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In this paper,1 we consider an integer convex optimization problem where the objective
function is the sum of separable convex functions (that is, of the form

∑
�i� j�∈Q �Fij �wij �+∑

i∈P �Bi��i��, the constraints are similar to those arising in the dual of a minimum cost flow
problem (that is, of the form �i−�j ≤wij , �i� j� ∈Q�, with lower and upper bounds on vari-
ables. Let n= �P ��m= �Q�, and U be the largest magnitude in the lower and upper bounds
of variables. We call this problem the convex cost integer dual network flow problem. In this
paper, we describe several applications of the convex cost integer dual network flow problem
arising in a dial-a-ride transit problem, inverse spanning tree problem, project management,
and regression analysis. We develop network flow-based algorithms to solve the convex cost
integer dual network flow problem. We show that using the Lagrangian relaxation technique,
the convex cost integer dual network flow problem can be transformed into a convex cost
primal network flow problem where each cost function is a piecewise linear convex function
with integer slopes. Its special structure allows the convex cost primal network flow problem
to be solved in O�nm log�n2/m� log�nU�� time. This time bound is the same time needed to
solve the minimum cost flow problem using the cost-scaling algorithm, and is also is best
available time bound to solve the convex cost integer dual network flow problem.
(Minimum Cost Flow; Convex Cost Flow; Lagrangian Relaxation; Scaling Algorithm; Duality
Theory; Integer Programming )

1. Introduction
We consider the following mathematical program-
ming problem in this paper:

Minimize
∑

�i� j�∈Q
�Fij �wij �+

∑
i∈P

�Bi��i�� (1a)

subject to �i−�j ≤wij for all �i� j� ∈Q� (1b)

lij ≤wij ≤ uij for all �i� j� ∈Q� (1c)

li ≤ �i ≤ ui for all i ∈ P� (1d)

wij is integer for all �i� j� ∈Q� (1e)

and

�i is integer for all i ∈ P� (1f)

1 An earlier version of this paper appeared in Ahuja et al. (1999).

where P = �1�2� � � � �n� is a set of n numbers, Q⊆ P ×
P , and li� ui� lij, and uij are specified finite integers. We
permit the lower bounds li and lij to take negative val-
ues. Let m= �Q�. In this problem, the �is and wijs are
decision variables, �Fij�wij� is a convex function of wij
for every �i� j� ∈ Q, and �Bi��i� is also a convex func-
tion of �i for every i ∈ P . Let U = max�max�uij− lij:
�i� j� ∈Q��max�ui− li� i ∈ P��. We assume that U <
.
We call problem (1) the convex cost integer dual

network flow problem (or simply the dual network flow
problem), because the dual of the minimum cost flow
problem is easily transformed into a special case
of (1). The dual network flow problem and its spe-
cial cases arise in various application settings, includ-
ing multiproduct multistage production/inventory
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systems, project scheduling, machine-scheduling with
precedence constraints, dial-a-ride transit problems,
inverse optimization, and isotone regression. We
describe some of these applications in §5 and provide
references for other applications.
It is well known (see, for example, Murty 1985)

that (1) can be transformed into a linear programming
problem by assuming (without loss of generality) that
each of the convex functions is linear between suc-
cessive integers, and then introducing a separate vari-
able for each linear segment in the functions Fij�wij�

and Bi��i�. It follows from the integrality of the break-
points (that is, those points where the slopes of the
functions Fij�wij� and Bi��i� change) that there always
exist an optimal solution of (1) that is integer. Hence
this assumption:

Assumption 1. We assume without loss of generality
that each of the convex functions is linear between succes-
sive integers. We also assume that each convex function
can be evaluated in O(1) steps.

We point out that this assumption does not increase
the problem size because we handle the objective
function (1a) implicitly. We assume that each of the
functions �Fij�wij� (or �Bi��i�� can be evaluated in O�1�
time for a given value of wij (or �i� using an ora-
cle function and is independent of the number of
segments in the function. In fact, the running times
stated below are functions of the number of nodes
n, the number of arcs m, and logU , and they do not
involve the size of the data needed to specify the cost
functions.
In (1), we permit lower and upper bounds on the

variables wij and �i. However, our algorithm pre-
sumes that no such bound exists. We can transform
(1) to eliminate the bounds.

Assumption 2. There are no lower and upper bound
constraints on the variables wij and �i.

We can easily satisfy this assumption by modifying
�Fij�wij� and �Bi��i� as follows:

Fij�wij� =



�Fij�uij�+M�wij−uij� for wij > uij�

�Fij�wij� for lij ≤wij ≤ uij�

�Fij�lij�−M�wij− lij� for wij < lij�

(2a)

Bi��i� =



�Bi�ui�+M��i−ui� for �i > ui�

�Bi��i� for li ≤ �i ≤ ui�

�Bi�li�−M��i− li� for �i < li�

(2b)

where M is a sufficiently large number. We choose
M such that in any solution �w��� that satisfies
(1b) but violates (1c) or (1d) cannot be an optimal
solution of (1). Any value of M > Lf − Lb will suf-
fice, where Lf denotes a feasible objective function
value and Lb denotes a lower bound on the objec-
tive function value. To determine Lf , we can solve:
Maximize

∑
�i� j�∈Q �Fij�wij�+

∑
i∈P �Bi��i�, subject to (1c),

(1d), and (1e). Because this problem is separable in
each decision variable and each variable takes inte-
ger values, we can determine the optimal value of
each decision variable in O�logU� time using any
search method. Hence, Lf can be determined in a
total of O��m+ n� logU� time. To determine Lb, we
can solve: Minimize

∑
�i� j�∈Q �Fij�wij�+

∑
i∈P �Bi��i�, sub-

ject to (1c), (1d), and (1e), which can be also be done in
O��m+n� logU� time.

Assumption 3. Each constraint in (1b) is an equality
constraint.

Often in dual network flow problems, the con-
straints are of the form of inequalities: �i −�j ≤ wij
for all �i� j� ∈Q. In such a case, the contribution to the
objective function for variable wij would not be Fij�wij�,
but instead would be min{Fij�x�� x ≥ wij} because
increasing the value of wij would keep the inequality
�i −�j ≤ wij satisfied. One can transform a problem
with inequalities to one with equalities in polynomial
time by letting Eij�wij�=minimum�Fij�x�� x ≥wij}, and
noting that Eij�wij� is convex. Assuming that Fij�wij�
can be evaluated in O�1� steps for each integral wij,
it follows that Eij�wij� can be evaluated in O�logU�
steps for each integer wij. Moreover, we can do better
and evaluate it in O�1� time after some preprocess-
ing has been done. Suppose that we choose !ij such
that Fij�!ij�=min�F �wij�� lij ≤wij ≤ uij}. Then, Eij�wij�=
Fij�!ij� if xij ≤!ij, and Eij�wij�= Fij�wij� if xij>!ij. We can
determine !ij in O�logU� time for any �i� j� ∈Q, and
in O�m logU� time overall. Once !ijs are determined,
we can evaluate Eij�wij� in O�1� time for any wij.
We will henceforth assume that the transformation

described above to satisfy Assumptions 1, 2, and 3
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have been made. These transformations give us the
following formulation:

Minimize
∑

�i� j�∈Q
Fij�wij�+

∑
i∈P

Bi��i�� (3a)

subject to �i−�j =wij for all �i� j� ∈Q� (3b)

In this paper, we develop an O�nm log�n2/m�·
log�nU�� time algorithm to solve (1) which improves
the previous best time bound of O�nm logn log�nU��

due to Karzanov and McCormick (1997). Our algo-
rithm follows from the series of three results, two
of which are due to Rockafellar (1984). However,
because our notation is significantly different than
that of Rockafellar (1984), and we also use some prob-
lem specific properties of (1), we develop these results
from scratch. These three results are:
(1) The Lagrangian relaxation of (3) obtained by

relaxing the constraints in (3b) can be transformed to
a network flow problem with nonlinear costs. This
result is shown in §2.
(2) The network flow problem with nonlinear costs

described above is a convex cost network flow prob-
lem, that is, the minimum cost flow problem with
piecewise linear convex functions where each linear
segment has integer slopes. This result is shown in §3.
(3) We next adapt the cost-scaling algorithm for the

minimum cost flow problem, due to Goldberg and
Tarjan (1987), to solve the convex cost network flow
problem. Using the integrality of the slopes of the
linear segments in the cost functions and some addi-
tional properties, we show that the cost-scaling algo-
rithm can solve the convex cost integer dual network
flow problem in O�nm log�n2/m� log�nU�� time. This
result is shown in §4. This time bound is the same
time needed to solve the minimum cost flow problem
using the cost-scaling algorithm, and is also is best
available time bound to solve the convex cost integer
dual network flow problem for all network densities
(that is, for all possible values of m/n).
We now briefly survey the related research.

Hochbaum and Shanthikumar (1990) showed how
to solve the dual network flow problem in polyno-
mial time. In that paper, it was shown that any con-
vex separable minimization in integers over a totally
unimodular constraint matrix is solvable in polyno-
mial time by O�logU� calls to a linearized version

of the problem in binary variables. Recently, Ahuja
et al. (2000) demonstrated how to implement the algo-
rithm for the linearized version of Problem (1) by
solving a minimum cut problem on an associated
graph. The running time of this approach to solve (1)
is O��logU�T �n2�mn2��, where T �p� q� represents the
running time to solve a minimum cut problem on a
network with p nodes and q arcs.
The problem of convex optimization over totally

unimodular constraints was also addressed by
Karzanov and McCormick (1997). They proposed
two approaches by generalizing the minimum mean
cycle canceling method and the cancel-and-tighten method
for the minimum cost flow problem developed by
Goldberg and Tarjan (1988). Both of these two
approaches apply to the convex cost integer dual net-
work flow problem, which they called the network
cocirculation problem. The cancel-and-tighten method
runs faster than the minimum mean cycling method
and its running time for the convex cost integer
dual network flow problem is O�nm logn log�nU��.
Whereas Karzanov and McCormick’s (1997) method
applies the cancel-and-tighten method due to
Goldberg and Tarjan (1988), which proceeds by send-
ing flows along negative cost cycles, our method
applies the cost-scaling algorithm due to Goldberg
and Tarjan (1987), which proceeds by pushing flows
from nodes with excesses towards nodes with deficits.
Hochbaum (2001a) recently devised an algorithm

for a special case of our problem, with the functions
�Fij�wij� restricted to be linear and wij ≥ 0. That algo-
rithm has the complexity of solving a minimum cut
problem on a graph T �n�m� plus the complexity of
finding the integer minima of the convex functions
�Bi��i�, which can be found in O�n logU� for general
convex functions, or faster for specific convex func-
tions such as quadratic functions or piecewise linear
functions.

2. Transformation to a Network
Flow Problem

We use the Lagrangian relaxation technique of
Rockafellar (1984) to solve the dual network flow
problem. He showed that the Lagrangian multi-
plier problem is a minimum convex cost network
flow problem. We review his approach in this section.

952 Management Science/Vol. 49, No. 7, July 2003
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We dualize Constraints (3b) using the vector x,
obtaining the following Lagrangian subproblem:

L�x� = min
w��

∑
�i� j�∈Q

Fij�wij�+
∑
i∈P

Bi��i�

− ∑
�i� j�∈Q

�wij+�j −�i�xij� (4)

where xij is the Lagrangian multiplier associated with
the constraint �i−�j = uij. It is easy to show that

∑
�i� j�∈Q

��j −�i�xij =
∑
i∈P

�i

( ∑
�j� �j� i�∈Q�

xji−
∑

�j� �i� j�∈Q�
xij

)

= ∑
i∈P

xi0�i� (5)

where xi0 =
∑

�j� �j� i�∈Q� xji−
∑

�j� �i� j�∈Q� xij for each i ∈ P .
Substituting (5) into (4) yields

L�x� = min
w��

∑
�i� j�∈Q

�Fij�wij�−xijwij�

+∑
i∈P
�Bi��i�−xi0�i�� (6a)

subject to

xi0 =
∑

�j� �j� i�∈Q�
xji−

∑
�j� �i� j�∈Q�

xij for all i ∈ P� (6b)

We will now simplify the Lagrangian subproblem
(6). We define a directed network G = �N�A� with
node set N and arc set A. The node set N contains
a node i for each element i ∈ P and an extra node,
node 0. The arc set A contains an arc �i� j� for each
�i� j� ∈ Q and an arc �i�0� for each i ∈ P . For each
arc �i�0�� i ∈ P , we let wi0 = �i� li0 = li� ui0 = ui, and
Fi0�wi0� = Bi��i�. Observe that �N � = n+ 1, and �A� =
m+n. In terms of these notations, the Lagrangian sub-
problem (6) can be restated as follows:

L�x�=min
w

∑
�i� j�∈A

�Fij�wij�−xijwij�� (7a)

subject to∑
�j� �j� i�∈A�

xji−
∑

�j� �i� j�∈A�
xij = 0 for all i ∈ N� (7b)

Because each Fij�wij� is a convex function, Fij�wij�−
xijwij is also a convex function of wij for a given
value of xij. (When we mention a specified value of

x, we mean that we specify xij for each �i� j� ∈ Q,
and the remaining xij for each �i� j� ∈ A\Q are deter-
mined using (7b).) For a given value of x, each term
of minw

∑
�i� j�∈A�Fij�wij�−xijwij� can be optimized sepa-

rately. Consequently, to determine L�x� for a given x,
we need to determine min�Fij�wij�−xijwij� wij integer}
for each �i� j� ∈A.
Let Hij�xij�=min�Fij�wij�−xijwij� wij integer} for each

�i� j� ∈A. In terms of Hij�xij�, (7) can be restated as

L�x�= ∑
�i� j�∈A

Hij�xij� subject to (7b). (8)

We now focus on solving the Lagrangian Multiplier
Problem, which is to determine the value of x for
which the Lagrangian function L�x� attains the high-
est objective function value. The Lagrangian multi-
plier problem is to determine x∗ such that

L�x∗� = maxL�x�

= max
∑

�i�j�∈A
Hij�xij� subject to (7b)� (9a)

which is a network flow problem in terms of the
arc flow vector x (which is the vector of decision
variables) with nonlinear cost functions and with no
upper or lower bounds on arc flows x.
The following well-known theorem establishes a

connection between the Lagrangian multiplier prob-
lem and the dual network flow problem.

Theorem 1. Let x∗ be an optimal solution of the
Lagrangian multiplier problem (9). Then L�x∗� equals the
optimal objective function value of the dual network flow
problem (3).

Proof. Problem (9a) can be transformed to a lin-
ear programming problem by introducing a separate
variable for each linear segment in the cost functions
Hij�xij�. Then, Theorem 1 follows from a well-known
result in the theory of Lagrangian relaxation (see, for
example, Ahuja et al. 1993, Theorem 16.8). �

We describe in §4 how we can efficiently use the
optimal solution of (3) to construct an optimal solu-
tion of (1). We now discuss the time taken to trans-
form problem (1) into (3). It takes O��m+ n� logU�
time to satisfy Assumption 2 and to go from (1) to
(2). It takes O�m logU� time to satisfy Assumption 3
and to go from (2) to (3). As we will see later, this
time is dominated by the time taken by other steps in
our algorithm.
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3. Properties of the Function Hij�xij�
In this section, we study properties of the function
Hij�xij�. We shall use these properties in the next sec-
tion to develop an efficient cost-scaling algorithm to
solve the Lagrangian multiplier problem (9a).
We first study how to compute Hij�xij� for a given

value of xij. Recall that Hij�xij� = min�Fij�wij�− xijwij:
wij integer}. There are three cases to consider:
Case 1. xij > M . It follows from (2a) that if wij >

M , then increasing wij further increases Fij�wij� at a
rate of M per unit increase in wij. But increasing
wij decreases −xijwij at a rate strictly greater than
M (because xij > M). Consequently, Fij�wij� − xijwij
strictly decreases if we increase wij beyond M . Hence,
Fij�wij�− xijwij approaches −
 as wij approaches 
.
Therefore, Hij�xij�=−
 for xij >M .
Case 2. xij < −M . An analysis similar to that in

Case 1 yields that Hij�xij� approaches −
 as wij
approaches −
. Therefore, Hij�xij�=−
 for xij <−M .
Case 3. −M ≤ xij ≤M . In this case, we will show that

Fij�wij�− xijwij will achieve its minimum for some wij
satisfying lij ≤wij ≤ uij (where lij and uij are as defined
in §1). To see this, observe that for wij > uij, Fij�wij�
increases at a rate of M per unit increase in wij, and
−xijwij decreases at a rate no more than M (because
xij ≤ M); consequently, Fij�wij�− xijwij increases as wij
increases. A similar argument applies when wij < lij.
Hence, Hij�xij� = min�Fij�wij�− xijwij� lij ≤ wij ≤ uij and
wij integer}. Because Fij�wij� is a piecewise linear con-
vex function, Fij�wij�− xijwij is also a piecewise linear
convex function. Therefore, we can find Hij�xij� =
min�Fij�wij�−xijwij� lij ≤wij ≤ uij and wij integer} by per-
forming binary search and considering integer values
of wij in the interval �lij�uij�, which requires O�logU�

time. Thus, in this case, Hij�xij� can be computed in
O�logU� time. (Here, as per our assumption, Fij�wij)
can be computed in O�1� time for a specified value
of wij.)
Recall that the Lagrangian multiplier problem is to

determine a vector x that maximizes
∑

�i� j�∈AHij�xij�

subject to (7b). The preceding discussion implies that
Hij�xij� = −
 when xij >M or when xij < −M . Thus,
we can exclude the values xij >M and xij <−M when
solving the Lagrangian multiplier problem. Alter-
natively, the Lagrangian multiplier problem can be

stated as to maximize
∑

�i� j�∈AHij�xij� subject to (7b)
and the following additional redundant constraints:

−M ≤ xij ≤M for all �i� j� ∈A� (9b)

where Hij�xij� = min�Fij�wij�− xijwij� wij integer}. We
will next show that Hij�xij� is a piecewise linear con-
cave function of xij. Our subsequent discussion uses
the following property:
Property 1. (a) Let Fij�)� be a convex function of ).

Then, Fij�)+1�− Fij�)�≤ Fij�)+2�− Fij�)+1�≤ Fij�)+3�
− Fij�)+2�≤ · · · ≤ Fij�uij�− Fij�uij−1�.
(b) Let bij�)� = Fij�)+ 1�− Fij�)� for lij ≤ ) ≤ uij−1�

) integral. Then, bij�)� ≤ bij�)+ 1� ≤ bij�)+ 2� ≤ · · · ≤
bij�uij−1�.
Property 1(a) directly follows from the convexity of

the function Fij�)�, and Property 1(b) is equivalent to
Property 1(a). Because for a given xij, Fij�wij�−wijxij
is a piecewise linear convex function of wij, Hij�xij� =
min�Fij�wij�− xijwij� wij integer} = min�Fij�wij�− xijwij�

lij ≤ wij ≤ uij and wij integer} = min�Fij�lij� − xijlij�

Fij�lij+1�−xij�lij+1�� Fij�lij+2�−xij�lij+2�� � � � � Fij�uij�−
xijuij�. Observe that the function Hij�xij� is the lower
envelope of the lines Fij�lij�− lijxij� Fij�lij+1�−�lij+1�xij�
Fij�lij+2�− �lij+2�xij� � � � � Fij�uij�−uijxij, and hence, is a
piecewise linear concave function.

Theorem 2. The function Hij�xij�=min�Fij�wij�−wijxij�
wij integer} is a piecewise linear concave function of xij,
and is described in the following manner:

Hij�xij�=




Fij�lij�− lijxij if −M ≤ xij ≤ bij�lij��

Fij�lij+1�− �lij+1�xij
if bij�lij�≤ xij ≤ bij�lij+1��

���

Fij�q�− qxij if bij�q−1�≤ xij ≤ bij�q��
���

Fij�uij�−uijxij if bij�uij−1�≤ xij ≤M�

(10)

Proof. Consider the lines Fij�)�− )xij as ) varies
from lij to uij. The line Fij�lij�− lijxij intersects with the
line Fij�lij + 1�− �lij + 1�xij at xij = Fij�lij + 1�− Fij�lij� =
bij�lij�. Similarly, the line Fij�lij+1�−�lij+1�xij intersects
with the line Fij�lij + 2�− �lij + 2�xij at xij = bij�lij + 1�.
It follows from Property 1(b) that bij�lij� ≤ bij�lij + 1�.
In general, the line Fij�)�−)xij intersects with the line
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Fij�)+1�− �)+1�xij at xij = bij�)� for each ) = lij� lij+1�
lij + 2� � � � �uij − 1. This together with the fact that
bij�lij� ≤ bij�lij+ 1� ≤ bij�lij+ 2� ≤ · · · ≤ bij�uij� establishes
the theorem. �

It follows from Theorem 2 that the line Fij�)�− )xij
for a given )� lij ≤ ) ≤ uij, is represented in Hij�xij�

for xij ∈ �bij�)− 1�� bij�)�� (where bij�lij− 1� = −M and
bij�uij�=M�. If bij�lij−1� < bij�lij� < bij�lij+1� < bij�lij+2�
< · · · < bij�uij�, then each line Fij�)�− )xij contributes
a linear segment of positive length to Hij�xij�; in this
case, slopes of the linear segments in the function
Hij�xij� take all the values from −lij to −uij as xij varies
from −M to M . However, if bij�)−1�= bij�)� for some
), then Fij�)�−)xij will contribute just a point (or a line
segment of zero length) to Hij�xij�. In this case, slopes
of the linear segments in the function Hij�xij� will not
take all the values from −lij to −uij as xij varies from
−M to M ; instead at some breakpoints, the slope will
change by more than one unit.
We next define the right and left slopes of Hij�xij�.

For the function Hij�xij�, we define its right slope at
point xij as �Hij�xij + *�−Hij�xij��/*, and its left slope
at point xij as �Hij�xij�−Hij�xij − *��/*, where * is a
sufficiently small number. In other words, the right
slope of Hij�xij� at point xij equals the slope of the
linear segment in Hij�xij� on the right side of the point
xij and the left slope equals the negative of the slope
of the linear segment on the left side of the point xij. It
follows from Theorem 2 and our preceding discussion
that at xij= bij�)�, the right slope of the function Hij�xij�

is at most −�)+1� and its left slope is at least −).
We have so far transformed the Lagrangian multi-

plier problem into maximizing a concave cost flow
problem. We can alternatively restate this problem as

Minimize
∑

�i� j�∈A
Cij�xij�� (11a)

subject to
∑

�j� �j� i�∈A�
xji−

∑
�j� �i� j�∈A�

xij = 0

for all i ∈ N� (11b)

−M ≤ xij ≤M for all �i� j� ∈A� (11c)

where Cij�xij�=−Hij�xij�. The slopes of the linear seg-
ments in Cij�xij� are the negatives of the corresponding
slopes in Hij�xij�. Because Hij�xij� is a piecewise linear
concave function, Cij�xij� is a piecewise linear convex

function. The proof of the next lemma follows from
this correspondence and the preceding discussion:

Lemma 1. If xij= bij�)� for some integer ) ∈ �lij�uij−1�,
then the right slope of Cij�xij� is at least )+1 and its left
slope is at most ). In addition, the right slope of Cij�xij�
at xij = −M is lij, and the left slope of Cij�xij� at xij =M

is uij.

4. Cost-Scaling Algorithm
Problem (11) is a convex cost flow problem in which
the cost associated with the flow on arc �i� j� is a
piecewise linear convex function containing at most
U + 1 linear segments. We can transform (11) into a
minimum cost flow problem in an expanded network
G′ = �N ′�A′�, and solve it using any minimum cost
flow algorithm. In this transformation, for each arc
�i� j�∈A, we introduce �uij− lij+1� arcs in G′—one arc
corresponding to each linear segment, and the costs of
these arcs are: lij� lij+1� lij+2� � � � �uij, and the capaci-
ties of these arcs, respectively, are bij�lij�+M�bij�lij+1�
− bij�lij�� bij�lij + 2� − bij�lij + 1�� � � � �M − bij�uij − 1�.
Notice that we introduce U +1 arcs in G′ for each arc
�i� j� in G and the cost of each arc is also bounded
by U . It is well known that solving the convex cost
flow problem in G is equivalent to solving the min-
imum cost flow problem in G′. Hence, we can use
any minimum cost flow algorithm to solve the mini-
mum cost flow problem in G′. However, because the
number of arcs in the network G are O�nU�, mini-
mum cost flow algorithms would not in general run
in polynomial time. In addition, some minimum cost
flow algorithms, such as capacity scaling algorithms,
require that the arc capacities are integer (or rational)
numbers. In the above transformation, the arc capaci-
ties are not necessarily rational numbers (we assumed
a convex oracle function, and did not assume ratio-
nal function values) and in the presence of irrational
capacities the capacity scaling algorithm does not
finitely converge.
We can, however, use the cost-scaling algorithm

due to Goldberg and Tarjan (1987) to solve the mini-
mum cost flow problem in G′. The correctness of the
cost-scaling algorithm relies on the fact that all arc
costs must be integer. Observe that the minimum cost
flow problem in G′ has integer costs. Consequently,
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the cost-scaling algorithm will correctly solve the min-
imum cost flow problem in G′. However, the running
time of the cost-scaling algorithm will not be polyno-
mial in n, m, and logU (because the minimum cost
flow problem contains O�nU� arcs). We now describe
a modification of the cost-scaling algorithm that can
solve the convex cost flow problem in (11) in the
same time as needed by the cost-scaling algorithm to
solve the minimum cost flow problem. We will subse-
quently refer to the modified algorithm as the convex
cost-scaling algorithm and the cost-scaling algorithm
for the (linear cost) minimum cost flow problem as
the linear cost-scaling algorithm.
Our subsequent discussion requires some under-

standing of the linear cost-scaling algorithm for the
minimum cost flow problem. We refer the readers to
the paper by Goldberg and Tarjan (1987) or the book
of Ahuja et al. (1993) for a description of this algo-
rithm. Goldberg and Tarjan (1987) had observed that
their linear cost-scaling algorithm could be extended
to treat convex cost flows at each scaling phase; how-
ever, the algorithm is not guaranteed to find an opti-
mal solution of the convex cost flow problem in
a polynomially bounded number of scaling phases.
(Tarjan 1998 communicated this to one of the co-
authors of this paper.) We will show that because of
the special structure of (11), we can modify the linear
cost-scaling algorithm to obtain an optimal solution of
the convex cost flow problem. In addition, we show
that the running time of this algorithm to solve (11) is
the same as needed to solve the minimum cost flow
problem by the linear cost-scaling algorithm.
We now briefly describe the linear cost-scaling algo-

rithm for the minimum cost flow problem and point
out the changes we need to make to apply it for the
convex cost case. We will use the notation given in
Ahuja et al. (1993). While describing this algorithm,
we will assume that it is applied to the minimum cost
flow problem with cijs as arc costs, uijs as arc capac-
ities, and zero lower bounds on arc costs. The linear
cost-scaling algorithm maintains a pseudoflow at each
step. A pseudoflow x is any function x� A→R that sat-
isfies upper and lower bounds on arc flows but may
violate the flow balance constraints at nodes. For any
pseudoflow x, we define the imbalance of node i as
e�i�=∑�j� �j� i�∈A� xji−

∑
�j� �i� j�∈A� xij for all i ∈N . If e�i�> 0

for some node i, we refer to node i as an excess node
and refer to e�i� as the excess of node i. We refer to a
pseudoflow x with e�i�= 0 for all i ∈ N as a flow.
We henceforth assume for notational convenience

that for any pair of nodes i and j , either �i� j� ∈ A

or �j� i� ∈ A, but not both. We can easily satisfy this
assumption by performing a simple transformation,
but the assumption is not needed in any case.
The linear cost-scaling algorithm also maintains a

value /�i� for each node i ∈N . We refer to the vector
/ as a vector of node potentials. The cost-scaling algo-
rithm proceeds by constructing and manipulating the
residual network G�x� defined as follows with respect
to a pseudoflow x. For each arc �i� j� ∈A, the residual
network G�x� contains two arcs, �i� j� and �j� i�. The
arc �i� j� has cost cij and residual capacity rij = uij−xij,
and the arc �j� i� has cost cji =−cij and residual capac-
ity rji = xij. The residual network consists only of arcs
with positive residual capacity.
For a given residual network G�x� and a set of

node potentials /, we define the reduced cost of an arc
�i� j� as c/ij = cij−/�i�+/�j�. For a given value of 1,
we call an arc �i� j� admissible if −1 ≤ c/ij < 0. A flow
or a pseudoflow x is said to be 1-optimal for some
1 ≥ 0 if for some node potentials /, the pair �x�/�
satisfies the following 1-optimality conditions: c/ij ≥ −1
for every arc �i� j� in G�x�. The cost-scaling algo-
rithm treats 1 as a parameter and iteratively obtains
1-optimal flows for successively smaller values of 1.
Initially, 1 =max�cij� �i� j� ∈ A� = U and any feasible
flow is 1-optimal. The algorithm then performs cost-
scaling phases by repeatedly applying an improve-
approximation procedure that transforms an 1-optimal
flow into an 1/2-optimal flow. After O�log�nU�� cost-
scaling phases, 1 < 1/n, and the algorithm terminates
with an optimal flow.
The basic operation in the improve-approximation

procedure is to select an excess node i and per-
form pushes on admissible arcs emanating from it.
The amount pushed on an admissible arc �i� j� is
min�rij� e�i��. If e�i� < rij, then the push is a nonsatu-
rating push; otherwise it is a saturating push. When
node i has no admissible arc emanating from it, then
it increases the potential of the node by 1/2; this step
is called a relabel step. The improve-approximation pro-
cedure terminates when there is no excess node (that
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is, the current pseudoflow is a flow). Hence, there are
three major operations per scaling phase in the linear
cost-scaling algorithm: saturating pushes, nonsaturat-
ing pushes, and relabels. Goldberg and Tarjan (1987)
showed that each scaling phase performs O�nm� sat-
urating pushes, O�n2m� nonsaturating pushes, and
O�n2� relabels. Using the dynamic tree data structure
(Sleator and Tarjan 1983), the algorithm can be imple-
mented to run in O�nm log�n2/m�� time per scaling
phase and in O�nm log�n2/m� log�nU�� total time.
We now describe how to modify the cost-scaling

algorithm for the convex cost case. For a given arc
flow x′, we construct the residual network G�x′� in the
usual manner. With respect to the flow x′, the residual
capacity of arc �i� j� is rij =M − x′ij, and the residual
capacity of arc �j� i� is x′ij+M . The residual network
G�x′� consists of arcs with positive residual capacity
only. We refer to an arc �i� j� in G�x′� as a forward arc if
�i� j� ∈A, and refer to it as a backward arc if �j� i� ∈A.
(Recall from our assumption that either �i� j� ∈ A or
�j� i� ∈ A but not both.) We denote by A�i� the set of
arcs in G�x′� emanating from node i.
For a given flow x′, we set the cost cij�x′� of a for-

ward arc �i� j� as the right slope of Hij�·� at x′ij. We
define the cost cji�x′� of a backward arc �j� i� as the
negative of the left slope of Hij�·� at x′ij. Note that if
H were a linear function cx, then the cost of arc �i� j�
would be cij, and the cost of the backward arc �j� i�

would be −cij, which is the same as the costs of the
arcs in G�x′� in the linear cost-scaling algorithm. We
define the reduced cost of a forward arc �i� j� in G�x′�
as c/ij �x

′�= cij�x
′�−/�i�+/�j�, and the reduced cost of

a backward arc �j� i� as c/ji �x
′�= cji�x

′�−/�j�+/�i�.
We define an arc �i� j� in the residual network as

admissible as in the linear cost-scaling algorithm, that
is, −1≤ c/ij �x

′�< 0. For each arc �i� j� in G�x�, we define
qij, which denotes the amount of flow that we need to
send on arc �i� j� so that both the arcs �i� j� and �j� i�

become inadmissible after the push. Also observe that
as we send flow on an admissible arc �i� j�, the cost
of the arc changes as it is a convex function of the
flow on the arc. As the cost of the arc changes, its
reduced cost also changes accordingly. If arc �i� j� is
an admissible arc, then by increasing flow on the arc
the cost of the arc (and the reduced cost of the arc)
increases (because of the convexity of the arc costs)

and eventually it becomes nonnegative, thus making
the arc inadmissible. Hence, the number qij denotes
the maximum flow that can be sent on the arc �i� j� so
that its reduced cost remains nonpositive. Similarly,
when we increase the flow on an admissible arc �i� j�,
the reduced cost of the backward arc �j� i� decreases,
and qij also denotes the maximum flow that can be
sent on the arc �i� j� so that the reduced cost of the arc
�j� i� remains nonnegative. We shall show in Lemma 2
that for a forward admissible arc �i� j� in G�x′�� qij is

qij=
{
M−x′ij if /�i�−/�j�≥uij�

bij��/�i�−/�j���−x′ij if /�i�−/�j�<uij�
(12a)

and for a backward admissible arc �j� i� in G�x′�, qji is

qji =



M +x′ij if /�i�−/�j�≤ lij�

x′ij− bij��/�i�−/�j���
if /�i�−/�j� > lij�

(12b)

Lemma 2. If arc �i� j� in G�x′� is a forward admissible
arc (or a backward admissible arc), and if qij (or qji� units of
flow are sent on arc �i� j� (or arc �j� i�), then subsequently
neither the arc �i� j� nor the arc �j� i� is admissible.

Proof. Let x′′ denote the flow after the push. There
are four cases to consider.
Case 1. Arc �i� j� is a forward arc, and /�i�−/�j�≥ uij.

In this case, as defined by (12), qij =M − x′ij, and the
flow x′′ij after the push is x′′ij =M , and thus arc �i� j� �∈
G�x′′�. Moreover, the left slope of Cij�M� (by Lemma 1)
equals uij (or, cji�x′′� = −uij�. Thus, c/ji �x′′� = cji�x

′′�+
/�i�−/�j�=−uij+/�i�−/�j�≥ 0.
Case 2. Arc �i� j� is a forward arc, and /�i�−/�j� < uij.

In this case, qij = bij��/�i�−/�j���−x′ij, and so after the
push, x′′ij = bij��/�i�−/�j���. By Lemma 1, the right
slope of Cij�x′′ij� is at least �/�i�−/�j��+1 (or, cij�x′′�≥
�/�i�−/�j��+1�, and therefore,

c/ij �x
′′� = cij�x

′′�−/�i�+/�j�

≥ ��/�i�−/�j��+1�− �/�i�−/�j��≥ 0�

Also by Lemma 1, the left slope of Cij�x
′′
ij� is at

most �/�i�−/�j�� (or, cji�x′′� ≥ −�/�i�−/�j��), and
therefore,

c/ji �x
′′� = cji�x

′′�+/�i�−/�j�

≥ −�/�i�−/�j��+ �/�i�−/�j��≥ 0�
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Case 3. Arc �j� i� is a backward arc, and /�i�−/�j�≤ lij.
In this case, x′′ij =−M , and after the push �j� i� �∈G�x′′�.
Moreover, the right slope of Cij�−M� by Lemma 1
equals lij, and thus c/ij �x

′′� = cij − /�i�+ /�j� = lij −
/�i�+/�j�≥ 0.
Case 4. Arc �j� i� is a backward arc, and /�i� −

/�j� > lij. In this case, qji = x′ij− bij��/�i�−/�j���, and
after the push, the amount of flow in arc �i� j� is
bij��/�i�−/�j���, and so the argument given in Case 2
applies.
We also need to prove that qij > 0 (or qji > 0�. We

will prove this result for the case when arc �i� j� is
a forward arc; the proof for the case when arc �i� j�

is a backward arc is similar. Observe that c/ij �x
′� < 0

(because arc �i� j� was an admissible arc before the
push) and c/ij �x

′′�≥ 0. By the convexity of Cij�·�, it fol-
lows that x′ij < x′′ij and so qij > 0. This completes the
proof of the lemma. �

Our convex cost-scaling algorithm is almost iden-
tical to the linear cost-scaling algorithm. We give an
algorithmic description of this algorithm below:

algorithm cost scaling
begin

/ �= 0 and 1 �= C;
let x be any feasible flow;
while 1≥ 1/n do
begin
improve-approximation(1�x�/�;
1 �= 1/2;

end;
x is an optimal flow for the dual network
flow problem;

end;

procedure improve-approximation(1�x�/�;
begin

for every admissible arc �i� j� ∈A do send qij
amount of flow on arc �i� j�; compute node
imbalances;
while the network contains an active node do
begin
select an active node i;
if G�x� contains an admissible arc �i� j�
then
push * �=min�e�i�� qij� units of flow
from node i to node j

else /�i� �= /�i�+1/2;
end;

end;

The algorithm proceeds by identifying excess nodes
and pushing flows on arcs emanating from these
nodes; when there is no such arc on which flow can
be pushed, it relabels the node. The convex cost-
scaling algorithm is identical to the linear cost-scaling
algorithm—it differs only on one count: The convex
cost-scaling algorithm treats qijs in the same manner
as the linear cost-scaling algorithm treats the residual
capacities rijs. In the convex cost-scaling algorithm,
we refer to the push on arc �i� j� as emptying if *= e�i�

and nonemptying if * < e�i� (or, alternatively, * = qij�.
We show next in Lemma 3 that a nonemptying push
on an admissible arc �i� j� makes both the arcs �i� j�
and �j� i� admissible. (A nonemptying push is similar
to the saturating push in the linear cost-scaling algo-
rithm which also makes both the arcs �i� j� and �j� i�

inadmissible.) We now bound the running time of the
convex cost-scaling algorithm. We accomplish it by
bounding the number of relabel operations, the num-
ber of nonemptying pushes, and the number of emp-
tying pushes performed in the improve-approximation
procedure.

Lemma 3. The improve-approximation procedure al-
ways maintains 1/2-optimality of the flow, and at termina-
tion yields an 1/2-optimal flow.

Proof. We prove this lemma by performing induc-
tion on the number of pushes and relabels. At the
beginning of the procedure, the algorithm sends qij
flow on each admissible arc �i� j� which makes both
the arcs �i� j� and �j� i� inadmissible after the push.
Because there are no admissible arcs left, c/ij ≥ 0 for
each arc �i� j� in the residual network with respect
to the current node potentials /, and the current
pseudoflow is 1/2-optimal (in fact, it is 0-optimal).
Now notice that a node i is relabeled only when c/ij ≥ 0
for each arc �i� j� ∈ A�i�, and this operation increases
/�i� by 1/2. Hence, c/ij ≥−1/2 for each arc �i� j� ∈A�i�
and the induction hypothesis holds. Each nonempty-
ing push on arc �i� j� makes both the arcs �i� j� and
�j� i� inadmissible and the induction hypothesis still
holds. Now consider an emptying push. Recall from
our previous discussion that by sending additional
flow on the arc �i� j�, the reduced cost of the arc �i� j�
increases (from a number which is at least −1/2) and
the reduced cost of the arc �j� i� decreases. Also recall
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from our previous discussion that when we send qij
amount of flow, reduced costs of both the arcs become
nonnegative. It follows from these two observations
that if we send any flow less than qij (which an emp-
tying push does), then the reduced cost of arc �i� j�

remains between −1/2 and zero, and the reduced cost
of arc �j� i� remains nonnegative. Hence, an emptying
push preserves the induction hypothesis. The proof of
the lemma is now complete. �

Lemma 4. During an execution of the improve-
approximation procedure, any node potential increases
O�n� times. The total time needed to perform all rela-
bel operations in the improve-approximation procedure is
O�nm�.

Proof. Let x be the current 1/2-optimal pseudo-
flow and x′ be the 1-optimal flow at the end of the
previous cost-scaling phase. Let / and / ′ be the node
potentials corresponding to the pseudoflow x and the
flow x′. Goldberg and Tarjan (1987) established that
during an execution of the improve-approximation pro-
cedure, /�i�−/ ′�i� ≤ 3n1/2 (see, for example, Ahuja
et al. 1993, Lemma 10.4). The proof of this result
uses the fact that the improve-approximation procedure
maintains 1/2-optimality of the flow at every step.
Lemma 3 shows that the improve-approximation pro-
cedure indeed maintains 1/2-optimality of the flow,
hence this result applies to the convex cost-scaling
algorithm too. Further, because each node potential
increases by an increment of 1/2 in the improve-
approximation procedure, any node potential increases
at most 3n=O�n� times. This completes the first part
of the lemma. A relabel operation of node i takes
O��A�i��� time. The total time needed to relabel all
nodes is O�n

∑
i∈N �A�i���=O�nm�. This completes the

proof of the second part of the lemma. �

Lemma 5. The improve-approximation procedure per-
forms O�nm� nonemptying pushes.

Proof. We will use the potential function argument
on F to bound the number of nonemptying pushes.
Let F denote the number of admissible arcs in the
residual network G�x′�. A nonemptying push on arc
�i� j� makes arc �i� j� inadmissible after the push and
does not make the arc �j� i� admissible, and so it
reduces F by one. An emptying push either decreases

F by one or keeps it constant. Each distance increase
of node i may create as many as �A�i�� new admis-
sible arcs, and hence, may increase F by at most
�A�i��. The total increase in F over all iterations is
O�n

∑
i∈N �A�i��� = O�nm�. It follows that the number

of nonemptying pushes is O�nm�. �

Lemma 6. The improve-approximation procedure per-
forms O�n2m� emptying pushes.

Proof. Let E denote the set of excess nodes, and
for an excess node i ∈ E, let g�i� denote the number of
nodes in the residual network that are reachable from
node i via a directed path of violating admissible arcs.
Let 3=∑i∈E g�i�. Each emptying push decreases 3 by
at least 1. Each nonemptying push increases 3 by at
most n. Each distance increase of node i increases 3
by at most n. A standard potential function argument
shows that the number of emptying pushes is O�n2m�
(see, for example, Ahuja et al. 1993, Lemma 10.7). �

It can be easily shown that using simple data
structures, the improve-approximation procedure for the
convex cost-scaling algorithm can be implemented
in O�n2m� time, which is the same time needed to
implement the linear cost-scaling algorithm using the
same data structures. Goldberg and Tarjan (1987)
showed that using the dynamic tree data structure
of Sleator and Tarjan (1983), the improve-approximation
procedure for the linear cost-scaling algorithm can be
implemented in O�nm log�n2/m�� time. The improve-
approximation procedure for the convex cost-scaling
algorithm is identical to that for the linear cost-scaling
algorithm, except that in place of the residual capac-
ities rijs, we use qijs, and both can be computed in
O�1� time for an arc �i� j�. Hence, all the arguments of
the running time analysis of the dynamic tree version
of the improve-approximation procedure for the linear
cost-scaling algorithm apply for the convex cost case,
and we obtain the same running time for the con-
vex cost case. Consequently, we obtain a time bound
of O�nm log�n2/m�� for the improve-approximation pro-
cedure for the convex cost-scaling algorithm. Each
application of the improve-approximation procedure
reduces 1 by a factor of 2. After O�log�nU�� exe-
cutions of improve-approximation procedure, the algo-
rithm obtains an 1-optimal flow with 1 < 1/n. It is
easy to see that this flow is an optimal flow for the
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convex cost flow problem (11). This result follows
from the fact that the convex cost flow problem (11)
can be transformed to a minimum cost flow problem
with integer arc costs, and any 1-optimal flow with
1 < 1/n is an optimal flow for the minimum cost flow
problem. We have thus shown that the convex cost-
scaling algorithm solves (11) in O�nm log�n2/m� logU�

time.
The convex cost-scaling algorithm upon termina-

tion gives an optimal flow x∗ and the optimal node
potentials /∗. Both the solutions x∗ and /∗ may be
noninteger. Because the objective function in the con-
vex cost flow problem (11) is piecewise linear, it fol-
lows that there always exists an integer optimal node
potential /. To determine those, we construct G�x∗�
and solve a shortest path problem to determine short-
est path distance d�i� from node 0 to every other node
i ∈ N . Because all arc costs in G�x∗� are integer, each
d�i� is also integer. Then, /�i� = −d�i� for each i ∈ N

gives an integer optimal set of node potentials for
problem (11). Now recall that Cij�xij� = −Hij�xij� for
each �i� j� ∈ A. This implies that ��i� = −/�i� = d�i�

for each i ∈N gives optimal dual variables for (9) and
these ��i� together wij = ��i�−��j� for each �i� j� ∈A

give an optimal solution of the dual network flow
problem (3). We summarize our discussion with the
following theorem:

Theorem 3. The convex cost-scaling algorithm cor-
rectly solves the dual network flow problem in
O�nm log�n2/m� log�nU�� time.

5. Application of the Dual
Network Flow Problem

The dual network flow problem and its special cases
arise in many application settings. Roundy (1986)
formulates a lot-sizing problem in a multiproduct,
multistage, production/inventory system as a dual
network flow problem. Boros and Shamir (1991)
describe an application of the dual network flow
problem in solving a quadratic cost machine schedul-
ing problem. Several multifacility location problems
have constraints of the form (1b)–(1e) (see, for exam-
ple, Ahuja et al. 1993, Chapter 19). The convex cost
version of these location problems will be dual net-
work flow problems. We describe next in detail five

applications of dual network flow problems, some of
which we have encountered in our previous research.

Application 1: Dial-a-Ride Transit Problem
Dial-a-ride transit problems are vehicle routing prob-
lems with time windows and have been extensively
studied in the literature (see, for example, Desrosiers
et al. 1995). In this problem, customers call a dial-
a-ride agency sufficiently in advance (say, one day
before) requesting to be carried from specific ori-
gins to specific destinations during specified times.
The agency dispatches a vehicle to meet several such
demands and customers are pooled to reduce the
operational costs. A vehicle schedule typically con-
sists of picking up and dropping off of some cus-
tomers in a specific sequence, and at any point of
time several customers can be on board the vehi-
cle. Researchers have developed exact as well as
heuristic algorithms for dial-a-ride transit problems.
Because exact algorithms can solve only small-sized
problems, heuristic algorithms have been more exten-
sively studied. Some heuristic algorithms deal sepa-
rately with the following two functions: routing and
scheduling. The routing part determines the route of
each vehicle—the order in which specific customers
assigned to a vehicle will be picked up and deliv-
ered. The scheduling part assigns a time schedule to
the route—the times at which the customers will be
picked up and delivered. We will show that deter-
mining the optimal schedule for a given route can
be formulated as the convex cost dual network flow
problem.
In this scheduling problem, we are given a se-

quence of stops (on an increasing time scale) 1–2–3–
· · · –n, where each stop denotes a pickup or a delivery
point. Let S denote the set of pickup stops, and for
each pickup stop i ∈ S, let d�i� denote the correspond-
ing delivery stop. We assume that the vehicle takes
tj time to go from stop j to stop j + 1. Each stop j

has a pickup/delivery time window [lj � uj ] and also
has a desired pickup/delivery time aj . We penalize the
deviations from the desired pickup and delivery times
using a convex function. If the vehicle visits stop j

at time �j , the penalty is given by a convex function
Bj��j −aj�. We also allow the vehicle to wait between
stops, but penalize these waiting times. If wi denotes
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the waiting time wi between stop i and stop i+1, then
wi = �i+1 −�i − ti. The penalty associated with this
waiting time is given by a convex function Fi�wi�. Let
7i denote the minimum ride time from a pickup stop i

to its delivery stop d�i�. However, because of the wait-
ing times between stops, the actual ride time, given by
�d�i�−�i, may be larger than 7i; giving us the excess
ride time ei = �d�i� −�i − 7i. We penalize the excess
ride time ei using the convex function Ei�ei�. Then, the
scheduling problem is to determine the vehicle sched-
ule so that the total penalty incurred because of the
deviations from the desired pickup and delivery time,
waiting times, and the excess ride times is minimum.
This problem can be formulated as the following opti-
mization problem:

Minimize
n∑
j=1
�Fi�wi�+Bi��i−ai��+

∑
i∈P

Ei�ei�� (13a)

subject to wi = �i+1−�i− ti

for each i = 1�2� � � � �n� (13b)

ei = �d�i�−�i− 7i for each i ∈ S� (13c)

0≤wi ≤ �w
for each i = 1�2� � � � �n� (13d)

0≤ ei ≤ ēi for each i ∈ S� (13e)

�i� wi� and ei are all integer� (13f)

where �w specifies an upper bound on any single
waiting time, and ēi specifies an upper bound on ei.
This problem can easily be formulated as the dual
network flow problem by defining the set P and Q

appropriately.

Application 2: Inverse Spanning Tree Problem
with Convex Costs
Consider an undirected network G = �N�A� with
the node set N and the arc set A. Let n = �N � and
m = �A�. We assume that N = �1�2� � � � �n� and A =
�a1� a2� � � � � am�. Let cj denote the cost of the arc aj .
In the inverse spanning tree problem, we are given
a spanning tree T 0 of G which may or may not be
a minimum spanning tree of G and we wish to per-
turb the arc cost vector c to d so that T 0 becomes
a minimum spanning tree with d as the cost vector

and
∑n

j=1 Fj �dj −cj � is minimum, where each Fj �dj −cj �

is a convex function of dj . Sokkalingam et al. (1999)
and Ahuja and Orlin (2000) have studied special cases
of the inverse spanning tree problem with cost func-
tions such as

∑n
j=1 �dj − cj � and max��dj−cj �� 1≤ j ≤m}.

Hochbaum (2001b) studied the problem also for gen-
eral convex functions.
We assume, without any loss of generality, that T 0=

�a1� a2� � � � � an−1�. We refer to the arcs in T 0 as tree arcs
and the arcs not in T 0 as nontree arcs. In the given
spanning tree T 0, there is a unique path between any
two nodes; we denote by W�aj� the set of tree arcs
contained between the two endpoints of the arc aj . It
is well known (see, for example, Ahuja et al. 1993)
that T 0 is a minimum spanning tree with respect to
the arc cost vector d if and only if

di ≤ dj for each ai ∈W�aj� and

for each j = n�n+1� � � � �m� (14)

We can convert the inequalities in (14) into equa-
tions by introducing nonnegative slack variables wij.
Let P = �1�2� � � � �m� and Q = ��i� j�� ai ∈ T 0 and aj ∈
W�ai��. Then, in this notation, the inverse spanning
tree problem can be formulated as the following opti-
mization problem:

Minimize
∑
i∈P

Fi�di− ci�� (15a)

subject to di−dj =wij

for each �i� j� ∈Q� (15b)

wij ≥ 0 for each �i� j� ∈Q� (15c)

This problem is an instance of the dual network flow
problem.

Application 3: Time-Cost Trade-off Problem in
Project Scheduling
Project scheduling is regularly carried out in numer-
ous industries. We will show that the time-cost trade-off
problem, an important problem in project scheduling,
can be formulated as a dual network flow problem.
We refer the reader to the book by Elmaghraby (1978)
for a comprehensive discussion of the applications of
network models in project scheduling.
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We can envision a project as a directed graph G =
�N�A� where the arc set A represents the jobs of the
project and the node set N represents events, denoting
the beginning and ending of jobs. Different jobs in the
network have precedence relations. We require that all
jobs directed into any node must be completed before
any job directed out of the node begins. We let node s
designate the beginning of the project and node T

designate the ending of the project.
Normally in project scheduling, we assume that

the job completion time is fixed; however, here we
consider more general settings where job completion
times are variable. Let tij denote the time it takes to
complete the job �i� j�. We allow tij to vary in the range
�!ij�:ij� and associate a convex cost function Fij�tij�

which captures the cost of completing the job for dif-
ferent completion times in the range �!ij�:ij� (these
are often treated in the literature as “crash times”). We
also have another set of decision variables, ;i, denot-
ing event times; the variable ;i denotes the time when
jobs emanating from node i can begin. The time-cost
trade-off problem is to determine the minimum cost
of completing the project in a specified time period T .
This problem can be mathematically stated as follows:

Minimize
∑

�i� j�∈A
Fij�tij�� (16a)

subject to ;t −;s ≤ T � (16b)

;j −;i ≥ tij

for all �i� j� ∈A� (16c)

!ij ≤ tij ≤ :ij

for all �i� j� ∈A� (16d)

Observe that constraints (16b) capture the fact that
the project must be completed within the time period
T , and constraints (16c) imply that for every arc
�i� j� ∈ A, event j must occur at least wij time units
later than the occurrence of event i. Formulation (16)
is an instance of the dual network flow problem.
Erenguc et al. (2001) describe a generalization of

the time-cost trade-off problem in project schedul-
ing where tasks have multiple crashable modes. They
show that this problem can be formulated as the dual
network flow problem.

Application 4: Just-in-Time Scheduling in
Project Management
Just-in-time is a management philosophy that has
become quite popular in recent years. It attempts
to eliminate waste by reducing slack times. Here,
we describe an application of just-in-time scheduling
applied to project management. This application has
been adapted by us from Levner and Nemirovsky
(1991). As in the previous application, we denote a
project by a directed graph G = �N�A�, where set A
denotes jobs, and the node set N denotes events. The
network G also captures precedence relations among
the arcs. We assume in this application that the com-
pletion times of all jobs are fixed. Let tij denote the
time it takes to complete job �i� j�. (Notice that tij is
not a decision variable in this problem.) Let ;i denote
the time for event i.
Consider the feasible event times, ;i, that is, sat-

isfying ;j − ;i ≥ tij for all �i� j� ∈ A. With respect to
these event times, a job �i� j� will be completed at time
;i+ tij but the jobs emanating from node j will start
at time ;j . Let wij = ;j −;i − tij denote the slack time,
and let Fij�wij� denote its associated penalty cost. This
penalty cost may capture the lost opportunity cost of
the capital tied or some other factors (such as, perisha-
bility or deterioration in quality) which make slack
times undesirable. There may also be some upper
bounds : on slack times. We may assume without
loss of generality that the lower bound on slack time
is 0, because any other lower bound would be incor-
porated into the times to complete a task. The just-
in-time project scheduling problem is to obtain event
times, ;i, so that the project is completed within the
specified time period T and the penalty cost associ-
ated with job slacks is minimum. This problem can be
mathematically modeled as follows:

Minimize
∑

�i� j�∈A
Fij�wij�� (17a)

subject to ;t −;s ≤ T � (17b)

;j −;i−wij = tij

for all �i� j� ∈A� (17c)

0≤wij ≤ :ij for all �i� j� ∈A� (17d)
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Application 5: Isotonic Regression Problem
The isotonic regression problem can be defined as fol-
lows. Given a set A = �a1� a2� � � � � an� ∈ Rn, find X =
�x1�x2� � � � � xn� ∈ Rn so as to

Minimize
n∑
j=1

Bj�xj −aj�� (18a)

subject to

xj ≤ xj+1 for all j = 1�2� � � � �n−1� (18b)

lj ≤ xj ≤ uj for all j = 1�2� � � � �n−1� (18c)

xj integer for all j = 1�2� � � � �n−1� (18d)

where Bj�xj −aj� is a convex function for every j , 1≤
j ≤ n. The isotonic regression problem arises in statis-
tics, production planning, and inventory control (see,
for example, Barlow et al. 1972 and Robertson et al.
1988). As an illustration of the isotonic regression,
consider a full tank where fuel is being consumed at
a slow rate and measurements of the fuel tank are
being taken at different points in time. Suppose these
measurements are a1� a2� � � � � an. Because of the errors
in the measurements, these numbers may not be in
the nonincreasing order despite the fact that the true
amounts of fuel remaining in the tank are nonincreas-
ing. However, we need to determine these measure-
ments as accurately as possible. One possible way to
accomplish this could be to perturb these numbers to
x1 ≥ x2 ≥ · · · ≥ xn so that the cost of perturbation given
by

∑n
j=1 Bj�xj −aj� is minimum, where each Bj�xj −aj�

is a convex function. We can transform this problem
to the isotonic regression problem by replacing xj by
their negatives.
If we define P = �1�2� � � � �n� and Q= ��j� j+1�� j =

1�2� � � � �n − 1� and require that xj must be inte-
ger, then the isotonic regression problem can be cast
as a dual network flow problem. However, it is a
very special case of the dual network flow problem
and more efficient algorithms can be developed to
solve it compared to the dual network flow prob-
lem. Ahuja and Orlin (2001) recently developed an
O�n logU� algorithm to solve the isotonic regression
problem. Hochbaum and Queyranne (2000) described
an algorithm for the isotonic regression of complex-
ity O�n logn+n logU� where the second term in the
complexity expression is the work required to find the

integer minima of functions in the objective. These
functions are in general n convex functions in which
case the complexity is as stated. In some cases, the
functions are simpler and the second term can be
implemented more efficiently.
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