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A Cut-Based Algorithm for the Nonlinear Dual of the
Minimum Cost Network Flow Problem'

Ravindra K. Ahuja,2 Dorit S. Hochbaum,? and James B. Orlin*

Abstract. We consider a convex, or nonlinear, separable minimization problem with constraints that are
dual to the minimum cost network flow problem. We show how to reduce this problem to a polynomial number
of minimum s,7-cut problems. The solution of the reduced problem utilizes the technique for solving integer
programs on monotone inequalities in three variables, and a so-called proximity-scaling technique that reduces
aconvex problem to its linear objective counterpart. The problem is solved in this case in a logarithmic number
of calls, O(log U), to a minimum cut procedure, where U is the range of the variables. For a convex problem
on n variables the minimum cut is solved on a graph with O (n?) nodes. Among the consequences of this result
is a new cut-based scaling algorithm for the minimum cost network flow problem. When the objective function
is an arbitrary nonlinear function we demonstrate that this constrained problem is solved in pseudopolynomial
time by applying a minimum cut procedure to a graph on O (nU) nodes.

Key Words. Nonlinear integer programming, Convex integer programming, Total unimodularity, Minimum
cut, Network flow.

1. Introduction. We consider a convex, or nonlinear, separable minimization problem
with constraints that are dual to the minimum cost flow problem. We show how to reduce
this problem to a polynomial number of minimum s,t-cut problems. The problem’s
constraints are of the form x; — x; < ¢;; + z;; and their coefficients form a totally
unimodular matrix. Convex optimization problems over constraints of this type have
varied applications. One extensively studied application area is the problem of statistical
estimation subject to rank order constraints, see [BBBB]. Other applications, described
in a recent article by Ahuja et al. [AHO], include the time—cost tradeoff in project
scheduling, justin time scheduling, inverse spanning tree, and dial-a-ride transit problem.
An application to the problem of multi-echelon production lot sizing is described in [HQ].
Another application for the image segmentation problem is detailed in [H2].

With a linear objective function, the problem we study is the dual of the minimum
cost network flow problem, as shown next. We therefore refer to the problem studied
here as (Dual).
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The general formulation of the problem addressed here has each structural constraint
involving a pair of variables and possibly a third variable that appears in that constraint
only. Let the set of constraints with three variables be E; and the set of constraints with
two variables be E;. Let the set of variables be V = {1, ..., n}. The set of constraints
E is partitioned into two subsets £ = E U E;, with |E| = my, |E;| = my, |V| =n,
and |E| = m + my = m. Let the functions ¢;;() be convex. The primary problem we
address in this paper is

Min ij(xj)—i- Z €ij(zij)

Jj=1 @i,j)eE,
subjectto  x; — x; < ¢ij + 2 for (i, j) € E1,
(Dual) X —xj < ¢jj for (i, j) € Es,
;i < x; < uj, j=1,...,n,
Bij < zij <Vij for (i, j) € Ey,
x; integer forall j=1,...,n,

Z;j integer forall (i, j) € E;.

When the functions w; () are convex we call the problem (Convex Dual). Note that
the coefficients of the constraints form a totally unimodular matrix, and thus every
subdeterminant of this matrix is of value 1, —1, or 0.

Without loss of generality the lower bound constraints on the variables z;; may be
replaced by O lower bound, 0 < z;; < ylfj. Also without loss of generality, all the
parameters £;, u;, B;;, v;j, and ¢;; are integers.

When the objective function of (Dual) is linear, w; (x;) = w;x; and e;;(z;;) = it;;zij,
we refer to the problem as (Linear Dual). The dual of (Linear Dual) is the minimum cost
network flow problem (Flow):

Min Z Cij Yij +ZM a; + Z Yijdij

ijeE|UE, ijek;
subject to —Zylk+2yk, —o; < w;, ieV,

_iﬂ' 2 Yij — 51] = 07 (l: .]) € El7
yij =0, (i, j) e EyUE,,

3;j =0, @i, j) € Ey,

o; >0, i=1,....n

(Flow)

(Flow) is the formulation of a network flow problem on a network with n nodes—one per
structural constraint, and a dummy node, r, serving as a root. The variable «; represents
the flow from node i to the root. The inflow to node i exceeds the outflow by at most w;.
This quantity is assigned as capacity to arcs going from node i to the root. The costs of
these arcs are u;. The costs of all other arcs not adjacent to root is ¢;;. For each such arc
that belongs to E; there is an additional, parallel, arc of unbounded capacity with a cost
of ¢;j + yij. The amount of flow on this parallel arc is §;; and this flow is positive only
if the flow on the first arc has reached its capacity u;;.

Once the minimum cost flow problem is solved, the dual variables—the potentials—
are derived using complementary slackness and shortest paths procedure. For details
on the procedure the reader is referred to the book by Ahuja et al. [AMO] (page 316).
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Therefore (Linear Dual) can be solved in the same running time as a minimum cost
network flow.

Our approach here is distinguished in that it does not solve the flow problem in any
way. All the routines are in the (Dual) space and utilize only a minimum cut procedure.

1.1. Prior Research. The convex optimization over linear constraints problem was
known, since the early 1950s, to be solved via linear programming by replacing each
variable x; by a sum of binary variables ZZ;[] x}k) (see, e.g., [D]). The resulting lin-
ear program produces an optimal solution to the convex problem in pseudopolynomial
time. The running time is pseudopolynomial because it is a polynomial function of the
parameter U = max;{u; — ¢;}.

The problem (Convex Dual) was first shown to be solvable in polynomial time by
Hochbaum and Shanthikumar [HS]. It was shown there that any convex separable op-
timization over linear constraints is solved in log U calls to a linearized version of the
problem in O (n?A) variables where A is the largest subdeterminant of the constraint
matrix and U is a bound on the range of the variables. Specifically, any convex separable
minimization in integers over a totally unimodular constraint matrix was shown to be
solvable in polynomial time by O (log U) calls to a linearized version of the problem in
binary variables. One of our contributions here is to show that this linearized version is
solvable by a minimum cut procedure.

The problem of convex optimization over totally unimodular constraints was also
addressed by Karzanov and McCormick [KM]. They proposed two algorithms for the
problem, one based on a minimum mean cycle canceling method and the other based
on a ‘“cancel-and-tighten” approach. Specialized to our problem, called the network
cocirculation, the run times for these methods are O (m2n®log®(n max{U, C})) and
O(nlog(nmax{U, C})(m + nlogn)), respectively, for C = max;; c;;.

In [AHO] we presented a polynomial time algorithm for (Convex Dual) which is the
most efficient algorithm known to date for the problem. The complexity of the algorithm
is O(mnlognlog(nC)). The algorithm uses Lagrangian relaxation to recast the problem
as a convex cost network flow problem. Certain features of that convex cost network
flow problem make it possible to apply a particularly efficient algorithm based on the
successive approximation technique of Goldberg and Tarjan [GT2]. Our algorithm here,
by comparison, solves the (Convex Dual) problem directly, without dualizing it first.

A special case of (Convex Dual) has been addressed recently by Hochbaum and
Queyranne, [HQ]. In that problem, which we refer to as the convex closure problem, the
constraints are of the form x; — x; < 0. The algorithm reported has the complexity of
a single minimum cut procedure, O (mn log(n*/m)), plus the work required to find the
integer minima of the n convex functions in the objective, O (nlog U).

1.2. The Main Contributions. The algorithm we develop here for (Dual) solves the
problem by constructing a graph associated with the problem and solving a minimum
cut problem on that graph. When the graph corresponding to (Dual) has a special structure
it is easy to exploit this structure in the minimum cut procedure. For example, the inverse
spanning tree problem is an application in which this special structure is advantageous
[H5]. For the objective of minimizing the sum of absolute deviations, the graph structure
resembles that of a bipartite simple network, which leads to an algorithm with the best
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run time for the problem [H5]. Another advantage is practical—in order to solve (Dual)
one requires nothing more sophisticated than a minimum cut routine, which is more
readily available than convex optimization software.

We describe an application of the cut-based algorithm to two different scenarios of
the problem. In one we have arbitrary nonlinear functions w; () and the running time is
pseudopolynomial. When the functions w; () are convex the running time is polynomial.
We also consider a special case of the convex problem where E, = @ in which there is
an improvement in the complexity of the polynomial time algorithm.

Let T'(n, m) denote the run time required to solve a minimum cut problem on a graph
with n nodes and m arcs. Recall that throughout, unless otherwise stated, ¢;; () are convex
functions.

1. When the functions w;() are general nonlinear functions, the running time of our
algorithm is pseudopolynomial, T (nU, mU?).

2. For w;(), e;;() convex functions, the running time of the algorithm is O(logU -
T (n?, mn?)). If the functions e; () are linear or piecewise linear with a fixed number
of pieces the running time is O (log U - T (n?, mn)). In the linear case this leads to a
new polynomial time algorithm for minimum cost network flow that solves a sequence
of minimum cut problems, followed by a single maximum flow problem.

3. When wj;() are convex, there are no variables z;; (E; = ), and £ is largest so
that ¢;; = kij2e for k;; integers (or 0), then the problem is solved in time
O min{T (n(U/2%, m(U/2%)),1log(U/2%) - T (n? nm)} + LT (n,m)). (Note that
cij <Uandthus £ <logU.)

Our algorithm for the general nonlinear case is based on a technique of integer opti-
mization over monotone constraints with up to three variables in each constraint [H4].
Monotone inequalities have up to two variables appearing with opposite signs coeffi-
cients such as ax — by < c + z for a, b nonnegative, and a third variable z appearing
in one constraint at most. (Dual) is obviously such a problem. The algorithm for integer
optimization over monotone constraints runs in time that depends on the range of the
variables x and y (which is U for (Dual)).

In the convex case the run time of our algorithm is improved to polynomial run time
based on the proximity-scaling algorithm of Hochbaum and Shanthikumar [HS]. That
generic approach works as follows: First we scale the units of the variables to a scaling
unit of size s, then we replace the variables by the sum of binary variables. The number of
binary variables replacing each variable is O (u;/s). The resulting piecewise linearized
problem is solved using the algorithm for optimizing over monotone inequalities. The
scaling unit s is selected so that u; /s is a polynomial quantity. The procedure then relies
on a proximity theorem that guarantees that the scaled problem solution is close enough
to the optimum so that the range of the variables can be reduced by a constant factor.

For the case when there are no z;; variables we employ a strong proximity theorem,
proved in this paper, which demonstrates that for right-hand sides that are integer mul-
tiples of the scaling factor, the optimal solution to the scaled problem lies within two
scaling units away from an optimal solution at the previous scaling phase.

The presentation here is organized as follows: Section 2 presents a pseudopolynomial
algorithm for the problem that is applicable to the nonconvex problem as well as the
convex problem. In Section 3 we describe the proximity-scaling algorithm of Hochbaum
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and Shanthikumar and how it applies to the (Convex Dual) problem calling log U times
to the minimum cut procedure of Section 2, each with (strongly) polynomial time com-
plexity. Next we prove a stronger version of the proximity theorem in Section 4 which is
restricted to the (Convex Dual) problem in two variables per inequality with right-hand
sides that are divisible by the scaling factor. This proximity theorem demonstrates that the
optimal solution to the scaled problem is within two scaled units away from the optimal
solution to the subsequent scaled problem and leads to improved run times for (Convex
Dual) problems satisfying the required conditions. In Section 5 it is shown how to use
the proximity-scaling algorithm to solve the minimum cost network flow problem using
a logarithmic number of calls to a minimum cut procedure and one call to a maximum
flow procedure.

1.3. Notation. We denote vectors by bold characters, e.g., X. The vector e is the array
ofones (1,...,1).

Let G = (V, A) be a connected directed graph on n nodes and m arcs. Let c;; be the
capacity of arc (i, j) in the graph. A partition of V isacut (B, B) of capacity Y ic BjeB Cij-
We consider s,t-cuts that are cuts in a graph that contains distinguished source s and
sink 7. An s,f-cut is a partition (B, B) so that s € B and ¢ € B. The minimum s,-cut
problem is to find an s,7-cut of minimum capacity. In this paper we refer to the minimum
s,t-cut problem as the minimum cut problem. We call an arc capacitated graph containing
distinguished source and sink nodes, an s,7-graph

In the complexity expressions we let T'(n, m) be the time required to solve a minimum
cut problem on a graph G with n nodes and m arcs. The quantity 7 (n, m) may be assumed
to be of order O (mn log(n?/m)) [GT1], or O (min{n?*/?, m'/*}m log(n*/m)log U) [GR],
or, in case a randomized algorithm is acceptable, O (mn + n>log® n) with probability at
least 1 — 2—vmn [CH]. Tyg(n, m) is the run time required to solve the maximum flow
problem. To date there is no algorithm known for a minimum cut of complexity faster
than that of maximum flow. In practice though, maximum flow requires an additional
25-100% run time more than minimum cut as reported in a study by Anderson and
Hochbaum of the pseudoflow algorithm of [H1] and the push-relabel algorithm of [GT1].

We denote U = max;{u; — ¢;} and C = max j)ck C;;-

2. A Pseudopolynomial Algorithm. The problem addressed in this section is (Dual)
with the functions w; () arbitrary nonlinear. The functions ¢;; (), however, are still required
to be convex. The pseudopolynomial algorithm presented in this section is the building
block for the polynomial time algorithms that apply to the convex instances of the (Dual).

We first provide a description of the algorithm for (Dual) when all constraints are
monotone inequalities in two variables. That is, these are constraints of the form
ax — by < c where both a and b are nonnegative. Later we address the algorithm
for the problem with constraints that include monotone inequalities in three variables.
These are defined to be of the form ax — by < ¢ + z for a and b nonnegative and where
the third variable z appears in at most one inequality.

Integer programs on monotone constraints with at most two variables per inequality,
are solvable in time polynomial in the problem size and the value of the largest range
U by the algorithm of Hochbaum and Naor [HN]. The nonlinearity or convexity of
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the objective function does not affect the complexity of the algorithm. We illustrate the
application of that algorithm to the special case considered here where a = b = 1.
Integer programs on monotone inequalities with at most three variables per inequality
are also solvable in pseudopolynomial time. We present a procedure based on minimum
cut which was introduced in [H4].

We begin with the construction of the graph and the equivalent formulation in binary
variables for the two variables per inequality case. This is followed by the construction
of the graph and the binary formulation for the three variables per inequality case.

2.1. A Reduction of the Two Variable Problem to the Minimum Cut Problem. The
minimum cut problem is formulated in binary variables. The key to the reduction is to

cast our problem in binary variables To that end, each variable, x;, is replaced by u; — £;

binary variables, x; = £; + Z p=t,41 j(p ). The value of x; is represented by an array of

values assigned to the blnary variables consisting of a sequence of ones followed by a
sequence of zeros, with either sequence possibly empty. Thus xj(p ) = 1ifand only if
x; > p. The objective function is replaced by the linear objective function defined on
binary variables, min 3>7_; 3L, [w;(p) — w;(p — 1)]x}").

To enforce the contiguity of the sequences the following inequalities must be satisfied
forj=1,...,n,

1 ;)
xj(p)fx;p ) p=6+1, ., x =1
With these inequalities x = 1 only if x(k) =lford+1<k<p-—1.

Consider a constraint of the type x; — x, < c. To enforce the satisfaction of such
a constraint we replace it by a set of up to U constraints on the corresponding binary
variables. First we observe that the constraint is equivalent to up to u; — ¢; implications
of the type:

If x;>p, then x;>p—c for p=4+1,...,u; and p—c =<u;.

If p—c¢ > uj, thenin any feasible solution x; < p, which means that x(p L , xl.(”f) =0.

These implications can be written in terms of the binary variables x( ) as the setof u; —¢;
inequalities which are equivalent to the constraint x; — x; < c,

xi(P)Sx;I’_C>’ p:Z,’-Fl,...,MI

Each binary variable x”’

to the objective function:

is assigned a weight equal to its incremental contribution

&)
w; = w;i¢),

w](p) _ U)j(p)—wj(P_l) for p:€j+1,...,uj.

If (Dual) is feasible, then the following (Binary Dual) is an equivalent formulation to
that of (Dual) that has up to two variables per inequality. If (Dual) is infeasible, then
either the infeasibility leads to a contradiction diagnosed at the formulation stage—e.g.,
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an implication of the type “x; > ¢; then x; > u;”—or else (Binary Dual) is infeasible:

MIHZ Z w(p) (p)

i=1 p=t 41
(Binary Dual) = subject to x(p) <x(p “ for (i,j)€ E and p=1¢; +1,. i
x;”)<xj(” b for j=1,...,n andp_ﬁj—i—l,..., iy

x;”)bmary for J=1,...,n and p=4¢;+1,...,u;.

The problem has thus been equivalently restated in binary variables and constraints that
each have one 1 coefficient and one —1 coefficient. These constraints characterize the
minimum closure problem which is solvable by a minimum cut procedure as shown
next.

A set of nodes in a directed graph is said to be a closed set if it contains all successors
of nodes in the set. Given a directed graph G = (V, A) with node weights w; for all
J € V, the minimum closure problem is to find a closed set S € V such that Zje gWwjis
minimized.

The graph construction associated with (Binary Dual) is as follows: Each binary
variable has a node corresponding to it in the graph with a weight equal to the weight
coefficient in the objective function of (Binary Dual). For each constraint x < y there
is an arc leading from the node corresponding to x to the node corresponding to y. In
particular, the graph contains an x;-chain associated with each variable x; consisting
of a sequence of arcs from each node representing xj(” ) to the node representing x(” b
for p = ¢; + 1,...,u;. Let a variable be 1 if and only if the corresponding node is
in the closure. Then the set of nodes valued 1 is closed under succession in this graph
if and only if the corresponding assigned values to the variables satisfy all constraints.
Figure 2.1 describes the construction of the graph for two variables.

The problem is now to find a closed set in the defined graph of minimum total weight,
which is precisely the minimum closure problem. The minimum closure problem is

z;—chain z;—chain

,wl(uz) @ w](.,uy)

Fig. 2.1. The graph representing two variables and an inequality that links them.
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solved by finding a minimum s,7-cut in an associated arc-capacitated s,f-graph as was
first demonstrated by Picard [P]. We show how this is done for (Binary Dual).

In order to solve the closure problem associated with (Binary Dual) as a minimum
cut problem we add a source s and a sink ¢ to the graph. Every node i in the graph that
has a positive weight w; > 0 is connected to the sink ¢ with an arc of capacity w; > 0.
The source s is connected to every node i, that has negative weight w;, with an arc of
capacity |w;| = —w; > 0. The source set of the resulting minimum s,¢-cut corresponds,
as we show next, to the optimal solution to the problem by setting the value of each
binary variable that has a corresponding node in the source set to 1. All other arcs, that
are not adjacent to a source or sink, assume infinite capacity.

Let (S, S) be a finite cut and let the solution to (Dual) x; = ¢; + ZZ: Gt x[-(p )
associated with the cut derived from the setting be

P _ 1 if node xi(”) €5,
! 0 if node xi(p) eSs.

In order to enforce the nodes xl.(ei ) to belong to the source set we have arcs of infinite

capacity from the source to every node xi(l’). (These nodes can alternatively be shrunk
with the source and eliminated from their respective chains.)

LEMMA 2.1. The solution x associated with a minimum cut (S, §) is a feasible and
optimal solution to the (Binary Dual) problem.

PROOF. A generic constraint x < y of (Binary Dual) is violated only if x = 1 and
y = 0. However, such an assignment corresponds to an infinite capacity arc going from
S to S and thus violates the finiteness of the cut. Indeed, the source set of any finite cut
corresponds to a closed set, else it contains an infinite capacity arc violating finiteness.

Let V* and V™ represent the set of nodes with positive and negative weight, respec-
tively. Let (S, S) be a finite s,¢-cut with s € S and ¢ € S. The arcs in the cut are either
in (SN V*, {t}) orin ({s}, S N V7). Denote the sum of weights of nodes in a set D by

w(D) =Y, pw

ClS, 8 = ) (—w)+ Y w

ieSnv- iesSNV+
= Z(_wi) - Z (—wi) + Z w; =—w(V7) + Z w.
ieV- ieSNV- ieSNnv+ ieS

The first term —w (V ) in the last expression is a constant, the sum of all negative weight
nodes. The second term is the weight of the nodes in the source set. Thus the capacity
of the cut and the weight of the closed set differ by a constant. In particular, the source
set of a minimum cut corresponds to a minimum value closed set, as required. O

In order to solve the problem (Binary Dual) it is thus only necessary to find a minimum
cut in the graph constructed and set all the binary variables in the source set of the cut
to the value 1, and those in the sink set to the value 0. The complexity of solving the
problem is therefore the complexity of finding a minimum cut in the graph associated
with (Binary Dual), that has O (nU) nodes and O (mU) arcs, T (nU, mU).
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2.2. A Reduction of the Three Variables Problem to a Minimum Cut Problem. We first
provide a binary formulation equivalent to (Dual), here called (BD), and then show an
associated graph construction where the solution to the minimum cut problem provides
a solution to (Dual) with the three variables constraints. The formulation includes all
inequalities associated with the two variables constraints, and the graph includes the same
construction of the x;-chains and the associated finite capacity arcs that connect the nodes
to source or sink as in the two variables case. Both (BD) and the graph are created by
appending the (Binary Dual) problem for the two variables inequalities, and appending
the corresponding s,¢-graph, with a set of inequalities and arcs that represent the three
variable inequalities. Each appended inequality is of the form xi(” ) < x;q) +zij(p, q)
where z;;(p, q) is a binary variable. The binary variables z;; (p, q) are each associated
with an arc in the graph from node x” to node x;q).

In order to simplify the presentation we introduce a sequence of assumptions that
hold without loss of generality:

1. 0 < z;j < ;- The lower bound, if nonzero, can then be added to the right-hand side
constant ¢;;.

2. ¢;j(0) = 0, or else add a constant to the objective function.

3. The functions ¢;;() are assumed to be nondecreasing. Else set z;; to be at least z;*j,

where ¢;; () is nondecreasing for z;; > Z,*J The value zfj is the argument at which the

convex function e;;() attains its minimum.

4. Since e;;() are nondecreasing, the value of z;; is determined as
Zij = max{O, Xi — Xj — C,’j}.

5. The functions e;;() are extended to nondecreasing convex functions on the real line
by setting, for a suitably large value of M,

0 if z<0,
e;j(z) = {eij(2) it 0<z=<y;,
e;j(vij) + M(z — y;j) if 7>y
6. The variables z;; assume values on the entire real line and z;; = x; — x; — ¢;;.

When done with the process of generating the inequalities, to be described next, the
resulting binary dual (BD) is

n uj u; Uuj
Min Z wxP 4 YN Z cij (P 9)zij (P q)

j=1 p=t;j+1 (i,))€Er p=ti+1 q={;+1
subject to xl.(P) < x;p_e") for (i,j)€eE, and p=4¢ +1,...,u;,
xi(P) E x](‘[) +Zij(p7 q)
(BD) for (i,j)eE, and p=¢;+1,...,u,,
q:p—Cij—)/ij,...,p—Cij—l,
x P < xP7D for j=1,...,n and p=¢+1,...,u;,

xj(P)binary for j=1,...,n and p=4¢ +1,...,u;,
zij(p, q) binary for (i,j)eE, and p=¢+1,...,u;,
q :Zj—i—l,...,u_,-.
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Consider a constraint with three variables, x; — x; < ¢;; + z;;. Since the functions
e;j () are convex and nondecreasing,

2.1 eij(x +1) —e;j(x) > e;(x) —ejj(x —1).

We define the excess unit increments of the functions e;; (a discrete equivalent of the
second derivative):

Ajj(k) = [ejj(k) — eij(k — 1)] — [ejj(k — 1) — e (k —2)].

The functions A;;() are nonnegative as follows from the convexity in (2.1). Note that
when the function ¢;; () is linear then only A;; (1) is nonzero, and when ¢;; () is piecewise
linear then the number of arguments for which A;;() is nonzero is equal to the number
of “pieces” of e;; ().

We now proceed in two steps, first regarding the variables x;, x; as unbounded, and
then treating the bounded case.

Unbounded Variables x;. We deal with the case ¢; = —oo and u; = +o0 for all i. We
model the x; and z;; as sums of binary variables. We have binary variables xl.(p), peN,
with

xP =1

1

iff p S Xis
and binary variables z;;(p, q) for p, g € N with

zij(p,g) =1 iff p=<x;, g>x;, and p—g=c;.
This is equivalent to the inequality x.” — x I.(q) < z;;(p, ). We next modify the objective

function. For the part depending on the x; we proceed as in the previous section. We
have

w(x) =y (w(p) —wlp— x” =Y wx.
P P
For ), j €ij(zij) we have to work slightly harder. For

A () = (e;; (1) —eij(I = 1)) — (ei; (I = 1) —e;;(1 = 2)),

we observe that A;;(/) = 0 for / < 0 and recall that A;;(!) > 0 for all /. Then we claim
that

;i (zij) = Z Ajj(p—q —cij + Dzij(p, q).
Pq
This can be seen as follows (we drop the subscript ij for simplicity):
ZA(p—q—c+l)z(P,q)= Z Alp—g—c+1)

Pq P=Xi. 4>x;

Y Ap-g-c+D)

PSXi, —q<—X;

Y Alptg-c+D)

P=Xi, q<—X;j
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= Y Alptg-o

P=Xi, =—X;

= Ze(p—xj—c)—e(p—xj—c—l)

P=xi
= e(x; —x;—c)—e0)
= e(2).
The contiguity conditions on the variables are easily formulated as before,
x> P for all p,

Yozl Y-zl
p 14

where the last two inequalities guarantee that some but not all xP

i

are one. We also have
xi(p) ij(q)—i—z,-j(p,q) for p,q eN.
The last set of inequalities captures the if-part in the definition of z;;(p, g). The only-if

part is captured in the objective function using the nonnegativity, A;; (!) > 0 for all /.

Bounded Variables. Arangerestriction; < x; < u; is easily modeled by the additional
inequalities xi(p ) — 1 for p < {; and xi(p ) — 0 for p > u;. Of course, we may remove the
fixed variables from the problem. We can also remove many of the z-variables. Observe
that

0 if p>u or q=<¢,
| if p<¢ and g > u,
aP D=1z ) it p<t

zij(puj + 1) if g > u;.

We may therefore simplify the objective function. The variables fixed to zero contribute
zero, the variables fixed to one contribute a constant, and the variables with a common
value allow us to combine terms. Let £; < g < u;. Then, dropping the subscripts for
convenience,

Y Ap—g—c+Dzp.g) = Y Alp—q—c+Dzti,q)

Pt p=ti

= (elli—qg—c+1) —elti —q—c)zti.q),

and for ¢; < p < u;, we have

Y Alp—g—c+Dip.g) = Y Alp—q—c+Dz(p.u;+1)

qzuj+1 q=uj+1
= Y Ap—g—c+Dupu+1
—g=—(u;+1)
= Y Al(p+g—c+Dzlp.uj+1)
q=<—(uj+1)
= > Ap+q—0zp.ui+1)
qg=—u;

= (e(p—uj—c)—elp—uj—c—1)z(t,q).
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This establishes the validity of the formulation (BD) as equivalent to (Dual).

REMARK 2.1.  If the functions e;;() are linear, then per inequality x; — x; < ¢;; + z;j
and a value of x; = p there is at most one variable z;;(p, g) which is not fixed at zero.
If the functions ¢;; () are piecewise linear with at most k pieces, then there are at most k
variables z;;(p, g) which are not fixed at zero.

REMARK 2.2. The problem formulated as (BD) is an instance of the s-excess problem
defined as the problem solved by the pseudoflow algorithm of [H1]. There it is shown
how the s-excess problem generalizes the minimum closure problem and how solving it
is equivalent to solving a minimum cut problem.

We now complete the graph construction in which the minimum cut problem solves

the problem (BD). Let an arc going from node xl.(k’) to node x;kf ) be the ordered pair
(ki)

(ki, k). For every variable z(k;, k;) the corresponding arc (k;, k;) goes from node x;
tonode x;k/ ) The capacity assigned to arc (k;, k;) is the coefficient of the variable z (k;, k;)
in the objective function of (BD).

Consider a finite cut (S, §) in the generated graph GBP = (V, A) (BD stands for
Binary Dual), where V is a set of nodes corresponding to the range of values of each
variable x;, and a source and sink node, A is a set of arcs consisting of infinite capacity
arcs within each x;-chain and corresponding to two variables inequalities, finite capacity
arcs between the nodes and source and sink (depending on whether the weight of the

node is positive or negative), and arcs corresponding to each variable z(k;, k;). We derive

a solution corresponding to the minimum cut by letting a variable xi(p ) = 1if the node
corresponding to that variable is in the source set of the cut S, and 0 otherwise:

! 0 if nodex” €38.

Lo {1 if nodex” e s,

We let z;;(p1, p2) = 1iff arc (py, p,) is in the cut. We let z;; be equal to the number of
nodes in the x;-chain that have at least one cut-arc coming from the x;-chain adjacent to
them.

We claim in the next theorem that such a solution is feasible for the problem and that
the objective value of this solution is equal to the capacity of the cut plu