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Abstract Nonlinear optimization algorithms are rarely discussed from a complexity point
of view. Even the concept of solving nonlinear problems on digital computers is not well
defined. The focus here is on a complexity approach for designing and analyzing algorithms
for nonlinear optimization problems providing optimal solutions with prespecified accuracy
in the solution space. We delineate the complexity status of convex problems over network
constraints, dual of flow constraints, dual of multi-commodity, constraints defined by a sub-
modular rank function (a generalized allocation problem), tree networks, diagonal dominant
matrices, and nonlinear knapsack problem’s constraint. All these problems, except for the
latter in integers, have polynomial time algorithms which may be viewed within a unifying
framework of a proximity-scaling technique or a threshold technique. The complexity of
many of these algorithms is furthermore best possible in that it matches lower bounds on the
complexity of the respective problems.

In general nonseparable optimization problems are shown to be considerably more dif-
ficult than separable problems. We compare the complexity of continuous versus discrete
nonlinear problems and list some major open problems in the area of nonlinear optimiza-
tion.

Keywords Nonlinear optimization · Convex network flow · Strongly polynomial
algorithms · Lower bounds on complexity

1 Introduction

Nonlinear optimization problems are considered to be harder than linear problems. This is
the chief reason why approximate linear models are frequently used even if the circum-
stances justify a nonlinear objective. A typical approach is to replace an objective function
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that is nonlinear by a piecewise linear function. This approach may adversely affect the algo-
rithm’s complexity as often the number of pieces is very large and integer variables may have
to be introduced. For problems with nonlinear objective function the leading methodology
consists of iterative and numerical algorithms in which complexity analysis is substituted
with a convergence rate proof.

In order to apply complexity analysis to nonlinear optimization problems, it is necessary
to determine what it means to solve such a problem. Unlike linear problems, for nonlinear
problems the length of the output can be infinite, such as in cases when a solution is irra-
tional. There are two major complexity models for nonlinear optimization. One that seeks
to approximate the objective function. The second, which we present here, approximates the
optimal solution in the solution space. The latter has a number of advantages described next
in Sect. 1.1.

Our goals here are to set a framework for complexity analysis of nonlinear optimization
with linear constraints, delineate as closely as possible the complexity borderlines between
classes of nonlinear optimization problems, and generate a framework of effective tech-
niques. In particular it is shown how properties of convexity, separability and quadraticness
of nonlinear optimization contribute to a substantial reduction in the problems’ complexity.
We review a spectrum of techniques that are most effective for each such class and demon-
strate that in some cases the techniques lead to best possible algorithms in terms of their
efficiency.

This paper is an updated version of Hochbaum (2005). Some of the subjects covered
appeared earlier in Hochbaum (1993).

1.1 The complexity model, or what constitutes a solution to a nonlinear optimization
problem

There is a fundamental difficulty in solving nonlinear optimization on digital computers. Un-
like linear programming, for which all basic solutions to a set of linear inequalities require
only finite accuracy of polynomial length in the length of the input (see, e.g., Papadimitiou
and Steiglitz 1982, Lemma 2.1), one cannot bound a priori the number of digits required
for the length of nonlinear programming optimal solutions. This feature is important since
computers can only store numbers of finite accuracy. Even the simplest nonlinear optimiza-
tion problems can have irrational solutions and thus writing the output alone requires infi-
nite complexity. This is the case, for instance, in the minimization of the convex function
max{x2 − 2,0}. So the interpretation of what it means to solve a problem in reals is not
obvious.

Traditional techniques for coping with nonlinear problems are reviewed extensively in
Minoux (1986). These techniques have several shortcomings. In some applications, the non-
linear function is not available analytically. It is accessible via a data acquisition process or
as a solution to a system of differential equations (as in some queuing systems). A typical
traditional method approximates first the data input function as an analytic function, while
assuming it is a polynomial of a conveniently low degree. Consequently, there are errors
attributed to the inaccuracy of the assumed input even before an algorithm is applied for
solving the problem.

Further difficulties arise because of conditions required for the algorithms to work. The
algorithms typically make use of information about the function’s derivatives from numeri-
cal approximations, which incorporates a further element of error in the eventual outcome.
Moreover, certain assumptions about the properties of the nonlinear functions, such as dif-
ferentiability and continuity of the gradients, are often made without any evidence that the
“true” functions indeed possess them.
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In addition to the computational difficulties, the output for nonlinear continuous opti-
mization problems can consist of irrational or even transcendental (non algebraic) numbers.
Since there is no finite representation of such numbers, they are usually truncated to fit
within the prescribed accuracy of the hardware and software.

Complexity analysis requires finite length input and output which is of polynomial length
as a function of the length of the input. Therefore the usual presentation of nonlinear prob-
lems renders complexity analysis inapplicable. For this reason complexity theory has not
addressed nonlinear problems, with the exception of some quadratic problems. To resolve
this issue, the nonlinear functions can be given in form of a table or oracle. An oracle ac-
cepts arguments of limited number of digits, and outputs the value of the function truncated
to the prescribed number of digits.

Since nonlinear functions cannot be treated with the same absolute accuracy as linear
functions, the notion of approximate solutions is particularly important. One definition of
a solution to a nonlinear optimization problem is one that approximates the objective func-
tion. Among the major proponents of this approach are Nemirovsky and Yudin (1983) who
chose to approximate the objective value while requiring some prior knowledge about the
properties of the objective function. We observe that any information about the behavior of
the objective at the optimum can always be translated to a level of accuracy of the solution
vector itself (and vice versa). A detailed discussion of this point is provided in Hochbaum
and Shanthikumar (1990). We thus believe that the interest of solving the optimization prob-
lem is in terms of the accuracy of the solution rather than the accuracy of the optimal objec-
tive value.

We thus use a second definition of a solution is one that approximates the solution in the
solution space, within a prescribed accuracy of ε. According to the concept of ε-accuracy
of Hochbaum and Shanthikumar (1990) a solution is said to be ε-accurate if it is at most
at a distance of ε (in the L∞ norm) from an optimal solution. That is, a solution, x(ε) is
ε-accurate if there exists an optimal solution x∗ such that ||x(ε) − x∗||∞ ≤ ε. ε is then said
to be the accuracy required in the solution space. In other words, the solution is identical to
the optimum in O(log 1

ε
) decimal digits.

Both definitions of a solution overlap for nonlinear problems on integers in which case
an accuracy of ε < 1 is sufficient.

The computation model here assumes the unit cost model, i.e. any arithmetic operation
or comparison is counted as a single operation, even if the operands are real numbers. We
use here however only operands with up to O(log 1

ε
) significant digits.

A similar complexity model using ε-accuracy was used by Shub and Smale (1996); Rene-
gar (1987) and others. These works, however, address algebraic problems, as opposed to
optimization problems addressed here.

1.2 Classes of nonlinear problems addressed and some difficult cases

A fundamental concept linking between the solutions to continuous and integer problems
is that of proximity. Classes of convex optimization problems for which there is a “good”
proximity with relative closeness of the continuous and integer solutions are solvable in
polynomial time that depends on that distance. These classes include problems with a con-
straint matrix that has small subdeterminants. A prominent example of such optimization
problems is the convex separable network flow problem. Other classes with a good proxim-
ity addressed here are the problems with polymatroidal constraints (the allocation problem
discussed in Sect. 5) and the NP-hard nonlinear knapsack problem. For the nonlinear knap-
sack problem it is shown that approaches relying on proximity are effective in generating
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a fully polynomial approximation scheme for the nonlinear knapsack problem as well as
other results equivalent to those that hold for the linear knapsack problem. That is, the non-
linearity of the objective function does not make the problem any harder.

Among nonlinear problems with a constraint matrix that has very large subdeterminants,
we discuss here the inverse shortest paths problem that has a constraint matrix the same
as the dual of the multicommodity flow problem. For that problem we employ a proximity
theorem called projected proximity that allows to get polynomial time algorithms for this
class of nonlinear problems.

Convex problems are discussed here with the classification: separable or nonseparable;
quadratic or non-quadratic; integer or continuous. The nonconvex continuous version of
the separable minimum cost network flow problem is NP-hard Sahni (1974) even for the
quadratic case. The corresponding concave minimization problem is in general NP-hard
(see, e.g., Guisewite and Pardalos 1990). An excellent unifying presentation of some polyno-
mial instances of the concave separable cost minimization flow problem is given in Erickson
et al. (1987). There the problem is proved to be polynomial when the arcs are incapacitated
and number of demand nodes is fixed. The problem is also proved to have polynomial time
algorithms for certain classes of planar graphs.

The nonseparable nonlinear optimization problem is in general hard. Even with the as-
sumption of convexity, a quadratic nonseparable problem is NP-hard (see Sect. 11.) In spite
of these negative results, there are a number of subclasses of practical interest that are solv-
able in polynomial time, which we point out.

As a general rule, and as we show later, a convex separable nonquadratic integer flow
problem is easier to solve than the respective continuous one, using a proximity result. The
exception to this rule is the quadratic convex problems for which it is typically easier to
obtain continuous solutions rather than integer ones. In that case an integer optimum is
derived from the continuous solution instead of the other way around.

1.3 Polynomial algorithms and issues of strong polynomiality

All polynomial time algorithms presented here, and indeed all algorithms known, that solve
nonlinear nonquadratic problems and run in polynomial time, do not have a strongly poly-
nomial complexity. That is, the running time depends on the magnitude of some “number”
in the data which is typically the range of the interval in which the variables are bounded.

For example, the most efficient algorithms known to date for the convex integer separa-
ble flow problem are based on the concept of scaling. These include an algorithm by Mi-
noux (1986), an algorithm by Ahuja et al. (1993) and an algorithm of “proximity-scaling”
type by Hochbaum and Shanthikumar (1990) (presented in Sect. 3). The complexity of
the proximity-scaling algorithm for the integer problem is O(log B

m
(m + n)(m + n logn))

where B is the largest capacity or supply in the network and n, m, the number of nodes
and arcs respectively. For the continuous problem the ε-accurate solution is derived in
O(log B

ε
(m + n)(m + n logn)) steps.

These three algorithms are polynomial but not strongly polynomial, as they depend, via
the quantity B , on the magnitude of the numbers appearing in the problem instance, as well
as on n and m. A naturally arising question is whether it is possible to devise an algorithm the
complexity of which is independent of B and dependent only on n and m, that is, a strongly
polynomial algorithm. This question was answered in the negative with an impossibility
result for strongly polynomial algorithms in Hochbaum (1994) (Sect. 2).

Strong polynomiality has emerged as an important issue since the first polynomial time
algorithm, the ellipsoid method, was devised for solving linear programming problems. The
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ellipsoid method, as well as all other polynomial algorithms known for linear program-
ming, runs polynomial but not strongly polynomial time. That is, the running time depends
on the data coefficients rather than only on the number of variables and constraints. Con-
sequently, solving linear programming problems (and other problems that do not possess
strongly polynomial algorithms) with different degrees of accuracy in the cost coefficients
results in different running times. So the actual number of arithmetic operations grows as
the accuracy of the data, and hence the length of the numbers in the input, increases. Such
behavior of an algorithm is undesirable as it requires careful monitoring of the size of the
numbers appearing in the data describing the problem instance, and thus limits the efficient
applicability of the algorithm.

Although it is not known whether linear programming can be solved in strongly poly-
nomial time, Tardos (1986) established that “combinatorial” linear programming problems,
those with a constraint matrix having small coefficients, are solvable in strongly polyno-
mial time. Thus, minimum (linear) cost network flow problems are solvable in strongly
polynomial time (Tardos 1985) since their constraint matrix’ coefficients are either 0, 1 or
−1. In contrast, nonlinear and non-quadratic optimization problems with linear constraints
were proved impossible to solve in strongly polynomial time in a complexity model of the
arithmetic operations, comparisons, and the rounding operation Hochbaum (1994). So while
convex separable minimization is solved in polynomial time on totally unimodular matrices
(Hochbaum and Shanthikumar 1990), linear optimization on such constraint matrices runs
in strongly polynomial time.

This negative result is not applicable to the quadratic case, and thus it may be possible
to solve constrained quadratic optimization problems in strongly polynomial time. Yet, few
quadratic optimization problems have been shown to be solvable in strongly polynomial
time. For instance, it is not known how to solve the minimum quadratic cost network flow
problem in strongly polynomial time. A number of special cases of the minimum quadratic
cost network flow problem that are solvable in strong polynomial time are reviewed in
Sect. 10.

1.4 Overview

We begin with the impossibility result and lower bound on the complexity of nonlinear prob-
lems in Sect. 2. The lower bound provided applies in both the comparison model and in the
algebraic tree model. Section 3 describes the proximity-scaling algorithm for convex sep-
arable optimization problem with constraint matrices that have bounded subdeterminants.
We focus on the interpretation of the technique as a form of piecewise linear approximation
of nonlinear functions that uses specific scaling so as to guarantee polynomial complex-
ity. A specific implementation of the approach to convex network flow is given in Sect. 4.
In Sect. 5 we describe the use of a proximity-scaling approach to the general allocation
problem and its special cases. Here the proximity theorem used is stronger than the one for
general problems on linear constraints. The algorithms generated are shown to be best possi-
ble for most classes of the allocation problem. The use of proximity to reduce the nonlinear
knapsack problem to an allocation problem is described in Sect. 6. This leads to a poly-
nomial time algorithm for the nonlinear continuous knapsack, which in turn makes a fully
polynomial time approximation scheme available for the nonlinear knapsack problem. The
use of proximity-scaling for the convex dual of minimum cost network flow is sketched next
in Sect. 7. The proximity-scaling approach is concluded in Sect. 8 where a “projected prox-
imity” theorem is shown to be applicable to the convex dual of the multi-commodity flow
problem, with application to inverse shortest paths problem.
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The next leading technique we describe is based on “threshold theorems” in Sect. 9. It is
shown there how this technique is used for the convex cost closure and the convex s-excess
problem with one application, among many others, to the image segmentation problem.

Classes of quadratic problems known to be solved in strongly polynomial time are de-
lineated in Sect. 10. Various classes of nonseparable cases that are solved efficiently, and
a collection of relevant techniques, are given in Sect. 11. Section 12 contains some conclud-
ing remarks and lists open problems.

Notation used in this paper includes bold letters for denoting vectors, and e to denote the
vector (1,1, . . . ,1). The vector ej has 0s in all positions except position j that is equal to 1.
When discussing a network the standard notation of G = (V ,A) is used with the number of
nodes |V | denoted by n and the number of arcs |A| denoted by m. In the discussion on non-
linear programming the number of variables is denoted by n and the number of constraints
(excluding nonnegativity) by m.

2 The impossibility of strongly polynomial algorithms for convex separable network
flow problems

An impossibility result on the existence of a strongly polynomial algorithm for nonlinear
problems was proved in Hochbaum (1994) and reviewed here. This result applies to con-
vex separable minimization, and even to constraint matrices that are very simple, such as
network flow constraints or even a single constraint bounding the sum of the values of the
variables. This lower bound holds in the comparison model for all nonlinear problems. In
a more general model—the algebraic-tree model that permits all the arithmetic operations—
strongly polynomial algorithms are provably impossible for nonlinear and nonquadratic al-
gorithms. That leaves open the possibility of strongly polynomial algorithms for quadratic
convex separable minimization problems.

The problem for which the lower bound is given is the simple resource allocation prob-
lem. The simple resource allocation problem (denoted by the acronym SRA) is identical to
a single source transportation problem in maximization form:

(SRA) max

{
n∑

i=1

fi(xi)

∣∣∣ n∑
i=1

xi = B, x ≥ 0

}
.

The generic presentation of this problem is as a concave maximization problem (with an
obvious translation to the minimization/convex case). We first present a comparison model
lower bound followed by an algebraic tree model lower bound.

2.1 A comparison model lower bound

A comparison computation model allows only the operations of comparisons and branch-
ings. The lower bound proof establishes that no algorithm exists that solves SRA in less
than log2 B comparisons. To show that, we rely on a result of information theory according
to which there is no algorithm that finds a value in a monotone nonincreasing n-array that is
the first to be smaller than some specified constant in less than log2 n time.

Consider first a lower bound result for SRA in two variables, SRA(2):

(SRA(2)) max f1(x1) + cx2

x1 + x2 = B,

x1, x2 ≥ 0, integer.



Ann Oper Res (2007) 153: 257–296 263

Let the function f1(x1) be given as an array of B increments at the B integer points.
Namely, if f1(i) = ai the array of increments is {a0, a1 − a0, a2 − a1, . . . , aB − aB−1}. Since
the function is concave, the entries in the array are monotone nonincreasing, ai+1 − ai ≤
ai − ai−1. The optimal solution to this problem is x1 = j and x2 = B − j , where j is the
largest index such that aj − aj−1 ≥ c.

Since the array of the differences between consecutive entries of the array is monotone
nonincreasing, determining in the array of differences the index j can be done using binary
search in log2 B comparisons. The information theoretic lower bound is also log2 B compar-
isons. This is because the comparison tree has B leaves so the path of comparisons leading
from the root to a leaf could be as long as log2 B (see Knuth 1973).

Suppose the problem could be solved independently of B , then given a monotone non-
increasing array and a value c, it has a corresponding concave function, f1 such that the
solution to the SRA(2) is independent of B . Consequently, the required entry in the vector
could be found independently of B , which is a contradiction to the comparison tree lower
bound.

A similar proof works for the problem with a single variable if the constraint is an in-
equality constraint.

The same arguments can be extended to prove that in the comparison model the allocation
problem on n + 1 variables has complexity Ω(n log2

B
n
). Let the problem be defined for

c > 0:

(SRA(n + 1)) max
n∑

j=1

fj (xj ) + c · xn+1

n+1∑
j=1

xj = B,

xj ≥ 0, integer, j = 1, . . . , n + 1.

Let the functions fj be concave and monotone increasing in the interval [0, �B
n
�], and zero

in [�B
n
�,B]. Solving SRA(n+1) is then equivalent to determining in n arrays of length �B

n
�

each, the last entry of value ≥ c. Since the arrays are independent, the information theory
lower bound is Ω(n log�B

n
�). Similarly, for the case of an inequality constraint the same

lower bound applies for the problem on n variables, since xn+1 can simply be viewed as the
slack and c = 0.

This comparison model lower bound holds also for the quadratic case. It is therefore
impossible to solve the quadratic problems in strongly polynomial time using only compar-
isons.

Indeed the floor operation is essential for the quadratic integer problem and without it
there is no hope of solving the integer version in strongly polynomial time This follows
from an observation by Tamir (1993), that demonstrated this via the following quadratic
allocation problem.

min

[
1

2
x2

1 + 1

2
(a − 1)x2

2

]
,

s.t. x1 + x2 = b,

x1, x2 ≥ 0, integer.

The optimal value of x2 is �B
a
�. Therefore the floor operation can be executed via a rou-

tine that solves a quadratic allocation problem. We demonstrate in the next section an impos-
sibility result of strongly polynomial algorithms for non-quadratic problems which implies
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that the floor operation, if helpful in devising strongly polynomial algorithms, is limited in
its power to quadratic problems only.

2.2 The algebraic-tree model lower bound

One might criticize the choice of the comparison model as being too restrictive. Indeed,
the use of arithmetic operations may help reduce the problems complexity. This is the case
for the quadratic SRA, which is solvable in linear time, O(n) (Brucker 1984). The lower
bound here demonstrates that such success is not possible for other nonlinear functions
(non-quadratic). The algebraic-tree computation model permits the arithmetic operations
+,−,×,÷ as well as comparisons and branchings based on any of these operations. It is
demonstrated that the nature of the lower bound is unchanged even if the floor operation is
permitted as well.

We rely on Renegar’s lower bound proof (Renegar 1987) in this arithmetic model of com-
putation for finding ε-accurate roots of polynomials of fixed degree ≥ 2. In particular, the
complexity of identifying an ε-accurate single real root in an interval [O,R] is Ω(log log R

ε
)

even if the polynomial is monotone in that interval. Let p1(x), . . . , pn(x) be n polynomi-
als each with a single root to the equation pi(x) = c in the interval [0, B

n
], and each pi(x)

a monotone decreasing function in this interval. Since the choice of these polynomials is
arbitrary, the lower bound on finding the n roots of these n polynomials is Ω(n log log B

nε
).

Let fj (xj ) = ∫ xj

0 pj (x) dx. The fj s are then polynomials of degree ≥ 3. The problem,

(Pε) max
∑

j

fj (xj · ε) + c · xn+1 · ε

n+1∑
j=1

xj = B

ε
,

xj ≥ 0 integer, j = 1, . . . , n + 1

has an optimal solution x such that y = ε · x is the (nε)-accurate vector of roots solving the
system ⎧⎪⎪⎨

⎪⎪⎩
p1(y1) = c,

p2(y2) = c,
...

pn(yn) = c.

This follows directly from the Kuhn–Tucker conditions of optimality and the proximity
theorem to be discussed in Sect. 3.2, that an optimal integer solution x∗ to the scaled problem
with a scaling constraint s and the optimal solution to the continuous problem y∗ satisfy
‖x∗ − y∗‖∞ ≤ ns (Theorem 1). Hence, a lower bound for the complexity of solving (Pε) is

Ω(n log log B
nε

). For ε = 1, we get the desired lower bound for the integer problem.
Mansour et al. (1991) proved a lower bound on finding ε-accurate square roots that allows

also the floor, � �, operation. In our notation this lower bound is Ω(

√
log log B

ε
). Hence,

even with this additional operation the problem cannot be solved in strongly polynomial
time. Again, the quadratic objective is an exception and indeed algorithms for solving the
quadratic objective SRA problem rely on solving the continuous solution first, then rounding
down, using the floor operation, and proceeding to compute the resulting integer vector to
feasibility and optimality using fewer than n greedy steps. See for instance Ibaraki and Katoh
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(1988) for such an algorithm. Since the lower bound result applies also in the presence of
the floor operation, it follows that the “ease” of solving the quadratic case is indeed due to
the quadratic objective and not to this, perhaps powerful, operation.

3 A polynomial proximity-scaling algorithm

The proximity-scaling algorithm makes use of the fact that the convex piecewise linear min-
imization problem on a “small” number of pieces is solvable in polynomial time (Dantzig
1963 and Lemma 1). The proximity-scaling algorithm is based on approximating the convex
functions by piecewise linear functions on a uniform grid with a small number of break-
points. The proximity theorems state that the solution to such scaled problems is close to
the optimal solution in the solution space, thus allowing to update the length of the interval
in which each variable lies by a constant factor. A logarithmic number of calls to solving
the scaled piecewise linear function then leads to an optimal solution in integers, or within
ε-accuracy.

While the proximity-scaling procedure of Hochbaum and Shanthikumar (1990) provides
a polynomial time algorithm for any convex separable optimization problem on totally uni-
modular constraints (or for problems with constraint matrices that have bounded subdeter-
minants), it is shown next that a specialized implementation taking into account the network
structure and the equality balance constraints, is more efficient than the general purpose
algorithm.

3.1 The scaled piecewise linear approximation

The idea of (piecewise) linearizing a nonlinear function in order to obtain solutions has been
well known. In a 1959 book Dennis (1959) writes regarding quadratic cost networks:

The electrical model for network flow problems can be extended to include flow
branches for which the total cost contains terms depending on the square of the in-
dividual branch flows . . . . It appears that the algorithms presented in this chapter could
be generalized . . . . These methods however are combinatorial in character and could
require prohibitive calculation time, even on relatively simple networks. Certainly the
simplicity and elegance of the diode-source algorithms would be absent. It would seem
that the most practical means of attacking flow problems with quadratic costs would
be to approximate the cost curve with piece-wise linear curve and substitute an appro-
priate number of linear cost branches connected in parallel.

Whereas it is clear that solving the problem on a piecewise linear approximation yields
a feasible solution, the quality of such solution and its closeness to an optimal solution were
not evaluated until the work of Hochbaum and Shanthikumar (1990).

We consider a convex separable minimization problem

min{F(x | T x = b, � ≤ x ≤ u}.
The scaling process is illustrated for the convex network flow problem. For a network G =
(V ,A) the variables are x = {xij }(i,j)∈A and F(x) = ∑

(i,j)∈A fij (xij ).
For a scaling constant s, the piecewise linearized objective function is F s(x) =∑
(i,j)∈A f s

ij (xij ) so that for each (i, j) ∈ A f s
ij (xij ) = fij (xij ) if xij is an integer mul-

tiple of s. Let f s
ij (xij ) be defined so that it is linear in its argument between succes-
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Fig. 1 Piecewise linear
approximation

sive integral multiples of s. Thus each function f s
ij (xij ) is a piecewise linear approxi-

mation of fij as depicted in Fig. 1. Formally, f s
ij (s� �ij

s
� + ks) = ∑k

p=1 Δ
p

ij where Δ
p

ij =
fij (�ij + ps) − fij (�ij + (p − 1)s).

The convex integer network flow, (INF), problem is:

(INF) min F(x)

s.t. T x = b,

0 ≤ x ≤ u,

x, integer

and its continuous (real) relaxation (RNF),

(RNF) min F(x)

s.t. T x = b,

0 ≤ x ≤ u.

T is an n × m adjacency matrix of the network G = (V ,A), b is a demand-supply
n-vector, and u the capacity upper bounds vector on the arcs. When separable, the objective
function is F(x) = ∑

(i,j)∈A fij (xij ).
The (continuous) problem at the s-scaling phase, for any scaling constant s ∈ R+, is the

scaled problem (RNF-s) obtained by setting x = sy:

(RNF-s) min F s(sy)

s.t. T y = b
s
,

0 ≤ y ≤ u
s
.
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Because of the equality constraints, the integer version (INF-s) (with the requirement that
y is integer) has a feasible solution only if b/s is integer. Therefore, we choose an equivalent
formulation of the scaled problem with inequality constraints. The scaled integer problem is
then,

(INF-s) min F s(sy)

s.t. T y ≥
⌊

b
s

⌋
,

−T y ≥ −
⌈

b
s

⌉
,

0 ≤ y ≤ u
s
,

y integer.

Although a feasible solution to (INF-s) is not necessarily feasible for the original prob-
lem, yet the amount of unsatisfied supply (demand) is bounded by (
 b

s
� − � b

s
�) · se =∑n

i=1(
 bi

s
� − � bi

s
�) · s ≤ ns units.1

The set of feasible solutions {x | T x = b,0 ≤ x ≤ u} is bounded, a priori, in a box of
length B = min{‖ u ‖∞,‖ b ‖1} in each dimension as the flow on each edge cannot exceed
capacity, or total sum of demands. Denoting Nij = 
 uij −�ij

s
�, let each variable xij be substi-

tuted by a sum of Nij variables each bounded between 0 and 1:

xij = s

{⌊
�ij

s

⌋
+

Nij∑
k=1

z
(k)
ij

}
, 0 ≤ z

(k)
ij ≤ 1 for k = 1, . . . ,N.

In the network the analogous substitution is to replace each arc (i, j) by Nij arcs of capacity
1 each.

The modified objective function for the linear programming formulation of both (LNF-s)
and (INF-s) is thus,

min
∑

(i,j)∈A

f s
ij

(
s

⌊
�ij

s

⌋)
+

∑
(i,j)∈A

Nij∑
k=1

Δk
ij z

(k)
ij .

Due to the convexity of f s
ij s, the sequence of increments Δk

ij for k = 1, . . . ,Nij is
monotone nondecreasing. This property allows to solve the problem as linear program-
ming without enforcing the integer constraints that z

(k+1)
ij > 0 only if z

(k)
ij = 1, as stated

in Lemma 1 below. Let the column of T corresponding to arc (i, j) be denoted by aij . In
the formulation each such column is duplicated Nij times, and in the network each arc is
multiplied Nij times where each duplicated arc has the capacity 1. Let T N be the matrix T

in which each column is duplicated Nij times. The constraint set is then,

T N z ≥ b′,

−T N z ≥ −b′

1It is interesting to note that Edmonds and Karp (1972) used such idea of capacity scaling for the maximum
flow problem that can be formulated as a minimum cost problem with b = 0. This network flow problem
readily provides feasible integer solutions as the right hand sides are 0 and thus integers. For the minimum
cost flow problem however, feasibility is a concern, which is why we use inequalities in the formulation.
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where b′
p = bp/s − ∑

(aij )p��ij /s� which is the net supply in units of s. The equivalent
linear programming formulation of the (LNF-s) problem is then (omitting the constant from
the objective function),

(LNF-s) min
∑

(i,j)∈A

Nij∑
k=1

Δk
ij z

(k)
ij

s.t. T N z ≥ b′,

−T N z ≥ −b′,

0 ≤ z
(k)
ij ≤ 1, k = 1, . . . ,Nij , (i, j) ∈ A.

Since the early 60’s it is well known that such linear programs with monotone increments
corresponding to convex functions solve the original piecewise linear convex optimization
problem.

Lemma 1 (Dantzig 1963) Let ẑ be an optimal solution to (LNF-s). If fij is convex for each

(i, j) ∈ A then x̂ defined by x̂ij = s� �ij

s
� + ∑Nij

k=1 ẑ
(k)
ij , for all (i, j), is an optimal solution to

(RNF-s).

Due to the total unimodularity of the constraint matrix, any optimal solution to the linear
program (LNF-s) is also an optimal solution to (INF-s).

It follows from this discussion that solving the integer problem amounts to solving
(INF-1) and solving the continuous problem is equivalent to solving (INF-ε). The com-
plexity however depends on the number of segments in the piecewise linear approxima-
tion, which is exponential. The proximity results in the next section lead to a polynomial
algorithm that uses a piecewise linear approximation with only a polynomial number of
segments.

There have been several studies that considered how optimizing piecewise linear func-
tions depends on the number of pieces. Sun et al. (1993) observed empirically that solving
a transportation problem with a piecewise linear objective function using simplex is not sen-
sitive to the number of segments in that function. Hochbaum and Seshadri (1993) observed
a similar result for an implementation of the interior point method. The use of the proximity
results of the next section allows however to guarantee the polynomiality of each piecewise
linear optimization and of the overall procedure.

3.2 The proximity theorem

A proximity theorem is a statement on the distance, in L∞ norm, between the solution to the
scaled problem and the optimal solution to the problem. It is equivalently also a statement
on the distance between the optimal solution to the scaled problem with a scaling unit s and
the optimal solution to the scaled problem with scaling unit s

2 . (Note that 2 can be replaced
by any other constant.) To see that the first implies the latter note that the distance between
the two solutions to the scaled problems is at most their sum of distances from the optimum.
On the other hand, if the two scaled problems solutions are close, then their distance to an
optimal solution to the problem with s = 1 (or ε) is at most the sum of the distances between
the sequence of scaled problems’ solutions.

The essence of the proximity-scaling approach is to solve the scaled problem for a scaling
unit that is large enough so that the number of binary variables, or pieces, in the piecewise
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linear approximation is polynomially small. The proximity theorem applies to any convex
separable minimization problem of the form,

min{F(x) | Ax = b, 0 ≤ x ≤ u}.
The constraints can always be written as equality constraints and the upper bounds of u can
be either explicit or implicit. Let Δ denote the largest subdeterminant of the matrix A and n

the number of variables.

Theorem 1 (Hochbaum and Shanthikumar 1990) Let xs , be an optimal solution to the prob-
lem in the s scaling phase and x

s
2 an optimal solution in the s

2 scaling phase. Then

‖xs − x
s
2 ‖∞ ≤ nΔs.

A special case of this theorem was proved by Granot and Skorin-Kapov (1990) when
F() is a convex separable quadratic function. With Theorem 1 and a judicious choice of the
scaling unit, the optimal solution in the s scaling phase bounds an interval in which each

variable x
s
2
i in the optimal solution for the s

2 scaling phase lies. The size of this interval is
half the size of the previous interval, thus shrinking the range in the next scaling phase by
a factor of 2.

For the convex network flow problem the constraint matrix is totally unimodular and thus
Δ = 1.

3.3 A formal description of the algorithm

The proximity-scaling algorithm can be employed whenever there is a valid proximity the-
orem. For convex network flow the proximity theorem is ‖xs − x

s
2 ‖∞ ≤ ms. We call α the

proximity factor if ‖xs − x
s
2 ‖∞ ≤ αs.

The algorithm is implemented as follows. The scaling unit is selected initially to be s =

 U

4α
� for U = max(i,j)∈A{uij − �ij }. The interval for variable xij , [�ij , uij ] is thus replaced

by up to 4α intervals of length s each.

Proximity-scaling algorithm:

Step 0: Let s = 
 U
4α

�.

Step 1: Solve (LNF-s) or (INF-s) with an optimal solution xs . If s = 1 output the solution
and stop.

Step 2: Set �ij ← max{�ij , x
s
ij − αs} and uij ← min{uij , x

s
ij + αs}, for (i, j) ∈ A.

Step 3: s ← 
 s
2�. Go to step 1.

4 Proximity-scaling for convex network flow problem

In order to apply the proximity-scaling approach we need to show how to solve the scaled
problem (INF-s).

The scaled network flow problem, or any piecewise linear convex cost network flow prob-
lem, can be stated as a linear cost network flow problem. To do that one replaces each arc
carrying a piecewise linear cost by multiple arcs each with the cost of one of the pieces (or
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segments). In our problem, each arc is replaced by 4m unit capacity arcs creating a multi-
graph. Obviously, any polynomial time algorithm for the linear problem is adaptable to
solving the piecewise linear problem where the number of arcs includes the multiple arcs.
Therefore the complexity depends on the number of grid segments, or alternatively on the
scaling constant.

Algorithms dealing with flows on multigraphs have been studied. One such algorithm
for the network flow problem with multiple arcs is given in Ahuja et al. (1984). Pinto and
Shamir (1994) presented an algorithm that is more efficient than the straightforward ap-
proach, yet still depends on the total number of grid segments. Fourer (1988) proposed
a practical method for solving a convex piecewise linear program relying on the simplex
method but no theoretical complexity guarantees are established.

One way which is particularly efficient for solving the scaled problem in step 1 is an
adaptation of the successive shortest paths method (due to Jewell 1958; Iri 1960; Busacker
and Gowen 1961 with some improvements by Edmonds and Karp 1972). We remark later
about potential other approaches for solving the scaled problem. The adaptation we use
differs from the original successive shortest paths method (referred to as SSPM) in several
aspects.

1. There may be no augmenting path between a node with an excess and any node with
a deficit. This does not lead to a termination of the algorithm (due to infeasibility) such
as in SSPM. Instead the algorithm proceeds until there are no feasible paths between
any excess node and any deficit node. (Definitions of excess and deficit nodes are given
below.)

2. The attempt is only to satisfy excess and deficits that exceed the value s, even though
there could be additional excess and deficit nodes.

3. The shortest paths calculation is performed in a multigraph, and thus requires the main-
tenance of the set of arcs between each pair of nodes sorted by increasing costs. Notice
that the sorting of the reduced costs is identical to the sorting of the original costs.

4. The augmentation here is always of 1 unit as it uses the minimum cost arc (which is, like
all others, of capacity 1) between each pair of nodes on the path.

For a given solution x we define the excess at j , ēj = bi

s
− T xj . Negative excess is

referred to as deficit. G(x) is the residual graph with respect to x. rijq is the residual capacity
on the qth arc between i and j which could be 0 or 1. π is the vector of dual costs, also
known as node potentials. The reduced cost of the qth arc between i and j with cost cijq =
Δ

q

ij is cπ
ijq = cijq − πi + πj .

The procedure Scaled Successive Shortest Paths works with a solution that satisfies
capacity constraints, and a dual feasible solution π . The procedure is called for a scaling
unit s once the problem with the scaling unit 2s has been solved with a solution x2s , a dual
feasible solution π , and updated upper and lower bounds vectors L(s), U(s). The procedure
for s is initialized with the solution x = max{2 · x2s − se,L(s)}. This guarantees that all the
reduced costs of residual arcs on pieces of size s are nonnegative and that the dual solution π

is feasible. This follows from the convexity: if x2s
ij = q and cijq is the cost on the respective

interval of size 2s that is now split into two intervals of size s, the first of cost cijq1 ≤ cijq

and the second of cost cijq2 ≥ cijq , then cijq1 −πi +πj ≤ cijq −πi +πj = 0 as required. But
cijq2 ≥ cijq and therefore the residual arc of the reverse q2th arc between i and j may have
a negative cost. To avoid that, we subtract s from each entry of x2s and then the forward
direction of this arc is residual and cijq2 − πi + πj ≥ cijq − πi + πj = 0 as required.

In the first call to the procedure the input has π = 0 and x = 0e.

Procedure Scaled Successive Shortest Paths:
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Input: L(s),U(s), x = max{2 · x2s − se,L(s)}, s,π .
Step 0: Es = {j ∈ V | ēj ≥ 1}, Ds = {j ∈ V | ēj ≤ −1}.
Step 1: If Es = ∅ or Ds = ∅, output x and stop.

Else, select k ∈ Es ,
Find the shortest paths from k to all nodes in G(x) using the reduced costs cπ

ijq . Let dj

be the shortest path distance from k to j . If no path exists between k and any node of
Ds , set Es ← Es − {k} and repeat.

Step 2: Else, let P be a shortest path between k and one � ∈ Ds . Update x by augmenting 1
unit along the arcs of P .

Step 3: Update: G(x), π ← π − d.
ēk ← ēk − 1, ē� ← ē� + 1.
If ēk < 1, Es ← Es − {k}.
If ē� > −1, Ds ← Ds − {�}.
Go to step 1.

The SSPM algorithm works with a solution that is capacity feasible, i.e. all the capacity
upper and lower bounds are satisfied. The solution at each iteration is dual feasible. This
holds for the initial solution as discussed above, and the updating π ← π − d with d the
vector of shortest paths distances, maintains the nonnegativity of reduced costs.

In the graph processed each arc is duplicated O(m) times. These copies of the arc all
have unit capacity and they are sorted in nondecreasing costs. The single source shortest
paths can be evaluated in the same running time as if there were single arcs between each
pair of nodes since among all the duplicated arcs, there is only one of lowest cost to be
considered, and maintaining the arcs sorted is straightforward. The running time required to
solve the single source shortest paths problem, using Dijkstra’s algorithm is O(m+n logn),
where |V | = n and |A| = m.

At each iteration, either the number of nodes with excess is reduced or the flow is aug-
mented. The number of calls to the shortest paths procedure is therefore not exceeding the
total excess (or total deficit) in the network. In order to evaluate the total excess at each it-
eration consider the following. For a given problem there are initially 1

2 ‖ b ‖1= 1
2

∑n

i=1 |bi |
units of excess. Each supply value bi is effectively rounded down to s� bi

s
� whereas each

demand value (which is a negative number) is rounded down in absolute value, i.e. to s
 bi

s
�.

Once all these demands and supplies ēj are satisfied there are up to n unit multiples of s yet
unsatisfied – one for each node. Since each scaling iteration is initialized with a vector as
low as 2 · x2s − se this can add up to m units of excess. Also, because capacity upper bounds
in (INF-s) are effectively rounded down, it may be impossible to find a path of capacity 1 in
the residual network from an excess node to a deficit node. Each arc can prevent at most one
unit of excess from getting canceled against deficit. Hence, applying the scaled successive
shortest paths algorithm at an iteration will result in a solution satisfying all but O(n + m)

unit multiples of s of supply and demand. Therefore, starting the iteration for scaling unit s

with the initial solution x = max{2 · x2s − se,L(s)}, x is capacity-feasible and dual feasible,
while at most O(m + n) units of excess need to be processed.

The overall complexity of the scaled successive shortest paths algorithm is therefore
O((m + n)(m + n logn)). Since there are log B

m
calls to this algorithm, the running time

of the proximity-scaling algorithm for the integer convex problem is O(log B
m
(m + n)(m +

n logn)), and for the ε-accurate solution it is O(log B
ε
(m + n)(m + n logn)).

Other polynomial algorithms As noted above, any method that solves the scaled prob-
lem can be applied within the proximity-scaling algorithm. Therefore any polynomial time
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algorithm for the minimum cost flow problem on the multigraph can be used to generate
a polynomial time algorithm for the convex problem.

Minoux (1984, 1986) was first to discover a polynomial algorithm for the integer convex
flow problem. Minoux adapted the out-of-kilter method with scaling, so that at each iteration
there is a factor reduction in the sum of kilter numbers. The reported running time in Minoux
(1986) is O(log‖u‖∞ · mn2).

Ahuja et al. (1993) introduced another algorithm for the integer convex network flow
problem using a capacity scaling algorithm. They again use the solution at one scaling step
as the initial solution in the next iteration for the next scaling step. The running time they
report, O(log‖b‖∞ ·m(m+n logn)), is the same as that of the proximity-scaling algorithm.
Interestingly, the complexity of both these algorithms is the same as that of the capacity
scaling algorithm applied to the linear network flow problem.

All these polynomial algorithms have running times that depend on log2 B (recall that
B = min{‖u‖∞,‖b‖1}), which is essentially the length of the right hand sides. Since, as
observed for the capacity scaling algorithm, one can achieve algorithms for the convex case
with the same running time as the linear case, it seems conceivable that the strongly polyno-
mial algorithms for linear network flow problems could also be adapted to the convex case.
This however is impossible as proved in the next section.

An algorithm of different type, by Karzanov and McCormick (1997), for convex cost
network flow, is based on the minimum mean cycle canceling and has running time of
O(mn logn log(nC)), where C is the largest cost coefficient. Note that in our complexity
model the value of C is the largest cost increment of the function over a unit interval and
it is not available with the input, explicitly or implicitly. Therefore a running time which is
a function of C cannot be viewed as a function of the input length. Even if the functions
are analytic and provided as such, it takes in general a nontrivial amount of running time
to evaluate a bound on the value of C by finding the minimum of each of the n convex
functions over the relevant interval. Moreover, the exact value of C cannot even be evalu-
ated in polynomial time. For specific objective functions however, where the value of C can
be bounded, this algorithm can be faster. This is the case, for instance, for the problem of
matrix scaling, Rote and Zachariasen (2007).

With the results in the next section, the algorithms with the same running time as the
proximity-scaling algorithm are close to being optimal (with smallest complexity possible).
This statement holds in the sense that in order to derive more efficient algorithms for the
convex case, there must be more efficient algorithms for the linear case of type that depend
on the right hand sides in their complexity. We believe that any such improvement would be
extremely challenging.

5 Proximity-scaling for the general allocation problem

The resource allocation problem and its variants are reviewed in details in a comprehen-
sive book by Ibaraki and Katoh (1988). The proximity-scaling procedure by Hochbaum
(1994) described here for the resource allocation problem’s variants has the lowest com-
plexity among all algorithms for these problems to date. The resource allocation problems
are all characterized by being solvable by a greedy algorithm in pseudopolynomial time as
described below.
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Consider the simple resource allocation problem SRA,

(SRA) max
n∑

j=1

fj (xj )

s.t.
∑

j

xj ≥ B,

xj ≥ 0, integer, j = 1, . . . , n.

The objective function is concave separable, so fj () are all concave. This allocation
problem is of algorithmic interest in that it is solvable optimally by a greedy algorithm. The
constraint is satisfied with equality if all functions fj () are monotone nonincreasing. In fact,
if any of these functions has maximum at xj = �j > 0 then we can always replace the lower
bound of 0 for xj by �j (or the last value where the function’s increment is still nonnegative).
If

∑
j �j ≥ B then we found the optimal solution xj = �j . Therefore we will assume without

loss of generality that the functions are in the range where they are monotone nonincreasing
and the constraint is an equality constraint

∑
j xj = B .

An important concept used by the greedy algorithm is that of an increment. Let Δj(xj ) =
fj (xj + 1) − fj (xj ) be the increment of the function fj () at xj . The greedy algorithm picks
one largest increment at a time until B − ∑

j �j increments have been selected. The com-
plexity of this algorithm is of course not polynomial, but rather depends on the parameter B

and is thus pseudo-polynomial.
The most general case of the allocation problem involves separable concave maximiza-

tion over polymatroidal constraints: Given a submodular rank function r : 2E → R, for
E = {1, . . . , n}, i.e. r(φ) = 0 and for all A,B ⊂ E,

r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B).

The polymatroid defined by the rank function r , is the polytope {x | ∑
j∈A xj ≤ r(A),

A ⊆ E}. We call the system of inequalities {∑j∈A xj ≤ r(A),A ⊆ E}, the polymatroidal
constraints. The general allocation problem, GAP, is

(GAP) max
n∑

j=1

fj (xj )

s.t.
∑

j

xj = B,

∑
j∈A

xj ≤ r(A), A ⊂ E,

xj ≥ �j , integer, j = 1, . . . , n.

The problem GAP is also solvable by a greedy algorithm:

Procedure greedy:

Input: {�j }n
j=1, r(), E.

Step 0: xj = �j , j = 1, . . . , n, B ← B − ∑
j �j .

Step 1: Find i such that Δi(xi) = maxj∈E Δj (xj ).
Step 2: {feasibility check} If x + ei is infeasible then E ← E \ {i}

else, xi ← xi + 1 and B ← B − 1.
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Step 3: If B = 0, output x and stop. If E = ∅, output “no feasible solution” and stop.
Go to step 1.

Obviously this algorithm is pseudopolynomial. Consider now a scaled form of the greedy
defined on the problem scaled on units of length s. Let the solution delivered by greedy(s)
be denoted by xs . The procedure here benefits from a correction of an error in step 2 of
the procedure in Hochbaum (1994) that was noted and proved by Moriguchi and Shioura
(2004). (The error was to set the value of δi to be equal to 1 if increment of 1 is feasible but
increment of s is infeasible.)

Procedure greedy(s):

Step 0: δ = 0, xj = �j , j = 1, . . . , n, B ← B − ∑
j �j .

Step 1: Find i such that Δi(xi) = maxj∈E Δj (xj ).
Step 2: {feasibility check} If x + ei is infeasible then E ← E \ {i}, and δi = s.

Else, if x+ sei is infeasible then let E ← E \{i}, and let δi < s be largest so that x+δiei

is feasible. Set xi ← xi + δi , and B ← B − δi .
Else xi ← xi + s and B ← B − s.

Step 3: If B = 0, output xs = x, δ, and stop. If E = ∅, output “no feasible solution” and
stop.
Else go to step 1.

We now have the proximity theorem for GAP:

Theorem 2 Hoc94 If there is a feasible solution to GAP then there exists an optimal solution
x∗ such that x∗ > xs − δ ≥ xs − se.

Based on this proximity theorem we have the following proximity scaling algorithm
solving GAP:

Procedure GAP:

Step 0: Let s = 
B/2n�.
Step 1: If s = 1 call greedy. Output “x∗ = x is an optimal solution”, stop. Else, continue.
Step 2: Call greedy(s). Let the output be xs .

Set �j ← max{xs
j − δj , �j } for j = 1, . . . , n.

Set s ← 
s/2�.
Go to step 1.
end

This algorithm is valid and its complexity is O(n(logn + F) log(B/n)) where F is
the complexity of determining δi – the tightest slack to infeasibility. Furthermore, this
proximity-scaling algorithm leads to the fastest algorithms known for all special cases of
the general allocation problem (Hochbaum 1994). The complexity expressions of the algo-
rithm for the different cases are:

1. For the simple resource allocation problem SRA, O(n log B
n
). This matches the complex-

ity shown earlier by Frederickson and Johnson Frederickson and Johnson (1982) using
a different technique.

2. For the generalized upper bounds resource allocation problem, GUB, O(n log B
n
).

3. For the nested problem, O(n logn log B
n
).
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4. For the tree constrained problem, O(n logn log B
n
).

The complexity bounds for SRA and GUB are also shown to be best possible in the
comparison model.

6 The nonlinear knapsack problem

The Nonlinear knapsack problem (NLK) is a generalization of the well known integer knap-
sack problem which maximizes a linear objective function representing utilities associated
with choosing items (the number of units of item j is represented by the variable xj ) subject
to a “packing” constraint: max{∑n

j=1 pjxj | ∑n

j=1 ajxj ≤ B, uj ≥ xj ≥ 0, integer for j =
1, . . . , n}. In its general form the nonlinear knapsack problem has the objective separable
concave and the packing constraint separable convex:

(NLK) max
n∑

j=1

fj (xj )

subject to
n∑

j=1

gj (xj ) ≤ B,

0 ≤ xj ≤ uj , integer, j = 1, . . . , n.

The functions fj are assumed concave and nondecreasing, and the functions gj are assumed
convex and nondecreasing. Without loss of generality B and uj are integers.

The results sketched here were proved in Hochbaum (1995) based on a proximity theo-
rem and an analogy of NLK to SRA. The continuous problem is shown to be solvable with
an ε-accurate solution in time O(n logB/ε). This running time is impossible to improve as
it is equal to the running time for solving the continuous SRA problem, which is a simple
special case of the nonlinear knapsack problem.

A piecewise linear approximation of the functions fj and the functions gj is used to
convert the nonlinear knapsack problem (NLK) into a 0/1 knapsack problem. The piecewise
linear approximation on the integer grid for the objective of NLK is achieved by replacing
each variable xj by the sum of binary variables

∑uj

j=1 xij , and letting pij = fj (i)−fj (i −1),
and aij = gj (i) − gj (i − 1):

(PLK) max
n∑

j=1

uj∑
j=1

pijxij

subject to
n∑

j=1

uj∑
j=1

aij xij ≤ B,

xij ∈ {0,1}, i = 1, . . . uj , j = 1, . . . , n.

It is easy to see that the concavity of fj and the convexity of gj guarantee that xij > 0 only
if xi,j−1 = 1. It follows that when aij and pij are integers, then techniques that are used for
the 0/1 knapsack problem are applicable here as well.

The problem PLK is a 0/1 knapsack problem max{∑N

j=1 pjxj | ∑N

j=1 ajxj ≤ B,1 ≥
xj ≥ 0 integer, j = 1, . . . ,N}. The complexity of solving the 0/1 knapsack problem with
a well known dynamic programming algorithm is O(N · min{B,P ∗}) for P ∗ denoting the
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optimal solution value. For this dynamic programming to work, it is necessary that both the
objective function and constraint coefficients are integral. Otherwise, the dynamic program-
ming algorithm runs in O(NB) operations if only the constraint coefficients (the weights)
are integral. It runs in time O(NP ∗) if only the objective function coefficients are integral.

Thus, if the functions gj map integers to integers or the functions fj map integers to in-
tegers, then NLK is solvable in O(B

∑n

j=1 uj ) steps, or O(P ∗ ∑n

j=1 uj ) steps, respectively.
This is the same complexity as that of the corresponding linear knapsack problem, but unlike
the term n, the term

∑n

j=1 uj ) is not polynomial.

6.1 Solving the continuous nonlinear knapsack problem

The key idea is to use a representation of a scaled piecewise linear NLK problem as an SRA
problem in order to generate a polynomial time algorithm.

(NLK-allocation) max
n∑

j=1

uj∑
j=1

pij

aij

yij

subject to
n∑

j=1

uj∑
j=1

yij ≤ B,

yij integer, i = 1, . . . , uj , j = 1, . . . , n.

Let the vector y∗ be the optimal solution to (NLK-allocation). Let ȳij = 1
aij

y∗
ij for all i, j .

The allocation proximity theorem (see Sect. 5) implies that x∗ ≥ xs − s · e. But since xs also
satisfies xs · e = B , then ‖x∗ − xs‖∞ ≤ ns and thus ‖x∗ − ȳ‖∞ ≤ nmaxij

1
aij

. Consequently,
there is a proximity between the optimal solution to NLK and the optimal solution to NLK-
allocation and it is sufficient to solve the latter.

In order to obtain ε-accuracy we modify the transformation of variables to xij = yij

sij
,

where sij = aij
 n
ε
� and duplicate each entry (i, j) sij times. Although this increases the

size of the arrays, it does not cause an increase in the running time required to solve the
allocation problem (NLK-allocation) as that depends only on the number of arrays and the
right hand side value. The right hand side is also scaled so that all coefficients are integer:
B̄ = B
 n

ε
�. Consequently, the running time is O(n log B̄

n
) = O(n log B

ε
). The lower bound

for the allocation problem implies that this complexity is impossible to improve.

6.2 Fully polynomial approximation scheme for nonlinear knapsack

The fully polynomial time approximation scheme (FPTAS) for NLK builds on the link of
the problem to the allocation problem. We sketch it briefly here. For the full details the
reader is referred to Hochbaum (1995). The scheme mimics that of Lawler’s (Lawler 1979)
that uses the dynamic programming algorithm that solves the problem in O(nP ∗). Lawler’s
approximation scheme’s complexity is not polynomial as it include the factor

∑n

j=1 uj in
the running time.

The objective function coefficients are scaled thus reducing the running time of the algo-
rithm to depend on the new scaled value of the optimal solution. In addition, for a carefully
chosen scaling value the objective function of the scaled problem is close to that of the origi-
nal problem. Basically, this procedure implements efficiently the steps of the linear knapsack
problem’s FPTAS for NLK:
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1. Find the value and the set of elements corresponding to P0 = max{maxj pj ,
∑j̄

j=1 pj },
for j̄ the largest index so that when the variables in the 0/1 knapsack are arranged in

nonincreasing ratio, then
∑j̄

j=1 aj ≤ B .
2. Find the “large” items that are candidates for inclusion in the optimal solution. “Large”

items are those with profit coefficients pj ≥ 1
2εP0. This is done using the SRA algorithm.

3. Solve the scaled problem for the “large” items, using dynamic programming.
4. Find the largest ratio “small” items that can be packed in the remaining capacity of the

knapsack.

The union of the set of items—the large ones found in step 3 and the small ones found in
step 4—form the approximate solution to the problem. We skip the proof that the approxi-
mation factor provided is indeed ε.

The running time of this ε-approximation scheme is Õ(1/ε2)(n + 1/ε2)). (The Õ nota-
tion indicates the omission of polylog terms.)

7 Convex dual of network flow

The dual of the minimum cost network flow problem on a graph G = (V ,A) is characterized
by constraints of the type xi − xj ≤ cij + zij , for zij nonnegative and each arc (i, j) ∈ A.
The objective function is of the type min

∑
j∈V fj (xj ) + ∑

(i,j)∈A gij (zij ). The problem has

numerous applications including the dial-a-ride transit problem and the time-cost trade-off
in project management. For these and additional applications the reader is referred to Ahuja
et al. (2003). This problem has been addressed with a proximity-scaling algorithm in Ahuja
et al. (2004).

The interesting feature about that algorithm is that the scaled piecewise linear ver-
sion of the problem is a minimum cut problem on an appropriately defined graph. The
proximity-scaling algorithm calls logU times for a minimum cut procedure where U ≤
nmax(i,j)∈A |cij | is the largest interval for a variable xj . The minimum cut procedure is
applied to a graph of size that is square the size of the original graph. This algorithm’s
complexity is worse than that of another algorithm by Ahuja et al. (2003) which uses suc-
cessive shortest paths to solve the problem and has complexity O(mn log n2

m
logU). We do

not describe this algorithm here as the technique is specialized and does not appear to have
implications for other convex optimization problems.

8 Inverse shortest paths and the use of a projected proximity theorem in
a proximity-scaling setup

In the inverse paths problem there is a given graph with arc weights and given “shortest
paths” distances from a source to a collection of nodes. The goal is to modify the given
arc weights as little as possible so that the prescribed “shortest paths” routes are indeed the
shortest paths. The cost of deviation of the arc weights from their given values is a convex
function of the amount of the deviation. Previously known polynomial time algorithms for
the inverse shortest paths problem were given only for the case of L1 norm and for a single
path (see e.g. Ahuja and Orlin 2001b).

Inverse shortest paths problems have applications in contexts of pricing of communica-
tion networks, where in order to be competitive the prices offered for linking services should
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be kept low, or in deducing the imputed value of transportation links. Obtaining geophys-
ical information from the detection of the traversal of seismic waves is the most common
application.

Some of the limitations of solving this class of problems to date have to do with the
characterization of shortest paths and the problem formulation. Burton and Toint (1992)
described a formulation with exponential number of constraints enumerating all paths in the
graph and restricting their length to be less than the adjusted length of the route which is to
be shortest. Hochbaum (2002) devised compact alternative formulations that lead to better
and more efficient solution techniques that are not restricted to linear or quadratic penalty
functions.

We briefly review here the problems and techniques for the single source shortest paths
with prescribed paths problem and the p sources shortest paths with prescribed paths. An-
other interesting variant of the problem, not reviewed here for lack of space, is the “corre-
lated costs” shortest paths previously discussed by Burton and Toint (1994). For additional
details see Hochbaum (2002).

8.1 The single source multisink problem with prescribed shortest paths distances

In this problem we have a source node 1 and a set of destinations V ′ ⊂ V for which the
shortest paths routes in the form of a shortest paths tree are known. Formally we are given a
graph G = (V ,A) with a source node 1, estimated edge distances cij for (i, j) ∈ A, and the
observed shortest paths tree, T ′ ⊂ A . The inverse shortest paths problem (ISP) is to modify
the edge distances so that the shortest paths with respect to the modified distances are as
prescribed by the tree T ′. Let the penalty functions for modifying the edge distance on edge
(i, j) from cij to xij be the convex functions fij (xij − cij ), and let the variables tj be the
shortest paths labels from node 1 to node j ∈ V .

Let D = nmax(i,j)∈A |cij |. If the edge distances are all positive then the bound constraints
are modified to, 0 ≤ ti ≤ D.

(ISP1) Min
∑

(i,j)∈A

fij (xij − cij )

subject to tj − ti ≤ xij , ∀(i, j) ∈ A \ T ′,

tj − ti = xij , ∀(i, j) ∈ T ′,

t1 = 0,

−D ≤ ti ≤ D, ∀i ∈ V.

The problem ISP1 is a convex dual of the minimum cost network flow problem. The
running time of the algorithm of Ahuja et al. (2003) for a graph of n nodes and m arcs is
O(mn log n2

m
log(nD)).

8.2 The k paths problem

In terms of complexity the problem on multiple sources and destinations pairs is more
involved than that of the single source problem. The problem is defined on an input of
k paths with multiple sources u1, . . . , uk and multiple sinks (or destinations) v1, . . . , vk ,
Pq = [uq, . . . , vq ] for q = 1 . . . , k. Also given are the prior distance estimates on each arc
cij . Let t

(q)

i be variables denoting the shortest paths labels from source uq to node i. The
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problem is to determine the values of the modified arc distances xij that are optimal for the
problem:

(ISP2) Min
∑

(i,j)∈A

fij (xij − cij )

subject to t
(q)

j − t
(q)

i ≤ xij , q = 1, . . . , k, ∀(i, j) ∈ A,

t
(q)

j − t
(q)

i = xij , q = 1, . . . , k, ∀(i, j) ∈ Pq,

t
(q)
uq = 0, q = 1, . . . , k.

The constraint matrix of ISP2 is not totally unimodular. This problem is the convex dual
of the multicommodity flow problem, multicut. The multicut problem is NP-hard to solve in
integers, even for a linear objective function, so this seemingly eliminates the possibility of
using combinatorial techniques for solving the problem.

Nevertheless it is possible to solve the problem as a linear problem. The idea is to use
the proximity result in Theorem 3 below with the proximity-scaling algorithm in order to
reduce this convex problem to a linear programming counterpart.

Let the scaled problem called (s-ISP) be defined on the variables x
[s]
j = xj

s
, and z

[s]
ij = zij

s
.

Let the functions w
[s]
j ( ) and f

[s]
ij ( ) be piecewise linear convex functions that coincide with

the convex functions wj( ) and fij ( ) at breakpoints that are s units apart.
Adding the implied implicit bounds on the values of the distances, the scaled problem is

(s-ISP2) Min
∑

(i,j)∈A

f
[s]
ij (sxij − cij )

subject to t
(q)

j − t
(q)

i ≤ xij , q = 1, . . . , k, ∀(i, j) ∈ A,

t
(q)

j − t
(q)

i = xij , q = 1, . . . , k, ∀(i, j) ∈ Pq,

t
(q)
uq = 0, q = 1, . . . , k,

−D
s

≤ t
(q)

i ≤ D
s
, ∀i ∈ V, q = 1, . . . , k.

For x′ a scaled optimal solution to s-IPS let xs = sx′ be the optimal solution vector which
is feasible for ISP. A corollary of Theorem 1 is that for a problem in N variables with
a largest subdeterminant Δ the distance between the optimal solution x∗ to the problem LP
and the optimal solution xs to the scaled problem LP-s is

‖x∗ − xs‖∞ ≤ 2NsΔ.

In our case the number of variables is O(m) but the size of the largest subdeterminant
can be exponentially large in the size of the matrix and the size of the coefficients αk for
the multiple paths problem. A proximity theorem 3 addresses this issue by restricting the
proximity to a portion of the variables only. Namely, the proximity is of the form ‖t∗ −
ts‖∞ ≤ ns. More precisely, let the solution vector be the vector (t,x) where t ∈ Rn and
x ∈ Rm. We let the problem s-ISP be the problem 1-ISP where the scaling unit is 1.

Theorem 3 (Hochbaum 2002)

(i) For each optimal solution (t,x) for ISP, there exists an optimal solution (s∗,x∗) for
1-ISP such that ‖t − s∗‖∞ ≤ n.
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(ii) For each optimal solution (s,xs) for 1-ISP, there exists an optimal solution (t∗,x′) for
ISP such that ‖t∗ − s‖∞ ≤ n.

The piecewise linear problem s-ISP2 can be solved by linear programming with each vari-
able replaced by 4s variables, one for each segment of length 2D

s
. The number of variables

in each linear programming problem (s-ISP2) is then four times the number of variables in
the problem of the previous scaling iteration.

Procedure inverse paths:

Step 0: Let s = U
4 .

Step 1: Solve (s-ISP2), with an optimal solution xs . If s = 1 output the solution and stop.
Step 2: Set �j ← max{�j , x

s
j − s} and uj ← min{uj , x

s
j + s}, for j = 1, . . . , n.

Step 3: s ← s
2 . Go to step 1.

Here procedure inverse paths executes O(logD) calls to the linear programming problem
(s-ISP2).

9 Threshold theorem based algorithm for convex closure and convex s-excess

A threshold theorem is a particularly strong form of proximity. In a threshold theorem we
replace the convex objective by a linear objective where each coefficient is the derivative (or
subgradient) of the respective function at some point α. When a threshold theorem holds, we
can conclude from the optimal solution to this linear problem that the value of some of the
variables at the optimum is greater than α whereas the others are smaller than or equal to α.
We illustrate this concept for two problems, the convex cost closure problem and the convex
s-excess problem. These problems are characterized by constraints of the form xi ≥ xj and
xi − xj ≤ zij , respectively.

9.1 The convex cost closure problem

A common problem in statistical estimation is that observations do not satisfy preset ranking
order requirements. The challenge is to find an adjustment of the observations that fits the
ranking order constraints and minimizes the total deviation penalty. Many aspects of this
problem as well as numerous applications are studied in (Barlow et al. 1972). The deviation
penalty is a convex function of the fitted values. This application motivated the introduction
of the convex cost closure problem in Hochbaum and Queyranne (2003).

The convex cost closure problem (CCC) is defined formally on a directed graph G =
(V ,A) with convex functions fj () associated with each node j ∈ V . The formulation of the
convex cost closure problem is then:

(CCC) min
∑
j∈V

fj (xj )

subject to xi − xj ≥ 0, ∀(i, j) ∈ A,

�j ≤ xj ≤ uj , integer, j ∈ V.

This problem generalizes the (linear) closure problem which is (CCC) with binary variables,
that is �j = 0 and uj = 1. The closure problem is known to be equivalent to solving a mini-
mum s, t -cut problem in a related graph. This was first noted explicitly by Picard (1976).
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The threshold theorem by Hochbaum and Queyranne (2003) reduces the convex problem
to its binary counterpart – the minimum closure problem. To sketch the main idea of the
theorem we first note that one can extend all the functions fi() so that they are convex in
the range [�,u] for � = mini �i , u = maxi ui . Let α be a scalar and wi be the derivative or
subgradient of fi at α, wi = f ′

i (α) = fi(α +1)−fi(α). Let Gα = (V ,A) be a closure graph
with node weights wi . The threshold theorem states:

Theorem 4 (Hochbaum and Queyranne 2003) Let the optimal closure in Gα be Sα . Then
the optimal values of the variables for the convex problem x∗

j satisfy x∗
j > α if j ∈ Sα , and

x∗
j ≤ α otherwise.

By repeated applications of the minimum closure algorithm on the graph Gα for a range
of values of α in [�,u] we obtain a partition of the set of variables and of the interval
[�,u] into up to n subsets and subintervals where each subinterval contains the optimal
value of one subset of variables. It is further shown in Hochbaum and Queyranne (2003)
that this partition can be achieved with a parametric minimum cut procedure where α is the
parameter.

The procedure used to solve the parametric minimum cut problem is a generalization
of a procedure devised by Gallo et al. (1989) for linear functions of the parameter, which
are based on the push-relabel algorithm of Goldberg and Tarjan (1988). The generalization
for any monotone functions is described in Hochbaum (2003) and in Hochbaum (1998) for
both the push-relabel algorithm and the pseudoflow algorithm. The algorithm requires at
each iteration finding the integer minima of the convex functions which is accomplished
with binary search in O(n logU) steps. The run time of the procedure solving the convex
closure problem is shown to be O(mn log n2

m
+n logU) which is the sum of the complexities

of a (single) minimum s, t cut procedure and the minimization of n convex functions in
bounded intervals of length up to U .

The convex cost closure problem generalizes the minimum cut problem (when the func-
tions are linear), and it is at least as hard as the minimization of n convex functions over
bounded intervals (when there are no constraints other than upper/lower bounds). Hence the
run time cannot be improved unless the respective run times of the minimum cut problem
and minimizing convex functions can be improved.

9.2 The minimum s-excess problem

The s-excess problem is a variant of the maximum/minimum closure problem with a re-
laxation of the closure requirement: Nodes that are successors of other nodes in S (i.e. that
have arcs originating from a node of S to these nodes) may be excluded from the set, but
at a penalty that is equal to the capacity of those arcs. In a closure graph these arcs are of
infinite capacity. For the s-excess problem the arcs have finite capacities representing the
penalties for violating the closure requirement.

The minimum s-excess problem is defined on a directed graph G = (V ,A), with node
weights (positive or negative) wi for all i ∈ V , and nonnegative arc weights uij for all
(i, j) ∈ A. The objective is to find a subset of nodes S ⊆ V such that

∑
i∈S wi +∑

i∈S,j∈S̄ uij

is minimum. (The maximum s-excess problem is to maximize
∑

i∈S wi − ∑
i∈S,j∈S̄ uij .)

A generalized form of Picard’s theorem showing that the closure problem is equivalent to
the minimum cut problem has been proved for the s-excess problem in Hochbaum (1998).
The idea there was to construct a graph as for the closure problem except that the arc capac-
ities not adjacent to source and sink for (i, j) in A are the respective weights uij . The sink
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set of a minimum cut in the graph created was shown to be the minimum s-excess set. The
interested reader is referred to Hochbaum (1998) for details.

The s-excess problem has appeared in several forms in the literature. One is the boolean
quadratic minimization problem with all the quadratic terms having positive coefficients.
This can be shown to be a restatement of the s-excess problem. Another, more closely related
is the feasibility condition of Gale (1957) for a network with supplies and demands, or
Hoffman’s (Hoffman 1960) for a network with lower and upper bounds. Verifying feasibility
is equivalent to ensuring that the maximum s-excess is zero, in a graph with node weights
equal to the respective supplies and demands with opposite signs – if the s-excess is positive,
then there is no feasible flow satisfying the supply and demand balance requirements. This
problem appeared also under the names maximum blocking cut or maximum surplus cut in
Radzik (1993).

9.3 The convex s-excess problem

The convex s-excess problem is a generalization of the s-excess problem with node weights
fj () that are convex functions.

(Convex s-excess) min
∑
j∈V

fj (xj ) +
∑

wij zij

subject to xi − xj ≤ zij , for (i, j) ∈ A,

uj ≥ xj ≥ �j , j = 1, . . . , n,

zij ≥ 0, (i, j) ∈ A.

This problem was studied in the context of the application of image segmentation by
Hochbaum (2001). In the problem of image segmentation a transmitted image is degraded
by noise. The assumption is that a “correct” image tends to have areas of uniform color.
The goal is to reset the values of the colors of the pixels so as to minimize the penalty
for the deviation from the observed colors, and furthermore, so that the discontinuity in
terms of separation of colors between adjacent pixels is as small as possible. Thus the aim
is to modify the given color values as little as possible while penalizing changes in color
between neighboring pixels. The penalty function has two components: the deviation cost
that accounts for modifying the color assignment of each pixel, and the separation cost that
penalizes pairwise discontinuities in color assignment for each pair of neighboring pixels.

Representing the image segmentation problem as a graph problem we let the pixels be
nodes in a graph and the pairwise neighborhood relation be indicated by edges between
neighboring pixels. Each pairwise adjacency relation {i, j} is replaced by a pair of two
opposing arcs (i, j) and (j, i) each carrying a capacity representing the penalty function for
the case that the color of j is greater than the color of i and vice versa. The set of directed
arcs representing the adjacency (or neighborhood) relation is denoted by A. We denote the
set of neighbors of i, or those nodes that have pairwise relation with i, by N(i). Thus the
problem is defined on a graph G = (V ,A). Each node j has the observed color value gj

associated with it. The problem is to assign an integer value xj , selected from a spectrum of
K colors, to each node j so as to minimize the penalty function.

Let the K color shades be a set of ordered values L = {q1, q2, . . . , qK}. Denote the as-
signment of a color qp to pixel j by setting the variable xj = p. Each pixel j is permitted to
be assigned any color in a specified range {q�j

, . . . , quj
}. For G() the deviation cost function

and F( ) the separation cost function the problem is,
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min
ui≥xi≥�i

∑
i∈V

Gi(gi, xi) +
∑
i∈V

∑
j∈N(i)

Fij (xi − xj ).

This formulation is equivalent to the following constrained optimization problem, re-
ferred to as (IS) (acronym for Image Segmentation):

(IS) min
∑
j∈V

Gj (gj , xj ) +
∑

(i,j)∈A

Fij (zij )

subject to xi − xj ≤ zij , for (i, j) ∈ A,

uj ≥ xj ≥ �j , j = 1, . . . , n,

zij ≥ 0, (i, j) ∈ A.

The case where the functions Fij () are concave is easily shown to be NP-hard. To see that
consider a reduction from maximum cut: Given an undirected graph G = (V ,E) find a cut
so the number of edges across the cut is a maximum. Let the values of xi be 0 or 1, and
the objective be min

∑
(i,j)∈E −|xi − xj |. This is equivalent to −[max(i,j)∈E |xi − xj |]. The

partition of V into V0 = {i ∈ V | xi = 0} and V1 = {i ∈ V | xi = 1} is therefore a maximum
cut.

If the functions Fij () are convex and Gj() are convex then the problem becomes an
instance of the dual of minimum cost network flow which is solved in polynomial time as
sketched in Sect. 7. Even if Gj() are nonconvex, but Fij () are convex, the problem is solved
in time that is polynomial in U = maxj {uj − �j } as show in Ahuja et al. (2004).

The constraints of (IS) have several interesting properties. Firstly, the coefficients of the
constraints form a totally unimodular matrix. Secondly, the set of constraints are those of the
linear programming dual of the minimum cost network flow. For the dual of the minimum
cost network flow problem, a generic constraint is of the type

xi − xj ≤ cij + zij .

A threshold theorem for the convex s-excess problem generalizing the one in Hochbaum
and Queyranne (2003) was proved in Hochbaum (2001). The essence of the theorem is to
reduce the convex s-excess problem to the s-excess problem on binary variables which is
equivalent to the ordinary minimum s, t -cut problem (Hochbaum 1998). We construct for
any α a graph Gα where the weight of node j is the scalar wj = fj (α + 1) − fj (α) –
the subgradient or derivative of fj at α. The minimum s-excess problem defined on that
graph with the objective function min

∑
j∈V wjxj + ∑

(i,j)∈A uij zij is solved as a minimum
cut problem. If there are multiple optimal solutions we pick the one where the s-excess set
is maximal (i.e. not contained in any other optimal set) and thus unique. The uniqueness
follows from the properties of the minimum cut.

Theorem 5 (Hochbaum 2001) Let S∗ be the maximal minimum s-excess set in the
graph Gα . Then there is an optimal solution x∗ to the corresponding convex s-excess prob-
lem satisfying x∗

i ≥ α if i ∈ S∗ and x∗
i < α if i �∈ S̄∗.

Let the (IS) problem involve n pixels (variables) and m adjacency relations (arcs). Let
T (n,m) be the complexity of solving the minimum s, t cut problem on a graph with n

nodes and m arcs. The algorithm based on the threshold theorem solves the problem for
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G() convex functions and F( ) linear functions in time O(T (n,m)+n logU). Since the (IS)
problem generalizes both the minimum cut problem and the finding of minima of n convex
functions this time complexity is the best time complexity achievable. Any improvement
in the run time of algorithms to identify the integer minima of convex functions or to find
a minimum (parametric) cut would immediately translate into improvements of the run time
of this algorithm.

10 Classes of quadratic problems solvable in strongly polynomial time

As noted earlier, the quadratic problem takes a special place among nonlinear optimiza-
tion problems over linear constraints. This is because the optimality conditions are linear,
and the solution to a system of linear inequalities is of polynomial length in the size of the
coefficients. So for quadratic problems an optimal continuous solution is of length that is
a polynomial function of the length of the input. In addition, the proof of impossibility for
strongly polynomial algorithms using the algebraic tree computation model, is not applica-
ble to the quadratic case. Still, recall that for the comparison computation model the proof is
valid and it is impossible to derive strongly polynomial algorithms using only comparisons.

Only a few quadratic optimization problems are known to be solvable in strongly poly-
nomial time. For instance, it is not known how to solve the minimum quadratic convex cost
network flow problem in strongly polynomial time. The few results described here add to
the limited repertoire of quadratic problems solved in strongly polynomial time.

10.1 Quadratic network flow problems

The feature that is common to all the techniques that have been used to derive strongly poly-
nomial algorithms for quadratic separable problems is the use of a parametric search in order
to solve the continuous problem. Then proximity is used to derive an integer solution. Sev-
eral results pertaining to the problem of minimizing a concave problem are using parametric
search to establish polynomiality and strong polynomiality when the network contains only
a fixed number of nonlinear arc costs (Värbrand et al. 1995, 1996) or when the network
has some special properties (e.g. production-transportation problem with a a transportation
matrix with Monge property Hochbaum and Hong 1996). We review here some classes of
quadratic convex network flow problems that can be solved in strongly polynomial time.

Simple quadratic allocation in linear time Brucker (1984) described a linear time algo-
rithm for the quadratic continuous SRA. Our adaptation of the algorithm, and its application
to the integer case is described next.

The algorithm for the quadratic resource allocation problem, (QRA), is based on a search
for an optimal Lagrange multiplier. The continuous QRA is formulated as follows:

(QRA) min
n∑

i=1

[
aixi + 1

2
bix

2
i

]

s.t.
n∑

i=1

xi = d,

xi ≥ 0, i = 1, . . . , n,

where d is positive (what earlier was denoted by B) and each bi is positive.
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Fig. 2 The quadratic resource
allocation QRA

The convexity of the objective function guarantees that a solution satisfying the Kuhn–
Tucker conditions is also optimal. In particular, we seek a non-negative solution x∗ and
a value δ∗ such that:

n∑
i=1

x∗
i = d and,

x∗
i > 0 implies that ai + bix

∗
i = δ∗.

The situation is illustrated in Fig. 2. The value set for δ determines associated values
for xi . For any value δ, the associated solution x is:

xi = 0 for i such that ai > δ,

xi = δ − ai

bi

for i such that ai ≤ δ.

Finding the optimal solution to QRA is equivalent to finding a value δ∗ such that the
associated solution satisfies d̂ = ∑n

i=1 xi is equal to d . If d̂ < d , then we could conclude
that δ∗ is greater than δ, because any smaller value would yield an even smaller value for d̂ .
Similarly, if d̂ > d , then δ∗ is less than δ.

For any δ, the value of d̂ is dependent on the coefficients in the set {i | ai > δ}. Con-
sequently, d̂(δ) is a monotone, piecewise linear function having breakpoint values ai, i =
1, . . . , n. Its monotonicity allows for a binary search for the optimal value, δ∗, satisfying
d̂(δ) = d .

Since the value of d is finite then there is a finite optimal δ∗ for every instance of QRA.
The algorithm we propose for finding δ∗, chooses “guesses” (from among the breakpoint
values, ai ), until it finds two consecutive breakpoints which contain δ∗ in the interval be-
tween them. In this range, d̂ = ∑

i xi is a linear function in δ. The problem is then solved by
finding the particular value of δ for which d̂ = d , (i.e., by solving the linear equation in one
variable).
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In the algorithm the parameters A and B maintain partial sums necessary to evaluate∑n

i=1 xi , without computing the sum at every iteration from scratch.

Procedure QRA:

Step 0: Let L = {a1, . . . , an}, I = {1, . . . , n}, A = ∑n

i=1
ai

bi
, B = ∑n

i=1
1
bi

.

Step 1: Set δ ← am, the median value from the set L. Let Â = A − ∑
i∈I+

ai

bi
, and B̂ =

B − ∑
i∈I+ 1

bi
, where I+ = {i ∈ I | ai > δ}.

Step 2: Let d̂ = B̂δ − Â.
If d̂ = d then output “δ = δ∗” and stop.
If d̂ > d then δ > δ∗.
If d̂ < d then δ < δ∗.

Step 3: If δ > δ∗ then set I ← {i ∈ I | ai < δ}, L ← {ai | i ∈ I }, A ← Â− am

bm
, B ← B̂ − 1

bm
.

Else, δ < δ∗ and set I ← {i ∈ I | ai ≥ δ}, L ← {ai | i ∈ I }.
Step 4: If |L| ≥ 2, go to Step 1.

Else δ∗ = d+A
B

.

The algorithm outputs a value δ∗. The optimal solution x∗ is then readily available, and
can be determined in linear time:

x∗
i =

{
δ∗ − ai

bi
for i such that ai ≤ δ∗,

0 otherwise.

Theorem 6 (Cosares and Hochbaum 1994) Procedure QRA finds δ∗ and x∗ in O(n) time.

Proof For any guess δ, the values of Â and B̂ are set to assure that d̂ = ∑
xi is set to the

appropriate value (i.e. xi = 0 when ai > δ). The element ai is removed from L if either it
is known to be greater than δ∗ or if it is less than an established lower bound for δ∗. When
L contains only one element, say ai , then we can conclude that δ∗ is between ai and aj ,
the next largest of the a’s. Furthermore, since d̂ is a linear function of δ in this range, (i.e.
d̂ = B̂δ − Â), δ∗ and x∗ are determined as in Step 4.

The O(n) complexity of the algorithm follows from the fact that each of Steps 1, 2 and
3 can be performed in a number of arithmetic operations that is linear in the cardinality of
the set L, including the selection of the median value Blum et al. (1972). Since the number
of elements in the set is initially n and is cut in half after each pass, the total work is linear
in (n + n/2 + n/4 + . . .) ≤ 2n, so the complexity of the algorithm is O(n). �

When the problem is to be solved in integers we apply the proximity theorem for the
general allocation problem, Theorem 2. From the optimal continuous solution x∗ we create
a lower bound vector to the optimal integer solution, x∗ − e. Since

∑
x∗

j = d , there are only
n more units to add which can be determined in as many iterations as the greedy algorithm,
each taking a constant time. The running time is therefore linear for the integer version of
the problem.

A similar, though slightly more complex, algorithm works to solve QRA where each
variable has an upper bound. A linear time procedure is described in Hochbaum and Hong
(1995).

Quadratic allocation flow problem The network allocation problem is a special case of
(GAP) as proved in Federgruen and Groenevelt (1986a, 1986b). As such it is solvable in
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pseudo-polynomial time by the greedy algorithm, and by a polynomial time algorithm with
the proximity-scaling procedure described in Sect. 5. The problem is defined on a network
with a single source and a set of sinks.

All known special cases of the network allocation problem are solved very efficiently
and in strongly polynomial time. These problems include the network allocation problem,
the tree allocation problem, the nested allocation problem and the generalized upper bounds
allocation problem. In Hochbaum and Hong (1995) we describe algorithms for these prob-
lems with respective complexities, O(mn log n2

m
), O(n logn), O(n logn) and O(n). These

algorithms are all based on an efficient search for the optimal Lagrange multipliers and in
that sense generalize the procedure quadratic-allocation.

We define the network allocation problem on a directed network G = (V ,A) with a single
source node s ∈ V and T ⊆ V a set of sinks. Let B > 0 be the total supply of the source,and
let Cuv be the capacity limit on each arc (u, v). Let the vector of the flow be φ = (φuv :
(u, v) ∈ A).

(Net-alloc) min
∑
j∈T

(
ajxj + 1

2
bjx

2
j

)

(i)
∑

(v,u)∈A

φvu −
∑

(u,v)∈A

φuv = 0, v ∈ V − T − {s},

(ii)
∑

(s,u)∈A

φsu −
∑

(u,s)∈A

φus ≤ B,

(iii)
∑

(u,j)∈A

φuj −
∑

(j,u)∈A

φju = xj , j ∈ T ,

(iv) 0 ≤ φuv ≤ Cuv, (u, v) ∈ A,

0 ≤ xj ≤ uj , integer, j ∈ T .

The total sum of flow leaving the source B cannot exceed the minimum cut in the net-
work. Also, as long as each variable is bounded in an interval where the derivative is negative
and the sum of upper bounds is at least as large as B , the amount of flow in the network will
be equal to B . So subject to such preprocessing the problem can be stated either with an
equality or an inequality constraint on the source, (ii).

Net-alloc is not the same problem as a quadratic cost flow problem. In the latter problem
there is an underlying network with a quadratic cost associated with the flow along each
arc. In Net-alloc there is also an underlying network, but costs (quadratic) are associated
only with the net flow at each sink. For this purpose we add a new dummy sink, t , and send
all flows from the set of sinks T to that node. The costs are then only associated with arcs
adjacent to node t . This graph is described in Fig. 3, where only the dashed lined arcs, that
connect the sink to the ‘variable’ nodes, have costs associated with them.

Net-alloc is solvable, as described in Hochbaum and Hong (1995), in strongly polynomial
time, O(mn log n2

m
). The general idea of the algorithm is to establish the equivalence of the

problem to a lexicographic flow problem. That latter problem is then posed as a parametric
flow problem. That parametric flow problem has arc capacities which are each piecewise
linear with a single breakpoint. We then generate all the breakpoints of the function using
an algorithm that extends the algorithm by Gallo et al. (1989) for parametric flow problems.
(Their algorithm is applicable when each arc capacity is linear.) As such, this algorithm,
like the others in this section, is based on the concept of parametric search.
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Fig. 3 The quadratic network
allocation problem

Quadratic transportation with fixed number of suppliers Using a known transformation,
any minimum cost network flow problem can be formulated as a transportation problem (see
e.g. Ahuja et al. 1993). It is therefore sufficient in the search for efficient algorithms for the
quadratic separable network flow problem to focus on the quadratic separable transportation
problem.

The quadratic transportation problem (QTP) is defined on a bipartite network, with k

supply nodes and n demand nodes. The cost of transporting flow from a supply node to
a demand node is a convex quadratic function of the flow quantity. The formulation of the
continuous problem is as follows:

(QTP) min
k∑

i=1

n∑
j=1

[
aij xij + 1

2
bij x

2
ij

]

s.t.
∑

j

xij = si, i = 1, . . . , k,

∑
i

xij = dj , j = 1, . . . , n,

xij ≥ 0, i = 1, . . . , k, j = 1, . . . , n.

where bij > 0, si > 0, and dj > 0 are rational numbers and
∑

i si = ∑
j dj .

While it is not known whether the QTP is solvable in strongly polynomial time, Cosares
and Hochbaum (1994) gave a strongly polynomial algorithm for the case when the number
of supply nodes k is fixed. That algorithm exploits the relationship between the transporta-
tion problem and the allocation problem. The continuous allocation problem can be solved
by identifying a Lagrange multiplier associated with the single constraint. In the quadratic
case this can be done in linear time. The algorithm for the QTP entails relaxing and aggregat-
ing supply constraints, and then searching for optimal values for the Lagrange multipliers.
For the case of two supply nodes, k = 2, the algorithm is linear. For greater values of k,
the algorithm has running time of O(nk+1). A result by Megiddo and Tamir (1993), which
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invokes an alternative searching method, yields a linear running time of the algorithm for
fixed k (where the constant coefficient is exponential in k).

Quadratic separable flow on series-parallel graphs Tamir (1993) devised a strongly poly-
nomial algorithm for minimum convex quadratic separable cost flow when the underlying
network is series-parallel, in the presence of a single source-sink pair. The cost of the flow
is viewed as a parametric function of the available supply. The algorithm is exploiting the
series-parallel structure of the network in order to construct an optimal continuous solution.
A series-parallel graph is constructed recursively from two smaller series-parallel graphs
using two types of composition operations:

1. series, where one graph identifies its source with the sink of the other, or
2. parallel, where the two graphs identify their source nodes and sink nodes as one.

The value of the cost function for the series composition is the sum of the cost functions
for each one of the graphs. For parallel composition, the combination is a solution to an
optimization function for all possible partitions of the flow into the two parallel graphs. This
optimization function is in fact a SRA and some of its properties are used to derive a solution
in O(m2) time.

An integer solution is then determined from the continuous optimal solution using the
same approach as described above. This is therefore another example where an optimal
continuous solution is easier to determine than an integer one.

10.2 Quadratic knapsack problem

In the quadratic knapsack problem, the functions fj are quadratic concave and gj are linear.
The optimal continuous solution in this case is of polynomial length in the size of the input.
Thus there is an accuracy ε of polynomial length so that if a solution is optimal and ε-
accurate, then the solution is also the exact optimal continuous solution.

The quadratic continuous knapsack problem is known to be solvable in linear time
Brucker (1984). An alternative algorithm for solving the continuous quadratic knapsack
problem is to reduce the problem to a QRA. For the specified accuracy ε we duplicate each
entry 1

εaij
times. ε is chosen so that any solution that is ε-accurate is also optimal. The re-

sulting quadratic allocation problem is solved using the linear time algorithm in Cosares and
Hochbaum (1994) (there is one supply node and therefore k = 1).

10.3 The quadratic CCC and s-excess problems

In the quadratic case our algorithm described in Sect. 9 is implemented to run in strongly
polynomial time. This is easily achieved since the derivative functions are linear—a case
shown in Gallo et al. (1989) to be solvable in O(mn log n2

m
). Thus the overall run time of the

algorithm is dominated by the complexity of the minimum cut, O(mn log n2

m
).

11 The complexity of some nonseparablecases

Strong polynomiality of continuous nonseparable problems Even though separable con-
vex quadratic problems may be solvable in strongly polynomial time, the question of strong
polynomiality of nonseparable quadratic continuous optimization problems is open. While
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it is possible that the nonseparable optimization problem is solvable in strongly polynomial
time, establishing that is at least as hard as the question of strong polynomiality of linear
programming (this insight is due to I. Adler). To see this, observe that the problem of feasi-
bility of linear programming {Ax = b,x ≥ 0} �= ∅? is equivalent to the following quadratic
nonseparable convex problem subject only to nonnegativity constraints:

min (Ax − b)T (Ax − b)

x ≥ 0.

Since this question is not resolved, we do not investigate it here, as it should be treated
in the framework of the strong polynomiality of linear programming.

The polynomiality of continuous convex nonseparable flow problems Nonseparable con-
vex continuous problems, as well as nonseparable quadratic convex continuous problems
are solvable in polynomial time as follows. A solution approximating the optimal objective
value to the convex continuous problem is obtainable in polynomial time, provided that the
gradient of the objective functions are available and that the value of the optimal solution is
bounded in a certain interval. Such work, based on the Ellipsoid method, is described by Ne-
mirovsky and Yudin (1983). In the quadratic case, exact solutions are possible. Indeed, the
polynomial solvability of continuous convex quadratic programming problems over linear
constraints was established as a byproduct of the ellipsoid algorithm for linear programming
(see Kozlov et al. 1979). The best running time reported to date is by Monteiro and Adler
Monteiro and Adler (1989), O(m3L), where L represents the total length of the input coeffi-
cients and m the number of variables. Similar results were also given by Kapoor and Vaidya
(1986). Note that these running times are not strongly polynomial.

The NP-completeness of integer quadratic nonseparable problems The case for the integer
problems that are nonseparable, even if convex, is harder. Nonseparable quadratic integer
problems are NP-hard, To see this consider the following known reduction from the inde-
pendent set problem. The maximization of the weight of an independent set in a graph is
formulated as follows: Given a graph G = (V ,E) with nonnegative weights Wv for each
v ∈ V , find a subset of vertices U ⊆ V such that for any i, j ∈ U, {i, j} �∈ E, and such that
the total weight W(U) = ∑

v∈U Wv is maximum. The weighted independent set problem
can be posed as the quadratic maximization problem:

max
∑
v∈V

Wvxv −
∑

{u,v}∈E

W(V ) · xu · xv

xv ∈ {0,1}.
Let x∗ be the optimal solution. The maximum weight independent set is then {v | x∗

v = 1}.
Note that the reduction also applies for the unweighted case. So even in the absence of the
flow balance constraints, the integer problem is NP-hard. The objective function in this case
is not necessarily concave. The question is then asked whether the complexity of the problem
is not a result of the indefiniteness of the quadratic matrix.

The answer is negative as we demonstrate now. Consider the quadratic minimization
problem,

min xT Qx − dT x

x ∈ {0,1}n.



Ann Oper Res (2007) 153: 257–296 291

Baldick (1991) proved that this problem with Q having nonnegative off-diagonal el-
ements is NP-hard. Any convex quadratic minimization is therefore also NP-hard. The
proof is by reduction from the set splitting problem (see Garey and Johnson 1979) as
follows. Let E be a collection of 2 and 3-element subsets E1, . . . ,EN of {1, . . . , n} with
N ≤ 1

6 (n + 1)n(n − 1). The set splitting problem is to find a set Z ⊂ {1, . . . , n} such that
no Ei is contained in Z nor disjoint from it. In that case Z is said to satisfy the splitting
property. Deciding whether such a Z exists is NP-complete, Garey and Johnson (1979).

Consider the following quadratic function,

f (x) =
N∑

i=1

(∑
j∈Ei

(2xj − 1)

)2

−
N∑

i=1

|Ei |2.

f (x) is of the form xT Qx−dT x with Q positive definite with positive off-diagonal elements
of magnitude bounded in N .

For k3 the number of 3-element subsets in E, f (x) ≤ k3 − ∑N

i=1 |Ei |2 if and only if Z =
{j | xj = 1} satisfies the splitting property. In particular, it is NP-hard to find the minimum
of f . Hence the nonseparability is the factor that makes this problem hard.

Polynomial cases of nonseparable integer quadratic problems—the “separating
scheme” We illustrate one general purpose technique for nonseparable problems that we
call a “separating scheme”. The technique relies on converting the objective function into
a separable function (e.g. by diagonalizing the matrix Q in the quadratic case). This implies a
transformation of variables which affects the constraints. If the new constraints are such that
they form a totally unimodular matrix then the proximity-scaling algorithm by Hochbaum
and Shanthikumar (1990) for separable convex optimization over totally unimodular con-
straints can be employed to obtain an optimal integer solution. This proximity-scaling algo-
rithm solves, at each iteration, the scaled problem in integers using linear programming.

Consider the nonseparable problem:

min F(x)

s.t. Ax = b,

0 ≤ x ≤ u,

x ∈ Zn.

Suppose there exists an invertible n × n matrix U such that F(Ux) is a separable function.
Then the newly stated problem is:

min F(y)

s.t. AU−1y = b,

0 ≤ U−1y ≤ u,

U−1y integer.

Now, if the matrix U is totally unimodular, then the integrality requirement is preserved.
If the new matrix of constraints

[
AU−1

U−1

]
is totally unimodular, then the nonseparable flow

problem is solvable in polynomial time and in integers using the proximity-scaling algo-
rithm.
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Consider now the separating scheme for quadratic objective functions. The formulation
of a quadratic nonseparable problem on box constraints is as follows:

max
n∑

j=1

dixi +
∑

qij · xi · xj

�i ≤ xi ≤ ui,

xi integer.

The idea of making the problem separable so that the resulting constraint matrix is totally
unimodular is translated here to finding a totally unimodular matrix U , so that for the matrix
Q = (qij ), U−1QU is a diagonal matrix. Baldick and Wu (1990) used this approach for
a problem of electric distribution systems where only box constraints are present.

Baldick (1991) has further identified several classes of matrices Q where a “diagonaliz-
ing” scheme with a totally unimodular matrix exists. The two classes are:

(1) Diagonally dominant matrices, qii ≥ ∑
i �=j |qij |.

(2) Matrices with forest structure: These are matrices with a partial order on the positive
coefficients inducing a forest.

For both these classes, with A empty, there are polynomial algorithms. Also if the constraint
matrix,

[
AU−1

U−1

]
is totally unimodular then still integer solutions can be obtained in polyno-

mial time. Continuous solutions can be obtained in polynomial time if the largest subdeter-
minant of the constraint matrix is bounded by a polynomial (Hochbaum and Shanthikumar
1990).

Miscellaneous polynomial cases Barahona (1986) proved that quadratic nonseparable 0-1
optimization is polynomially solvable if the quadratic matrix Q has a series-parallel graph
characteristic structure. That is, there exists a series-parallel graph G = (V ,E) with qij �= 0
if and only if (i, j) ∈ E. The algorithm involves transforming the problem into a maximum
cut problem which is in turn solved recursively using the fact that the underlying graph is
series-parallel.

A class of nonseparable problems over box constraints is solvable in strongly polyno-
mial time if in the objective min xT Qx − dT x all elements of Q are nonpositive. This type
of problem is solvable by transforming it into the selection problem and hence a minimum
cut problem on a bipartite network. This transformation however is not a separating scheme
as it is a nonlinear transformation. Hochbaum (1989) has generalized this class to include
all “bipartite polynomials”. This generalized class is identified by the property of the mul-
tivariate polynomial objective function called the bipartition property. This property can be
easily described on a graph for quadratic objective functions: G = (V ,E) with V = V1 ∪ V2

so that qij > 0 only if both i, j ∈ V1 or i, j ∈ V2. This property was discovered indepen-
dently, for quadratic objective functions, by Hansen and Simeone (1986). In Hansen and
Simeone (1986), an objective function with this property is called a unate function. With
this property a modified reduction still works to transform the problem into a minimum cut
problem which is then solved in polynomial time.

In Hochbaum et al. (1992) a “high multiplicity” minimum weighted tardiness scheduling
problem was discussed. This problem was formulated as a quadratic transportation problem
with a nonseparable objective function. This problem is unique among the problems dis-
cussed in this section in that the set of constraints is not empty. In that problem, the right
hand sides (supplies and demands), and the linear coefficients in the objective function are
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large, so the aim was to find an algorithm for the integer case the running time of which is
independent of these numbers. Such algorithm was found by solving a related continuous
problem (not a relaxation), the solution of which could be rounded using a simple procedure
to derive an optimal integer solution.

All problems presented in this section are special classes. There is still a need to discover
the extent of the polynomial solvability of nonseparable network flow problems, although
this cannot be expected to be so unified as in the separable case.

12 Conclusions and open problems

We survey in this paper a collection of results pertaining to nonlinear optimization problems.
Several classes of nonlinear problems, such as concave separable or convex nonseparable
problems, are NP-hard and the emphasis is on developing algorithms for polynomial sub-
classes. For the convex separable flow problem there are polynomial algorithms and even
lower bounds indicating the impossibility of strongly polynomial algorithms for the non-
quadratic instances.

This work leaves a number of questions unanswered. The major ones among these are:

1. For convex quadratic separable problems either prove a lower bound that proves the
impossibility of strongly polynomial algorithms or identify a strongly polynomial algo-
rithm. We conjecture that the latter is possible.

2. For the well solvable case of convex separable network flow, improve the capacity scaling
algorithm to an algorithm that depends on the double logarithm of B rather than on the
logarithm of B . This may involve techniques borrowed from those used to find roots for
a system of polynomials.

3. Delineate and generalize the largest possible subclasses of nonseparable convex cases
that are solvable in polynomial time. In particular there has been little research involv-
ing such problems with a nonempty set of flow balance constraints. As a result there is
little insight to the behavior of network flow optimal solutions in the presence of such
nonseparable costs.

4. Tighten proximity theorems or find threshold theorems for classes of problems other than
the ones reported here, with the resulting improved algorithms for solving the problems.
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