
DOI: 10.1007/s00453-004-1085-2

Algorithmica (2004) 39: 189–208 Algorithmica
© 2004 Springer-Verlag New York, LLC

A Cut-Based Algorithm for the Nonlinear Dual of the
Minimum Cost Network Flow Problem1

Ravindra K. Ahuja,2 Dorit S. Hochbaum,3 and James B. Orlin4

Abstract. We consider a convex, or nonlinear, separable minimization problem with constraints that are
dual to the minimum cost network flow problem. We show how to reduce this problem to a polynomial number
of minimum s,t-cut problems. The solution of the reduced problem utilizes the technique for solving integer
programs on monotone inequalities in three variables, and a so-called proximity-scaling technique that reduces
a convex problem to its linear objective counterpart. The problem is solved in this case in a logarithmic number
of calls, O(log U), to a minimum cut procedure, where U is the range of the variables. For a convex problem
on n variables the minimum cut is solved on a graph with O(n2) nodes. Among the consequences of this result
is a new cut-based scaling algorithm for the minimum cost network flow problem. When the objective function
is an arbitrary nonlinear function we demonstrate that this constrained problem is solved in pseudopolynomial
time by applying a minimum cut procedure to a graph on O(nU) nodes.

Key Words. Nonlinear integer programming, Convex integer programming, Total unimodularity, Minimum
cut, Network flow.

1. Introduction. We consider a convex, or nonlinear, separable minimization problem
with constraints that are dual to the minimum cost flow problem. We show how to reduce
this problem to a polynomial number of minimum s,t-cut problems. The problem’s
constraints are of the form xi − xj ≤ ci j + zi j and their coefficients form a totally
unimodular matrix. Convex optimization problems over constraints of this type have
varied applications. One extensively studied application area is the problem of statistical
estimation subject to rank order constraints, see [BBBB]. Other applications, described
in a recent article by Ahuja et al. [AHO], include the time–cost tradeoff in project
scheduling, just in time scheduling, inverse spanning tree, and dial-a-ride transit problem.
An application to the problem of multi-echelon production lot sizing is described in [HQ].
Another application for the image segmentation problem is detailed in [H2].

With a linear objective function, the problem we study is the dual of the minimum
cost network flow problem, as shown next. We therefore refer to the problem studied
here as (Dual).

1 The first author’s research was supported in part by NSF Award No. DMI-0217359, that by the second
author was supported in part by NSF Awards Nos. DMI-0085690 and DMI-0084857 and by a UC-SMART
award, and the third author’s research was supported in part by NSF Grant DMI-9820998 and ONR Grant
N00014-98-1-0317.
2 Industrial & Systems Engineering, University of Florida, Gainesville, FL 32611, USA. ahuja@ufl.edu.
3 Industrial Engineering & Operations Research and Walter A. Haas School of Business, University of Cali-
fornia, Berkeley, CA 94720, USA. dorit@hochbaum.ieor.berkeley.edu.
4 Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
jorlin@mit.edu.

Received March 5, 2002; revised January 15, 2003. Communicated by H. N. Gabow.
Online publication February 25, 2004.

190 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

The general formulation of the problem addressed here has each structural constraint
involving a pair of variables and possibly a third variable that appears in that constraint
only. Let the set of constraints with three variables be E1 and the set of constraints with
two variables be E2. Let the set of variables be V = {1, . . . , n}. The set of constraints
E is partitioned into two subsets E = E1 ∪ E2, with |E1| = m1, |E2| = m2, |V | = n,
and |E | = m1 + m2 = m. Let the functions ei j () be convex. The primary problem we
address in this paper is

(Dual)

Min
n∑

j=1

wj (xj)+
∑

(i, j)∈E1

ei j (zi j)

subject to xi − xj ≤ ci j + zi j for (i, j) ∈ E1,

xi − xj ≤ ci j for (i, j) ∈ E2,

�j ≤ xj ≤ uj , j = 1, . . . , n,
βi j ≤ zi j ≤ γi j for (i, j) ∈ E1,

xj integer for all j = 1, . . . , n,
zi j integer for all (i, j) ∈ E1.

When the functions wj () are convex we call the problem (Convex Dual). Note that
the coefficients of the constraints form a totally unimodular matrix, and thus every
subdeterminant of this matrix is of value 1, −1, or 0.

Without loss of generality the lower bound constraints on the variables zi j may be
replaced by 0 lower bound, 0 ≤ zi j ≤ γ ′i j . Also without loss of generality, all the
parameters �j , uj , βi j , γi j , and ci j are integers.

When the objective function of (Dual) is linear, wj (xj) = wj xj and ei j (zi j) = ūi j zi j ,
we refer to the problem as (Linear Dual). The dual of (Linear Dual) is the minimum cost
network flow problem (Flow):

(Flow)

Min
∑

i j∈E1∪E2

ci j yi j +
n∑

i=1

uiαi +
∑

i j∈E1

γi jδi j

subject to −
∑

k

yik +
∑

k

yki − αi ≤ wi , i ∈ V,

ūi j ≥ yi j − δi j ≥ 0, (i, j) ∈ E1,

yi j ≥ 0, (i, j) ∈ E1 ∪ E2,

δi j ≥ 0, (i, j) ∈ E1,

αi ≥ 0, i = 1, . . . , n.

(Flow) is the formulation of a network flow problem on a network with n nodes—one per
structural constraint, and a dummy node, r , serving as a root. The variable αi represents
the flow from node i to the root. The inflow to node i exceeds the outflow by at mostwi .
This quantity is assigned as capacity to arcs going from node i to the root. The costs of
these arcs are ui . The costs of all other arcs not adjacent to root is ci j . For each such arc
that belongs to E1 there is an additional, parallel, arc of unbounded capacity with a cost
of ci j + γi j . The amount of flow on this parallel arc is δi j and this flow is positive only
if the flow on the first arc has reached its capacity ūi j .

Once the minimum cost flow problem is solved, the dual variables—the potentials—
are derived using complementary slackness and shortest paths procedure. For details
on the procedure the reader is referred to the book by Ahuja et al. [AMO] (page 316).

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 191

Therefore (Linear Dual) can be solved in the same running time as a minimum cost
network flow.

Our approach here is distinguished in that it does not solve the flow problem in any
way. All the routines are in the (Dual) space and utilize only a minimum cut procedure.

1.1. Prior Research. The convex optimization over linear constraints problem was
known, since the early 1950s, to be solved via linear programming by replacing each
variable xj by a sum of binary variables

∑uj

k=�j
x (k)j (see, e.g., [D]). The resulting lin-

ear program produces an optimal solution to the convex problem in pseudopolynomial
time. The running time is pseudopolynomial because it is a polynomial function of the
parameter U = maxj {uj − �j }.

The problem (Convex Dual) was first shown to be solvable in polynomial time by
Hochbaum and Shanthikumar [HS]. It was shown there that any convex separable op-
timization over linear constraints is solved in log U calls to a linearized version of the
problem in O(n2�) variables where � is the largest subdeterminant of the constraint
matrix and U is a bound on the range of the variables. Specifically, any convex separable
minimization in integers over a totally unimodular constraint matrix was shown to be
solvable in polynomial time by O(log U) calls to a linearized version of the problem in
binary variables. One of our contributions here is to show that this linearized version is
solvable by a minimum cut procedure.

The problem of convex optimization over totally unimodular constraints was also
addressed by Karzanov and McCormick [KM]. They proposed two algorithms for the
problem, one based on a minimum mean cycle canceling method and the other based
on a “cancel-and-tighten” approach. Specialized to our problem, called the network
cocirculation, the run times for these methods are O(m2n2 log2(n max{U,C})) and
O(n log(n max{U,C})(m + n log n)), respectively, for C = maxi j ci j .

In [AHO] we presented a polynomial time algorithm for (Convex Dual) which is the
most efficient algorithm known to date for the problem. The complexity of the algorithm
is O(mn log n log(nC)). The algorithm uses Lagrangian relaxation to recast the problem
as a convex cost network flow problem. Certain features of that convex cost network
flow problem make it possible to apply a particularly efficient algorithm based on the
successive approximation technique of Goldberg and Tarjan [GT2]. Our algorithm here,
by comparison, solves the (Convex Dual) problem directly, without dualizing it first.

A special case of (Convex Dual) has been addressed recently by Hochbaum and
Queyranne, [HQ]. In that problem, which we refer to as the convex closure problem, the
constraints are of the form xi − xj ≤ 0. The algorithm reported has the complexity of
a single minimum cut procedure, O(mn log(n2/m)), plus the work required to find the
integer minima of the n convex functions in the objective, O(n log U).

1.2. The Main Contributions. The algorithm we develop here for (Dual) solves the
problem by constructing a graph associated with the problem and solving a minimum
cut problem on that graph. When the graph corresponding to (Dual) has a special structure
it is easy to exploit this structure in the minimum cut procedure. For example, the inverse
spanning tree problem is an application in which this special structure is advantageous
[H5]. For the objective of minimizing the sum of absolute deviations, the graph structure
resembles that of a bipartite simple network, which leads to an algorithm with the best

192 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

run time for the problem [H5]. Another advantage is practical—in order to solve (Dual)
one requires nothing more sophisticated than a minimum cut routine, which is more
readily available than convex optimization software.

We describe an application of the cut-based algorithm to two different scenarios of
the problem. In one we have arbitrary nonlinear functions wj () and the running time is
pseudopolynomial. When the functionswj () are convex the running time is polynomial.
We also consider a special case of the convex problem where E2 = ∅ in which there is
an improvement in the complexity of the polynomial time algorithm.

Let T (n,m) denote the run time required to solve a minimum cut problem on a graph
with n nodes and m arcs. Recall that throughout, unless otherwise stated, ei j () are convex
functions.

1. When the functions wj () are general nonlinear functions, the running time of our
algorithm is pseudopolynomial, T (nU,mU 2).

2. For wj (), ei j () convex functions, the running time of the algorithm is O(log U ·
T (n2,mn2)). If the functions ei j () are linear or piecewise linear with a fixed number
of pieces the running time is O(log U · T (n2,mn)). In the linear case this leads to a
new polynomial time algorithm for minimum cost network flow that solves a sequence
of minimum cut problems, followed by a single maximum flow problem.

3. When wj () are convex, there are no variables zi j (E2 = ∅), and � is largest so
that ci j = ki j 2� for ki j integers (or 0), then the problem is solved in time
O(min{T (n(U/2�),m(U/2�)), log(U/2�) · T (n2, nm)} + �T (n,m)). (Note that
ci j < U and thus � ≤ log U .)

Our algorithm for the general nonlinear case is based on a technique of integer opti-
mization over monotone constraints with up to three variables in each constraint [H4].
Monotone inequalities have up to two variables appearing with opposite signs coeffi-
cients such as ax − by ≤ c + z for a, b nonnegative, and a third variable z appearing
in one constraint at most. (Dual) is obviously such a problem. The algorithm for integer
optimization over monotone constraints runs in time that depends on the range of the
variables x and y (which is U for (Dual)).

In the convex case the run time of our algorithm is improved to polynomial run time
based on the proximity-scaling algorithm of Hochbaum and Shanthikumar [HS]. That
generic approach works as follows: First we scale the units of the variables to a scaling
unit of size s, then we replace the variables by the sum of binary variables. The number of
binary variables replacing each variable is O(uj/s). The resulting piecewise linearized
problem is solved using the algorithm for optimizing over monotone inequalities. The
scaling unit s is selected so that uj/s is a polynomial quantity. The procedure then relies
on a proximity theorem that guarantees that the scaled problem solution is close enough
to the optimum so that the range of the variables can be reduced by a constant factor.

For the case when there are no zi j variables we employ a strong proximity theorem,
proved in this paper, which demonstrates that for right-hand sides that are integer mul-
tiples of the scaling factor, the optimal solution to the scaled problem lies within two
scaling units away from an optimal solution at the previous scaling phase.

The presentation here is organized as follows: Section 2 presents a pseudopolynomial
algorithm for the problem that is applicable to the nonconvex problem as well as the
convex problem. In Section 3 we describe the proximity-scaling algorithm of Hochbaum

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 193

and Shanthikumar and how it applies to the (Convex Dual) problem calling log U times
to the minimum cut procedure of Section 2, each with (strongly) polynomial time com-
plexity. Next we prove a stronger version of the proximity theorem in Section 4 which is
restricted to the (Convex Dual) problem in two variables per inequality with right-hand
sides that are divisible by the scaling factor. This proximity theorem demonstrates that the
optimal solution to the scaled problem is within two scaled units away from the optimal
solution to the subsequent scaled problem and leads to improved run times for (Convex
Dual) problems satisfying the required conditions. In Section 5 it is shown how to use
the proximity-scaling algorithm to solve the minimum cost network flow problem using
a logarithmic number of calls to a minimum cut procedure and one call to a maximum
flow procedure.

1.3. Notation. We denote vectors by bold characters, e.g., x. The vector e is the array
of ones (1, . . . , 1).

Let G = (V, A) be a connected directed graph on n nodes and m arcs. Let ci j be the
capacity of arc (i, j) in the graph. A partition of V is a cut (B, B̄) of capacity

∑
i∈B j∈B̄ ci j .

We consider s,t-cuts that are cuts in a graph that contains distinguished source s and
sink t . An s,t-cut is a partition (B, B̄) so that s ∈ B and t ∈ B̄. The minimum s,t-cut
problem is to find an s,t-cut of minimum capacity. In this paper we refer to the minimum
s,t-cut problem as the minimum cut problem. We call an arc capacitated graph containing
distinguished source and sink nodes, an s,t-graph

In the complexity expressions we let T (n,m) be the time required to solve a minimum
cut problem on a graph G with n nodes and m arcs. The quantity T (n,m)may be assumed
to be of order O(mn log(n2/m)) [GT1], or O(min{n2/3,m1/2}m log(n2/m) log U) [GR],
or, in case a randomized algorithm is acceptable, O(mn + n2 log2 n) with probability at
least 1 − 2−

√
mn [CH]. TMF(n,m) is the run time required to solve the maximum flow

problem. To date there is no algorithm known for a minimum cut of complexity faster
than that of maximum flow. In practice though, maximum flow requires an additional
25–100% run time more than minimum cut as reported in a study by Anderson and
Hochbaum of the pseudoflow algorithm of [H1] and the push-relabel algorithm of [GT1].

We denote U = maxj {uj − �j } and C = max(i, j)∈E ci j .

2. A Pseudopolynomial Algorithm. The problem addressed in this section is (Dual)
with the functionswj () arbitrary nonlinear. The functions ei j (), however, are still required
to be convex. The pseudopolynomial algorithm presented in this section is the building
block for the polynomial time algorithms that apply to the convex instances of the (Dual).

We first provide a description of the algorithm for (Dual) when all constraints are
monotone inequalities in two variables. That is, these are constraints of the form
ax − by ≤ c where both a and b are nonnegative. Later we address the algorithm
for the problem with constraints that include monotone inequalities in three variables.
These are defined to be of the form ax − by ≤ c+ z for a and b nonnegative and where
the third variable z appears in at most one inequality.

Integer programs on monotone constraints with at most two variables per inequality,
are solvable in time polynomial in the problem size and the value of the largest range
U by the algorithm of Hochbaum and Naor [HN]. The nonlinearity or convexity of

194 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

the objective function does not affect the complexity of the algorithm. We illustrate the
application of that algorithm to the special case considered here where a = b = 1.
Integer programs on monotone inequalities with at most three variables per inequality
are also solvable in pseudopolynomial time. We present a procedure based on minimum
cut which was introduced in [H4].

We begin with the construction of the graph and the equivalent formulation in binary
variables for the two variables per inequality case. This is followed by the construction
of the graph and the binary formulation for the three variables per inequality case.

2.1. A Reduction of the Two Variable Problem to the Minimum Cut Problem. The
minimum cut problem is formulated in binary variables. The key to the reduction is to
cast our problem in binary variables. To that end, each variable, xj , is replaced by uj −�j

binary variables, xj = �j +
∑uj

p=�j+1 x (p)j . The value of xj is represented by an array of
values assigned to the binary variables consisting of a sequence of ones followed by a
sequence of zeros, with either sequence possibly empty. Thus x (p)j = 1 if and only if
xj ≥ p. The objective function is replaced by the linear objective function defined on
binary variables, min

∑n
j=1

∑uj

p=�j+1[wj (p)− wj (p − 1)]x (p)j .
To enforce the contiguity of the sequences the following inequalities must be satisfied

for j = 1, . . . , n,

x (p)j ≤ x (p−1)
j , p = �j + 1, . . . , uj , x

(�j)

j = 1.

With these inequalities x (p)j = 1 only if x (k)j = 1 for �+ 1 ≤ k ≤ p − 1.
Consider a constraint of the type xi − xj ≤ c. To enforce the satisfaction of such

a constraint we replace it by a set of up to U constraints on the corresponding binary
variables. First we observe that the constraint is equivalent to up to ui − �i implications
of the type:

If xi ≥ p, then xj ≥ p − c for p = �i + 1, . . . , ui and p − c ≤ uj .

If p−c > uj , then in any feasible solution xi < p, which means that x (p)i , . . . , x (ui)
i = 0.

These implications can be written in terms of the binary variables x (k)i as the set of ui−�i

inequalities which are equivalent to the constraint xi − xj ≤ c,

x (p)i ≤ x (p−c)
j , p = �i + 1, . . . , ui .

Each binary variable x (p)i is assigned a weight equal to its incremental contribution
to the objective function:

w
(�j)

j = wj (�j),

w
(p)
j = wj (p)− wj (p − 1) for p = �j + 1, . . . , uj .

If (Dual) is feasible, then the following (Binary Dual) is an equivalent formulation to
that of (Dual) that has up to two variables per inequality. If (Dual) is infeasible, then
either the infeasibility leads to a contradiction diagnosed at the formulation stage—e.g.,

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 195

an implication of the type “xi ≥ �i then xj ≥ uj ”—or else (Binary Dual) is infeasible:

(Binary Dual)

Min
n∑

j=1

uj∑
p=�j+1

w
(p)
j x (p)j

subject to x (p)i ≤ x (p−c)
j for (i, j) ∈ E and p = �i + 1, . . . , ui ,

x (p)j ≤ x (p−1)
j for j = 1, . . . , n and p = �j + 1, . . . , uj ,

x (p)j binary for j = 1, . . . , n and p = �j + 1, . . . , uj .

The problem has thus been equivalently restated in binary variables and constraints that
each have one 1 coefficient and one −1 coefficient. These constraints characterize the
minimum closure problem which is solvable by a minimum cut procedure as shown
next.

A set of nodes in a directed graph is said to be a closed set if it contains all successors
of nodes in the set. Given a directed graph G = (V, A) with node weights wj for all
j ∈ V , the minimum closure problem is to find a closed set S ⊆ V such that

∑
j∈S wj is

minimized.
The graph construction associated with (Binary Dual) is as follows: Each binary

variable has a node corresponding to it in the graph with a weight equal to the weight
coefficient in the objective function of (Binary Dual). For each constraint x ≤ y there
is an arc leading from the node corresponding to x to the node corresponding to y. In
particular, the graph contains an xj -chain associated with each variable xj consisting
of a sequence of arcs from each node representing x (p)j to the node representing x (p−1)

j
for p = �j + 1, . . . , uj . Let a variable be 1 if and only if the corresponding node is
in the closure. Then the set of nodes valued 1 is closed under succession in this graph
if and only if the corresponding assigned values to the variables satisfy all constraints.
Figure 2.1 describes the construction of the graph for two variables.

The problem is now to find a closed set in the defined graph of minimum total weight,
which is precisely the minimum closure problem. The minimum closure problem is

uiw
(ui)
i ��
��xi�chain

?.
.
.

.

.

.

?

pw
(p)
i ��
��

.

.

.
?

`i + 1w
(`i+1)
i ��
��

?

`iw
(`i)
i ��
��

��
��xj�chain

uj w
(uj)
j

?

��
��
uj � 1w

(uj�1)
j

.

.

.
?

��
��
p� c w

(p�c)
j

?.
.
.

.

.

.

?

`j w
(`j)
j��

��

�
�
�
�
��:

Fig. 2.1. The graph representing two variables and an inequality that links them.

196 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

solved by finding a minimum s,t-cut in an associated arc-capacitated s,t-graph as was
first demonstrated by Picard [P]. We show how this is done for (Binary Dual).

In order to solve the closure problem associated with (Binary Dual) as a minimum
cut problem we add a source s and a sink t to the graph. Every node i in the graph that
has a positive weight wi > 0 is connected to the sink t with an arc of capacity wi > 0.
The source s is connected to every node i , that has negative weight wi , with an arc of
capacity |wi | = −wi > 0. The source set of the resulting minimum s,t-cut corresponds,
as we show next, to the optimal solution to the problem by setting the value of each
binary variable that has a corresponding node in the source set to 1. All other arcs, that
are not adjacent to a source or sink, assume infinite capacity.

Let (S, S̄) be a finite cut and let the solution to (Dual) xi = �i +
∑ui

p=�i+1 x (p)i
associated with the cut derived from the setting be

x (p)i =
{

1 if node x (p)i ∈ S,
0 if node x (p)i ∈ S̄.

In order to enforce the nodes x (�i)
i to belong to the source set we have arcs of infinite

capacity from the source to every node x (�i)
i . (These nodes can alternatively be shrunk

with the source and eliminated from their respective chains.)

LEMMA 2.1. The solution x associated with a minimum cut (S, S̄) is a feasible and
optimal solution to the (Binary Dual) problem.

PROOF. A generic constraint x ≤ y of (Binary Dual) is violated only if x = 1 and
y = 0. However, such an assignment corresponds to an infinite capacity arc going from
S to S̄ and thus violates the finiteness of the cut. Indeed, the source set of any finite cut
corresponds to a closed set, else it contains an infinite capacity arc violating finiteness.

Let V+ and V− represent the set of nodes with positive and negative weight, respec-
tively. Let (S, S̄) be a finite s,t-cut with s ∈ S and t ∈ S̄. The arcs in the cut are either
in (S ∩ V+, {t}) or in ({s}, S̄ ∩ V−). Denote the sum of weights of nodes in a set D by
w(D) =∑i∈D wi

C(S, S̄) =
∑

i∈S̄∩V−
(−wi)+

∑
i∈S∩V+

wi

=
∑
i∈V−

(−wi)−
∑

i∈S∩V−
(−wi)+

∑
i∈S∩V+

wi = −w(V−)+
∑
i∈S

wi .

The first term−w(V−) in the last expression is a constant, the sum of all negative weight
nodes. The second term is the weight of the nodes in the source set. Thus the capacity
of the cut and the weight of the closed set differ by a constant. In particular, the source
set of a minimum cut corresponds to a minimum value closed set, as required.

In order to solve the problem (Binary Dual) it is thus only necessary to find a minimum
cut in the graph constructed and set all the binary variables in the source set of the cut
to the value 1, and those in the sink set to the value 0. The complexity of solving the
problem is therefore the complexity of finding a minimum cut in the graph associated
with (Binary Dual), that has O(nU) nodes and O(mU) arcs, T (nU,mU).

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 197

2.2. A Reduction of the Three Variables Problem to a Minimum Cut Problem. We first
provide a binary formulation equivalent to (Dual), here called (BD), and then show an
associated graph construction where the solution to the minimum cut problem provides
a solution to (Dual) with the three variables constraints. The formulation includes all
inequalities associated with the two variables constraints, and the graph includes the same
construction of the xi -chains and the associated finite capacity arcs that connect the nodes
to source or sink as in the two variables case. Both (BD) and the graph are created by
appending the (Binary Dual) problem for the two variables inequalities, and appending
the corresponding s,t-graph, with a set of inequalities and arcs that represent the three
variable inequalities. Each appended inequality is of the form x (p)i ≤ x (q)j + zi j (p, q)
where zi j (p, q) is a binary variable. The binary variables zi j (p, q) are each associated
with an arc in the graph from node x (p)i to node x (q)j .

In order to simplify the presentation we introduce a sequence of assumptions that
hold without loss of generality:

1. 0 ≤ zi j ≤ γi j . The lower bound, if nonzero, can then be added to the right-hand side
constant ci j .

2. ei j (0) = 0, or else add a constant to the objective function.
3. The functions ei j () are assumed to be nondecreasing. Else set zi j to be at least z∗i j ,

where ei j () is nondecreasing for zi j ≥ z∗i j . The value z∗i j is the argument at which the
convex function ei j () attains its minimum.

4. Since ei j () are nondecreasing, the value of zi j is determined as

zi j = max{0, xi − xj − ci j }.
5. The functions ei j () are extended to nondecreasing convex functions on the real line

by setting, for a suitably large value of M ,

ei j (z) =



0 if z < 0,
ei j (z) if 0 ≤ z ≤ γi j ,

ei j (γi j)+ M(z − γi j) if z > γi j .

6. The variables zi j assume values on the entire real line and zi j = xi − xj − ci j .

When done with the process of generating the inequalities, to be described next, the
resulting binary dual (BD) is

Min
n∑

j=1

uj∑
p=�j+1

w
(p)
j x (p)j +

∑
(i, j)∈E1

ui∑
p=�i+1

uj∑
q=�j+1

ci j (p, q)zi j (p, q)

subject to x (p)i ≤ x
(p−ci j)

j for (i, j) ∈ E2 and p = �i + 1, . . . , ui ,

x (p)i ≤ x (q)j + zi j (p, q)
for (i, j) ∈ E1 and p = �i + 1, . . . , ui ,

q = p − ci j − γi j , . . . , p − ci j − 1,
x (p)j ≤ x (p−1)

j for j = 1, . . . , n and p = �j + 1, . . . , uj ,

x (p)j binary for j = 1, . . . , n and p = �j + 1, . . . , uj ,

zi j (p, q) binary for (i, j) ∈ E1 and p = �i + 1, . . . , ui ,

q = �j + 1, . . . , uj .

(BD)

198 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

Consider a constraint with three variables, xi − xj ≤ ci j + zi j . Since the functions
ei j () are convex and nondecreasing,

ei j (x + 1)− ei j (x) ≥ ei j (x)− ei j (x − 1).(2.1)

We define the excess unit increments of the functions ei j (a discrete equivalent of the
second derivative):

�i j (k) = [ei j (k)− ei j (k − 1)]− [ei j (k − 1)− ei j (k − 2)].

The functions�i j () are nonnegative as follows from the convexity in (2.1). Note that
when the function ei j () is linear then only�i j (1) is nonzero, and when ei j () is piecewise
linear then the number of arguments for which �i j () is nonzero is equal to the number
of “pieces” of ei j ().

We now proceed in two steps, first regarding the variables xi , xj as unbounded, and
then treating the bounded case.

Unbounded Variables xi . We deal with the case �i = −∞ and ui = +∞ for all i . We
model the xi and zi j as sums of binary variables. We have binary variables x (p)i , p ∈ N,
with

x (p)i = 1 iff p ≤ xi ,

and binary variables zi j (p, q) for p, q ∈ N with

zi j (p, q) = 1 iff p ≤ xi , q > xj , and p − q ≥ ci j .

This is equivalent to the inequality x (p)i − x (q)j ≤ zi j (p, q). We next modify the objective
function. For the part depending on the xi we proceed as in the previous section. We
have

w(xi) =
∑

p

(w(p)− w(p − 1))x (p)i =
∑

p

w
(p)
i x (p)i .

For
∑

i j ei j (zi j) we have to work slightly harder. For

�i j (l) = (ei j (l)− ei j (l − 1))− (ei j (l − 1)− ei j (l − 2)),

we observe that �i j (l) = 0 for l ≤ 0 and recall that �i j (l) ≥ 0 for all l. Then we claim
that

ei j (zi j) =
∑
pq

�i j (p − q − ci j + 1)zi j (p, q).

This can be seen as follows (we drop the subscript i j for simplicity):∑
pq

�(p − q − c + 1)z(p, q) =
∑

p≤xi , q>xj

�(p − q − c + 1)

=
∑

p≤xi , −q<−xj

�(p − q − c + 1)

=
∑

p≤xi , q<−xj

�(p + q − c + 1)

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 199

=
∑

p≤xi , q≤−xj

�(p + q − c)

=
∑
p≤xi

e(p − xj − c)− e(p − xj − c − 1)

= e(xi − xj − c)− e(0)

= e(z).

The contiguity conditions on the variables are easily formulated as before,

x (p)i ≥ x (p−1)
i for all p,∑

p

x (p)i ≥ 1,
∑

p

(1− x (p)i) ≥ 1,

where the last two inequalities guarantee that some but not all x (p)i are one. We also have

x (p)i ≤ x (q)j + zi j (p, q) for p, q ∈ N.
The last set of inequalities captures the if-part in the definition of zi j (p, q). The only-if
part is captured in the objective function using the nonnegativity, �i j (l) ≥ 0 for all l.

Bounded Variables. A range restriction �i ≤ xi ≤ ui is easily modeled by the additional
inequalities x (p)i = 1 for p ≤ �i and x (p)i = 0 for p > ui . Of course, we may remove the
fixed variables from the problem. We can also remove many of the z-variables. Observe
that

zi j (p, q) =




0 if p > ui or q ≤ �j ,

1 if p ≤ �i and q > uj ,

zi j (�i , q) if p < �i ,

zi j (p, uj + 1) if q > uj .

We may therefore simplify the objective function. The variables fixed to zero contribute
zero, the variables fixed to one contribute a constant, and the variables with a common
value allow us to combine terms. Let �j ≤ q ≤ uj . Then, dropping the subscripts for
convenience,∑

p≤�i

�(p − q − c + 1)z(p, q) =
∑
p≤�i

�(p − q − c + 1)z(�i , q)

= (e(�i − q − c + 1)− e(�i − q − c))z(�i , q),

and for �i < p ≤ ui , we have∑
q≥uj+1

�(p − q − c + 1)z(p, q) =
∑

q≥uj+1

�(p − q − c + 1)z(p, uj + 1)

=
∑

−q≤−(uj+1)

�(p − q − c + 1)z(p, uj + 1)

=
∑

q≤−(uj+1)

�(p + q − c + 1)z(p, uj + 1)

=
∑

q≤−uj

�(p + q − c)z(p, uj + 1)

= (e(p − uj − c)− e(p − uj − c − 1))z(�i , q).

200 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

This establishes the validity of the formulation (BD) as equivalent to (Dual).

REMARK 2.1. If the functions ei j () are linear, then per inequality xi − xj ≤ ci j + zi j

and a value of xi = p there is at most one variable zi j (p, q) which is not fixed at zero.
If the functions ei j () are piecewise linear with at most k pieces, then there are at most k
variables zi j (p, q) which are not fixed at zero.

REMARK 2.2. The problem formulated as (BD) is an instance of the s-excess problem
defined as the problem solved by the pseudoflow algorithm of [H1]. There it is shown
how the s-excess problem generalizes the minimum closure problem and how solving it
is equivalent to solving a minimum cut problem.

We now complete the graph construction in which the minimum cut problem solves
the problem (BD). Let an arc going from node x (ki)

i to node x
(kj)

j be the ordered pair

(ki , kj). For every variable z(ki , kj) the corresponding arc (ki , kj) goes from node x (ki)
i

to node x
(kj)

j . The capacity assigned to arc (ki , kj) is the coefficient of the variable z(ki , kj)

in the objective function of (BD).
Consider a finite cut (S, S̄) in the generated graph GBD = (V, A) (BD stands for

Binary Dual), where V is a set of nodes corresponding to the range of values of each
variable xi , and a source and sink node, A is a set of arcs consisting of infinite capacity
arcs within each xi -chain and corresponding to two variables inequalities, finite capacity
arcs between the nodes and source and sink (depending on whether the weight of the
node is positive or negative), and arcs corresponding to each variable z(ki , kj). We derive
a solution corresponding to the minimum cut by letting a variable x (p)i = 1 if the node
corresponding to that variable is in the source set of the cut S, and 0 otherwise:

x (p)i =
{

1 if node x (p)i ∈ S,
0 if node x (p)i ∈ S̄.

We let zi j (p1, p2) = 1 iff arc (p1, p2) is in the cut. We let zi j be equal to the number of
nodes in the xj -chain that have at least one cut-arc coming from the xi -chain adjacent to
them.

We claim in the next theorem that such a solution is feasible for the problem and that
the objective value of this solution is equal to the capacity of the cut plus a fixed constant.
We further show that any feasible solution corresponds to a finite cut in the graph. This
will lead to the conclusion that the solution corresponding to a minimum cut is optimal
for our problem.

EXAMPLE. In Figure 2.2 we present an example showing the generated graph for an
inequality xi − xj ≤ 2 + zi j where γi j = 3. The illustration shows the arcs associated
with the lowest nodes in the xi -chain. Note that the arcs originating at the first node, �i ,
follow a different pattern from that of the other nodes. This is because the higher valued
nodes in the chain are guaranteed that when they are in the source set, then so are all

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 201

ui

xi chain x chainj

li-5

∆ ij
(1

)

∆ij(3
)

li-2

li

il

li-3

li-4

il

lj

ij

8

uj

–1

...
...

...
...

...
...

...
...

...
...

...
...

..

...
...

.

(1
)-

ij(0
)

ij

+1

∆
(2)

ij

ij(2
)-

(1)

ij(2)
ije

e
e

e

e (3)-e

...
.

Fig. 2.2. The network for xi and xj .

the nodes under them. Thus the arcs adjacent to a particular valued node in the xj -chain
have a corresponding set of arcs originating from lower valued nodes. Each such arc
contributes only to the incremental cost of the variable zi j .

In the example

c(�i , �i − 2) = ei j (1)− ei j (0). If this arc is in the cut, then zi j ≥ 1.
c(�i , �i − 3) = ei j (2)− ei j (1). If this arc is in the cut, then zi j ≥ 2.
c(�i , �i − 4) = ei j (3)− ei j (2). If this arc is in the cut, then zi j ≥ 3.
c(�i , �i − 5) = ∞. It is infeasible for xj to be ≤ �i − 5.
c(�i + 1, �i − 1) = �i j (1) = ei j (1)− ei j (0). If this arc is in the cut, then zi j ≥ 1.
c(�i + 1, �i − 2) = �i j (2). If this arc is in the cut, then the arcs (�i , �i − 2) and
(�i+1, �i−1) are also in the cut and zi j ≥ 2. The total capacity of these three arcs
is �i j (1) + �i j (2) + ei j (1) − ei j (0) = ei j (2) − ei j (1) + ei j (1) − ei j (0) =
ei j (2)− ei j (0) as required.

c(�i + 1, �i − 3) = �i j (3). If this arc is in the cut, then zi j ≥ 3.
c(�i + 1, �i − 4) = ∞. It is infeasible for xj ≤ �i − 4 if xi ≥ �i + 1.

The following theorem shows that the minimum cut on the constructed graph provides
the optimal solution to (BD) and thus to (Dual).

THEOREM 2.1. A solution to (Dual), (x, z), is feasible if and only if it corresponds to
a finite cut (S, S̄) in the graph GBD. Furthermore, the objective value of the solution is
equal to the capacity of the cut plus a fixed constant.

202 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

PROOF. Given a feasible solution (x, z). Let xi = pi . All nodes in the xi -chain from �i

to pi are assigned to S, the source set of the cut (that includes s). All nodes corresponding
to values in the range pi + 1 to ui are assigned to a sink set S̄.

Consider an inequality involving a pair of variables xi = pi , xj = pj , xi − xj ≤
ci j + zi j . If pj ≥ pi − ci j , then there are no arcs associated with this inequality in the
cut. Let pj = pi − ci j − q for q ≥ 1. Since the solution is feasible then q = zi j ≤ γi j .
The arcs in the cut are arranged in the list below with each row listing the arcs adjacent
to a node in the xi chain, and each column has the list of arcs adjacent to a node in the
xj chain:

(pi , pi − ci j), (pi , pi − ci j − 1), . . . , (pi , pi − ci j − (q − 1)),

(pi − 1, pi − 1− ci j), . . . , (pi − 1, pi − 1− ci j − (q − 2)),

...

. . . , (pi − (q − 1), pi − ci j − (q − 1)).

The capacity of the cut arc (pi , pi − ci j) is �i j (1). The sum of capacities of cut arcs

directed into x
(pi−1−ci j)

j , (pi , pi − ci j − 1), and (pi − 1, pi − 1− ci j) is�i j (1)+�i j (2).
The total sum of the cut arcs between the xi -chain and xj -chain is

�i j (1)+ [�i j (1)+�i j (2)]+ · · · + [�i j (1)+ · · · +�i j (q)]

= ei j (1)+ [ei j (2)− ei j (1)]+ · · · + [ei j (q)− ei j (q − 1)]

= ei j (q).

If a node pi − k = �i , then the charge of the arcs adjacent to it includes the charges
of the arcs that would have been below it. (This explains why the arcs adjacent to �i are
charged differently than those adjacent to nodes above it in the xi -chain.) Therefore the
cost of the variables zi j is properly charged. Namely, if zi j = q , then the charge to the
cut capacity is ei j (q).

Let c(u, v) denote the capacity of the arc (u, v). The total capacity of the cut is

C(S, S̄) =
∑

i∈S̄∩V−
(−wi)+

∑
i∈S∩V+

wi +
∑

(i, j)∈E1

pi∑
ki=�i

u j∑
kj=pj+1

c(ki , kj)

= w(V−)+
∑
i∈S

wi +
∑

(i, j)∈E1

ui∑
pi=�i

u j∑
pj=�j

c(pi , pj).

Therefore the cut capacity is a constant,w(V−), plus the objective function value cor-
responding to the assigned values of the variables. Thus minimizing the cut is equivalent
to minimizing the objective of (BD).

On the other hand, given a finite cut, the solution corresponding to it is feasible:
First the source set of the cut contains a consecutive set of nodes �i , . . . , pi from each

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 203

xi -chain, else the cut would include an infinite capacity arc of the chain and cannot be
finite. We let zi j = max{0, pi − pj − ci j } which is the number q of nodes in the xj chain
with at least one cut arc adjacent to them. Suppose that zi j is not feasible, i.e., it is greater
than γi j . Then the infinite capacity arc (pi , pi − ci j − γi j) is in the cut, contradicting the
finiteness of the cut. Therefore the corresponding solution is feasible.

3. A Polynomial Proximity-Scaling Algorithm. Hochbaum and Shanthikumar [HS]
devised a polynomial time algorithm, called the proximity-scaling algorithm, for integer
convex separable minimization over linear constraints.

A proximity theorem is a statement on the distance, in the L∞ norm, between the
solution to the scaled problem and the optimal solution to the problem. Equivalently, it
is a statement on the distance between the optimal solution to the scaled problem with
a scaling unit s and the optimal solution to the scaled problem with a scaling unit s/2.
(Note that 2 can be replaced by any other constant.)

The essence of the proximity-scaling approach is to solve the scaled problem for a
scaling unit that is large enough so that the number of binary variables, or pieces, in the
piecewise linear approximation is polynomially small. Hochbaum and Shanthikumar
[HS] proved a general proximity theorem on the distance between the optimal solutions
in the s scaling phase, xs , and the s/2 scaling phase, xs/2:

‖xs − x
s
2 ‖∞ ≤ n�s,

where � is the largest subdeterminant of the constraint matrix and n is the number of
variables.5

With this proximity theorem, if we choose the scaling unit appropriately, as discussed
next, then once the optimal solution in the s scaling phase is available, we know that
each variable xs/2

i in the optimal solution for the s/2 scaling phase lies in an interval,
the size of which is half the size of the previous interval, thus shrinking the range in the
next scaling phase by a factor of 2.

For the problem (Convex Dual) the constraint matrix is totally unimodular and thus
� = 1. We call α the proximity factor if ‖xs − x

s
2 ‖∞ ≤ αs. The proximity factor thus

proved for (Convex Dual) by Hochbaum and Shanthikumar is α = n. In the next section
we prove a tighter proximity factor, α = 1, applicable to a subclass of (Convex Dual)
problems.

Our algorithm is implemented as follows. The scaling unit is selected initially to be
s = U/4α. The interval for variable xj , [�j , uj], is thus replaced by up to 4α intervals of
length s each.

Let the scaled problem called (Dual[s]) be defined on the variables x [s]
j = xj/s and

5 Although in our problem the number of variables can be O(m + n) we utilize the proximity theorem with
regard to the variables x only. We showed, in a recent working paper [H3], an adaptation of the proximity
theorem to projected proximity where the proximity is determined by a subset of the variables. Thus in our
case we can consider the number of variables to be n.

204 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

z[s]
i j = zi j/s:

Min
n∑

j=1

wj (sx [s]
j)+

∑
(i, j)∈E1

ei j (sz[s]
i j)

subject to x [s]
i − x [s]

j ≤
⌈ci j

s

⌉
+ z[s]

i j for (i, j) ∈ E1,

x [s]
i − x [s]

j ≤
⌈ci j

s

⌉
for (i, j) ∈ E2,

uj

s
≥ x [s]

j ≥
�j

s
integer for j = 1, . . . , n,

γi j

s
≥ z[s]

i j ≥ 0 integer for (i, j) ∈ E1.

(Dual[s])

Let the optimal solution to the problem (Dual[s]) be xs . Then according to the proximity
theorem the optimal value of xs/2 is within a distance of αs units away, or within an
interval of length 2αs centered at xs . This interval, which is guaranteed to contain the
optimal solution to xs/2 is then partitioned into at most 4α grid points that are spaced at
equal distances s/2. This procedure then repeats until the scaling unit is s = 1.

The pseudopolynomial algorithm described in Section 2 can be applied directly to
the problem (Dual[s]), solving it by finding a minimum cut on a graph with at most 4αn
nodes and 4αm arcs.

The following is a formal description of the algorithm:

Proximity-Scaling Algorithm

Step 0. Set s = �U/4α�.
Step 1. Solve (Dual[s]), with an optimal solution xs , zs . If s = 1 output the
solution and stop.
Step 2. Set �j ← max{�j , xs

j − αs} and uj ← min{uj , xs
j + αs}, for j =

1, . . . , n.
Step 3. s ← �s/2�. Go to step 1.

The algorithm calls for (Dual[s]) log2 U times. The total complexity of solving the
problem is thus log2 U ·T (4αn, (4α)2m)when ei j () are convex, or log2 U ·T (4αn, 4αm)
for ei j () linear or piecewise linear with a constant number of pieces.

4. A Strong Proximity Theorem. Our strong proximity theorem applies for the prob-
lem on two variables per inequality when the value of ci j is divisible by the scaling unit.
This applies, for instance, when all ci j are large enough powers of 2, or 0. Consider the
problem (P) with up to two variables per inequality with f j () convex functions:

Min f (x) =
n∑

j=1

f j (xj)

subject to xi − xj ≥ ci j for (i, j) ∈ E .

(P)

Note that upper and lower bound constraints are included as pairs in E of the form (i, 0),
such as xi ≤ ui .

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 205

We now prove the proximity of the optimal values of the solution for a scaling unit s
and for scaling unit s/2. This proximity theorem is valid for problems (P) with right-hand
sides ci j that are integer multiples of s.

The s-Scaling Phase. Let f s
j (xj) = f j (xj) if xj is an integer multiple of s. Let f s

j (xj)

be defined so that it is linear in its argument between successive integral multiples of s.
Thus the functions f s

j (xj) are piecewise linear approximations of f j . Let (P(s)) be the
problem (P) with f j replaced by f s

j for each j .
At the s-scaling phase, the objective is to find an optimal solution to problem (P(s)),

xs . Without loss of generality, we restrict attention to optimal solutions for (P(s)) such
that each variable is an integral multiple of s.

THEOREM 4.1. Suppose that xs is an optimal solution at the s-scaling phase, and sup-
pose that ci j is an integral multiple of s for each (i, j) ∈ E . Then there is an optimal
solution x∗ for (P(s/2)) with the property that |xs

j − x∗j | ≤ s for each j = 1, . . . , n.

PROOF. In order to simplify notation, we assume without loss of generality that s = 2.
We also assume without loss of generality that xs = 0. (Otherwise, one can perform a
translation of variables by replacing x by x− xs .)

Among all optimal solutions to (P) = P(s/2), let x∗ be one that minimizes

δ = max
i
|x∗i − xs

i | = max
i
|x∗i |.

If δ ≤ 2, there is nothing to prove. So, we assume that δ ≥ 3, and we will derive a
contradiction. Let x′ be obtained from x∗ as follows:

x ′i = x∗i + 1 if x∗i = −δ,
x ′i = x∗i if −δ + 1 ≤ x∗i ≤ δ − 1,
x ′i = x∗i − 1 if x∗i = δ.

Let the objective function value for (P(s)) be abbreviated as f s(). We claim that x′ is
feasible, and that f 1(x′) ≤ f 1(x∗). This will contradict that x∗ is an optimal solution to
(P(1)) that minimizes δ and will establish the theorem.

We first show that x′ is feasible. Consider the constraint xi − xj ≥ ci j for some
(i, j) ∈ E . We know that ci j ≤ 0 since the solution xs = 0 is feasible. Since the
constraint is satisfied by x∗, the following is true: if x ′i− x ′j ≥ x∗i − x∗j , then x ′i− x ′j ≥ ci j .
So, the only chance for x′ to be infeasible is for there to be some (i, j) ∈ E such that
x ′i− x ′j < x∗i − x∗j . There are two possible cases in which x ′i− x ′j < x∗i − x∗j . It is possible
that x∗i = δ and x∗j < δ, and it is possible that x∗i > −δ and x∗j = −δ. However, in both
of these cases x ′i − x ′j ≥ 0 and so the constraint x ′i − x ′j ≥ ci j is satisfied.

We next show f 1(x′) ≤ f 1(x∗). In order to prove this, we create another solution y
as follows:

yi = −2 if x∗i = −δ,
yi = 0 if −δ + 1 ≤ x∗i ≤ δ − 1,
yi = 2 if x∗i = δ.

We will show that y is a feasible solution, and we will also show the following:

f 1(x′)− f 1(x∗) ≤ f 2(xs)− f 2(y)
2

.

206 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

Since xs is optimal for (P(2)), it will follow from the inequality above that
(f 2(xs)− f 2(y))/2 ≤ 0, and so f 1(x′)− f 1(x∗) ≤ 0, and the theorem will be proved.

We next establish that y is a feasible solution for (P). Consider a constraint xi−xj ≥ ci j

and recall that ci j ≤ 0. So if yi − yj ≥ 0, the constraint is satisfied. We consider all three
cases in which yi − yj < 0 as follows:

(i) −δ < x∗i < δ and x∗j = δ,
(ii) x∗i = −δ and −δ < x∗j < δ, and

(iii) x∗i = −δ and x∗j = δ.
In cases (i) and (ii), x∗i − x∗j ≤ −1, and so ci j ≤ −1. Thus these cases cannot happen

when ci j = 0. Otherwise, since ci j is a multiple of 2, it follows that ci j ≤ −2, and thus
the constraint yi − yj ≥ ci j is satisfied. In case (iii), yi − yj = −4 and x∗i − x∗j ≤ −6,
and so yi − yj ≥ x∗i − x∗j ≥ ci j . We thus conclude that y is feasible.

To complete the proof of the theorem, we need to establish that f 1(x′) − f 1(x∗) ≤
(f 2(xs)− f 2(y))/2. We demonstrate that this inequality holds for i = 1, . . . , n.

If −δ < x∗i < δ, then x∗i = x ′i and yi = xs
i . So, it suffices to focus on indices i

for which x∗i = −δ or x∗i = δ. We consider the case that x∗i = δ. By the convexity of
fi (), it follows that fi (δ)− fi (δ − 1) ≥ (fi (2)− fi (0))/2. Similarly, if x∗i = −δ, then
fi (−δ + 1)− fi (−δ) ≤ (fi (0)− fi (−2))/2.

Putting these cases together yields that f 1(x′)− f 1(x∗) ≤ (f 2(xs)− f 2(y))/2. This
completes the proof of the theorem.

Let all ci j be 0 and those that are positive are |ci j | = ki j 2�i j for integers ki, j . Let s
be initially set to 2�, where � = mini, j �i j , then the run time of solving for (P(s)) in the
first iteration requires T (n(U/2�),m(U/2�)) steps. Alternatively, we can use for the first
log (U/2�) steps the standard procedure. The overall run time requires to bring the range
of the variable to 2� is

min

{
T

(
n

U

2�
,m

U

2�

)
, log

U

2�
T (n2, nm)

}
.

Every one of the subsequent � iterations requires O(T (n,m)) run time since the ci j

are all divisible by the scaling factor. These subsequent iterations are thus accomplished
in time O(�T (n,m)). The total run time is thus

O

(
min

{
T

(
n

U

2�
,m

U

2�

)
, log

U

2�
T (n2, nm)

}
+ �T (n,m)

)
.

Note that the quantity 2� can be replaced by any composite number with small factors.
The value of s is then updated at each iteration by dividing by one of the factors. The
number of grid points then increases by the magnitude of the factor divided by 2.

5. A New Algorithm for Minimum Cost Network Flow. Consider a minimum cost
network flow problem defined on a network G = (V, A) with flow variables denoted by
yi j . Let the sum of supplies be equal to the sum of demands of the nodes,

∑n
i=1wi = 0.

Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem 207

Thus we can write the problem’s flow balance constraints as inequalities:

Min
∑
i j∈A

ci j yi j

subject to
∑

j

yi j −
∑

j

yji ≥ wi , i ∈ V,

ūi j ≥ yi j ≥ 0, (i, j) ∈ A.

The dual of this problem is

Min
∑
j∈V

wj xj +
∑
(i, j)∈A

ūi j zi j

subject to xi − xj ≤ ci j + zi j for (i, j) ∈ A,
xj ≥ 0, j = 1, . . . , n,
zi j ≥ 0, (i, j) ∈ A.

Although there are no explicit upper bounds on the variables xj , it is easy to see that
for C = max(i, j)∈A ci j , xj ≤ nC for all j ∈ V . Thus the problem is equivalent to a
problem with bounded variables in a range of length U = nC . Applying the Proximity-
Scaling Algorithm we solve the dual problem as an instance of (Convex Dual) in time
O(T (n2,mn) log nC).

The solution to the dual problem delivers the node potentials xj and the dual variables
zi j . We then construct the solution to the flow problem as follows:

yi j =



ūi j if zi j > 0,
0 if xi − xj < ci j ,

∈ [0, ui j] if xi − xj = ci j .

It remains to balance the supplies and demands in the network while using only arcs
in G such that xi − xj = ci j (the basic arcs with reduced costs equal to 0). Finding such a
feasible flow can be accomplished by solving a maximum flow problem. The complexity
of solving the maximum flow problem is dominated by the complexity of solving the
dual problem.

To summarize, our algorithm for a minimum cost network flow calls log nC
times for a minimum s,t-cut procedure, and once for a maximum flow procedure.
Therefore the complexity of solving the minimum cost network flow problem
using, e.g., Goldberg and Rao’s algorithm for the minimum cut procedure, is
O(min{n4/3,m1/2n1/2}mn log n log2(nC)). Note that there are known maximum flow-
based algorithms for the minimum cost network flow problem, by Röck [R] and by Bland
and Jensen [BJ]. Both these algorithms have a running time of O(n log C · TMF(n,m)).

Acknowledgement. We thank an anonymous referee for his/her substantial contribu-
tion to improving and simplifying the presentation of the three variable per inequality
reduction, as well as for numerous other useful editorial suggestions.

208 R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin

References

[AHO] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solving the convex cost integer dual network flow
problem. Management Science, 49(7), 950–964, 2003.

[AMO] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[BBBB] R. E. Barlow, D. J. Bartholomew, J. M. Bremer, and H. D. Brunk. Statistical Inference Under Order
Restrictions. Wiley, New York, 1972.

[BJ] R. G. Bland and D. L. Jensen. On the computational behavior of a polynomial time network flow
algorithm. Mathematical Programming, 54, 1–39, 1992.

[CH] J. Cheriyan and T. Hagerup. A randomized maximum-flow algorithm. SIAM Journal on Computing,
24, 203–226, 1995.

[D] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[GR] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM, 45,
783–797, 1998.

[GT1] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. Journal of the
ACM, 35, 921–940, 1988.

[GT2] A. V. Goldberg and R. E. Tarjan. Solving minimum cost flow problem by successive approximation.
Mathematics of Operations Research, 15, 430–466, 1990.

[H1] D. S. Hochbaum. The pseudoflow algorithm for the maximum flow problem. Manuscript, University
of California, Berkeley, CA, 1997.

[H2] D. S. Hochbaum. An efficient algorithm for image segmentation, Markov Random Fields and
related problems. Journal of the ACM, 48(4), 686–701, 2001.

[H3] D. S. Hochbaum. The inverse shortest paths problem. Manuscript, University of California, Berke-
ley, CA, July 2001.

[H4] D. S. Hochbaum. Solving integer programs over monotone inequalities in three variables: a frame-
work for half integrality and good approximations. European Journal of Operational Research,
140(2), 291–321, 2002.

[H5] D. S. Hochbaum. Efficient algorithms for the inverse spanning tree problem. Operations Research,
51(5), 785–797, 2003.

[HMNT] D. S. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-approximation algorithms
for integer programs with two variables per inequality. Mathematical Programming, 62, 69–83,
1993.

[HN] D. S. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer programs with two
variables per inequality. SIAM Journal on Computing, 23(6), 1179–1192, 1994.

[HQ] D. S. Hochbaum and M. Queyranne. Minimizing a convex cost closure set. SIAM Journal of
Discrete Mathematics, 16(2), 192–207, 2003.

[HS] D. S. Hochbaum and J. G. Shanthikumar. Convex separable optimization is not much harder than
linear optimization. Journal of the ACM, 37, 843–862, 1990.

[KM] A. V. Karzanov and S. T. McCormick. Polynomial methods for separable convex optimization in
unimodular linear spaces with applications. SIAM Journal on Computing, 26(4), 1245–1275, 1997.

[P] J. C. Picard. Maximal closure of a graph and applications to combinatorial problems. Management
Science, 22, 1268–1272, 1976.

[R] H. Röck. Scaling techniques for minimum cost network flows. In Discrete Structures and Algo-
rithms, V. Pape, ed. Carl Hansen, Munich, pp. 181–191, 1980.

