd-Warshall’s algorithm where e
(k)
ij = p if

min(d
(k−1)
i1 + d

(k−1)
1j , . . . , d

(k−1)
in + d

(k−1)
nj ) = d

(k−1)
ip + d

(k−1)
pj .

p is then an intermediate node on the shortest path of length ≤ k from i to j.

Identifying negative cost cycles:
This is left as a question to class. Suppose there is a negative cost cycle. Then how is it
detected if we only have powers of 2 computations of the matrix? The problem is to show
that if there is a negative cost cycle then starting at some iteration ≤ n the distance labels
of some nodes must go down at each iteration. What are these nodes?

Seidel’s algorithm for Unit Cost Undirected graph:
(1) Seidel has used the matrix multiplication approach for the all pairs shortest paths problem
in an undirected graph. Seidel’s algorithm only works when the cost on all the arcs is 1. It
uses actual matrix multiplication to find all pairs shortest paths. The running time of Seidel’s
algorithm is O(M(n) log n), where M(n) is the time required to multiply two n×n matrices.
(2) Currently, the most efficient (in terms of asymptotic complexity) algorithm known for
matrix multiplication is O(n2.376). However, there is a huge constant which is hidden by the
complexity notation, so the algorithm is not used in practice.

8.12 Why finding shortest paths in the presence of negative cost cycles is dif-
ficult

Suppose we were to apply a minimum cost flow formulation to solve the problem of finding a
shortest path from node s to node t in a graph which contains negative cost cycles. We could give
a capacity of 1 to the arcs in order to guarantee a bounded solution. This is not enough, however,
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Figure 20: Shortest Path Problem With Negative Cost Cycles

to give us a correct solution. The problem is really in ensuring that we get a simple path as a
solution.

Consider the network in Figure 20. Observe first that the shortest simple path from node 1 to
node 2 is the arc (1, 2). If we formulate the problem of finding a shortest path from 1 to 2 as a
MCNF problem, we get the following linear program:

min x12 + x23 + x34 − 10x42
s.t. x12 = 1

x23 − x12 − x42 = −1
x34 − x23 = 0
x42 − x34 = 0
0 ≤ xij ≤ 1 ∀(i, j) ∈ A.

Recall that the interpretation of this formulation is that xij = 1 in an optimal solution means
that arc (i, j) is on a shortest path from node 1 to node 2 and the path traced out by the unit of
flow from node 1 to node 2 is a shortest path. In this case, however, the optimal solution to this LP
is x12 = x23 = x34 = x42 = 1 which has value −7. Unfortunately, this solution does not correspond
to a simple path from node 1 to node 2.

9 Maximum flow problem

9.1 Introduction

See the handout titled Travelers Example: Seat Availability.

The Maximum Flow problem is defined on a directed network G = (V,A) with capacities uij
on the arcs, and no costs. In addition two nodes are specified, a source node, s, and sink node, t.
The objective is to find the maximum flow possible between the source and sink while satisfying
the arc capacities. (We assume for now that all lower bounds are 0.)
Definitions:
• A feasible flow f is a flow that satisfied the flow-balance and capacity constraints.
• A cut is a partition of the nodes (S, T ), such that S ⊆ V , s ∈ S, T = V \ S, t ∈ T .
• Cut capacity: U(S, T ) =

∑
i∈S
∑

j∈T uij. (Important: note that the arcs in the cut are
only those that go from S to T .)

Let |f | be the total amount of flow out of the source (equivalently into the sink). It is easy to
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observe that any feasible flow satisfies

|f | ≤ U(S, T ) (13)

for any (S, T ) cut. This is true since all flow goes from s to t, and since s ∈ S and t ∈ T (by
definition of a cut), then all the flow must go through the arcs in the (S, T ) cut. Inequality 13 is a
special case of the weak duality theorem of linear programming.

The following theorem, which we will establish algorithmically, can be viewed as a special case of
the strong duality theorem in linear programming.

Theorem 9.1 (Max-Flow Min-Cut). The value of a maximum flow is equal to the capacity of a
cut with minimum capacity among all cuts. That is,

max |f | = minU(S, T )

Next we introduce the terminology needed to prove the Max-flow/Min-cut duality and to give
us an algorithm to find the max flow of any given graph.
Residual graph: The residual graph, Gf = (V,Af ), with respect to a flow f , has the following
arcs:
• forward arcs: (i, j) ∈ Af if (i, j) ∈ A and fij < uij. The residual capacity is ufij = uij − fij.

The residual capacity on the forward arc tells us how much we can increase flow on the original
arc (i, j) ∈ A.

• reverse arcs: (j, i) ∈ Af if (i, j) ∈ A and fij > 0. The residual capacity is ufji = fij . The
residual capacity on the reverse arc tells us how much we can decrease flow on the original
arc (i, j) ∈ A.

Intuitively, residual graph tells us how much additional flow can be sent through the original
graph with respect to the given flow. This brings us to the notion of an augmenting path.

In the presence of lower bounds, �ij ≤ fij ≤ uij , (i, j) ∈ A, the definition of forward arc remains,

whereas for reverse arc, (j, i) ∈ Af if (i, j) ∈ A and fij > �ij. The residual capacity is ufji = fij−�ij.

9.2 Linear programming duality and max flow min cut

Given G = (N,A) and capacities uij for all (i, j) ∈ A:
Consider the formulation of the maximum flow problem on a general graph. Let xij be a variable
denoting the flow on arc (i, j).

Max xts
subject to

∑
i xki −

∑
j xjk = 0 k ∈ V

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

For dual variables we let {zij} be the nonnegative dual variables associated with the capacity
upper bounds constraints, and {λi} the variables associated with the flow balance constraints. (I
also multiply the flow balance constraints by −1, so they represent Inflowi−Outflowi = 0.)

Min
∑

(i,j)∈A uijzij
subject to zij − λi + λj ≥ 0 ∀(i, j) ∈ A

λs − λt ≥ 1
zij ≥ 0 ∀(i, j) ∈ A.
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The dual problem has an infinite number of solutions: if (λ∗, z∗) is an optimal solution, then so
is (λ∗ + C, z∗) for any constant C. To avoid that we set λt = 0 (or to any other arbitrary value).
Observe now that with this assignment there is an optimal solution with λs = 1 and a partition of
the nodes into two sets: S = {i ∈ V |λi = 1} and S̄ = {i ∈ V |λi = 0}.

The complementary slackness condition state that the primal and dual optimal solutions x∗, λ∗, z∗

satisfy,
x∗ij · [z∗ij − λ∗

i + λ∗
j ] = 0

[uij − x∗ij ] · z∗ij = 0.

In an optimal solution z∗ij − λ∗
i + λ∗

j = 0 except for the arcs in (S̄, S), so the first set of
complementary slackness conditions provides very little information on the primal variables {xij}.
Namely, that the flows are 0 on the arcs of (S̄, S). As for the second set, z∗ij = 0 on all arcs other

than the arcs in the cut (S, S̄). So we can conclude that the cut arcs are saturated, but derive no
further information on the flow on other arcs.

The only method known to date for solving the minimum cut problem requires finding a max-
imum flow first, and then recovering the cut partition by finding the set of nodes reachable from
the source in the residual graph (or reachable from the sink in the reverse residual graph). That
set is the source set of the cut, and the recovery can be done in linear time in the number of arcs,
O(m).

On the other hand, if we are given a minimum cut, there is no efficient way of recovering the
flow values on each arc other than essentially solving from scratch. The only information given
by the minimum cut, is the value of the maximum flow and the fact that the arcs on the cut are
saturated. Beyond that, the flows have to be calculated with the same complexity as would be
required without the knowledge of the minimum cut.

This asymmetry implies that it may be easier to solve the minimum cut problem than to solve
the maximum flow problem. Still, no minimum cut algorithm has ever been discovered, in the sense
that every so-called s, t minimum cut algorithm known, computes first the maximum flow.

9.3 Applications

9.3.1 Hall’s theorem

Hall discovered this theorem about a necessary and sufficient condition for the existence of a perfect
matching independently of the max flow min cut theorem. However the max flow min cut theorem
can be used as a quick alternative proof to Hall’s theorem.

Theorem 9.2 (Hall). Given a bipartite graph, B = (V1 ∪ V2, E) where |V1| = |V2| = n.
There is a perfect matching in B iff ∀X ⊆ V1, |N(X)| ≥ |X|,
where N(X) is the set of neighbors of X, N(X) ⊆ V2.

Proof.
(⇒) If there is a perfect matching, then for every X ⊆ V1 the set of its neighbors N(X) contains
at least all the nodes matched with X. Thus, |N(X)| ≥ |X|.

(⇐) We construct a flow graph by adding: a source s, a sink t, unit-capacity arcs from s to all
nodes in V1, and unit-capacity arcs from all nodes in V2 to t. Direct all arcs in the original graph
G from V1 to V2, and set the capacity of these arcs to ∞ (See Figure 21).

Assume that |N(X)| ≥ |X|, ∀ X ⊆ U . We need to show that there exists a perfect matching.
Consider a finite cut (S, T ) in the flow graph defined. Let X = V1∩S. We note that N(X) ⊆ S∩V2,
else the cut is not finite.
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Figure 21: Graph for Hall’s Theorem

Since |N(X)| ≥ |X|, the capacity of the any (S, T ) cut satisfies,

U(S, T ) ≥ |N(X)|+ n− |X| ≥ n.

Also, because of the construction of the network there is a cut, the one that separates s from the
rest of the graph, or t from the rest of the graph, of capacity n, therefore the minimum cut capacity
is n.

Now, for (S, T ) a minimum cut,

n = U(S, T ) = max flow value = size of matching ≤ n.

It follows that all the inequalities must be satisfied as equalities, and the matching size is n.

Define, Discrepancy = −minX⊆V1 {|N(X)| − |X|} = maxX {|X| − |N(X)|}, X ⊆ V1

Since U(S, T ) = n+ |N(X)| − |X|, where X = V1 ∩ S,

minU(S, T ) = n+min{|N(X)| − |X|} = n−D.

Hence the minimum cut in such a graph with discrepancy D is n−D.

Lemma 9.3. For a bipartite graph with discrepancy D, there is a matching of size n−D

Proof.
Since the minimum cut capacity is n−D the maximum flow is of value n−D. Since every matching
corresponds to a flow, the maximum matching corresponding to that flow is of size n−D.

9.3.2 The selection problem

Suppose you are going on a hiking trip. You need to decide what to take with you. Many individual
items are useless unless you take something else with them. For example, taking a bottle of wine
without an opener does not make too much sense. Also, if you plan to eat soup there, for example,
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you might want to take a set of few different items: canned soup, an opener, a spoon and a plate.
The following is the formal definition of the problem.

Given a set of items J = {1, . . . , n}, a cost for each item cj , a collection of sets of items Si ⊆ J
for i = 1, . . . ,m, and a benefit for each set bi. We want to maximize the net benefit (= total benefit
- total cost of items) selected.

We now give the mathematical programming formulation:

max
m∑
j=1

bixi −
n∑

i=1

cjyj

xi ≤ yj for i = 1, . . . ,m, ∀j ∈ Si

xi ∈ {0, 1} for i = 1, . . . ,m

yj ∈ {0, 1} for j = 1, . . . , n.

Where,

xi =

{
1 if set j is selected
0 otherwise

yj =

{
1 if item j is included
0 otherwise

We immediately recognize that the constraint matrix is totally unimodular (each row has one 1
and one −1). Thus when solving the LP relaxation of the problem we will get a solution for the
above IP.

Nevertheless, we can do better than solving the LP. In particular we now show how the Selection
Problem can be solved by finding a minimum s-t cut in an appropriate network.

First we make the following observation. The optimal solution to the selection problem will
consist of a collection of sets, Sj , j ∈ J , and the union of their elements (

⋃
Sj, j ∈ J). In particular

we will never pick “extra items” since this only adds to our cost. Feasible solutions with this
structure are called selections.

As per the above discussion, we can limit our search to selections, and we can formulate the
selection problem as follows. Find the collection of sets S such that:

max
S

∑
i∈S

bi −
∑

j∈⋃i∈S Si

cj (14)

The following definition will be useful in our later discussion. Given a directed graph G = (V,A),
a closed set is a set C ⊆ V such that u ∈ Cand(u, v) ∈ A =⇒ v ∈ C. That is, a closed set includes
all of the successors of every node in C. Note that both ∅ and V are closed sets.

Now we are ready to show how we can formulate the selection problem as a minimum cut
problem. We first create a bipartite graph with sets on one side, items on the other. We add arcs
from each set to all of its items. (See figure 22.) Note that a selection in this graph is represented
by a collection of set nodes and all of its successors. Indeed there is a one-to-one correspondence
between selections and closed sets in this graph.

Next we transform this graph into a maxflow-mincut graph. We set the capacity of all arcs to
infinity. We add a source, a sink, arcs from s to each set i with capacity bi, and arcs from from
each set j to t with capacity cj . (See figure 23.)

We make the following observations. There is a one-to-one correspondence between finite cuts
and selections. Indeed the source set of any finite (S, T ) cut is a selection. (If Sj ∈ S then it must
be true that all of its items are also in S—otherwise the cut could not be finite.) Now we are ready
to state our main result.
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Figure 22: Representing selections as closed sets

Figure 23: Formulation of selection problem as a min-cut problem

Theorem 9.4. The source set of a minimum cut (S,T) is an optimal selection.

Proof.

min
S

U(S, T ) = min
∑
i∈T

bi +
∑
j∈S

cj

= min
m∑
i=1

bi −
∑
i∈S

bi +
∑
j∈S

cj

= B +min−
∑
i∈S

bi +
∑
j∈S

cj

= B −max
∑
i∈S

bi −
∑
j∈S

cj .
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Where B =
∑m

i=1 bi.

9.3.3 Vertex cover on bipartite graphs

The vertex cover problem is defined as follows: Given an undirected graph G = (V,E) we want to
find the set S ⊆ V with minimum cardinality such that every edge in E is adjacent to (at least)
one node in S. In the weighted version, each node i ∈ V has an associated weight wi ≥ 0 and
we want to minimize the total weight of the set S. Note that, if the graph has negative or zero
weights, then we simply include all those nodes in S and remove their neighbors from V .

Let xi =

{
1 if i ∈ V is in the cover
0 otherwise

.

The (weighted) vertex cover problem can be formulated as the integer program below.

min
∑
i∈V

wixi (VC.0)

s.t. xi + xj ≥ 1 ∀ (i, j) ∈ E (VC.1)
xi ∈ {0, 1} ∀ i ∈ V

The vertex cover problem on bipartite graphs G = (V1 ∪ V2, E) can be solved in polynomial
time. This follows since constraint matrix of the vertex cover problem on bipartite graphs is totally
unimodular. To see this, observe that the constraint matrix can be separated in columns into two
parts corresponding to V1 and V2 respectively, each row within which contains exactly one 1.

To see this, let

xi =

{
1 if i ∈ V1 is in the cover
0 otherwise

,

yi =

{ −1 if i ∈ V2 is in the cover
0 otherwise

.

The integer programming formulation for the vertex cover problem on bipartite graph can then
be transformed to the following:

min
∑
j∈V1

wjxj +
∑
j∈V2

(−wj)yj (VCB)

s.t. xi − yj ≥ 1 ∀ (i, j) ∈ E

xi ∈ {0, 1} ∀ i ∈ V1

yj ∈ {−1, 0} ∀ j ∈ V2

The following s, t-Graph (Figure 24) can be constructed to solve the vertex cover problem on
bipartite graph.
1. Given a bipartite graph G = (V1 ∪ V2, E), set the capacity of all edges in A equal to ∞.
2. Add a source s, a sink t, set As of arcs from s to all nodes i ∈ V1 (with capacity us,i = wi), and
set At of arcs from all nodes j ∈ V2 to t (with capacity uj,t = wj).
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Figure 24: An illustration of the s, t-Graph for the vertex cover problem on bipartite graph and an
example of a finite s− t cut.

It is easy to see that if (s ∪ S, t ∪ T ) is a finite s − t cut on Gs,t, then (V1 ∩ T ) ∪ (V2 ∩ S) is a
vertex cover. Furthermore, if (s∪S, t∪T ) is an optimal solution to the minimum s− t cut problem
on Gs,t, then (V1 ∩ T ) ∪ (V2 ∩ S) is a vertex cover with the minimum weights, where

C(s ∪ S, t ∪ T ) =
∑

i∈V1∩T
wi +

∑
j∈V2∩S

wj =
∑

j∈V C∗
wj

9.3.4 Forest clearing

The Forest Clearing problem is a real, practical problem. We are given a forest which needs to be
selectively cut. The forest is divided into squares where every square has different kind of trees.
Therefore, the value (or benefit from cutting) is different for each such square. The goal is to find
the most beneficial way of cutting the forest while preserving the regulatory constraints.

Version 1. One of the constraints in forest clearing is preservation of deer habitat. For example,
deer like to eat in big open areas, but they like to have trees around the clearing so they can run for
cover if a predator comes along. If they don’t feel protected, they won’t go into the clearing to eat.
So, the constraint in this version of Forest Clearing is the following: no two adjacent squares can
be cut. Adjacent squares are two squares which share the same side, i.e. adjacent either vertically
or horizontally.

Solution. Make a grid-graph G = (V,E). For every square of forest make a node v. Assign
every node v, weight w, which is equal to the amount of benefit you get when cut the corresponding
square. Connect two nodes if their corresponding squares are adjacent. The resulting graph is
bipartite. We can color it in a chess-board fashion in two colors, such that no two adjacent nodes
are of the same color. Now, the above Forest Clearing problem is equivalent to finding a max-weight
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independent set in the grid-graph G. In a previous section it was shown that Maximum Independent
Set Problem is equivalent to Minimum Vertex Cover Problem. Therefore, we can solve our problem
by solving weighted vertex cover problem on G by finding Min-Cut in the corresponding network.
This problem is solved in polynomial time.

Version 2. Suppose, deer can see if the diagonal squares are cut. Then the new constraint is
the following: no two adjacent vertically, horizontally or diagonally squares can be cut. We can
build a grid-graph in a similar fashion as in Version 1. However, it will not be bipartite anymore,
since it will have odd cycles. So, the above solution would not be applicable in this case. Moreover,
the problem of finding Max Weight Independent Set on such a grid-graph with diagonals is proven
to be NP-complete.

Another variation of Forest Clearing Problem is when the forest itself is not of a rectangular
shape. Also, it might have “holes” in it, such as lakes. In this case the problem is also NP-complete.

The checkered board pattern permitted to clear  

Because there are no odd cycles in the above grid graph of version 1, it is bipartite and the
aforementioned approach works. Nevertheless, notice that this method breaks down for graphs
where cells are neighbors also if they are adjacent diagonally. An example of such a graph is given
below.

Such graphs are no longer bipartite. In this case, the problem has indeed been proven NP-complete
in the context of producing memory chips (next application).

9.3.5 Producing memory chips (VLSI layout)

We are given a silicon wafer of 2G RAM VLSI chips arranged in a grid-like fashion. Some chips are
damaged, those will be marked by a little dot on the top and cannot be used. The objective is to
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make as many 8G chips as possible out of good 2G chips. A valid 8G chip is the one where 4 little
chips of 2G form a square, (i.e. they have to be adjacent to each other in a square fashion.) Create
a grid-graph G = (V,E) in the following manner: place a node in the middle of every possible
8G chip. (The adjacent 8G chips will overlap.) Similar to Version 2 of Forest Clearing Problem
put an edge between every two adjacent vertically, horizontally or diagonally nodes. Now, to solve
the problem we need to find a maximum independent set on G. This problem is proven to be
NP-complete.

9.4 Flow Decomposition

In many situations we would like, given a feasible flow, to know how to recreate this flow with a
bunch of s − t paths and cycles, each of which carries a positive amount of flow. This motivates
the following definition.

A primitive element is either:
1. A simple path P from s to t with flow δ.
2. A cycle Γ with flow δ.

Theorem 9.5 (Flow Decomposition Theorem). Any feasible flow f can be decomposed into no
more than m primitive elements.

Proof. The proof is by construction; that is, we will give an algorithm to find the primitive elements.
Let Af = {(i, j) ∈ E : fij > 0}, and G′ = (V,Af ).

Pseudocode
While there is an arc in Af adjacent to s (i.e. while there is a positive flow from s to t), do:

Begin DFS in Gf from s, and stop when we either reach t along a simple path P , or
found a simple cycle Γ. Let ξ denote the set of arcs of the primitive element found.

Set δ = min(i,j)∈ξ{fij}.
Record either (P, δ) or (Γ, δ) as a primitive element.
Update the flow in G by setting: fij ← fij − δ, ∀(i, j) ∈ ξ.
Update Af . Note that the number of arcs in Af is reduced by at least one arc.

If no arc in Af leaves s, then Af must consist of cycles. While Af 	= ∅ do:
Pick any arc (i, j) ∈ Af and start DFS from i.
When we come back to i (which is guaranteed by flow conservation), we found another
primitive element, a cycle Γ.

Set δ = min(i,j)∈Γ{fij}.
Record (Γ, δ) as a primitive element.
Update the flow in G by setting: fij ← fij − δ, ∀(i, j) ∈ ξ.
Update Af . { Note that the number of arcs in Af goes down by at least 1.}

Tthe above algorithm is correct since, every time we update the flow, the new flow must still be a
feasible flow. Since, each time we find a primitive element we remove at least one arc from Af , we
can find at most m primitive elements.

An interesting question is the complexity of the algorithm to generate the primitive elements
and how it compares to maximum flow. We now show that the overall complexity is O(mn).
Assuming the we have for each node the adjacency list - the outgoing arcs. Follow a path from s
in a DFS manner, visiting one arc at a time. If a node is repeated (visited twice) then we found
a cycle. We trace it back and find its bottleneck capacity and record the primitive element. The
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bottleneck arcs are removed, and the adjacency lists affected are updated. This entire operation is
done in O(n) as we visit at most n nodes.

If a node is not repeated, then after at most n steps we reached the sink t. The path followed
is then a primitive path with flow equal to its bottleneck capacity. We record it and update the
flows and adjacency lists in O(n) time.

Since there are O(m) primitive elements, then all are found in O(mn). Notice that this is
(pretty much) faster than any known maximum flow algorithm. Flow decomposition can be done
faster with dynamic trees, in complexity O(m log n).

9.5 Algorithms

First we introduce some terminology that will be useful in the presentation of the algorithms.
Residual graph: The residual graph, Gf = (V,Af ), with respect to a flow f , has the following
arcs:
• forward arcs: (i, j) ∈ Af if (i, j) ∈ A and fij < uij. The residual capacity is ufij = uij − fij.

The residual capacity on the forward arc tells us how much we can increase flow on the original
arc (i, j) ∈ A.

• reverse arcs: (j, i) ∈ Af if (i, j) ∈ A and fij > 0. The residual capacity is ufji = fij . The
residual capacity on the reverse arc tells us how much we can decrease flow on the original
arc (i, j) ∈ A.

Intuitively, residual graph tells us how much additional flow can be sent through the original
graph with respect to the given flow. This brings us to the notion of an augmenting path.

In the presence of lower bounds, �ij ≤ fij ≤ uij , (i, j) ∈ A, the definition of forward arc remains,

whereas for reverse arc, (j, i) ∈ Af if (i, j) ∈ A and fij > �ij. The residual capacity is ufji = fij−�ij.

Augmenting path: An augmenting path is a path from s to t in the residual graph. The capacity
of an augmenting path is the minimum residual capacity of the arcs on the path – the bottleneck
capacity.

If we can find an augmenting path with capacity δ in the residual graph, we can increase the flow
in the original graph by adding δ units of flow on the arcs in the original graph which correspond
to forward arcs in the augmenting path and subtracting δ units of flow on the arcs in the original
graph which correspond to reverse arcs in the augmenting path.

Note that this operation does not violate the capacity constraints since δ is the smallest arc
capacity in the augmenting path in the residual graph, which means that we can always add δ units
of flow on the arcs in the original graph which correspond to forward arcs in the augmenting path
and subtract δ units of flow on the arcs in the original graph which correspond to reverse arcs in
the augmenting path without violating capacity constraints.

The flow balance constraints are not violated either, since for every node on the augmenting
path in the original graph we either increment the flow by δ on one of the incoming arcs and
increment the flow by δ on one of the outgoing arcs (this is the case when the incremental flow in
the residual graph is along forward arcs) or we increment the flow by δ on one of the incoming arcs
and decrease the flow by δ on some other incoming arc (this is the case when the incremental flow
in the residual graph comes into the node through the forward arc and leaves the node through the
reverse arc) or we decrease the flow on one of the incoming arcs and one of the outgoing arcs in the
original graph (which corresponds to sending flow along the reverse arcs in the residual graph).
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9.5.1 Ford-Fulkerson algorithm

The above discussion can be summarized in the following algorithm for finding the maximum flow
on a give graph. This algorithm is is also known as the augmenting path algorithm. Below is
a pseudocode-like description.

Pseudocode:
f : flow;
Gf : the residual graph with respect to the flow;
Pst: a path from s to t;
uij : capacity of arc from i to j.

Initialize f = 0
If ∃Pst ∈ Gf do

find δ = min (i,j)∈Pst
Uij

fij = fij + δ ∀(i, j) ∈ Pst

else stop f is max flow.

Detailed description:
1. Start with a feasible flow (usually fij = 0 ∀(i, j) ∈ A ).
2. Construct the residual graph Gf with respect to the flow.
3. Search for augmenting path by doing breadth-first-search from s (we consider nodes to be

adjacent if there is a positive capacity arc between them in the residual graph) and seeing
whether the set of s-reachable nodes (call it S) contains t.
If S contains t then there is an augmenting path (since we get from s to t by going through a
series of adjacent nodes), and we can then increment the flow along the augmenting path by
the value of the smallest arc capacity of all the arcs on the augmenting path.
We then update the residual graph (by setting the capacities of the forward arcs on the
augmenting path to the difference between the current capacities of the forward arcs on the
augmenting path and the value of the flow on the augmenting path and setting the capacities
of the reverse arcs on the augmenting path to the sum of the current capacities and the value
of the flow on the augmenting path) and go back to the beginning of step 3.
If S does not contain t then the flow is maximum.

To establish correctness of the augmenting path algorithm we prove the following theorem which
is actually stronger than the the max-flow min-cut theorem.

Reminder: fij is the flow from i to j, |f | = ∑(s,i)∈A fsi =
∑

(i,t)∈A fit =
∑

u∈S,v∈T fuv for any
cut (S, T ).

Theorem 9.6 (Augmenting Path Theorem). (generalization of the max-flow min-cut theorem)
The following conditions are equivalent:

1. f is a maximum flow.
2. There is no augmenting path for f .
3. |f | = U(S, T ) for some cut (S, T ).

Proof.
(1 ⇒ 2) If ∃ augmenting path p, then we can strictly increase the flow along p; this contradicts
that the flow was maximum.
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(2 ⇒ 3) Let Gf be the residual graph w.r.t. f . Let S be a set of nodes reachable in Gf from s.
Let T = V \ S. Since s ∈ S and t ∈ T then (S, T ) is a cut. For v ∈ S,w ∈ T, we have the following
implications:

(v,w) 	∈ Gf ⇒ fvw = uvw and fwv = 0

⇒ |f | =
∑

v∈S,w∈T
fvw −

∑
w∈T,v∈S

fwv =
∑

v∈S,w∈T
uvw = U(S, T )

(3⇒ 1) Since |f | ≤ U(S, T ) for any (S, T ) cut, then |f | = U(S, T ) =⇒ f is a maximum flow.

Note that the equivalence of conditions 1 and 3 gives the max-flow min-cut theorem.

Given the max flow (with all the flow values), a min cut can be found in by looking at the residual
network. The set S, consists of s and the all nodes that s can reach in the final residual network
and the set S̄ consists of all the other nodes. Since s can’t reach any of the nodes in S̄, it follows
that any arc going from a node in S to a node in S̄ in the original network must be saturated which
implies this is a minimum cut. This cut is known as the minimal source set minimum cut. Another
way to find a minimum cut is to let S̄ be t and all the nodes that can reach t in the final residual
network. This a maximal source set minimum cut which is different from the minimal source set
minimum cut when the minimum cut is not unique.

While finding a minimum cut given a maximum flow can be done in linear time, O(m), we have
yet to discover an efficient way of finding a maximum flow given a list of the edges in a minimum cut
other than simply solving the maximum flow problem from scratch. Also, we have yet to discover
a way of finding a minimum cut without first finding a maximum flow. Since the minimum cut
problem is asking for less information than the maximum flow problem, it seems as if we should be
able to solve the former problem more efficiently than the later one. More on this in Section 9.2.

In a previous lecture we already presented Ford-Fulkerson algorithm and proved its correctness.
In this section we will analyze its complexity. For completeness purposes we give a sketch of the
algorithm.

Ford-Fulkerson Algorithm
Step 0: f = 0
Step 1: Construct Gf (Residual graph with respect to flow f)
Step 2: Find an augmenting path from s to t in Gf

Let path capacity be δ
Augment f by δ along this path
Go to step 1

If there does not exist any path
Stop with f as a maximum flow.

Theorem 9.7. If all capacities are integer and bounded by a finite number U , then the augmenting
path algorithm finds a maximum flow in time O(mnU), where U = max(v,w)∈A uvw.

Proof. Since the capacities are integer, the value of the flow goes up at each iteration by at least
one unit.

Since the capacity of the cut (s,N \ {s}) is at most nU , the value of the maximum flow is at
most nU .

From the two above observations it follows that there are at most O(nU) iterations. Since each
iteration takes O(m) time–find a path and augment flow, then the total complexity is O(nmU).
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The above result also applies for rational capacities, as we can scale to convert the capacities
to integer values.

Drawbacks of Ford-Fulkerson algorithm:
1. The running time is not polynomial. The complexity is exponential (pseudo-polynomial)

since it depends on U .
2. In Ford-Fulkerson’s algorithm any augmenting path can be selected. In the graph of Figure

25, the algorithm could take 4000 iterations for a problem with maximum capacity of 2000.
This is because the augmenting path is not “chosen wisely” (see Indiana Jones and the Last
Crusade). We will see that a wise choice of the augmenting path leads to polynomial time
algorithms.
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Figure 25: Graph leading to long running time for Ford-Fulkerson algorithm.

3. Finally, for irrational capacities, this algorithm may converge to the wrong value (see Pa-
padimitriou and Steiglitz p.126-128)

Improvements for enhancing the performance of Ford-Fulkerson algorithm include:
1. Augment along maximum capacity augmenting paths.
2. Using the concept of capacity scaling to cope with the non-polynomial running time.
3. Augmenting along the shortest (in number of edges) path.

Each alternative leads to different types of max-flow algorithms discussed next.

9.5.2 Maximum capacity augmenting path algorithm

The maximum capacity augmenting path algorithm is Ford-Fulkerson algorithm where the selection
of the augmenting path is the one of maximum capacity.
Pseudocode:
f : flow;
Gf : the residual graph with respect to the flow;
Pst: a path from s to t;
uij : capacity of arc from i to j.

Initialize f = 0
If t is reachable from s in Gf , do

find maximum capacity augmenting path in Gf (see algorithm below) Pst of capacity δ =

min(i,j)∈Pst
ufij.

{ update} fij = fij + δ ∀(i, j) ∈ Pst

else stop f is max flow.
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We now address the issue of how to find a maximum capacity path in a graph. This can be
done with an adaptation of Dijkstra’s algorithm. Let the label of a node be �j, the max capacity of
a path from s that includes only permanent nodes (of P ) as intermediate nodes. At each iteration
we add to the set of permanent nodes a node with largest label reachable from the permanent set.

Maximum Capacity Path Algorithm
Initialize: P ← {s}, T ← V \ {s}, �s = 0, �j =∞ for j ∈ V \ {s}, i∗ = s.
While T is not empty do

update nodes labels for all j ∈ N+(i∗) ∩ T ,
�j ← max{�j ,min{�i∗ , ci∗j}}.

select i∗ ∈ T of maximum label �i∗ ;
add i∗ to the set of permanent nodes and remove from temporary
P ← P ∪ {i∗}, T ← T \ {i∗}.
If T 	= ∅ go to update.

End Do

The complexity of finding the max capacity augmenting path using Dijkstra’s as above with Fi-
bonacci heaps is O(m+ n log n).

The complexity of the max capacity augmenting paths algorithm

Each iteration of the max capacity augmenting path algorithm consists of finding a maximum
capacity path in the residual graph. This is done with the Maximum Capacity Path Algorithm.
We now address the required number of iterations.

Suppose that the value of the maximum flow, f∗, is v∗. We are at an iteration with flow f of
value v. Then the maximum flow value in Gf is v∗ − v. From the flow decomposition theorem,
there are k ≤ m paths from s to t with sum of flows equal to v∗− v.

∑
i=1,k δi = v∗− v. Therefore,

the max capacity s, t path has capacity at most the average path capacity:
⇒ ∃i|δi ≥ (v∗−v)

k ≥ (v∗−v)
m .

⇒ remaining flow (after augmenting along a maximum capacity path) is ≤ m−1
m (v∗ − v).

The remaining flow after repeating this process for q iterations is (m−1
m )qv∗. The max flow is found

when (m−1
m )qv∗ ≤ 1, since flows must be integers. Thus it suffices to have q ≥ log(v∗)

log( m
m−1

) .

Now log( m
m−1 ) ≈ 1

m . Thus the overall of the max capacity augmenting path algorithm is
O(m(m+ n log n) log(nU)).

Why is the largest capacity augmenting path not necessarily a primitive path? A primitive
path never travels backwards along an arc, yet an augmenting path may contain backward arcs.
Thus, knowing the flow in advance is a significant advantage (not surprising).

9.5.3 Capacity scaling algorithm

We note that the Ford-Fulkerson algorithm is good when our capacities are small. Most algorithms
with this type of properties can be transformed to polynomial time algorithms using a scaling
strategy.

The idea in this algorithm is to construct a series of max-flow problems such that: the number
of augmentations on each problem is small; the maximum flow on the previous problem to find a
feasible flow to the next problem with a small amount of work; the last problem gives the optimal
solution to our original max-flow problem.

In particular, at each iteration k, we find a maximum flow in the network Pk with capacities
restricted to the k most significant digits (in the binary representation). (We need p = 
log2 U�+1
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digits to represent the capacities.) Thus, at iteration k, we will consider the network where the
capacities are given by the following equation:

u
(k)
ij =

⌊ uij
2p−k

⌋
.

Note that the capacities of the kth iteration can be obtained as follows:

u
(k)
ij = 2u

(k−1)
ij + next significant digit,

where the next significant digit can be 0 or 1. It follows, from the above equation, that doubling
the max-flow from the previous iteration is a feasible flow for the current iteration.

Finally, note that the residual flow in the current iteration can’t be more than m. This is
true since in the previous iteration we had a max-flow and a corresponding min-cut. The residual
capacity at each arc of the min-cut from the previous scaling iteration can grow at most by one
unit as these arcs were saturated in that previous iteration. Therefore the max-flow in the residual
graph of the current iteration can be at most m units.

The preceding discussion is summarized in the following algorithm.

Capacity scaling algorithm
fij := 0;
Apply the augmenting path algorithm to P0 and resulting in maximum flow vector f0.
For k := 1 to p Do

Multiply all residual capacities and flows fk−1 of residual graph Gfk−1
from previous iteration by 2;

let this initial flow be f = 2fk−1.
Add 1 to all capacities of arcs that have 1 in the (k+1)st position

(of the binary representation of their original capacity);
Apply the augmenting path algorithm starting with the current flow f to generate a maximum flow fk;

End Do

Theorem 9.8. The capacity scaling algorithm runs in O(m2 log2 U) time.

Proof. In iteration k consider the flows on the arcs on the minimum cut corresponding to the
maximum flow fk−1. Since the cut arcs were saturated and the capacities can increase by at most
one each, then the amount of residual max flow in Pk is bounded by the number of arcs in the cut
which is ≤ m. So the number of augmentations at each iteration is O(m).
The complexity of finding an augmenting path is O(m).
The total number of iterations is O(log2 U).
Thus the total complexity is O(m2 log2 U).

Notice that this algorithm is polynomial, but still not strongly polynomial. Also it cannot
handle real capacities.

We illustrate the capacity scaling algorithm in Figure 26.

9.5.4 Dinic’s algorithm for maximum flow

Dinic’s algorithm is also known as the Blocking Flow Algorithm, or shortest augmenting paths
algorithm. In order to describe this algorithm we need the following definitions.
Layered Network: Given a flow, f , and the corresponding residual graph, Gf = (V,Af ), a layered

network AN(f) (AN stands for Auxiliary Network) is constructed as follows:
Using breadth-first-search in Gf , we construct a tree a rooted at s. Each node in V gets a
distance label which is its distance in the BFS tree from s. Thus, the nodes that have an
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Figure 26: Example Illustrating the Capacity Scaling Algorithm

incoming arc from s get assigned a label of 1 and nodes at the next level of the tree get a
label of 2, etc. Nodes with the same label are said to be at the same layer. Let the distance
label of t be k = d(t) then all nodes in layer ≥ k are removed from the layered network and
all arcs are removed except those which go from a node at one layer to a node at the next
consecutive layer.
Note that this layered network comprises all of the shortest paths from s to t in Gf .

Blocking flow: A flow is called blocking flow for network G′ if every s, t path intersects with at
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least one saturated arc. Note that a blocking flow is not necessarily a maximum flow! For
example, in the network in Figure 25 the flow of 1 unit from s to 1 to 2 to t is a blocking
flow, but obviously not maximum (the maximum flow is of value 2000).

Stage k: We call stage k the augmentations along paths in the layered network where k = d(t) (a
network that includes k layers).

Now we are ready to give the basic implementation of Dinic’s algorithm.
Dinic’s algorithm

fij = 0 ∀(i, j) ∈ A
Use BFS to construct the first layered network AN(f).
While d(t) <∞ do:

Find a blocking flow f ′ in AN(f).
Construct Gf and its respective AN(f).

End While.

Find a blocking flow (naive implementation)
While DFS finds a path P from s to t do:

Augment the flow along P .
Remove saturated arcs in AN(f).
Cross out nodes with zero indegree or outdegree equal to zero.

End While.

Theorem 9.9. Dinic’s algorithm solves correctly the max-flow problem.

Proof. The algorithm finishes when s and t are disconnected in residual graph and so there is no
augmenting path. Thus by the augmenting path theorem the flow found by Dinic’s algorithm is a
maximum flow.

Complexity Analysis
We first argue that, after finding the blocking flow at the k-layered network, the shortest path in
the (new) residual graph is of length ≥ k + 1 (i.e. the level of t must strictly increase from one
stage to the next one). This is true since all paths of length k intersect at least one saturated arc.
Therefore, all the paths from s to t in the next layered network must have at least k + 1 arcs (all
paths with length ≤ k are already blocked). Thus, Dinic’s algorithm has at most n stages (one
stage for each layered network.

To find the blocking flow in stage k we do the following work: 1) Each DFS and update takes
O(k) time (Note that by definition of AN(f) we can’t have cycles.), and 2) we find the blocking
flow in at most m updates (since each time we remove at least one arc from the layered network).

We conclude that Dinic’s algorithm complexity is O(
∑n

1 mk) = O(mn2).

Now we will show that we can improve this complexity by finding more efficiently the blocking flow.
In order to show this, we need to define one more concept.
Throughput: The throughput of a node is the minimum of the sum of incoming arcs capacities

and the outgoing arcs capacity (that is, thru(v) ≡ min
{∑

(i,v)∈Af u
f
i,v,
∑

(v,j)∈Af u
f
v,j

}
). The

throughput of a node is the largest amount of flow that could possibly be routed through the
node.

The idea upon which the improved procedure to find a blocking flow is based is the following. We
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find the node v with the minimum throughput thru(v). We know that at this node we can “pull”
thru(v) units of flow from s, and “push” thru(v) units of flow to t. After performing this pulling
and pushing, we can remove at least one node from the layered network.

Find a blocking flow (improved)
While there is a node v 	= s, t with thru(v) > 0 in AN(f).

Let v be the node in AN(f) for which thru(v) is the smallest; Set δ ← thru(v).
Push δ from v to t.
Pull δ from s to v.
Delete (from AN(f)) all saturated arcs, v, and all arcs incident to v;

End While

Push δ from v to t
Q← {v}; excess(v)← δ
While Q 	= ∅

i← first node in Q (remove i from Q)
For each j ∈ A+(i). (there is an arc (i, j)), and while excess(i) > 0

Δ← min
{
ufij, excess(i)

}
excess(i)← excess(i)−Δ
excess(j)← excess(j) + Δ
thru(j)← thru(j)−Δ
fij ← fij +Δ
if j 	∈ Q add j to end of Q

End For
End While

The “Pull” procedure has a similar implementation.

Theorem 9.10. Dinic’s algorithm solves the max-flow problem for a network G = (V,A) in O(n3)
arithmetic operations.

Proof. As before, the algorithm has O(n) stages.
At each stage we need to create the layered network with BFS. This takes O(m) complexity.
The operations at each stage can be either a saturating push along an arc or an unsaturating

push along an arc. So we can write number of operations as sum of saturating and unsaturating
pull and push steps, N = Ns +Nu . We first note that once an arc is saturated, it is deleted from
graph, therefore Ns = O(m). However we may have many unsaturating steps for the same arc.

The key observation is that we have at most n executions of the push and pull procedures
(along a path) at each stage. This is so because each such execution results in the deletion of the
node v with the lowest throughput where this execution started. Furthermore, in each execution
of the push and pull procedures, we have at most n unsaturated pushes – one for each node along
the path. Thus, we have at each stage at most O(n2) unsaturated pushes and N = Ns + Nu =
O(m) +O(n2) = O(n2). Therefore, the complexity per stage is O(m+ n2) = O(n2).

We conclude that the total complexity is thus O(n3).

Dinic’s algorithm for unit capacity networks

Definition 9.11. A unit capacity network is an s − t network, where all arc capacities are equal
to 1.
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Some problems that can be solved by finding a maximum flow in unit capacity networks are
the following.
• Maximum Bipartite matching,
• Maximum number of edge disjoint Paths.

Lemma 9.12. In a unit capacity network with distance from s to t greater or equal to � the

maximum flow value ˆ|f | satisfies
√

ˆ|f | ≤ 2 |V |
� .

Proof. Construct a layered network with Vi the set of the nodes in Layer i (See Figure 27). And
let Si = V0 ∪ V1 ∪ · · · ∪ Vi

1 ≤ i ≤ �− 1.

s V1 V2 l -1V

extra

nodes

t.  .  .

cut

Figure 27: The layered network, distance from s to t is greater or equal to �

Then (Si, S̄i ) is a s-t cut. Using the fact that the maximum flow value is less than the capacity
of any cut,

ˆ|f | ≤ |Vi||Vi+1| ⇒ either |Vi| ≥
√

ˆ|f | or |Vi+1| ≥
√

f̂

The first inequality follows since the maximum possible capacity of a cut is equal to |Vi||Vi+1|.
Since each arc has a capacity of one, and the maximum of number of arcs from Vi to Vi+1 is equal
to |Vi||Vi+1| (all the combinations of the set of nodes Vi and Vi+1).

So at least �
2 of the layers have at least

√
ˆ|f | nodes each

(consider the pairs, V0V1, . . . , V2V3, . . . ).

�

2

√
ˆ|f | ≤

�∑
i=1

|Vi| ≤ |V | ⇒
√

ˆ|f | ≤ 2|V |
�

Claim 9.13. Dinic’s Algorithm, applied to the unit capacity network requires at most O(n2/3)
stages.

Proof. Notice that in this case, it is impossible to have non-saturated arc processing, because of
the unit capacities. It follows that the total computation per stage is no more than O(m). If Max
flow ≤ 2n2/3 then done. (Each stage increments the flow by at least one unit.)
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If Max flow > 2n2/3, run the algorithm for 2n2/3 stages. The distance labels from s to t will be
increased by at least 1 for each stage. Let the Max flow in the residual network (after 2n2/3 stages)
be g. The shortest path from s to t in this residual network satisfies � ≥ 2n2/3.

Apply lemma 9.12 to this residual network.

√
|g| ≤ 2|V |

2n2/3
= n1/3, |V | = n⇒ |g| ≤ n2/3

It follows that no more than n2/3 additional stages are required. Total number of stages ≤
3n2/3.

Complexity Analysis
Any arc processed is saturated (since this is a unit capacity network). Hence O(m) work per stage.
There are O(n2/3) stages. This yields an overall complexity O(mn2/3).
Remark: A. Goldberg and S. Rao [GR98] devised a new algorithm for maximum flow in general
networks that uses ideas of the unit capacity as subroutine. The overall running time of their
algorithm is O(min{n2/3,m1/2}m log(n2/m) logU) for U the largest capacity in the network.

Dinic’s Algorithm for Simple Networks
In a simple network each node has either exactly one incoming arc of capacity one or exactly one
outgoing arc of capacity one (See Figure 28 b). Bipartite matching is an example of a problem that
can be formulated as a maximum flow problem on a simple network.

3

2

1

4

a) b)

1
4

2

1

1

Figure 28: a) not a simple network b) a simple network

For simple networks, Dinic’s Algorithm works more efficiently than it does for unit capacity
networks, since the throughput of each node is one.

Lemma 9.14. In a simple network, with distance from s to t greater than or equal to �, the max
flow, f̂ satisfies |f̂ | ≤ |V |

(�−1)

Proof. Consider layers V0, V1 . . . and the cut (Si, S̄i), where, Si = V0 ∪ · · · ∪ Vi. Since for i =
1 . . . �− 1 the throughput of each node for each layer Vi is 1,

ˆ|f | ≤ |Vi| i = 1 . . . �-1

Hence, ˆ|f | ≤ min
i=1...�−1

|Vi|
�−1∑
i=1

|Vi| ≤ |V | → min
i=1....�−1

|Vi| ≤ |V |
(�− 1)
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Claim 9.15. Applying Dinic’s Algorithm to a simple network, the number of stages required is
O(
√
n).

Proof. If the max flow ≤ √n done. Otherwise, run Dinic’s algorithm for
√
n stages. � ≥ √n+1 in

that residual network, since each stage increments the flow by at least one unit and increases the
distance label from the source to the sink by at least one at each stage. In the residual network,
the max flow g satisfies |g| ≤ |V |

(
√
n)
≤ √n. So, we need at most

√
n additional stages. Thus the

total number of the stages is O(
√
n)

Complexity Analysis
Recall we are considering of simple networks. All push/pull operations are saturating a node since
there is only one incoming arc or outgoing arc with capacity 1 each node v. The processing thus
makes the throughput of node v be 0.

Note that even though we only have to check O(n) nodes, we still have to update the layered
network which requires O(m) work. Hence the work per stage is O(m).

Thus, the complexity of the algorithm is O(m
√
n)

References

[Din1] E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flows in Networks with
Power Estimation. Soviet Math. Dokl., 11, 1277-1280, 1970.

[EK1] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems. J. of ACM, 19, 248-264, 1972.

[FF1] L. R. Ford, Jr. and D. R. Fulkerson. Maximal Flow through a Network. Canad. J.
Math., 8, 399-404, 1956.

[GR98] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the
ACM 45, 783–797, 1998.

[GT1] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. J.
of ACM, 35, 921-940, 1988.

10 Goldberg’s Algorithm - the Push/Relabel Algorithm

10.1 Overview

All algorithms discuss till now were “primal” algorithms, that is, they were all based on augmenting
feasible flows. The pus/relabel algorithm for the maximum flow problem is basd on using “preflows”.
This algorithm was originally developed by Goldberg and is known as the Preflow Algorithm. A
generic algorithm and a particular variant (lift-to-front) will be presented.

Goldberg’s algorithm can be contrasted with the algorithms we have learned so far in following
ways:

• As opposed to working on feasible flows at each iteration of the algorithm, preflow algorithm
works on preflows: the flows through the arcs need not satisfy the flow balance constraints.

• There is never an augmenting path in the residual network. The preflow is possibly infeasible,
but super-optimal.
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Definitions

Preflow: Preflow �f in a network is defined as the one which

1. Satisfies the capacity constraints (i.e., 0 ≤ fij ≤ Uij , ∀(i, j)).
2. The incoming flow at any node except the source node must be greater than or equal to

the outgoing flow, i.e.,
Σjfji − Σkfik ≥ 0

Excess: Excess of a node is defined w.r.t. a flow and is given by

ef (v) = incoming flow(v) − outgoing flow(v).

Active Node: A node v 	= t is called active if ef (v) > 0.

Distance Labels: Each node v is assigned a label. The labeling is such that it satisfies the
following inequality

d(i) ≤ d(j) + 1 ∀(i, j) ∈ Af .

Admissible Arc An arc (u, v) is called admissible if (u, v) ∈ Af and d(u) > d(v). Notice that
together with the validity of the distance labels this implies that d(u) = d(v) + 1.

Lemma 10.1. The admissible arcs form a directed acyclic graph (DAG).

Proof: For contradiction suppose the cycle is given as (i1, i2, ..., ik, i1). From the definition of an
admissible arc, d(i1) > d(i2) > . . . > d(ik) > d(i1), from which the contradiction follows.

Lemma 10.2. The distance label of node i, d(i), is a lower bound on the shortest path distance in
Af from i to t, if such path exists.

Proof: Let the shortest path from i to t consist of k arcs: (i, i1, ..., ik−1, t). From the validity of
the distance labels,

d(i) ≤ d(i1) + 1 ≤ d(i2) + 2 ≤ . . . ≤ d(t) + k = k.

Corollary 10.3. If the distance label of a node i, satisfies d(i) ≥ n, then there is no path in Af

from i to t. That is, t is not reachable from i.

10.2 The Generic Algorithm

begin

/* Preprocessing steps */
f = 0
d(s) = n, d(i) = 0, ∀i 	= s
∀(s, j) ∈ E fsj = usj
ef (j) = usj
while network contains an active node do

begin

/* Push step */
select an active node (v)
while ∃ admissible arcs (v,w)
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then

Let δ = min{ef (v), Uf (v,w)}, where (v,w) is admissible
Send δ units of flow from v to w.

else

/* Relabel step (all (v,w) are inadmissible) */
set d(v) = min(v,w)∈Af

{d(w) + 1}
end

end

Now we prove the following lemmas about this algorithm which will establish its correctness.

Lemma 10.4. Relabeling step maintains the validity of distance labels.

Proof: Relabeling is applied to node i with d(i) ≤ d(j) ∀(i, j) ∈ Af . Suppose the new label is

d′(i) = min
(i,j)∈Af

{d(j) + 1}

This implies
d′(i) ≤ d(j) + 1 ∀(i, j) ∈ Af

Lemma 10.5 (Super optimality). For preflow �f and distance labeling �d there is no augmenting
path from s to t in the residual graph Gf .

Proof: Since d(s) = n this follows directly from Corollary 10.3.

Lemma 10.6 (Optimality). When there is no active node in the residual graph (∀v, ev = 0) preflow
is a maximum flow.

Proof: Since there is no node with positive excess, the preflow is a feasible flow. Also from the
previous lemma there is no augmenting path, hence the flow is optimal.

Lemma 10.7. For any active node i, there exists a path in Gf from i to s.

Proof: Let Si be the nodes reachable in Gf from i. If s /∈ Si, then all nodes in Si have non-negative
excess. (Note that s is the only node in the graph that is allowed to have a negative excess - deficit.)
In-flow into Si must 0 (else can reach more nodes than Si)

0 = inflow(Si)

≥ inflow(Si)− outf low(Si)

=
∑
j∈Si

[inflow(j)− outf low(j)]

=
∑

j∈Si\{i}
[inflow(j)− outf low(j)] + ef (i)

> 0.

Since the node is active, hence it has strictly positive excess. Therefore, a contradiction. ⇒ s ∈
Si ⇒ there exists a path in Gf from i to s.
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Lemma 10.8. When all active nodes satisfy d(i) ≥ n, then the set of nodes S = {i|d(i) ≥ n} is a
source set of a min-cut.

Proof: Firstly, there is no residual (augmenting) path to t from any node in S (Corollary 10.3).
Let S+ = {i | d(i) ≥ n, e(i) > 0}
From Lemma 10.7, each active node can send back excess to s. Hence, the preflow can be converted
to (a feasible) flow and the saturated cut (S, S̄) is a min-cut. Therefore the resulting feasible flow
is maximum flow. (Although the conversion of preflow to a feasible flow can be accomplished by
the algorithm, it is more efficient to send flow from excess nodes back to source by using the flow
decomposition algorithm. That is, terminate the push-relabel algorithm when there is no active
node of label < n.)

Note that when we terminate the push-relabel algorithm when there is no active node of label
< n, any node of label ≥ n must be active. This is since when it was last relabeled it was active,
and could not have gotten rid of the access as of yet.

Notice also that the source set S is minimal source set of a min cut. The reason is that the
same paths that are used to send the excess flows back to source, can then be used in the residual
graph to reach those nodes of S.

Lemma 10.9. ∀v, d(v) ≤ 2n − 1

Proof: Consider an active node v. From lemma 10.7, s is reachable from v in Gf . Consider a
simple path, P , from v to s. P = (i0, i1, .....ik) where i0 = v, ik = s. Now,

d(s) = n (fixed)

d(i0) ≤ d(i1) + 1 ≤ d(i2) + 2..... ≤ d(ik) + k

d(i0) ≤ d(ik) + k = n+ k

d(i0) ≤ n+ k

Since any simple path has no more that n nodes, we have k ≤ n− 1, which implies that ⇒ d(i0) ≤
2n− 1.

Lemma 10.10. 1. d(v) never decreases when relabeled

2. Immediately after relabel(v), v does not have incoming admissible arcs

Proof:

1. Before relabel(v), d(v) ≤ d(w) ∀(v,w) ∈ Af . After relabel the new label is d(w)+1 ≥ d(v)+1
⇒ d(v) increased after relabeling.

2. Assume (u, v) ∈ Af and previously admissible⇒ d(u) = d(v)+1. After relabel d̄(v) is the new
label and d̄(v) ≥ d(v) + 1 ≥ d(u). Since v is now at least as high as u, (u, v) is inadmissible.

Lemma 10.11 (Complexity of Relabel).

1. Total number of relabels = O(n2)

2. Complexity of all relabels = O(mn)

Proof:
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Figure 29: Sequence of saturating pushes on (u, v)

1. Because of Lemma 10.9 each node can be relabeled at most 2n-1 times. Total number of
nodes = n ⇒ Total number of all relabels is less than n(2n − 1) = O(n2)

2. The cost of relabel(v) is equal to the out-degree of v in Gf because for each v, we have to check
all its adjacent nodes. Therefore, the cost of relabeling each node throughout the algorithm
is ≤ n× deg(v). The cost of relabeling all nodes is then at most

∑
v∈V n× deg(v) = 2mn.

Lemma 10.12 (Complexity of Push). Total number of saturating pushes is O(mn)

Proof: After a saturating push on (u, v), we cannot push again to v, unless v pushes on (v, u).
Therefore d(v) has increased by at least 2 units and hence d(u) must also have increased by at least
2 units between saturated pushes on (u, v) (See Figure 29.)
⇒ number of saturated pushes on (u, v) ≤ 2n−1

2 ≤ n
Therefore, for O(m) arcs, total number of saturating pushes = O(mn)

Lemma 10.13. Total number of non saturating pushes = O(n2m)

Proof: Define Φ =
∑

v active d(v)
Initially Φ = 0 because all initial labels are zero. A non-saturating push (v,w) reduces Φ by at least
1, because it deactivates node v and reduces Φ by d(v). Note that d(v) ≥ 1 always for a push(v,w)
to occur. But d(w) may now become active and add to Φ. Therefore Φ′ = Φ+d(w)−d(v). However
d(v) > d(w)⇒ Φ is reduced by at least 1. In fact the decrease is exactly one if w was not previsouly
active, since d(v) ≤ d(w) + 1 for valid labeling; d(v) ≥ d(w) + 1 for push(v,w) to occur. The total
number of non saturating pushes is bounded by the total amount that Φ can increase during the
algorithm. Φ can increase due to:

1. Saturating push :
A saturating push can increase Φ by at most 2n-2 since it can activate at most one node and
d(v) ≤ 2n− 1.
Total amount the Φ can increase per saturating push = O(n)
Total number of saturating pushes = O(nm)
Total amount that Φ can increase due to all saturating pushes = O(n2m).

2. Relabeling:
Each relabel increases Φ by the increase in the label.
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Maximum increase of label per node = 2n− 1
Total increase in Φ by relabeling = O(n2). This term is dominated by O(n2m).

Since total increase = O(n2m), the number of non-saturating pushes is at most O(n2m)

Overall Complexity

Cost of relabels = O(nm)
Cost of saturating pushes = O(nm)
Cost of non-saturating pushes = O(n2m)
Therefore total complexity is O(n2m).

10.3 Variants of Push/Relabel Algorithm

• FIFO: A node that becomes active is placed at the beginning of the active node list. Running
time = O(n3)

• Highest label preflow: picks an active node to process that has the highest distance label
O(
√
mn2)

• Dynamic tree implementation: Running time = O(mn log n2

m )

10.4 Wave Implementation of Goldberg’s Algorithm (Lift-to-front)

This algorithm has running time O(n3). The algorithm is listed below:

preprocess()
While (there exists an active node(i))

Do
if v is active then push/relabel v
if v gets relabeled, place v in front of L
else replace v by the node after v in L

end
end

See the handout titled Wave Algorithm.
(from Cormen. Leiserson and Rivest).

Since the run time for relabel and saturating push are less than O(n3), we only have to show
the run time of non-saturating push to be O(n3) to proof the overall running time to be O(n3).

Lemma 10.14. The complexity of wave algorithm is O(n3).

Proof. It suffices to show that there are O(n3) non-saturating pushes for the wave algorithm. Define
a phase to be the period between two consecutive relabels.
There are ≤ n(2n− 1) relabels. So there are O(n2) phases and we need to show that for each node
there are ≤ 1 non-saturating push per phase. (Lemma 10.16.)
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Claim 10.15. The list L is in topological order for the admissible arcs of Af .

Proof. By induction on the iteration index. After preprocess, there are no admissible arcs and so
any order is topological. Given a list in topological order, process node u. ’Push’ can only eliminate
admissible arcs (with a saturating push) and ’relabel’ can create admissible arcs, but none into u
(lemma 10.10), so moving u to the front of L maintains topological order.

Lemma 10.16. At most one non-saturating push per node per phase.

Proof. Let u be a node from which a non-saturating push is executed. Then u becomes inactive.
Also all the nodes preceding u in L are inactive. In order for u to become active, one node preceding
it has to become active. But every node can only make nodes lower than itself active. Hence the
only way for u to become active is for some node to be relabeled.

It follows that the complexity of wave implementation of Goldberg’s algorithm is O(n3).

11 The pseudoflow algorithm (Hochbaum’s PseudoFlow HPF)

In this section we provide a description of the pseudoflow algorithm. Our description here is different
from than in [Hoc08] although the algorithm itself is the same. This description uses terminology
and concepts similar in spirit to push-relabel in order to help clarify the similarities and differences
between the two algorithms.

The first step in the pseudoflow algorithm, called the Min-cut Stage finds a minimum cut in
Gst. Source-adjacent and sink-adjacent arcs are saturated throughout this stage of the algorithm;
consequently, the source and sink have no role to play in the Min-cut Stage.

The algorithm may start with any other pseudoflow that saturates arcs in As ∪At. Other than
that, the only requirement of this pseudoflow is that the collection of free arcs, namely the arcs
that satisfy �ij < fij < uij, form an acyclic graph.

Each node in v ∈ V is associated with at most one current arc (u, v) ∈ Af ; the corresponding
current node of v is denoted by current(v) = u. The set of current arcs in the graph satisfies the
following invariants at the beginning of every major iteration of the algorithm:

Property 1. (a) The graph does not contain a cycle of current arcs.
(b) If e(v) 	= 0, then node v does not have a current arc.

Each node is associated with a root that is defined constructively as follows: starting with node v,
generate the sequence of nodes {v, v1, v2, . . . , vr} defined by the current arcs (v1, v), (v2, v1), . . . , (vr, vr−1)
until vr has no current arc. Such node vr always exists, as otherwise a cycle will be formed, which
would violate Property 1(a). Let the unique root of node v be denoted by root(v). Note that if a
node v has no current arc, then root(v) = v.

The set of current arcs forms a current forest. Define a component of the forest to be the set of
nodes that have the same root. It can be shown that each component is a directed tree, and the
following properties hold for each component.

Property 2. In each component of the current forest,
(a) The root is the only node without a current arc.
(b) All current arcs are pointed away from the root.

While it is tempting to view the ability to maintain pseudoflows as an important difference
between the two algorithms, it is trivial to modify the push-relabel algorithm (as shown in [CH09])
to handle pseudoflows.



IEOR 266 notes: Updated 2018 75

The key differences between the pseudoflow and push-relabel algorithms are: (1) that the pseud-
oflow algorithm allows flow to be pushed along arcs (u, v) in which �(u) = �(v) whereas this is not
allowed in push-relabel; and (2) that flow is pushed along a path rather than along single arcs. Note
that [GR98] proposed a maximum flow algorithm with complexity superior to that of push-relabel
that relied on being able to send flow along arcs with �(u) = �(v).

11.1 Initialization

The pseudoflow algorithm starts with a pseudoflow and an associated current forest, called in
[Hoc08], a normalized tree. Each non-root in a branch (tree) of the forest has a parent node, and
the unique arc from the parent node is called current arc. The root has no parent node and no
current arc.

The generic initialization is the simple initialization: source-adjacent and sink-adjacent arcs are
saturated while all other arcs have zero flow.

If a node v is both source-adjacent and sink-adjacent, then at least one of the arcs (s, v) or (v, t)
can be pre-processed out of the graph by sending a flow of min{csv, cvt} along the path s→ v → t.
This flow eliminates at least one of the arcs (s, v) and (v, t) in the residual graph. We henceforth
assume w.l.o.g. that no node is both source-adjacent and sink-adjacent.

The simple initialization creates a set of source-adjacent nodes with excess, and a set of sink-
adjacent nodes with deficit. All other arcs have zero flow, and the set of current arcs is selected to
be empty. Thus, each node is a singleton component for which it serves as the root, even if it is
balanced (with 0-deficit).

A second type of initialization is obtained by saturating all arcs in the graph. The process of
saturating all arcs could create nodes with excesses or deficits. Again, the set of current arcs is
empty, and each node is a singleton component for which it serves as the root. We refer to this as
the saturate-all initialization scheme.

11.2 A labeling pseudoflow algorithm

In the labeling pseudoflow algorithm, each node v ∈ V is associated with a distance label �(v) with
the following property.

Property 3. The node labels satisfy:
(a) For every arc (u, v) ∈ Af , �(u) ≤ �(v) + 1.
(b) For every node v ∈ V with strictly positive deficit, �(v) = 0.

Collectively, the above two properties imply that �(v) is a lower bound on the distance (in terms
of number of arcs) in the residual network of node v from a node with strict deficit. A residual arc
(u, v) is said to be admissible if �(u) = �(v) + 1.

A node is said to be active if it has strictly positive excess. Given an admissible arc (u, v) with
nodes u and v in different components, we define an admissible path to be the path from root(u)
to root(v) along the set of current arcs from root(u) to u, the arc (u, v), and the set of current arcs
(in the reverse direction) from v to root(v).

We say that a component of the current forest is a label-n component if for every node v of the
component �(v) = n. We say that a component is a good active component if its root node is active
and if it is not a label-n component.

An iteration of the pseudoflow algorithm consists of choosing a good active component and
attempting to find an admissible arc from a lowest labeled node u in this component. (Choosing
a lowest labeled node for processing ensures that an admissible arc is never between two nodes
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Figure 30: (a) Components before merger (b) Before pushing flow along admissible path from ri
to rj (c) New components generated when arc (u, v) leaves the current forest due to insufficient
residual capacity.
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of the same component.) If an admissible arc (u, v) is found, a merger operation is performed.
The merger operation consists of pushing the entire excess of root(u) towards root(v) along the
admissible path and updating the excesses and the arcs in the current forest to preserve Property
1.

If no admissible arc is found, �(u) is increased by 1 unit. A schematic description of the merger
operation is shown in Figure 30. The pseudocode for the generic labeling pseudoflow algorithm is
given in Figures 31 through 33.

11.3 The monotone pseudoflow algorithm

In the generic labeling pseudoflow algorithm, finding the lowest labeled node within a component
may take excessive time. Themonotone implementation of the pseudoflow algorithm efficiently finds
the lowest labeled node within a component by maintaining an additional property of monotonicity
among labels in a component.

Property 4 ([Hoc08]). For every current arc (u, v), �(u) = �(v) or �(u) = �(v)− 1.

This property implies that within each component, the root is the lowest labeled node and node
labels are non-decreasing with their distance from the root. Given this property, all the lowest
labeled nodes within a component form a sub-tree rooted at the root of the component. Thus,
once a good active component is identified, all the lowest labeled nodes within the component are
examined for admissible arcs by performing a depth-first-search in the sub-tree starting at the root.

In the generic labeling algorithm, a node was relabeled if no admissible arc was found from the
node. In the monotone implementation, a node u is relabeled only if no admissible arc is found and
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/*
Min-cut stage of the generic labeling pseudoflow algorithm. All nodes in label-n compo-
nents form the nodes in the source set of the min-cut.
*/

procedure GenericPseudoflow (Vst, Ast, c):
begin

SimpleInit (As, At, c);
while ∃ a good active component T do

Find a lowest labeled node u ∈ T ;
if ∃ admissible arc (u, v) do

Merger (root(u), · · · , u, v, · · · , root(v));
else do

�(u)← �(u) + 1;
end

Figure 31: Generic labeling pseudoflow algorithm.

/*
Saturates source- and sink-adjacent arcs.
*/

procedure SimpleInit(As, At, c):
begin

f, e← 0;
for each (s, i) ∈ As do

e(i)← e(i) + csi; �(i) = 1;
for each (i, t) ∈ At do

e(i)← e(i)− cit; �(i) = 0;
for each v ∈ V do

�(v)← 0;
current(v)← ∅;

end

Figure 32: Simple initialization in the generic labeling pseudoflow algorithm.

for all current arcs (u, v) in the component, �(v) = �(u) + 1. This feature, along with the merger
process, inductively preserves the monotonicity property. The pseudocode for the Min-cut Stage
of the monotone implementation of the pseudoflow algorithm is given in Figure 34.

The monotone implementation simply delays relabeling of a node until a later point in the
algorithm, which does not affect correctness of the labeling pseudoflow algorithm.

11.4 Complexity summary

In the monotone pseudoflow implementation, the node labels in the admissible path are non-
decreasing. To see that notice that for a merger along an admissible arc (u, v) the nodes along
the path root(u), · · · , u all have equal label and the nodes along the path v, · · · , root(v) have non-
decreasing labels (from Property 4). A merger along an admissible arc (u, v) either results in arc
(u, v) becoming current, or in (u, v) leaving the residual network. In both cases, the only way (u, v)
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/*
Pushes flow along an admissible path and preserves invariants.
*/

procedure Merger(v1, · · · , vk):
begin

for each j = 1 to k − 1 do
if e(vj) > 0 do

δ ← min{c(vj , vj+1), e(vj)};
e(vj)← e(vj)− δ;
e(vj+1)← e(vj+1) + δ;

if e(vj) > 0 do
current(vj)← ∅;

else do
current(vj)← vj+1;

end

Figure 33: Push operation in the generic labeling pseudoflow algorithm.

/*
Min-cut stage of the monotone implementation of pseudoflow algorithm. All nodes in
label-n components form the nodes in the source set of the min-cut.
*/

procedure MonotonePseudoflow (Vst, Ast, c):
begin

SimpleInit (As, At, c);
while ∃ a good active component T with root r do

u← r;
while u 	= ∅ do

if ∃ admissible arc (u, v) do
Merger (root(u), · · · , u, v, · · · , root(v));
u← ∅;

else do
if ∃w ∈ T : (current(w) = u) ∧ (�(w) = �(u)) do

u← w;
else do

�(u)← �(u) + 1;
u← current(u);

end

Figure 34: The monotone pseudoflow algorithm.

can become admissible again is for arc (v, u) to belong to an admissible path, which would require
�(v) ≥ �(u), and then for node u to be relabeled at least once so that �(u) = �(v) + 1. Since �(u) is
bounded by n, (u, v) can lead to O(n) mergers. Since there are O(m) residual arcs, the number of
mergers is O(nm).

The work done per merger is O(n) since an admissible path is of length O(n). Thus, total work
done in mergers including pushes, updating the excesses, and maintaining the arcs in the current
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forest, is O(n2m).
Each arc (u, v) needs to be scanned at most once for each value of �(u) to determine if it is

admissible since node labels are non-decreasing and �(u) ≤ �(v) + 1 by Property 3. Thus, if arc
(u, v) were not admissible for some value of �(u), it can become admissible only if �(u) increases.
The number of arc scans is thus O(nm) since there are O(m) residual arcs, and each arc is examined
O(n) times.

The work done in relabels is O(n2) since there are O(n) nodes whose labels are bounded by n.
Finally, we need to bound the work done in the depth-first-search for examining nodes within

a component. Each time a depth-first-search is executed, either a merger is found or at least one
node is relabeled. Thus, the number of times a depth-first-search is executed is O(nm+ n2) which
is O(nm). The work done for each depth-first-search is O(n), thus total work done is O(n2m).

Lemma 11.1. The complexity of the monotone pseudoflow algorithm is O(n2m).

Regarding the complexity of the algorithm, [Hoc08] showed that an enhanced variant of the
pseudoflow algorithm is of complexity O(mn log n). That variant uses dynamic trees data structure
and is not implemented here. Recently, however, [HO12] showed that the “highest label” version

of the pseudoflow algorithm has complexity O(mn log n2

m ) and O(n3), with and without the use of
dynamic trees, respectively.
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12 The minimum spanning tree problem (MST)

Given a connected graph G = (V,E), with weight we for all edge in E, find a subset of edges ET

that contains no cycles and so that the spanning tree GT = (VT , ET ) of minimum total weight.
(Spanning means that VT = V .)

12.1 IP formulation

The decision variables for the IP formulation of MST are:

xe =

{
1 if edge e ∈ ET

0 otherwise

The constraints of the IP formulation need to enforce that the edges in ET form a tree. Recall
from early lectures that a tree satisfies the following three conditions: It has n − 1 edges, it is
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connected, it is acyclic. Also recall that if any two of these three conditions imply the third one.
An IP formulation of MST is:

min
∑
e∈E

wexe (15a)

s.t.
∑
e∈E

xe = n− 1 (15b)

∑
e∈(S,S)

xe ≤ |S| − 1 ∀ S ⊆ V (15c)

xe ∈ {0, 1} ∀ e ∈ E (15d)

where (S, S) denotes the set of edges that have both endpoints in S. Inequality (15c) for S enforces
the property that if a subset of edges in (S, S) is connected (induces a connected subgraph), then
this subset is acyclic. If (S, S) is disconnected and contains a cycle, then there is another set S′ ⊂ S
that violates the respective constraint for S′. Therefore the edges in ET can’t form cycles.

We have the following observations.
1. The constraint matrix of problem (15) does not have a network flow structure, and is not

totally unimodular. However Jack Edmonds proved that the LP relaxation has integral
extreme points.

2. The formulation contains an exponential number of constraints.
3. Even though the LP relaxation has integral extreme points, this does not imply that we can

solve the MST problem in polynomial time. This is because of the exponential size of the
formulation. Nevertheless, we can use the ellipsoid method with a separation algorithm to
solve problem (15):
Relax the set of constraints given in (15c), and solve the remaining problem. Given the solu-
tion to such relaxed problem, find one of the relaxed constraints that is violated (this process
is called separation) and add it. Resolve the problem including the additional constraints,
and repeat until no constraint is violated.
It is still not clear that the above algorithm solves in polynomial time MST. However, in
light of the equivalence between separation and optimization (one of the central theorems in
optimization theory), and since we can separate the inequalities (15c) in polynomial time,
it follows that we can solve problem (15) in polynomial time. This can be done using the
Ellipsoid algorithm for linear programming.

4. An alternative IP formulation of MST is obtained by imposing the connectivity condition (in-
stead of the acyclicity condition). This condition is enforce by the following set of inequalities,
which guarantee that there is at least one edge across each cut:∑

e∈(S,S̄)
xe ≥ 1 ∀ S ⊂ V.

Note that, like the set of constraints (15c), the number of these inequalities is exponential.

12.2 Properties of MST

12.2.1 Cut Optimality Condition

Theorem 12.1. Let T ∗ be a spanning tree in G = (V,E). Consider edge [i, j] in T ∗. Suppose

removing [i, j] from T ∗ disconnects the tree into S and S̄. T ∗ is a MST iff for all such [i, j], for all

[u, v], u ∈ S, v ∈ S̄, wuv ≥ wij .
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Proof. Suppose T ∗ is an MST and wij > wkl for some k ∈ S, l ∈ S. Let T ′ = T ∗⋃T (S)
⋃
[k, l].

Then T ′ is a spanning tree of lower weight than T ∗.
Given a spanning tree T ∗ that satisfies the cut optimality condition. Suppose there exists some

MST T ′ 	= T ∗, with [k, l] ∈ T ′ but not in T ∗.

 

e

f

Figure 35: Cut Optimality Condition

We will construct T ′′ from T ∗ with one less edge different from T ′. Add [k, l] to T ∗, creating
a cycle. Let [i, j] be the arc with the largest weight in the cycle. Removing this creates a new

spanning tree. But, by the cut optimality condition, wij ≤ wkl, but by the optimality of T ′,
wij ≥ wkl, so the new tree has the same weight as the old tree. We can repeat this process for all

iterations, and find that T ∗ has the same cost as T ′.

12.2.2 Path Optimality Condition

Theorem 12.2. T ∗ is a MST iff for all [i, j] not in T ∗, cij ≥ ckl for all [k, l] in the unique path

from i to j in T ∗.
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Figure 36: Path optimality condition

Proof. Let T ∗ be an MST. Suppose ∃[i, j] not in T ∗ that has a strictly lower cost than an edge in

the path from i to j in T ∗. Then add [i, j] to T ∗, forming a unique cycle, and remove one such

edge in the path. The new spanning tree is of strictly lower cost, which is a contradiction.

Let T ∗ be a spanning tree that satisfies the path optimality condition. Remove edge [i, j] ∈ T ∗,
disconnecting T ∗ into S and S such that i ∈ S, j ∈ S.
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For every edge [k, l] not in T ∗, k ∈ S, l ∈ S, the path from k to l must have used [i, j] in T ∗.
But cij ≤ ckl by path optimality, which is the same statement as cut optimality, so the statements

are equivalent.

12.3 Algorithms of MST

The correctness of the two algorithms for MST given here follows from the following theorem:

Theorem 12.3. Let F = {(U1, E1), ...(Uk , Ek)} be a spanning forest (a collection of disjoint trees)

in G. Pick edge [i, j] of minimum weight such that i ∈ U1, j ∈ U c
1 . Then some MST containing

E1
⋃

E2
⋃

...Ek will contain edge [i, j].

Proof. Suppose no MST containing F contains edge [i, j]. Suppose you are given T ∗ not containing
[i, j]. Add [i, j] to ET ∗ , this will create a cycle, remove the other edge from U1 to U c

1 that belongs

to the created cycle. Since the weight of this removed edge must be greater or equal than that of

edge [i, j], this is a contradiction.

12.3.1 Prim’s algorithm

Begin with a spanning forest (in the first iteration let each node being one of the “trees” in this
forest). Find the shortest edge [i, j] such that i ∈ U1 and j ∈ U c

1), add [i, j] to T1 and j to U1.
Repeat this process of “growing” U1 until U1 = V .
begin
U = {1}; T = ∅.
while U 	= V do

Pick [i, j] ∈ E such that i ∈ U, j ∈ U c of minimum weight
T ← T

⋃
[i, j];P ← P

⋃
j

end

The while loop is executed n − 1 times, and finding an edge of minimum weight takes O(m)
work, so this naive implementation is an O(nm) algorithm. However, note that similarity between
this algorithm and Dijkstra’s algorithm; in particular note that we can apply the same tricks to
improve its running time.

We can make this a faster algorithm by maintaining, in a binary heap, a list of sorted edges.
Each edge is added to the heap when one of its end points enters P , while the other is outside

P . It is then removed from the heap when both its end points are in P . Adding an element to
a heap takes O(logm) work, and deleting an element also takes O(logm) work. Thus, total work
done in maintaining the heap is O(m logm), which is O(m log n) since m is O(n2). Thus, total
work done in this binary heap implementation is O(m log n).

With Fibonacci heaps, this can be improved to O(m+ n log n).
For dense graphs, there is a faster, O(n2) algorithm. This algorithm maintains an array Q[i]

for the shortest distance from P to each node i ∈ P̄ , outside of P .

begin
P = {1} , Q[i] = w1i

while P 	= V do
Pick [i, j] ∈ E such that i ∈ P, j ∈ P c of minimum weight
T ← T

⋃
[i, j], P ← P

⋃{j}
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for each [k, j] : k 	∈ P do
Q[k]← min{Q[k], wkj}

end

This is an O(n2) algorithm since the while loop is executed O(n) times, and the for loop is
executed O(n) times within each while loop. For dense graphs O(n2) is O(m) and therefore this is
an optimal, linear time, algorithm for MST on dense graphs.
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Figure 37: An example of applying Prim’s Algorithm

12.3.2 Kruskal’s algorithm

Kruskal’s algorithm works with a forest and at each iteration it adds an edge that reduces the
number of components by one. The algorithm takes as input the ordered list of edges: Sort the
edges in non-decreasing order of weight: we1 ≤ ce2 ≤ ...cem .
begin

k ← 1, i← 1, ET ← ∅
while i ≤ n do

let ek = [i, j]
if i and j are not connected in (V,ET ) do

E ← E
⋃
[i, j]

T ← T
⋃{i, j}

k ← k + 1
end

The algorithm is illustrated in Figure 38.
Complexity: The while loop is executed at most m times, and checking if i and j are in the same

component can be done with DFS on (V,ET ), this takes O(n). Therefore this naive implementation
has a running time of O(nm).

We will now show that Kruskal’s algorithm has a running time of O(m+n logn) (plus the time
to sort the edges) without special data structures:

Each component is maintained as a linked list with a first element label, for each node in the
component, as a representative of the component. The size of the component is also stored with
the representative ”first” of the component.

1. Checking for edge [i, j] whether i and j belong to the same component is done by comparing
their labels of component’s first. This is done in O(1).

2. If for edge [i, j], i and j belong to the different components, then the edge is added and
the two components are merged. In that case the smaller component’s nodes labels are all
updated to assume the label of the representative of the larger component. The size of the
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Figure 38: An example of Kruskal’s algorithm

component that is the second label of “first” is modified by adding to it the size of the smaller
component. The complexity is the size of the smaller component merged.
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For each edge [i, j] inspected, checking whether i and j belong to the same component or not
takes O(m) operations throughout the algorithm. To evaluate the complexity of merger, note that
the “first” label of a node i is updated when i is in the smaller component. After the merger the size
of the component that contains i at least doubles. Hence the label update operation on node i can
take place at most O(log n) times. Therefore the total complexity of the labels updates throughout
the algorithm is O(m log n).

Hence, the total complexity of Kruskal’s algorithm is O(m log n+m+n logn). The complexity
of the initial sorting of the edges, O(m log n), dominates the run time of the algorithm.

12.4 Maximum spanning tree

Note that we never assumed nonnegativity of the edge weights. Therefore we can solve the maximum
spanning tree problem with the above algorithms after multiplying the edge weights by -1.

13 Complexity classes and NP-completeness

In optimization problems, there are two interesting issues: one is evaluation, which is to find the
optimal value of the objective function (evaluation problems); the other one is search, which is to
find the optimal solution (optimization problems).

13.1 Search vs. Decision

Decision Problem - A problem to which there is a yes or no answer.
Example. SAT = {Does there exist an assignment of variables which satisfies the boolean

function φ; where φ is a conjunction of a set of clauses, and each clause is a disjunction of some of
the variables and/or their negations?}
Evaluation Problem - A problem to which the answer is the cost of the optimal solution.

Note that an evaluation problem can be solved by solving a auxiliary decision problems of the
form “Is there a solution with value less than or equal to M?”. Furthermore, using binary search,
we only have to solve a polynomial number of auxiliary decision problems.
Optimization Problem - A problem to which the answer is an optimal solution.

To illustrate, consider the Traveling Salesperson Problem (TSP). TSP is defined on an undi-
rected graph, G = (V,E), where each edge (i, j) ∈ E has an associated distance cij .

TSP OPT = { Find a tour (a cycle that visits each node exactly once) of total minimum
distance. }

TSP EVAL = { What is the total distance of the tour with total minimum distance in G =
(V,E)? }

TSP DEC = { Is there a tour in G = (V,E) with total distance ≤M? }
Given an algorithm to solve TSP DEC, we can solve TSP EVAL as follows.
1. Find the upper bound and lower bound for the TSP optimal objective value. Let Cmin =

min(i,j)∈E cij , and Cmax = max(i,j)∈E cij . Since a tour must contain exactly n edges, then an
upper bound (lower bound) for the optimal objective value is n · Cmax, (n · Cmin).

2. Find the optimal objective value by binary search in the range [n ·Cmin, n ·Cmax]. This binary
search is done by calling the algorithm to solve TSP DEC O(log2 n(Cmax − Cmin) times,
which is a polynomial number of times.

An important problem for which the distinction between the decision problem and giving a
solution to the decision problem – the search problem – is significant is primality. It was an open
question (until Aug 2002) whether or not there exist polynomial-time algorithms for testing whether
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or not an integer is a prime number. 2 However, for the corresponding search problem, finding all
factors of an integer, no similarly efficient algorithm is known.

Another example: A graph is called k-connected if one has to remove at least k vertices in order
to make it disconnected. A theorem says that there exists a partition of the graph into k connected
components of sizes n1, n2 . . . nk such that

∑k
i=1 nk = n (the number of vertices), such that each

component contains one of the vertices v1, v2 . . . vk. The optimization problem is finding a partition
such that

∑
i |ni − n̄| is minimal, for n̄ = n/k. No polynomial-time algorithm is known for k ≥ 4.

However, the corresponding recognition problem is trivial, as the answer is always Yes once the
graph has been verified (in polynomial time) to be k-connected. So is the evaluation problem: the
answer is always the sum of the averages rounded up with a correction term, or the sum of the
averages rounded down, with a correction term for the residue.

For the rest of the discussion, we shall refer to the decision version of a problem, unless stated
otherwise.

13.2 The class NP

A very important class of decision problems is called NP, which stands for nondeterministic
polynomial-time. It is an abstract class, not specifically tied to optimization.

Definition 13.1. A decision problem is said to be in NP if for all “Yes” instances of it there exists

a polynomial-length “certificate” that can be used to verify in polynomial time that the answer is

indeed Yes.

Prover

Yes

certificate)

Verifier

(with a poly-length

checks certificate

in poly-time

Figure 39: Recognizing Problems in NP

Imagine that you are a verifier and that you want to be able to confirm that the answer to a
given decision problem is indeed “yes”. Problems in NP have poly-length certificates that, without
necessarily indicating how the answer was obtained, allow for this verification in polynomial time
(see Figure 39).

2There are reasonably fast superpolynomial-time algorithms, and also Miller-Rabin’s algorithm, a randomized

algorithm which runs in polynomial time and tells either “I don’t know” or “Not prime” with a certain probability.

In August 2002 (here is the official release) ”Prof. Manindra Agarwal and two of his students, Nitin Saxena and

Neeraj Kayal (both BTech from CSE/IITK who have just joined as Ph.D. students), have discovered a polynomial

time deterministic algorithm to test if an input number is prime or not. Lots of people over (literally!) centuries

have been looking for a polynomial time test for primality, and this result is a major breakthrough, likened by some

to the P-time solution to Linear Programming announced in the 70s.”
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To illustrate, consider again the decision version of TSP. That is, we want to know if there exists
a tour with total distance ≤ M . If the answer to our problem is “yes”, the prover can provide us
with such a tour and we can verify in polynomial time that 1) it is a valid tour and 2) its total
distance is ≤ M . However if the answer to our problem is “no”, then (as far as we know) the
only way that to verify this would be to check every possible tour (this is certainly not a poly-time
computation).

13.2.1 Some Problems in NP

Hamiltonian Cycle = {Is there a Hamiltonian circuit in the graph G = (V,A)?}
Certificate - the tour.

Clique = {Is there a clique of size ≤ k in the graph G = (V,E)?}
Certificate - the clique.

Compositeness = {Is N composite (can N be written as N = ab, a and b are integers, s.t.
a, b > 1)? }

Certificate - the factors a and b. ( Note 1: log2N is the length of the input, length of certificate
≤ 2 log2N ; and we can check in poly-time (multiply). Note 2: Giving only one of the factors is
also OK.)
Primality = {Is N prime?}

Certificate - not so trivial. In fact, it was only in 1976 that Pratt showed that one exists.
TSP = {Is there a tour in G = (V,A) the total weight of which is ≤ m?}

Certificate - the tour.
Dominating Set = {Is there is a dominating set S ⊆ V in a graph G = (V,A) such that |S| ≤ k?}

Certificate - the set. (A vertex is said to dominate itself and its neighbors. A dominating set
dominates all vertices)
LP = {Is there a vector �x, �x ≥ 0 and A�x ≤ b such that C�x ≤ k?}

Certificate - the feasible vector �x. (This vector may be arbitrarily large. However, every basic
feasible solution �x can be shown to be poly-length in terms of the input. Clearly, checkable in
polynomial-time.)
IP = {Is there a vector �x, �x ≥ 0, �x ∈ Z and A�x ≤ b such that C�x ≤ k?}

Certificate - a feasible vector �x. (just like LP, it can be certified in polynomial time; it is also
necessary to prove that the certificate is only polynomial in length. see AMO, pg 795.)
k-center = {Given a graph G = (V,E) weighted by w : V×V �→ R+, is there a subset S ⊆ V ,
|S| = k, such that ∀v ∈ V \ S, ∃s ∈ S such that w(v, s) ≤ m?}

Certificate - the subset.
Partition = {Given a list of integers {b1, . . . , bn}, of sum

∑n
i=1 bi = 2K, is there a subset S ⊆

{1, . . . , n} such that
∑

i∈S bi = K?}
Certificate - the subset.

13.3 co-NP

Suppose the answer to the recognition problem is No. How would one certify this?

Definition 13.2. A decision problem is said to be in co-NP if for all “No” instances of it there

exists a polynomial-length “certificate” that can be used to verify in polynomial time that the answer

is indeed No.
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13.3.1 Some Problems in co-NP

Primality = {Is N prime? }
“No” Certificate - the factors.

LP = {Is there a vector �x, �x ≥ 0 and A�x ≤ b such that C�x ≤ k? }
“No” Certificate - the feasible dual vector �y such that �y ≤ 0, �yTA ≤ c and �yT b > k (from Weak

Duality Thm.)

13.4 NP and co-NP

As a verifier, it is clearly nice to have certificates to confirm both “yes” and “no” answers; that is,
for the problem to be in both NP and co-NP. From Sections 13.2.1 and 13.3.1, we know that the
problems Prime and LP are in both NP and co-NP. However, for many problems in NP, such as
TSP, there is no obvious polynomial “no” certificate.

Before we look at these 2 types of problems in detail, we define P , the class of polynomially
solvable problems.

Definition 13.3. Let P be the class of polynomial-time (as a function of the length of the input)

solvable problems.

It is easy to see that P ⊆NP∩co-NP – just find an optimal solution. It is not known, however,
whether, P =NP∩co-NP; the problems that are in the intersection but for which no polynomial-
time algorithm is known are usually very pathological. Primality ∈ NP∩co-NP; this gave rise to the
conjecture that primality testing can be carried out in polynomial time, as indeed it was recently
verified to be.

P

Co-NPNP

PRIME
COMPOSITE

+   +

Figure 40: NP , co-NP , and P

Notice that the fact that a problem belongs to NP ∩ co-NP does not automatically suggest a
polynomial time algorithm for the problem.

However, being in NP ∩ co-NP is usually considered as strong evidence that there exists a
polynomial algorithm. Indeed, many problems were known to be in NP ∩ co-NP well before a
polynomial algorithm was developed (ex. LP, primality); this membership is considered to be
strong evidence that there was a polynomial algorithm out there, giving incentive for researchers
to put their efforts into finding one. Both primality and compositeness lie in ∈ NP ∩ co-NP;
this gave rise to the conjecture that both can be solved in polynomial time.

On the flip-side, NP-Complete problems, which we turn to next, are considered to be immune
to any guaranteed polynomial algorithm.
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13.5 NP-completeness and reductions

A major open question in contemporary computer science is whether P =NP. It is currently
believed that P 	=NP.

As long as this conjecture remains unproven, instead of proving that a certain NPproblem is
not in P , we have to be satisfied with a slightly weaker statement: if the problem is in P then
P =NP, that is, a problem is “at least as hard” as any other NPproblem. Cook has proven this for
a problem called SAT; for other problems, this can be proven using reductions.

In the rest of this section, we formally define reducibility and the complexity class NP-complete.
Also, we provide some examples.

13.5.1 Reducibility

There are two definitions of reducibility, Karp and Turing; they are known to describe the same
class of problems. The following definition uses Karp reducibility.

Definition 13.4. A problem P1 is said to reduce in polynomial time to problem P2 (written as

“P1 ∝ P2”) if there exists a polynomial-time algorithm A1 for P1 that makes calls to a subroutine

solving P2 and each call to a subroutine solving P2 is counted as a single operation.

We then say that P2 is at least as hard as P1. (Turing reductions allow for only one call to the
subroutine.)

Important: In all of this course when we talk about reductions, we will always be referring to
polynomial time reductions.

Theorem 13.5. If P1 ∝ P2 and P2 ∈P then P1 ∈P

Proof. Let the algorithm A1 be the algorithm defined by the P1 ∝ P2 reduction. Let A1 run in

time O(p1(|I1|)) (again, counting each of the calls to the algorithm for P2 as one operation), where

p1() is some polynomial and |I1| is the size of an instance of P1.

Let algorithm A2 be the poly-time algorithm for problem P2, and assume this algorithm runs

in O(p2(|I2|)) time.

The proof relies on the following two observations:

1. The algorithm A1 can call at most O(p1(|I1|)) times the algorithm A2. This is true since each

call counts as one operation, and we know that A1 performs O(p1(|I1|)) operations.
2. Each time the algorithm A1 calls the algorithm A2, it gives it an instance of P2 of size at

most O(p1(|I1|)). This is true since each bit of the created P2 instance is either a bit of the

instance |I1|, or to create this bit we used at least one operation (and recall that A1 performs

O(p1(|I1|) operations).
We conclude that the resulting algorithm for solving P1 (and now counting all operations)

performs at most O(p1(|I1|) + p1(|I1|) ∗ p2((p1(|I1|)))) operations. Since the multiplication and

composition of polynomials is still a polynomial, this is a polynomial time algorithm.

Corollary 13.6. If P1 ∝ P2 and P1 	∈P then P2 	∈P
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13.5.2 NP-Completeness

A problem Q is said to be NP-hard if B ∝ Q ∀B ∈ NP. That is, if all problems in NP are
polynomially reducible to Q.

A decision problem Q is said to be NP-Complete if:
1. Q ∈ NP, and
2. Q is NP-Hard.

It follows from Theorem 13.5 that if any NP-complete problem were to have a polynomial algorithm,
then all problems in NP would. Also it follows from Corollary 13.6 that is we prove that any NP-
complete problem has no polynomial time algorithm, then this would prove that no NP-complete
problem has a polynomial algorithm.

Note that when a decision problem is NP-Complete, it follows that its optimization problem is
NP-Hard.

Conjecture: P 	= NP. So, we do not expect any polynomial algorithm to exist for an NP-complete
problem.

Now we will show specific examples of NP-complete problems.

SAT = {Given a boolean function in conjunctive normal3 form (CNF), does it have a satisfying
assignment of variable? }

(X1 ∨X3 ∨ X̄7) ∧ (X15 ∨ X̄1 ∨ X̄3) ∧ ( ) . . . ∧ ( )

Theorem 13.7 (Cook-Levin (1970)). SAT is NP-Complete

Proof.

SAT is in NP: Given the boolean formula and the assignment to the variables, we can substitute

the values of the variables in the formula, and verify in linear time that the assignment indeed

satisfies the boolean formula.

B ∝ SAT ∀B ∈ NP: The idea behind this part of the proof is the following: Let X be an instance

of a problem Q, where Q ∈ NP. Then, there exists a SAT instance F (X,Q), whose size is

polynomially bounded in the size of X, such that F (X,Q) is satisfiable if and only if X is a

“yes” instance of Q.
The proof, in very vague terms, goes as follows. Consider the process of verifying the cor-

rectness of a “yes” instance, and consider a Turing machine that formalizes this verification

process. Now, one can construct a SAT instance (polynomial in the size of the input) mim-

icking the actions of the Turing machine, such that the SAT expression is satisfiable if and

only if verification is successful.

3In boolean logic, a formula is in conjunctive normal form if it is a conjunction of clauses (i.e. clauses are “linked

by and”), and each clause is a disjunction of literals (i.e. literals are “linked by or”; a literal is a variable or the

negation of a variable).
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Karp4 pointed out the practical importance of Cook’s theorem, via the concept of reducibility.
To show that a problem Q is NP-complete, one need only demonstrate two things:
1. Q ∈ NP, and
2. Q is NP-Hard. However, now to show this we only need to show that Q′ ∝ Q, for some

NP-hard or NP-complete problem Q′. (A lot easier than showing that B ∝ Q ∀B ∈ NP,
right?)

Because all problems in NP are polynomially reducible to Q′, if Q′ ∝ Q, it follows that Q is at
least as hard as Q′ and that all problems in NP are polynomially reducible to Q.

Starting with SAT, Karp produced a series of problems that he showed to be NP-complete.5

To illustrate how we prove NP-Completeness using reductions, and that, apparently very dif-
ferent problems can be reduced to each other, we will prove that the Independent Set problem is
NP-Complete.

Independent Set (IS) = {Given a graph G = (V,E), does it have a subset of nodes S ⊆ V of
size |S| ≥ k such that: for every pair of nodes in S there is no edge in E between them?}
Theorem 13.8. Independent Set is NP-complete.

Proof.

IS is in NP: Given the graph G = (V,E) and S, we can check in polynomial time that: 1) |S| ≥ k,

and 2) there is no edge between any two nodes in S.

IS is NP-Hard: We prove this by showing that SAT ∝ IS.

i) Transform input for IS from input for SAT in polynomial time

Suppose you are given an instance of SAT, with k clauses. Form a graph that has a

component corresponding to each clause. For a given clause, the corresponding compo-

nent is a complete graph with one vertex for each variable in the clause. Now, connect

two nodes in different components if and only if they correspond to a variable and its

negation. This is clearly a polynomial time reduction.

ii) Transform output for SAT from output for IS in polynomial time

If the graph has an independent set of size ≥ k, then our the SAT formula is satisfiable.

iii) Prove the correctness of the above reduction

To prove the correctness we need to show that the resulting graph has an independent

set of size at least k if and only if the SAT instance is satisfiable.

(→) [G has an independent set of size at least k → the SAT instance is satisfiable]

We create a satisfiable assignment by making true the literals corresponding to

the nodes in the independent set; and we make false all other literals. That this

assignment satisfies the SAT formula follows from the following observations:

4Reference: R. M. Karp. Reducibility Among Combinatorial Problems, pages 85–103. Complexity of Computer

Computations. Plenum Press, New York, 1972. R. E. Miller and J. W. Thatcher (eds.).
5For a good discussion on the theory of NP-completeness, as well as an extensive summary of many known NP-

complete problems, see: M.R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. Freeman, San Francisco, 1979.



IEOR 266 notes: Updated 2018 92

1. The assignment is valid since the independent set may not contain a node corre-

sponding to a variable and a node corresponding to the negation of this variable.

(These nodes have an edge between them.)

2. Since 1) the independent set may not contain more than one node of each of the

components of G, and 2) the value of the independent set is ≥ k (it is actually

equal to k); then it follows that the independent set must contain exactly one

node from each component. Thus every clause is satisfied.

(←) [the SAT instance is satisfiable → G has an independent set of size at least k]

We create an independent set of size equal to k by including in S one node from each

clause. From each clause we include in S exactly one of the nodes that corresponds

to a literal that makes this clause true. That we created an independent set of size

k follows from the following observations:

1. The constructed set S is of size k since we took exactly one node “from each

clause”, and the SAT formula has k clauses.

2. The set S is an independent set since 1) we have exactly one node from each

component (thus we can’t have intra-component edges between any two nodes

in S); and 2) the satisfying assignment for SAT is a valid assignment, so it

cannot be that both a variable and its negation are true, (thus we can’t have

inter-component edges between any two nodes in S).

An example of the reduction is illustrated in Figure 41 for the 3-SAT expression (x1∨x2∨x3)∧
(x̄1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x̄3 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4).

x
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xx x

3−SAT Reduction to Independent Set
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1

2 3 4

Figure 41: Example of 3-SAT reduction to Independent set

0-1 Knapsack is NP-complete.
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Proof. First of all, we know that it is in NP, as a list of items acts as the certificate and we can

verify it in polynomial time.

Now, we show that Partition ∝ 0-1 Knapsack. Consider an instance of Partition. Construct an

instance of 0-1 Knapsack with wi = ci = bi for i = 1, 2, . . . , n, and W = K = 1
2

∑n
i=1 bi. Then, a

solution exists to the Partition instance if and only if one exists to the constructed 0-1 Knapsack

instance.

Exercise: Try to find a reduction in the opposite direction. That is, assume that partition is

NP-complete and prove that 0-1 Knapsack is NP-complete.

k-center is NP-complete.

Proof. The k-center problem is in NP from Section 13.2. The dominating set problem is known to

be NP-complete; therefore, so is k-center (from Section 13.5.1).

About the Knapsack problem:
The Knapsack problem is:
Problem: Given a set of items, each with a weight and value (cost), determine the subset of items
with maximum total weight and total cost less than a given budget.

The binary knapsack problem’s mathematical programming formulation is as follows.

max

n∑
j=1

wjxj

n∑
j=1

vjxj ≤ B

xj ∈ {0, 1}
The problem can be solved by a longest path procedure on a graph – DAG– where for each

j ∈ {1, . . . , n} and b ∈ {0, 1, . . . , B} we have a node. This algorithm can be viewed alternatively
also as a dynamic programming with fj(b) the value of max

∑j
i=1 uixi such that

∑j
i=1 vixi ≤ b.

This is computed by the recursion:

fj(b) = max{fj−1(b); fj−1(b− vj) + uj}.
There are obvious boundary conditions,

f1(b) =

{
0 if b ≤ v1 − 1
u1 if b ≥ v1

The complexity of this algorithm is O(nB). So if the input is represented in unary then the
input length is a polynomial function of n and b and this run time is considered polynomial. The
knapsack problem, as well as any other NP-complete problem that has a poly time algorithm for
unary input is called weakly NP-complete.

14 Approximation algorithms

Approximation algorithms have developed in response to the impossibility of solving a great variety
of important optimization problems. Too frequently, when attempting to get a solution for a
problem, one is confronted with the fact that the problem is NP-hard.
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If the optimal solution is unattainable then it is reasonable to sacrifice optimality and settle for
a ‘good’ feasible solution that can be computed efficiently. Of course we would like to sacrifice as
little optimality as possible, while gaining as much as possible in efficiency.

Approaches to deal with NP-hard problems:
Integer Programming Integer programming tools are forms of implicit enumeration algorithms

that combine efficient derivations of lower and upper bounds with a hopeful search for an
optimal solution. The amount of time required to solve even a typical moderate-size opti-
mization problem is exorbitant. Instead, the user interrupts the enumeration process either
when the current solution is deemed satisfactory, or when the running time has exceeded
reasonable limit. The point is that integer programming algorithms provide no guarantee.
It is impossible to tell if 5 additional minutes of running time would get you a significantly
better solution, or if 5 more days of running time would yield no improvement at all.

Heuristics ‘Heuristics’ is the nomenclature for rules-of-thumb which in itself is a euphemism for
simple and invariably polynomial algorithms. Heuristics work quickly and efficiently. The
quality of the solution they deliver is another matter altogether: heuristics provide no way to
know how close (or far) is the solution found with respect to the optimal solution.

Metaheuristics Metaheuristics are heuristic methods that can be applied to a very general class
of computational problems. Some examples are: simulated annealing, genetic algorithms,
tabu search, ant colony algorithms, etc. As hueristics, metaheuristics provide no way to know
how close (or far) is the solution found with respect to the optimal solution.

Approximation algorithms An approximation algorithm is necessarily polynomial, and is eval-
uated by the worst case possible relative error over all possible instances of the problem.

Definition 14.1. A polynomial algorithm, A, is said to be a δ-approximation algorithm for a

minimization problem P if for every problem instance I of P with an optimal solution value OPT (I ),

it delivers a solution of value A(I) satisfying,
A(I) ≤ δOPT (I ).

Naturally, δ > 1 and the closer it is to 1, the better. Similarly, for maximization problems
a δ-approximation algorithm delivers for every instance I a solution that is at least δ times the
optimum.

An alternative, and equivalent, definition of approximation algorithms is the following. For a
minimization problem, a δ-approximation algorithm is a polynomial algorithm, such that for every
instance I, the algorithm delivers a value Alg(I) with Opt(I) ≤ Alg(I) ≤ δ · Opt(I), where Opt(I)
is the optimal solution value. i.e.

SupI

{
Alg(I)

Opt(I)

}
≤ δ

An algorithm that is a δ-approximation, guarantees relative error ≤ δ − 1:

Alg(I) −Opt(I)

Opt(I)
≤ δ − 1 .

For a maximization problem, Opt(I) ≥ Alg(I) ≥ δ · Opt(I), 0 ≤ δ ≤ 1.

14.1 Traveling salesperson problem (TSP)

The Travelling Salesperson Problem (TSP for short) is to visit a given collection of cities (or nodes
in a graph) once each and return to the home base while traversing the shortest possible tour.
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The problem is a well known and studied intractable problem. Here we consider the TSP with
triangle inequality, or Δ-inequality satisfied (weights on edges satisfying ∀ijk, wij + wjk ≥ wik).
Even with triangle inequality the problem is still NP-hard. However, this problem has a relatively
easy 2-approximation algorithm based on the generation of a Minimum Spanning Tree (MST). A
minimum spanning tree can be found in a graph polynomially and very efficiently (we will cover
this problem in a future lecture). Recall that a graph is Eulerian (or has an Eulerian tour) if and
only if every node in the graph has even degree. The Eulerian tour in an Eulerian graph can be
constructed quickly - in linear time.

MST-Algorithm:

Step 1: Find a minimum spanning tree (MST) in the graph.

Step 2: “Double” the edges of the spanning tree (to get a graph in which each node has even degree).

Construct an Eulerian tour.

Step 3: Construct a valid tour that visits each node exactly once using “short-cuts”.

Since the Δ-inequality is satisfied, the shortcut tour is no longer than the Eulerian tour, the
length of which is no more than two times the length of the minimum spanning tree (denoted by
|MST |). Also |MST | ≤ |TSP | for |TSP | denoting the length of the optimal tour, because a tour
is a spanning tree with one additional edge:

⇒ |MST | ≤ |TSP | ≤ 2|MST | .

Now,
|MST-Algorithm(I)| ≤ 2|MST | ≤ 2|TSP | = 2OPT (I)

⇒ MST-Algorithm is a 2-approximation algorithm.

A more subtle scheme for approximating TSP with Δ-inequality is due to Christofides (1978).
That algorithm uses the fact that some nodes in the spanning tree are of even degree and dou-
bling the edges adjacent to these nodes is superfluous and wasteful. Instead the algorithm due
to Christofides works by adding only the bare minimum necessary additional edges to produce an
Eulerian graph, thus delivering a better approximation, 3/2-approximation.

Christofides 1.5-approximation Algorithm:

Step 1: Find a minimum spanning tree (MST) in the graph. Let the set of odd degree vertices in MST be

V odd.

Step 2: Find the minimum weight perfect matching induced on the set of nodes V odd, M∗. Add the edges

of M∗ to the edges of MST to create a graph in which each node has even degree. Construct an

Eulerian tour.

Step 3: Construct a valid tour that visits each node exactly once using “short-cuts”.

We know that the weight of the edges in MST form a lower bound on the optimum. We now
show that the weight of the edges in M∗ forms a lower bound to 1

2 |TSP |. To see that observe that
the optimal tour can be shortcut and restricted to the set of nodes V odd without an increase in cost.
Now V odd contains an even number of vertices. An even length tour on V odd can be partitioned to
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two perfect matchings M1 and M2 by taking the alternate set of edges in one, and the remaining
alternate set in the other. We thus have

|M1|, |M2| ≥ |M∗|.

Thus, |TSP | ≥ |M1|+ |M2| ≥ 2|M∗| and |M∗| ≤ 1
2 |TSP |.

Therefore the algorithm delivered by Christofides’ algorithm delivers a tour of length |MST |+
|M∗| ≤ 3

2 |TSP |.

15 Integer programs with two variables per inequality (IP2)

15.1 A practical example: open-pit mining

Open-pit mining is a surface mining operation in which blocks of earth are extracted from the
surface to retrieve the ore contained in them. During the mining process, the surface of the land is
being continuously excavated, and a deeper and deeper pit is formed until the operation terminates.
The final contour of this pit mine is determined before mining operation begins. (Figure 42) To

Ground

$10M$10M

Block i

vi = value of commodity in i
ci = cost of excavating block i
wi = vi - ci

Figure 42: Open pit mining

design the optimal pit – one that maximizes profit, the entire area is divided into blocks, and
the value of the ore in each block is estimated by using geological information obtained from drill
cores. Each block has a weight associated with it, representing the value of the ore in it, minus
the cost involved in removing the block. While trying to maximize the total weight of the blocks
to be extracted, there are also contour constraints that have to be observed. These constraints
specify the slope requirements of the pit and precedence constraints that prevent blocks from being
mined before others on top of them. Subject to these constraints, the objective is to mine the most
profitable set of blocks.

The problem can be represented on a directed graph G = (V,A). Each block i corresponds
to a node with weight wi representing the net value of the individual block. The net value wi is
computed as the assessed value vi of the ore in that block, from which the cost ci of excavating that
block alone is deducted. There is a directed arc from node i to node j if block i cannot be excavated
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before block j which is on a layer right above block i. This precedence relationship is determined
by the engineering slope requirements. Suppose block i cannot be excavated before block j, and
block j cannot be excavated before block k. By transitivity this implies that block i cannot be
excavated before block k. We choose in this presentation not to include the arc from i to k in the
graph and the existence of a directed path from i to k implies the precedence relation. Including
only arcs between immediate predecessors reduces the total number of arcs in the graph. Thus to
decide which blocks to excavate in order to maximize profit is equivalent to finding a maximum
weighted set of nodes in the graph such that all successors of all nodes are included in the set.

Notice that the problem is trivial if wi ≤ 0,∀i ∈ V (in which no block would be excavated) or
if wi ≥ 0,∀i ∈ V (in which all the blocks would be excavated).

Let xi =

{
1 if block i is selected
0 otherwise

.

Then the open pit mining problem can be formulated as follows:

max
∑
i∈V

wixi

s.t. xi ≤ xj ∀(i, j) ∈ A

0 ≤ xi ≤ 1 ∀i ∈ V

Notice that each inequality constraint contains exactly one 1 and one −1 in the coefficient matrix.
The constraint matrix is totally unimodular. Therefore, we do not need the integrality constraints.

The following website http://riot.ieor.berkeley.edu/riot/Applications/OPM/OPMInteractive.html
offers an interface for defining, solving, and visualizing the open pit mining problem.

The open-pit mining problem is a special case of the maximum closure problem. The next
subsection discusses the maximum closure problem in detail.

15.2 The maximum closure problem

We begin by defining a closed set on a graph.

Definition 15.1. Given a directed graph G = (V,A), a subset of the nodes D ⊆ V is closed, if for

every node in D, its successors are also in D.

(a) Closed set (b) Not a closed set

Figure 43: Closed set v.s. unclosed set

http://riot.ieor.berkeley.edu/riot/Applications/OPM/OPMInteractive.html
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Consider a directed graph G = (V,A) where every node i ∈ V has a corresponding weight wi.
The maximum closure problem is to find a closed set V ′ ⊆ V with maximum total weight. That is,
the maximum closure problem is:

Problem Name: Maximum closure

Instance: Given a directed graph G = (V,A), and node weights (positive or nega-
tive) wi for all i ∈ V .

Optimization Problem: find a closed subset of nodes V ′ ⊆ V such that
∑

i∈V ′ wi

is maximum.

We can formulate the maximum closure problem as an integer linear program (ILP) as follows.

max
∑
i∈V

wixi

s.t. xi ≤ xj ∀(i, j) ∈ A

xi ∈ {0, 1} ∀i ∈ V

where xi is a binary variable that takes the value 1 if node i is in the maximum closure, and 0
otherwise. The first set of constraints imposes the requirement that for every node i included in
the set, its successor is also in the set. Observe that since every row has exactly one 1 and one
-1, the constraint matrix is totally unimodular (TUM). Therefore, its linear relaxation formulation
results in integer solutions. Specifically, this structure also indicates that the problem is the dual
of a flow problem.

Johnson [Joh68] seems to be the first researcher who demonstrated the connection between the
maximum closure problem and the selection problem (i.e., maximum closure on bipartite graphs),
and showed that the selection problem is solvable by max flow algorithm. Picard [Pic76], demon-
strated that a minimum cut algorithm on a related graph, solves the maximum closure problem.

Let V + ≡ {j ∈ V |wi > 0}, and V − ≡ {i ∈ V |wi ≤ 0}. We construct an s, t-graph Gst as follows.
Given the graph G = (V,A) we set the capacity of all arcs in A equal to ∞. We add a source s, a
sink t, set As of arcs from s to all nodes i ∈ V + (with capacity us,i = wi), and set At of arcs from
all nodes j ∈ V − to t (with capacity uj,t = |wj | = −wj). The graph Gst = {V ∪{s, t}, A∪As ∪At}
is a closure graph (a closure graph is a graph with a source, a sink, and with all finite capacity arcs
adjacent only to either the source or the sink.) This construction is illustrated in Figure 44.

G = (V,A) 

-wj ≥ 0  Wi > 0 ∞ 

Figure 44: Visual representation of Gst.
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Claim 15.2. If (s ∪ S, t ∪ T ) is a finite s− t cut on Gs,t, then S is a closed set on G.

Proof. Assume by contradiction that S is not closed. This means that there must be an arc

(i, j) ∈ A such that i ∈ S and j ∈ T . This arc must be on the cut (S, T ), and by construction

ui,j =∞, which is a contradiction on the cut being finite.

Theorem 15.3. If (s ∪ S, t ∪ T ) is an optimal solution to the minimum s− t cut problem on Gs,t,

then S is a maximum closed set on G.

Proof.

C (s ∪ S, t ∪ T ) =
∑

(s,i)∈Ast, i∈T
us,i +

∑
(j,t)∈Ast, j∈S

uj,t

=
∑

i∈T∩V +

wi +
∑

j ∈S∩V −
−wj

=
∑
i∈V +

wi −
∑

i∈S∩V +

wi −
∑

j∈S∩V −
wj

= W+ −
∑
i∈S

wi

(Where W+ =
∑

i∈V + wi, which is a constant.) This implies that minimizing C (s ∪ S, t ∪ T ) is

equivalent to minimizing W+ −∑i∈S wi, which is in turn equivalent to maxS⊆V
∑

i∈S wi.

Therefore, any source set S that minimizes the cut capacity also maximizes the sum of the weights

of the nodes in S. Since by Claim 15.2 any source set of an s− t cut in Gs,t is closed, we conclude

that S is a maximum closed set on G.

Variants/Special Cases

• In the minimum closure problem we seek to find a closed set with minimum total weight.
This can be solved by negating the weights on the nodes in G to obtain G−, constructing G−

s,t

just as before, and solving for the maximum closure. Under this construction, the source set
of a minimum s− t cut on Gs,t is a minimum closed set on G. See Figure 45 for a numerical
example.

• The selection problem is a special case of the maximum closure problem.

Numerical Example
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(a) Minimum closure problem (b) Negated graph

(c) Modified (max flow) graph (d) Source of min cut = min closure set on G

Figure 45: Converting a minimum closure problem to a maximum closure problem. Under this

transformation, the source set of a minimum cut is also a minimum closed set on the original

graph.

15.3 Monotone IP2

We first focus on integer programming with monotone inequalities (Monotone IP2).

Definition 15.4. An inequality is said to be monotone if it is of the form ax−by ≥ c or ax−by ≤ c,

where x, y are variables and a and b of the same sign.

A typical Monotone IP2 is shown below:

(Monotone IP2) max
∑
i∈V

wixi

s.t. aijxi − bijxj ≥ cij ∀ (i, j) ∈ E

li ≤ xi ≤ ui, integer ∀ i ∈ V

where aij ≥ 0, bij ≥ 0,∀(i, j) ∈ E.
Note that assuming aij , bij in all monotone inequalities of the problem to be positive and the

inequality relationship to be “≥” does not impair the generality of Monotone IP2. It is easy to
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see that monotone inequality ax − by ≤ c can be transformed into by − ax ≥ −c, and monotone
inequality ax − by ≥ c with a ≤ 0, b ≤ 0 can be transformed into (−b)y − (−a)x ≥ c with
−b ≥ 0,−a ≥ 0.

Monotone IP2 is NP-hard. This was proved by Lagarias [Lag85] for the simultaneous diophan-
tine approximation problem which is a special case of monotone IP2. However Hochbaum and Naor
showed, in [HN94], that monotone IP2 is solved in pseudopolynomial time that depends on the the
range of the variables only. This means that monotone IP2 is weakly NP-hard. Note that for all
interesting applications the variables have small range - typically the variables are binary. Hence
the procedure described for monotone IP2 runs in polynomial time for small range variables. We
next describe how to solve Monotone IP2 as a maximum closure problem.

We first make a change of variables in our original problem. In particular we write variable

xi as a summation of binary variables xi = li +
∑ui

p=li+1 x
(p)
i , and impose the restriction that

x
(p)
i = 1 =⇒ x

(p−1)
i = 1 for all p = li + 1, . . . , ui.

With this change of variables we rewrite Monotone IP2 as follows:

max
∑
i∈V

wili +
∑
i∈V

wi

ui∑
p=li+1

x
(p)
i (16a)

s.t. x
(p)
j ≤ x

(q(p))
i ∀ (i, j) ∈ E for p = lj + 1, . . . , uj (16b)

x
(p)
i ≤ x

(p−1)
i ∀ i ∈ V for p = li + 1, . . . , ui (16c)

x
(p)
i ∈ {0, 1} ∀ i ∈ V for p = li + 1, . . . , ui, (16d)

where q(p) ≡
⌈
cij+bijp

aij

⌉
.

Inequality (16c) guarantees the restriction that x
(p)
i = 1 =⇒ x

(p−1)
i = 1 for all p = li+1, . . . , ui;

Inequality (16b) follows from the monotone inequalities in the original problem. In particular, for
any monotone inequality aijxi − bijxj ≥ cij with aij, bij ≥ 0, aijxi − bijxj ≥ cij ⇐⇒ xi ≥
cij+bijxj

aij

xi integer
=⇒ xi ≥

⌈
cij+bijxj

aij

⌉
. Equivalently, if xj ≥ p, we must have xi ≥ q(p) =

⌈
cij+bijp

aij

⌉
. In

terms of the newly defined binary variables, this is further equivalent to xpj = 1 =⇒ x
q(p)
i = 1, i.e.,

x
(p)
j ≤ x

(q(p))
i .

Now it’s obvious that Monotone IP2 is the maximum closure problem of an s, t-Graph Gst

defined as follows. First still define V + ≡ {i ∈ V |wi > 0} and V − ≡ {j ∈ V |wj ≤ 0} as before, and
the sets of nodes and arcs are constructed below.
Set of nodes:

Add a source s, a sink t, and nodes x
(li)
i , x

(li+1)
i , . . . , x

(ui)
i for each i ∈ V .

Set of arcs:

1) For any i ∈ V +, connect s to x
(p)
i , p = li + 1, . . . , ui by an arc with capacity wi.

2) For any i ∈ V −, connect x(p)i , p = li + 1, . . . , ui to t by an arc with capacity |wi| = −wi.

3) For any i ∈ V , connect x
(p)
i to x

(p−1)
i , p = li + 1, . . . , ui, by an arc with capacity ∞, and

connect s to x
(li)
i with an arc with capacity ∞.

4) For any (i, j) ∈ E, connect x
(p)
j to x

q(p)
i by an arc with capacity ∞ for all p = li + 1, . . . , uj .

(Note that for situations where q(p) > ui, we must have x
(p)
j = 0. Therefore, we can either remove

the node x
(p)
j by redefining a tighter upper bound for xj, or simply fix x

(p)
j to be zero by introducing

an arc from x
(p)
j to t with capacity ∞. )

This construction is illustrated in Figure 46.
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Figure 46: Illustration of Gst for Monotone IP2 and example of a finite s− t cut

Remarks:

• It should be noted that the maximum closure problem is defined on an s, t-Graph with
2 +

∑
i∈V (ui − li) nodes. The size of the graph is not a polynomial function of the length

of the input. Therefore, the original Monotone IP2 is weakly NP-hard and can be solved by
pseudo-polynomial time algorithm based on the construction of a maximum closure problem.

• For the min version of Monotone IP2, we can construct the s, t-Graph in the same way and
define closure with respect to the sink set instead.

15.4 Non–monotone IP2

Now let’s look at the non–monotone integer program with two variables per inequality:

(IP2) min
∑
i∈V

wixi

s.t. aijxi + bijxj ≥ cij ∀ (i, j) ∈ E

li ≤ xi ≤ ui, integer ∀ i ∈ V

This problem is more general than Monotone IP2, as we don’t impose any restrictions on the signs
of aij and bij . The problem is clearly NP-hard, since vertex cover is a special case. We now give a
2-approximation algorithm for it.

We first “monotonize” IP2 by replacing each variable xi in the objective by xi =
x+
i −x−

i
2 where

li ≤ x+i ≤ ui and −ui ≤ x−i ≤ −li.
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Each non-monotone inequality aijxi + bijxj ≤ cij is replaced by the following two inequalities:

aijx
+
i − bijx

−
j ≤ cij

−aijx−i + bijx
+
j ≤ cij

And each monotone inequality a′ijxi − b′ijxj ≤ c′ij is replaced by the two inequalities:

a′ijx
+
i − b′ijx

+
j ≤ cij

−a′ijx−i + b′ijx
−
j ≤ cij

With such transformations we get the following problem:

(IP2’)min
1

2

(∑
i∈V

wix
+
i +

∑
i∈V

(−wi)x
−
i

)

s.t. aijx
+
i − bijx

−
j ≤ cij ∀ (i, j) ∈ E

−aijx−i + bijx
+
j ≤ cij ∀ (i, j) ∈ E

li ≤ x+i ≤ ui, integer ∀ i ∈ V

−ui ≤ x−i ≤ −li, integer ∀ i ∈ V

Let’s examine the relationship between IP2 and IP2’. Given any feasible solution {xi}i∈V for
IP2, we can construct a corresponding feasible solution for IP2’ with the same objective value, by
letting x+i = xi, x

−
i = −xi, i ∈ V ; On the other hand, given any feasible solution {x+i , x−i }i∈V for

IP2’, {xi = x+
i −x−

i
2 }i∈V satisfies the inequality constraint in IP2 (To see this, simply sum up the

two inequality constraints in IP2’ and divide the resulted inequality by 2.) but may not be integral.
Therefore, IP2’ provides a lower bound for IP2.

Since IP2’ is a monotone IP2, we can solve it in integers (we can reduce it to maximum closure,
which in turn reduces to the minimum s,t-cut problem). Its solution is a lower bound on IP2.
In general it is not trivial to round the solution obtained and get an integer solution for IP2.
However we can prove that there always exists a way to round the variables and get our desired
2-approximation.

15.5 2-approximations for integer programs with two variables per inequality

We have now established that for any integer program on two variables per inequality it is possible
to generate a superoptimal half integral solution in polynomial time. The following was shown in
[HNMT93, Hoc97].

15.5.1 The quality of the bound provided by the monotonized system

Given a system of inequalities with two variables per inequality, let the set of feasible solutions for
this system be

S = {x ∈ Rn | Ax ≤ c} ,
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and the feasible solutions to the monotone system resulting from the transformation above,

S(2) = {(x+,x−) | A(2)(x+,x−) ≤ c(2) , x+,x− ∈ Rn} .

If x ∈ S, x+ = x, and x− = −x, then (x+,x−) ∈ S(2). So, for every feasible solution in S, there
exists a feasible solution in S(2). Conversely, if (x+,x−) ∈ S(2), then x(2) = 1

2(x
+ − x−) ∈ S.

Hence, for every feasible solution in S(2), there is a feasible solution in S.
Let SI = {x ∈ S | x integer }, and let

S
(2)
I =

{
1

2
(x+ − x−) | (x+,x−) ∈ S(2) and x+,x− integer

}
.

If x ∈ SI , then x ∈ S
(2)
I . Thus, SI ⊆ S

(2)
I ⊆ S.

In fact, the set of solutions S
(2)
I is even smaller than the set of feasible solutions that are integer

multiples of 1
2 . To see that, let

S( 1
2
) = {x | Ax ≤ c and x ∈ 1

2
Zn} .

The claim is that S
(2)
I ⊂ S( 1

2
), and S( 1

2
) may contain points not in S

(2)
I . The following example

illustrates such a case:

5x+ 2y ≤ 6
0 ≤ x, y ≤ 1 .

Obviously, (x = 1, y = 1
2) is a feasible solution in S( 1

2
). But there is no corresponding integer

solution in S
(2)
I as x+ = −x− = 1 implies that y+ = y− = 0. It follows that the bound derived

from optimizing over S
(2)
I is tighter than a bound derived from optimizing over S( 1

2
). Not only is

this latter optimization weaker, but it is also in general NP-hard as stated in the following Lemma
(proved in [HNMT93]).

Lemma 15.5. Minimizing over a system of inequalities with two variables per inequality for x ∈
1
2 · Zn, is NP-hard.

15.5.2 Computing an approximate solution

Here we show how to obtain a 2-approximation for the optimum of a bounded integer program with
two variables per inequality in O(mnU2 log(Un2/m)) time. Assume that the given integer program
has a feasible integer solution denoted by z1, . . . , zn. (This can be tested in polynomial time).

We first transform the integer program into a monotone integer system and compute an optimal
solution for the monotone system as in the previous section. For every variable xi (i = 1, . . . , n),
let m+

i and m−
i denote the respective values of x+i and x−i in the optimal solution of the monotone

system. For i = 1, . . . , n, let m∗
i = 1

2 (m
+
i −m−

i ). We define the following solution vector, denoted
by � = (�1, . . . , �n), where for i = 1, . . . , n:

�i =

⎧⎪⎨
⎪⎩
min{m+

i ,−m−
i } if zi ≤ min{m+

i ,−m−
i },

zi if min{m+
i ,−m−

i } ≤ zi ≤ max{m+
i ,−m−

i },
max{m+

i ,−m−
i } if zi ≥ max{m+

i ,−m−
i } .

(17)

Lemma 15.6. The vector � is a feasible solution of the given integer program.
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Proof. Let axi + bxj ≥ c be an inequality where a and b are nonnegative. We check all possible

cases. If �i is equal to zi or min{m+
i ,−m−

i }, and �j is equal to zj or min{m+
j ,−m−

j }, then clearly,

a�i + b�j ≥ azi + bzj ≥ c .

Suppose �i ≥ zi and �j = max{m+
j ,−m−

j }. By construction, we know that

am+
i − bm−

j ≥ c and − am−
i + bm+

j ≥ c .

If �i ≥ −m−
i , then,

a�i + b�j ≥ −am−
i + bm+

j ≥ c .

Otherwise,

a�i + b�j ≥ am+
i − bm−

j ≥ c .

The last case is when �i = max{m+
i ,−m−

i }, and �j = max{m+
j ,−m−

j }. In this case,

a�i + b�j ≥ am+
i − bm−

j ≥ c .

The other types of inequalities are handled similarly.

We showed that vector � is a feasible solution. We now argue that it also approximates the
optimum.

Theorem 15.7.

1. The vector � is a 2-approximate solution of the bounded integer program.

2. The value of the objective function at the vector m∗ is at least a half of the value of the

objective function of the best integer solution.

Proof. By construction, � ≤ 2m∗. From the previous subsection we know that the vector m∗

provides a lower bound on the value of the objective function for any integral solution. Hence, the

theorem follows.

The complexity of the algorithm is dominated by the complexity of the procedure in [HN94] for
optimizing over a monotone system. The running time is O(mnU2 log(Un2/m)).

15.6 Vertex cover problem

The vertex cover problem is defined as follows: Given an undirected graph G = (V,E) we want to
find the set S ⊆ V with minimum cardinality such that every edge in E is adjacent to (at least)
one node in S. In the weighted version, each node i ∈ V has an associated weight wi ≥ 0 and
we want to minimize the total weight of the set S. Note that, if the graph has negative or zero
weights, then we simply include all those nodes in S and remove their neighbors from V .

Let xi =

{
1 if i ∈ V is in the cover
0 otherwise

.

The (weighted) vertex cover problem can be formulated as the integer program below.

min
∑
i∈V

wixi (VC.0)

s.t. xi + xj ≥ 1 ∀ (i, j) ∈ E (VC.1)
xi ∈ {0, 1} ∀ i ∈ V



IEOR 266 notes: Updated 2018 106

15.6.1 Vertex cover on bipartite graphs

The vertex cover problem on bipartite graphs G = (V1 ∪ V2, E) can be solved in polynomial time.
This follows since constraint matrix of the vertex cover problem on bipartite graphs is totally
unimodular. To see this, observe that the constraint matrix can be separated in columns into two
parts corresponding to V1 and V2 respectively, each row within which contains exactly one 1.

That the vertex cover problem on bipartite graph is polynomially solvable can also be seen from
our discussion on monotone IP2.

To see this, let

xi =

{
1 if i ∈ V1 is in the cover
0 otherwise

,

yi =

{ −1 if i ∈ V2 is in the cover
0 otherwise

.

The integer programming formulation for the vertex cover problem on bipartite graph can then
be transformed to the following:

min
∑
j∈V1

wjxj +
∑
j∈V2

(−wj)yj (VCB)

s.t. xi − yj ≥ 1 ∀ (i, j) ∈ E

xi ∈ {0, 1} ∀ i ∈ V1

yj ∈ {−1, 0} ∀ j ∈ V2

Evidently, this formulation is a Monotone IP2. Furthermore since both xi and yj can take only two
values, the size of the resulted s, t-Graph is polynomial. In fact, the following s, t-Graph (Figure
47) can be constructed to solve the vertex cover problem on bipartite graph.
1. Given a bipartite graph G = (V1 ∪ V2, E), set the capacity of all edges in A equal to ∞.
2. Add a source s, a sink t, set As of arcs from s to all nodes i ∈ V1 (with capacity us,i = wi), and
set At of arcs from all nodes j ∈ V2 to t (with capacity uj,t = wj).

It is easy to see that if (s ∪ S, t ∪ T ) is a finite s − t cut on Gs,t, then (V1 ∩ T ) ∪ (V2 ∩ S) is a
vertex cover. Furthermore, if (s∪S, t∪T ) is an optimal solution to the minimum s− t cut problem
on Gs,t, then (V1 ∩ T ) ∪ (V2 ∩ S) is a vertex cover with the minimum weights, where

C(s ∪ S, t ∪ T ) =
∑

i∈V1∩T
wi +

∑
j∈V2∩S

wj =
∑

j∈V C∗
wj

15.6.2 Vertex cover on general graphs

The vertex cover problem on general graphs is NP-hard. For the unweighted version, there is a 2-
approximation algorithm due to Gavril for finding a solution at most twice as large as the minimum
solution.

The algorithm goes as follows.
1. Find a maximal (but not necessarily maximum) matching in G, i.e., a maximal subset of edges,
M , such that no two edges in M have an endpoint in common.
2. Return V CM = ∪(i,j)∈M{i ∪ j}, i.e., the set of all endpoints of edges in M .

The correctness of the algorithm can be easily shown. Clearly, since M is maximal, there can-
not be an edge in E\M with no endpoint in V CM . Thus, V CM is a vertex cover. Obviously,
|V CM | = 2|M |. Also, for each of the edges in M , one of the endpoints must be in every vertex
cover. Therefore, V Copt ≥ |M |. In conclusion, |V CM | = 2|M | ≤ 2|V Copt|.
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Figure 47: An illustration of the s, t-Graph for the vertex cover problem on bipartite graph and an

example of a finite s− t cut

Moreover, the LP-relaxation of the vertex cover problem on general graphs can be solved by
solving the vertex cover problem in a related bipartite graph. Specifically, as suggested by Edmonds
and Pulleyblank and noted in [NT75], the LP-relaxation can be solved by finding an optimal cover
C in a bipartite graph Gb = (Vb1 ∪ Vb2, Eb) having vertices aj ∈ Vb1 and bj ∈ Vb2 of weight wj for
each vertex j ∈ V , and two edges (ai, bj), (aj , bi) for each edge (i, j) ∈ E. Given the optimal cover
C on Gb, the optimal solution to the LP-relaxation of our original problem is given by:

xj =

⎧⎪⎨
⎪⎩
1 if aj ∈ C and bj ∈ C,
1
2 if aj ∈ C and bj 	∈ C, or aj 	∈ C and bj ∈ C,

0 if aj 	∈ C and bj 	∈ C.

In turn, the problem of solving the vertex cover problem in Gb (or, on any bipartite graph)
can be reduced to the minimum cut problem as we showed previously. For this purpose we create
a (directed) st-graph Gst = (Vst, Ast) as follows: (1) Vst = Vb ∪ {s} ∪ {t}, (2) Ast contains an
infinite-capacity arc (ai, bj) for each edge (ai, bj) ∈ Eb, (3) Ast contains an arc (s, ai) of capacity
wi for each node i ∈ Vb1, and (4) Ast contains an arc (bi, t) of capacity wi for each node i ∈ Vb2.

Given a minimum (S, T ) cut we obtain the optimal vertex cover as follows: let ai ∈ C if ai ∈ T
and let bj ∈ C if bj ∈ S.

We now present an alternative method of showing that the LP-relaxation of the vertex cover
problem can be reduced to a minimum cut problem, based on our discussion on integer programming
with two variables per inequality (IP2).

As we did for the non–monotone integer program with two variables per inequality, we can

“monotonize” (VC) by replacing each binary variable xi in the objective by xi =
x+
i −x−

i
2 where
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x+i ∈ {0, 1} and x−i ∈ {−1, 0}, and each inequality xi + xj ≥ 1 by the following two inequalities:

x+i − x−j ≥ 1

−x−i + x+j ≥ 1

The “monotonized” formulation is shown below:

min
1

2

{∑
i∈V

wix
+
i +

∑
i∈V

(−wi)x
−
i

}
(VC′.0)

s.t. x+i − x−j ≥ 1 ∀(i, j) ∈ E (VC′.1)
− x−i + x+j ≥ 1 ∀(i, j) ∈ E (VC′.2)
x+i ∈ {0, 1} ∀i ∈ V

x−i ∈ {−1, 0} ∀i ∈ V

The relationship between (VC) and (VC′) can be easily seen. For any feasible solution {xi}i∈V for
(VC), a corresponding feasible solution for (VC′) with the same objective value can be constructed
by letting x+i = xi, x

−
i = −xi,∀i ∈ V ; On the other hand, for any feasible solution {x+i , x−i }i∈V

for (VC′), xi = x+
i −x−

i
2 satisfies inequality (VC.1) (To see this, simply sum up inequalities (VC.1)

and (VC.2) and divide the resulted inequality by 2.) but may not be integral. Therefore, given an

optimal solution {x+i , x−i }i∈V for (VC′), the solution {xi = x+
i −x−

i
2 } is feasible, half integral (i.e.,

xi ∈ {0, 12 , 1}) and super-optimal (i.e., its value provides a lower bound) for (VC).
Comparing (VC′) with (VC)B, we can see that without the coefficient 1

2 in the objective (VC′)
can be treated as a vertex cover problem on a bipartite graph G(Vb1 ∪ V b2 , Eb) where Vb1 =
aj ,∀j ∈ V , Vb2 = bj ,∀i ∈ V ,Eb = {(ai, bj), (aj , bi),∀(i, j) ∈ E}.

Therefore, we obtain the following relationship

V C+− ≤ 2V C∗

where V C∗ is the optimal value of the original vertex cover problem on a general graph G(V,E),
and V C+− is the optimal value of the vertex cover problem defined on the bipartite graph G(Vb1 ∪
V b2 , Eb).

15.7 The s-excess problem

The s-excess problem is another generalization of the closure problem. Here we introduce edge
weights eij and relax the closure requirement. However, the objective receives a penalty for any
pair of nodes that do not satisfy the requirement, which is proportional to the amount of the
violation. Let zij be 1 if i ∈ S∗ and j ∈ S̄∗, and 0 otherwise. Then the convex s-excess problem is
to find a subset of nodes S ⊆ V that minimizes

∑
i∈S

wi +
∑

i∈S,j∈S̄
eij ,

which can be represented by the following integer linear program.
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min
∑

i∈V wixi +
∑

(i,j)∈A eijzij

subject to xi − xj ≤ zij (i, j) ∈ A

0 ≤ xi ≤ 1 i ∈ V

0 ≤ zij ≤ 1 (i, j) ∈ A

xi, zij integer

[BP89] and [Hoc08] show that this problem is equivalent to solving the minimum s − t cut
problem on a modified graph, Gst, defined as follows. We add nodes s and t to the graph, with
an arc from s to every negative weight node i (with capacity usi = −wi), and an arc from every
positive weight node j to t (with capacity ujt = wj).

Lemma 15.8. S∗ is a set of minimum s-excess capacity in the original graph G if and only if S∗

is the source set of a minimum cut in Gst.

Proof. As before, let V + ≡ {i ∈ V |wi > 0}, and let V − ≡ {j ∈ V |wj < 0}. Let (s∪ S, t∪ T ) define
an s− t cut on Gst. Then the capacity of this cut is given by

C (s ∪ S, t ∪ T ) =
∑

(s,i)∈Ast, i∈T
us,i +

∑
(j,t)∈Ast, j∈S

uj,t +
∑

i∈S, j∈T
eij

=
∑

i∈T∩V −
−wi +

∑
j ∈S∩V +

wj +
∑

i∈S, j∈T
eij

=
∑
i∈V −

−wi −
∑

j∈S∩V −
−wi +

∑
j ∈S∩V +

wj +
∑

i∈S, j∈T
eij

= W− +
∑
j∈S

wj +
∑

i∈S, j∈T
eij

Where W− is the sum of all negative weights in G, which is a constant. Therefore, minimizing

C (s ∪ S, t ∪ T ) is equivalent to minimizing
∑

j∈S wj +
∑

i∈S, j∈T eij , and we conclude that the

source set of a minimum s− t cut on Gst is also a minimum s-excess set of G.

References

[BP89] D. Greig B. Porteous, A. Seheult. Exact maximum a posteriori estimation for binary
images. Journal of the Royal Statistical Society, Series B, 51(2):271–279, 1989.

[HN94] D. S. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer programs
with two variables per inequality. SIAM Journal on Computing, 23(6):1179–1192, 1994.

[HNMT93] D. S. Hochbaum, J. Naor N. Megiddo, and A. Tamir. Tight bounds and 2-approximation
algorithms for integer programs with two variables per inequality. Mathematical Pro-
gramming, 62:69–83, 1993.



IEOR 266 notes: Updated 2018 110

[Hoc97] D. S. Hochbaum. Approximating covering and packing problems: set cover, vertex
cover, independent set and related problems. chapter 3. In Approximation algorithms
for NP-hard problems, pages 94–143. PWS Boston, 1997.

[Hoc08] D. S. Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum flow
problem. Operations Research, 58(4):992–1009, July-Aug 2008.

[Joh68] T. B. Johnson. Optimum Open Pit Mine Production Technology. PhD thesis, Opera-
tions Research Center, University of California, Berkeley, 1968.

[Lag85] J. C. Lagarias. The computational complexity of simultaneous diophantine approxima-
tion problems. SIAM Journal on Computing, 14:196–209, 1985.

[Pic76] J. C. Picard. Maximal closure of a graph and applications to combinatorial problems.
Management Science, 22:1268–1272, 1976.

16 Necessary and Sufficient Condition for Feasible Flow in a Net-

work

First the discussion is for zero lower bounds. We assume throughout that the total supply in the
graph is equal to the total demand, else there is no feasible solution.

16.1 For a network with zero lower bounds

A cut is a partition of the nodes, (D, D̄). We first demonstrate a necessary condition, and then
show that it is also sufficient for flow feasibility.

The set D contains some supply nodes and some demand nodes. Let the supply and demand
of each node j ∈ V be denoted by bj , where bj is positive if j is a supply node, and negative, if j
is a demand node. The cut (D, D̄) must have sufficient capacity to accommodate the net supply
(which could be negative) that must go out of D.

∑
j∈D

bj ≤ C(D, D̄) =
∑

i∈D,j∈D̄
uij, ∀D ⊂ V. (18)

This condition must be satisfied for every partition, namely, for every subset of nodes D ⊂ V .
The interesting part is that this condition is also sufficient, and that it can be verified by solving

a certain minimum cut problem.
In order to show that the condition is sufficient we construct an auxiliary s, t graph. Let S

be the set of all supply nodes, and B be the set of all demand nodes. We append to the graph a
source node s with arcs going to all supply nodes with capacity equal to their supplies. We place
a sink node t with arcs going from all nodes of B to the sink with capacity equal to the absolute
value of the demand at each node. There exists a feasible flow in the original graph only if the
minimum s, t cut in this auxiliary graph is at least equal to the total supply sup =

∑
bj>0 bj (or

total demand, which is equal to it). In other words, since the total supply value is the capacity of
some minimum cut – the one adjacent to the source, or the one adjacent to the sink – either one of
these cuts must be a minimum cut. In particular, for any partition of V , (D, D̄), the cut capacity
C({s} ∪D, {t} ∪ D̄) must be at least as big as the total supply:

sup ≤ C({s} ∪D, {t} ∪ D̄) = C({s},D) + C(D, D̄) + C(D, {t})
=
∑

j∈D̄,bj>0 bj + C(D, D̄) +
∑

j∈D,bj<0−bj.
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Reordering the terms yields, ∑
j∈D,bj>0

bj +
∑

j∈D,bj<0

bj ≤ C(D, D̄).

The left hand side is simply the sum of weights of nodes in D. This necessary condition is therefore
identical to the condition stated in (18).

Verification of condition (18).
A restatement of condition (18) is that for each subset of nodes D ⊂ V ,∑

j∈D
bj −C(D, D̄) ≤ 0.

The term on the left is called the s-excess of the set D. In Section ?? it is shown that the maximum
s-excess set in a graph can be found by solving a minimum cut problem. The condition is thus
satisfied if and only if the maximum s-excess in the graph is of value 0.

16.2 In the presence of positive lower bounds

In this case condition (18) still applies where the cut value C(D, D̄) =
∑

i∈D,j∈D̄ uij−
∑

u∈D̄,v∈D �uv

16.3 For a circulation problem

Here all supplies and demands are zero. The condition is thus,
For all D ⊂ V ∑

i∈D,j∈D̄
uij −

∑
u∈D̄,v∈D

�uv ≥ 0.

16.4 For the transportation problem

Here all arc capacities are infinite. The arcs capacities in the s, t graph we construct, as before, are
only finite for source adjacent and sink adjacent arcs. Let the transportation problem be given on
the bipartite graph (V1 ∪ V2, A) for V1 a set of supply nodes, and V2 a set of demand nodes.

Consider an partition in the graph (D, D̄). Since all arc capacities in A are infinite, Condition
(18) is trivially satisfied whenever an arc of A is included in the cut. So we restrict our attention
to cuts that do not include an arc of A. Such cuts have the set D closed, namely all the successors
of the supply nodes in D are also included in D. For closed sets D the cut capacity is 0. The
condition is then for each closed set D,∑

j∈Dbj>0

bj ≤
∑

j∈Dbj<0

−bj.

This condition is an extension of Hall’s theorem for the existence of perfect matching in bipartite
graphs.

(See also pages 194-196 of text)
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17 Planar Graphs

Planar graph : A graph is planar if it can be drawn in the plane so no edges intersect. Such a
drawing is called planar embedding.

Kuratowsky theorem(1927) A graph is planar iff it contains no subgraphs homeomorphic to
K3,3 or K5.

Face : Faces are regions defined by a planar embedding, where two points in the same face can be
reachable from each other along a continuous curve (that does not intersect any edges).

Chromatic number : The minimum number k for which G is k-colorable.

Critical graph : G is called critical if chromatic number of any proper subgraph of G is smaller
than that of G.

k-critical graph : A k-critical graph is one that is k-chromatic and critical.

Theorem 17.1. If G(not necessarily planar) is k-critical, then minimum degree ≥ k − 1.

Proof. See J.A.Bondy and U.S.R.Murty(1976)

Proposition 17.1. In a planar graph, there is a node of degree ≤ 5.

Theorem 17.2 (Heawood’s 5-color theorem(1890)). Every planar graph is 5-colorable.

Proof. By induction on n, the number of nodes. If n ≤ 5 then the graph is 5-colorable.

For a graph G(V,E) with n > 5, assume that G− {v} is 5-colorable for any v ∈ V . Now, if for

all v, deg(v) ≤ 4 or less than 5 colors are used by the neighbors of v, then G is 5-colorable and we

are done.

Suppose G is not 5-colorable, that is, G is 6-critical. By above property and theorem, there exists

a node, say v, of degree 5. Because G is 6-critical, there exists a 5-vertex coloring, that is a

partitioning of into 5 sets each of a different color, of G−{v}, say (V1, V2, V3, V4, V5). Since G is not

5-colorable, v must be adjacent to a vertex of each of the five colors. Therefore we can assume that

the neighbors of v in clockwise order about v are v1, v2, v3, v4 and v5, where vi ∈ Vi for 1 ≤ i ≤ 5.

Let G1,3 be the subgraph of nodes of V1 and V3. Now v1 and v3 must belong to the same connected

component of G1,3. For, otherwise, consider the component of G1,3 that contains v1 (see Figure

48). By interchanging the colors 1 and 3 in this component we obtain a new coloring of G − {v}
in which only 4 colors are assigned to the neighbors of v and G is 5-colorable. Therefore v1 and v3
must belong to the same component of G1,3.

Let P1,3 be a (v1, v3)-path in G1,3, and let C denote the cycle vv1P1,3v3v. Since C separates

v2 and v4, G2,4 has at least two separate components, one inside C and another outside C. By

interchanging the colors of the component of G2,4 in C that contains v2 we can color v by color 2.

17.1 Properties of Planar Graphs

Proposition 17.2 (Euler’s Formula). For a connected planar graph on n nodes, m edges, and f

faces, f = m− n+ 2 (8.6 in text)
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Figure 48: Illustration for proof of 5-Color theorem

Proof. by induction on the number of faces

If f = 1 then the graph is a spanning tree, and it contains n − 1 edges. The equation is then

satisfied. Assume, inductively, the formula is true for f ≤ k

Now, we show that the formula is valid for every graph with k + 1 faces. Consider a graph G

with k +1 faces, n nodes, and m+ 1 edges. ∃ an edge (i, j) separating 2 faces. If we remove (i, j),

the resulting graph has k faces, n nodes, and m edges k = m− n+ 2 (induction hypothesis)

Therefore, if we add (i, j) back into the resulting graph, k + 1 = m+ 1− n+ 2

Proposition 17.3 (Sparsity). m < 3n (8.7 in text)

Proof. This property is proved by contradiction

Suppose (m ≥ 3n)

Since the network is a simple graph, the boundary of each face contains at least three arcs.

If we count arcs on the boundaries of all the faces one by one, there are at least 3f arcs. Also,

each arc is counted at most twice because it belongs to at most two faces. Therefore, 3f ≤ 2m, or

equivalently, f ≤ 2m
3 .

By Euler’s formula f = m− n+2, so 2m
3 ≥ m−n+2. This, however, implies that 3n ≥ m+6

which contradicts the supposition that m ≥ 3n.

Corollary 17.4. In a planar graph, exist a node with degree ≤5

Proof. Planar graphs are sparse, so m < 3n. Let di is the degree of node i.
∑n

i=1 di = 2m < 6n

Let d =
∑n

i=1 be the average degree. Sparsity ensures that d < 6. Since there must be at least one

node j such that dj ≤ d < 6. Since dj is an integer, it follows that dj ≤ 5.

Planarity is a hereditary property - in a planar graph, after removing a node the remaining

graph is still planar.

17.2 Geometric Dual of Planar Graph

The geometric dual of a planar graph is defined by construction:

• 1. Place a node in each face, including the exterior face
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Figure 49: Geometric Dual of a Graph

• 2. Two nodes are adjacent if the corresponding faces share an edge

The original planar graph is called the primal and the newly constructed graph is called the

dual. The dual of a planar graph is still planar.

The followings are some interesting points of primal and dual

• 1. # of nodes in dual = # of faces in primal

• 2. For simple graphs,

# edges in the primal ≤ # edges in the dual

• 3. If no path of length ≥ 2, separates 2 faces,

then the dual of dual is the primal.

17.3 s-t Planar Flow Network

For an undirected s-t planar flow network s and t are on the exterior face (or on the same face

which can then be embedded as an exterior face)

• 1. Add directed arc (t, s) with infinite capacity.

• 2. take the dual of the graph.

• 3. call the two nodes in the two faces created by the new edge e s∗ and t∗.
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17.4 Min Cut in an Undirected Weighted s-t Planar Flow Network

Weight of edge in dual = capacity of edge in primal

Any path between s∗ and t∗ corresponds to a cut separating s and t

capacity of cut in primal = cost of path in dual

Shortest path between s∗ and t∗ corresponds to a minimum cut separating s and t

Since all capacities in primal are nonnegative, all edge costs in dual are nonnegative. Dijkstra’s

Algorithm can be applied to find the shortest path. The running time for Dijkstra’s Algorithm is

O(m+ nlogn) = O(3n+ nlogn) = O(nlogn).

The above algorithm for min cut in planar graph makes no use of the max flow.

17.5 Max Flow in a Undirected Weighted s-t Planar Flow Network

Shown by Hassin in 1981 that max flow can also be derived from shortest path labels.

In the original graph, let Uij be the flow capacity of arc(i,j) Xij be the flow from node i to node

j. In an undirected graph, the flow capacity for an edge is (0, Uij) for both directions. Therefore

−Uij ≤ Xij ≤ Uij

Consider the edge (i,j) in the direction from i to j, let i∗ be a dual node in the face to the left of

the arc and j∗ to the right and define d(i∗) to be the shortest path from s∗ to i∗ in the dual graph,

then set:

Xij = d(i∗)− d(j∗).

Claim 17.5. Xij = d(i∗)− d(j∗) are feasible flows.

Proof.

The capacity constraints are satisfied:

Since d(i∗) is the shortest path from s∗ to i∗ in the dual graph, d(i∗) satisfies the shortest path

optimality condition:

d(i∗) ≤ d(j∗) + ci∗j∗. Since cost of path in dual = capacity of cut in primal

d(i∗) ≤ d(j∗) + Uij

d(j∗) ≤ d(i∗) + Uij

−Uij ≤ Xij ≤ Uij

The flow balance constraints are satisfied:

For a node i, let’s label it’s neighbors 1, 2, ...,p and create the dual graph with nodes 1∗, 2∗, ... p∗

(see Figure 50).

Xi1 = d(1∗)− d(2∗)

Xi2 = d(2∗)− d(3∗)

. . .

Xip = d(p∗)− d(1∗).

Sum up all the equations we have:
∑p

k=1Xik = 0.
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Figure 50: Dual graph for max-flow

For edges on the shortest path in dual, identify the min cut, the flow on the cut edges is

saturated, therefore, flow value = cut capacity = max flow

Again we can use Dijkstra’s Algorithm to find the shortest path, which is also the max flow.

The running time is O(nlogn) as we justified in min cut algorithm.

18 Cut Problems and Algorithms

18.1 Network Connectivity

Network connectivity problems consist of arc connectivity problems and node connectivity prob-

lems.

1. The arc (edge) connectivity of a connected network is the minimum number of arcs whose

removal from the network disconnects it into two or more components. Unweighted arc (edge)

connectivity has arc (edge) weights=1.

2. The node connectivity of a network equals the minimum number of nodes whose deletion

from the network disconnects it into two or more components.

Minimum 2-Cut A Minimum 2 cut in a directed network is the min weight arc-connectivity in

the network, which is the smallest collection of arcs that separates one non-empty component

of the network from the other. That is for each pair of nodes (u, v), find the minimum weight

u− v cut and select the minimum of these minimum cuts from among all pairs (u, v).

An Algorithm for Finding a Minimum 2-Cut Find for all pairs v, u ∈ V , the (v-u) - min cut

in the network using O(n2) applications of Max-Flow. This can, however, be done with O(n)

applications of Min-Cut. Pick a node, say 1, and find the min-cut that separates 1 and j, for
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all j 	= 1. From among these pairs, take the smallest minimum cut. This requires considering

n− 1 pairs and apply min-cut to each.

18.2 Matula’s Algorithm

Given an unweighted, undirected graph G = (V,E). We introduce the notation α(G) is the con-

nectivity of the graph, which is also the capacity of the minimum 2-cut in the graph. α(A,B) for

A,B ⊂ V disjoint subsets, is the minimum cut separting A and B. Such cut can be found by

shrinking A into a source node s, and b into a sink node t and solve the resulting s, t cut problem.

For δ = minv∈V degree(v), δ is obviously an upper bound on the connectivity of the graph. Let

nonneighbor(S) be the set of nodes that are not adjacent to nodes of S, and let α(G) = α(S∗, S̄∗).
The following lemma is the basis of Matula’s algorithm for the unweighted min 2-cut problem.

Lemma 18.1 (8.12 in Ahuja, Magnanti, Orlin). Let (S∗, S̄∗) be a minimum unweighted 2-cut, then

either α(G) = δ or, ∀S ⊆ S∗ nonneighbor(S) 	= ∅
Proof: Assume that α(G) < δ. Then,

δ|S̄∗| ≤
∑
v∈S̄∗

degree(v) ≤ |S̄∗|(|S̄∗| − 1) + α(G).

Subtract δ from both sides,

δ(|S̄∗| − 1) ≤ |S̄∗|(|S̄∗| − 1) + α(G) − δ.

Rearranging the terms,

1 ≤ δ − α(G) ≤ (|S̄∗| − 1)(|S̄∗| − δ).

Therefore both terms on the right must be greater or equal to 1. In particular, |S̄∗| ≥ δ + 1. But

the number of neighbors of S∗ is less than or equal to δ, thus, nonneighbor(S) 	= ∅.

Matula’s Algorithm for undirected unweighted min 2-cut

p := min degree node

δ ← degree(p)

S∗ = {p}, S = {p}, α∗ ← δ.

While nonneighbor (S) 	= 0

Let k ∈ nonneighbor (S)

Find min-cut (S, k) = (Sk, S̄k) of value α[S, k]

If α∗ > α[S, k], then Do

α∗ ← α[S, k], S∗ ← Sk

Else continue

S ← S ∪ {k}
update in-degrees of neighbors of v

Lemma 18.2. The algorithm is correct and its complexity is O(mn).
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Proof. First we demonstrate correctness. If α(G) = δ then done, as we never reduce the value of

the cut. Assume then that α(G) < δ. We need to demonstrate that at some iteration S ⊆ S∗ and

the selected nonneighbor k satisfies that k ∈ S̄∗. This will suffice as for that iteration α[S, k] = α∗.
Initially S = {p} ⊆ S∗; when the algorithm terminates S 	⊆ S∗, otherwise nonneighbor(S) 	= ∅,

(see lemma). Therefore there must be an iteration i which is the last one in which S ⊆ S∗. Consider
that iteration and the vertex k ∈ noneighbor(S) selected. Since S ∪ {k} 	⊆ S∗ ⇒ k ∈ S̄∗. Thus,

α[S, k] = α∗.
Consider now the complexity of the algorithm: Consider augmentations along shortest aug-

menting path (such as in Dinic’s alg.).

There are two types of augmenting paths:

-type1: its last internal node (before k) ∈ neighbor(S)

-type2: its last internal node (before k) ∈ noneighbor(S).

The length of a type1 path is 2, as it originates in the set S, then a neighbor of S and then k.

Hence the total work for type1 paths is O(n2).

At most there are O(n) type2 path augmentations throughout the algorithm: Consider a path

{S}, . . . , �, k for � the node just preceding k. When finding min-cut (S, k), node � can be used

just once. This is since as soon as we are done with k it is added to S and � becomes a neighbor.

Therefore � can be before the last node only in one type2 path. The complexity of finding an

augmenting path is O(m), so the total work for a type2 path is O(mn). The total complexity of

the algorithm is hence O(mn).

18.3 Brief Review of Additional Results

Undirected weighted 2-cut: O(mn + n2logn) by Nagamochi and Ibaraki, [NI92], [NI92a]. There is

no use of the concepts of the max-flow min-cut theorem in their algorithm: It applies preprocessing

that removes from the graph all but O(kn) arcs without changing the value of the min 2-cut and

then proceed by constructing a collection of O(k) spanning trees.

Directed and undirected weighted 2-cut: O(n3) or O(mn log(n2/m)) by Hao and Orlin [HO92].

The idea is to use preflow while maintaining distance labels when values are updated.
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19 Algorithms for MCNF

19.1 Network Simplex

Consider the linear programming formulation of the minimum cost flow problem on a network

G = (V,A), with xij the amount of flow on arc (i, j) ∈ A:

Minimize z =
n∑

i=1

∑
(i,j)∈A

cijxij

Subject to:
∑

(i,j)∈A
xij −

∑
(k,i)∈A

xki = bi i ∈ V

0 ≤ xij ≤ uij (i, j) ∈ A

It is easily seen that the constraint matrix is not of full rank. In fact, the matrix is of rank

n-1. This can be remedied by adding an artificial variable corresponding to an arbitrary node.

Another way is just to throw away one constraint, say the one corresponding to node 1. For the

uncapacitated version, where the capacities uij are infinite, the dual is :

Maximize z =
∑
j∈V

bjπj

Subject to: πi − πj ≤ cij (i, j) ∈ A.

We note that any MCNF problem can be formulated as an uncapacitated network flow problem.

The reduction is in the textbook, page 40. An arc (i, j) with capacity uij is replaced by an extra

node ij and two arcs, (i, ij) and (j, ij). The first is of cost cij and capacity ∞. The second is of

cost 0 and capacity ∞. The supply of node i remains unchanged, bi. The supply of node j becomes

bj + uij, and the supply of node ij is uij . This transformation increases the number of nodes to

n+m and the number of arcs to 2m.

We denote by cπij the reduced cost cij − πi + πj which are the slacks in the dual constraints.

As proved earlier, the sum of the reduced costs along a cycle is equal to the sum of the original costs.

Simplex method assumes that an initial ”basic” feasible flow is given by solving phase I or by

solving another network flow problem. By basis, we mean the n− 1 xij variables whose columns in

the constraint matrix are linearly independent. The non-basic variables are always set to zero. (or

in the case of finite upper bounds, nonbasic variables may be set to their respective upper bounds.)

We will prove in Section 19.3 that a basic solution corresponds to a spanning tree. The concept

of Simplex algorithm will be illustrated in the handout but first we need to define some important

terminologies used in the algorithm first.

Given a flow vector x, a basic arc is called free iff 0 < xij < uij . An arc (i, j) is called restricted

iff xij = 0 or xij = uij . From the concept of basic solution and its corresponding spanning tree we

can recognize a characteristic of an optimal solution. An optimal solution is said to be cycle-free

iff in every cycle at least one arc assumes its lower or upper bound.



IEOR 266 notes: Updated 2018 120

Proposition 19.1. If there exists a finite optimal solution, then there exists an optimal solution

which is cycle-free.

Proof: Prove by contradiction. Suppose we have an optimal solution which is not cycle-free and

has the minimum number of free arcs. Then we can identify a cycle such that we can send flow

in either clockwise or counter-clockwise direction. By linearity, one direction will not increase the

objective value as sum of the costs of arcs along this direction is nonpositive. From our finiteness

assumption, we will make at least one arc achieve its lower or upper bound after sending a certain

amount of flow along the legitimate direction. This way, we get another optimal solution having

fewer free arcs and the contradiction is found.

19.2 (T,L,U) structure of an optimal solution

There are three types of arcs in any feasible solution: free arcs, arcs with zero flow, and arcs with

the flow at upper bound. We simply state the corollary which stems from the property 19.1 that

there exists an optimal solution that is cycle-free.

Corollary 19.2. There exists an optimal solution that has the structure (T,L,U), where T is a

spanning tree containing all free arcs, L is the set of arcs at lower bounds, and U the set of arcs at

upper bounds.

Proof: Since there exists an optimal solution which is cycle-free, then the free arcs form a spanning

forest. It is then possible to add restricted arcs to form a spanning tree.

19.3 Simplex’ basic solutions and the corresponding spanning trees

The following is an important observation for applying the simplex method to the minimum cost

network flow problem.

Theorem 19.1. There is a one-to-one correspondence between a basic solution and a spanning

tree.

Proof: A basic solution corresponds to linearly independent columns. Recall that we can add an

artificial variable to make the constraint matrix full rank. Clearly, the fictitious column we add is

always in a basis for otherwise the original matrix is of full rank. So a basis can be characterized

by n nodes and n-1 arcs. If we can show that there are no cycles, then we are done. For the sake

of contradiction, suppose there exists a cycle in the graph corresponding to a basis. Select some

arc (i,j) in the cycle and orient the cycle in the direction of that arc. Then for each column in the

basis associated with an arc in the cycle, assign a coefficient 1 if the arc is in the direction of the

orientation of the cycle and -1 otherwise. Applying these coefficients to respective columns in the

basis we find that the weighted sum of these columns is the zero vector. Thus the columns of the

basis could not have been linearly independent.

Note that not every basis is feasible, the same as for general linear programming. Furthermore,

it can be shown that we can always permute the columns of a basis in a way such that it is in

lower-triangular form, which is ideal for Gaussian elimination.

The simplex algorithm works as follows: Given a feasible spanning tree, an entering arc is a

nonbasic arc with negative reduced cost, or equivalently, we identify a negative cost cycle by adding
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it to the spanning tree of basic arcs, all of which have zero reduced costs. The leaving arc, the

counterpart of the entering arc, is the bottleneck arc on the residual cycle.

This algorithm corresponds to optimality condition 1 that says that a solution is optimal if the

residual graph contains no negative cost cycle (the sum of reduced costs along a cycle is equal to

the sum of costs along a cycle).

19.4 Optimality Conditions

For a flow x∗, we define a residual network G(x∗) such that every arc (i, j) with capacity uij, flow

xij , and arc cost cij in the original network corresponds to two arcs in the residual network: one

going from i to j, with cost cij and flow uij −xij, the other from j to i with cost −cij and flow xij .

There are three equivalent statements of the optimality of flow x∗ for the minimum cost flow

problems.

1. The following are equivalent to optimality of x∗.

• x∗ is feasible.

• There is no negative cost cycle in G(x∗).

2. The following are equivalent to optimality of x∗.
There exists a potentials vector π such that,

• x∗ is feasible.

• cπij ≥ 0 for each arc (i,j) in G(x∗).

3. The following are equivalent to optimality of x∗.
There exists a potentials vector π such that,

• x∗ is feasible,

• cπij > 0⇒ x∗ij = 0.

• cπij = 0⇒ 0 ≤ x∗ij ≤ uij.

• cπij < 0⇒ x∗ij = uij .

Theorem 19.2 (Optimality condition 1). A feasible flow x∗ is optimal iff the residual network

G(x∗) contains no negative cost cycle.

Proof: ⇐ direction.

Let x0 be an optimal flow and x0 	= x∗. (x0−x∗) is a feasible circulation flow vector. A circulation

is decomposable into at most m primitive cycles. The sum of the costs of flows on these cycles

is c(x0 − x∗) ≥ 0 since all cycles in G(x∗) have non-negative costs. But that means cx0 ≥ cx∗.
Therefore x∗ is a min cost flow.

⇒ direction.

Suppose not, then there is a negative cost cycle in G(x∗). But then we can augment flow along

that cycle and get a new feasible flow of lower cost, which is a contradiction.

Theorem 19.3 (Optimality condition 2). A feasible flow x∗ is optimal iff there exist node potential

π such that cπij ≥ 0 for each arc (i,j) in G(x∗).
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Proof: ⇐ direction.

If cπij ≥ 0 for each arc (i,j) in G(x∗), then in particular for any cycle C in G(x∗),
∑

(i,j)∈C cπij =∑
(i,j)∈C cij . Thus every cycle’s cost is nonnegative. From optimality condition 1 it follows that x∗

is optimal.

⇒ direction.

x∗ is optimal, thus (Opt cond 1) there is no negative cost cycle in G(x∗). Therefore shortest paths

distances are well defined. Let d(i) be the shortest paths distances from node 1 (say). Let the node

potentials be πi = −d(i). From the validity of distance labels it follows that,

cij + d(i) ≥ d(j)

Thus, cπij = cij − πi + πj ≥ 0.

Theorem 19.4 (Optimality condition 3). A feasible flow x∗ is optimal iff there exist node potential

π such that,

• cπij > 0⇒ x∗ij = 0

• cπij = 0⇒ 0 ≤ x∗ij ≤ uij

• cπij < 0⇒ x∗ij = uij .

Proof: ⇐ direction.

If these conditions are satisfied then in particular for all residual arcs (i, j) ∈ G(x∗), cπij ≥ 0. Hence,

optimality condition 2 is satisfied.

⇒ direction.

From Optimality condition 2 cπij ≥ 0 for all (i,j) in G(x∗). Suppose that for some (i, j) cπij > 0

but x∗ij > 0. But then (j, i) ∈ G(x∗) and thus cπji = −cπij < 0 which is a contradiction (to opt con

2). Therefore the first condition on the list is satisfied. The second is satisfied due to feasibility.

Suppose now that the third holds, and cπij < 0. So then arc (i, j) is not residual, as for all residual

arcs the reduced costs are nonnegative. So then the arc must be saturated and x∗ij = uij as

stated.

19.5 Implied algorithms – Cycle cancelling

Optimality condition 1 implies an algorithm of negative cycle canceling: whenever a negative cost

cycle is detected in the residual graph it is “canceled” by augmenting flow along the cycle in the

amount of its bottleneck residual capacity.

Finding a negative cycle in the residual graph is done by applying the Bellman-Ford algorithm.

If no negative cost cycle is detected then the current flow is optimal. In the simplex method it is

easier to detect a negative cost cycle. Since all in-tree arcs have residual cost 0, it is only necessary

to find a negative reduced cost arc out of tree. So it seems that simplex is a more efficient form of

negative cycle canceling algorithm, isn’t it?

The answer is no. The reason is, that while simplex identifies a negative cost cycle more easily

than by Bellman Ford algorithm, this cycle is not necessarily in the residual graph. In other words,

there can be in the tree and in the basis, arcs that are at their lower or their upper bound. This



IEOR 266 notes: Updated 2018 123

is precisely the case of degeneracy. In that case, although a negative cost cycle was found, the

bottleneck capacity along that cycle can be 0. In that case the simplex pivot leads to another

solution of equal value.

The complexity of the cycle canceling algorithm, is finite. Every iteration reduces the cost

of the solution by at least one unit. For maximum arc cost equal to C and maximum capacity value

equal to U the number of iterations cannot exceed 2mUC. The complexity is thus O(m2nUC),

which is not polynomial, but is only exponential in the length of the numbers in the input.

In order to make this complexity polynomial we can apply a scaling algorithm. The scaling can

be applied to either capacities, or costs, or both.

19.6 Solving maximum flow as MCNF

We know how to represent the maximum flow problem as a minimum cost network flow. We add

an arc of cost −1 and infinite capacity between t and s. Since all other costs in the network are 0

the total cost will be minimum when the flow on the arc from t to s is maximum. Maximum flow

as minimum cost network flow is described in Figure 51

s

j

t
i

 finite capacity

Costs=0

Cost=-1

 capacity=infinity

… …

Figure 51: Maximum flow as MCNF problem

If we solve this MCNF problem by cycle canceling algorithm, we observe that the only negative

cost arc is (t, s) and therefore each negative cost cycle is a path from s to t augmented with this

arc. When we look for negative cost cycle of minimum mean, that is, the ratio of the cost to the

number of arcs, it translates in the context of maximum flow to −1 divided by the length of the

s, t path in terms of the number of arcs. The minimum mean corresponds to a path of smallest

number number of arcs – shortest augmenting path. You can easily verify the other analogies in

the following table.

Minimum cost network flow maximum flow

Negative cost cycle in G(x) Augmenting path in G(x)

Cycle canceling algorithm Augmenting path algorithm

Minimum mean cost cycle canceling Shortest augmenting path

Most negative cost cycle Augmenting path (all paths have same cost)

Notice that finding a most negative cost cycle in a network is NP-hard as it is at least as hard
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as finding a hamiltonian path if one exists. (set all costs to 1 and all capacities to 1 and then

finding most negative cost cycle is equivalent to finding a longest cycle.) But finding a minimum

mean cost cycle can be done in polynomial time. The mean cost of a cycle is the cost divided by

the number of arcs on the cycle.

19.7 The gap between the primal and dual of uncapacitated MCNF

For the max flow min cut problem the gap between the primal and dual is significant, as dis-

cussed in the max-flow min-cut section. We now investigate the gap between primal and dual for

uncapacitated MCNF.

We want to show that for an optimal flow x∗ there is a corresponding set of potentials πi and

vice versa.

Flow → potentials: Let x∗ be the flow. The residual graph G(x∗) is connected as there must

be at least one arc in the residual graph for each (i, j) ∈ A.

Let the length of the arc (i, j) ∈ G(x∗) be:

dij =

{
cij if (i, j) ∈ A

−cji if (j, i) ∈ A.

We now add to the graph G(x∗) a source node s with arcs of length 0 to all nodes i ∈ V . This

does not introduce any negative cost cycle. In this graph the shortest path distances from node

s, d(i), are well defined since there are no negative cost cycles in G(x∗). Let πi = −d(i). Using

Bellman-Ford algorithm the complexity of the shortest paths procedure is O(mn).

Potentials → flow :

If cπij > 0 then set x∗ij = 0,

If cπij < 0 then set x∗ij = uij .

As for the remaining flows, they can be anywhere between the lower and upper bounds. By

assigning the flows guaranteed to be at the upper and lower bounds, the supplies of nodes will

be modified. We now use the maximum flow procedure to find a flow that is feasible on these

arcs: connect excess nodes to source and deficit nodes to sink and find a flow that saturates these

arcs, that is, – maximum. The complexity of this process is that of finding maximum flow, e.g.

O(mn log n2

m ).

If the potentials are a basic (optimal) solution, in the sense that the arcs with cπij = 0 form

an acyclic graph – a forest, then the potentials provide a basis that corresponds to the (T,L,U)

structure. In this case the maximum flow needs to be solved on a tree-network. This can be done

more efficiently than solving max-flow on a general network: Hochbaum’s Pseudoflow algorithm,

[Hoc08], was shown to solve the maximum-flow problem on s, t-tree networks in linear time, O(n),

where s, t-tree networks are formed by joining a forest of capacitated arcs, with nodes s and t

adjacent to any subset of the nodes. Notice that such linear gap, if the basis is given, holds also

for the maximum flow reconstructed from min-cut solution. Therefore, solving a MCNF problem,

and identifying the (T,L,U) basis structure have different complexities (the latter more than the

former).
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