C H A P T E R

3

APPROXIMATING COVERING AND
PACKING PROBLEMS: SET COVER,
VERTEX COVER, INDEPENDENT SET
AND RELATED PROBLEMS

Dorit S. Hochbaum

This chapter presents the developments that lead to the use
of linear programming formulation as an essential approxi-
mation tool. These tools were initially developed for the set
cover—the most important and general covering problem—
and the vertex cover problem. We describe here the use
of linear programs’ optimal solution and feasible dual so-
lution for effective approximations for the set cover prob-
lem and several closely related problem of covering and
packing type. The problems analyzed here in detail include
(in addition to the set cover and vertex cover problems),
the independent set problem, the multicover problem, the
set packing problem, the maximum coverage problem, and
the problem of integer programming that extends the vertex
cover and independent set problems. We also analyze the
properties of the greedy algorithm for covering problems.

—
INTRODUCTION

B

One of the most important tools to have emerged in the design of approximation algo-
rithmsisthe use of linear programming relaxation of the problem and its dual. We trace

94

3.1 INTRODUCTION 95

the history and devel opment of this approach asit evolved for the set cover, set packing,
and related problems.

The problems discussed in this chapter include the vertex cover problem and the
independent set problem, the set cover problem, the multicover problem, and the set
packing problem. In addition, we address the problem of maximum covering of elements
with minimum number of sets and the problem of integer programs with two variables
per inequality. The latter problem is neither a covering nor a packing problem; yet it
engulfsinits structure the very properties of the vertex cover problem and the indepen-
dent set problem that are instrumental in making improved approximation algorithms
possible. The analysis of integer programs with two variables per inequality deepens
our insights for the reasons that make vertex cover and related problems approximable
within afactor of 2 or better.

Other forms of covering and packing problems that are more structured can have
improved approximationsexpl oiting the special structure. Some Euclidean coveringand
packing approximations are described in Chapter 8 and Section 9.3.3. Some network
design problemsand connectivity problemsare possibleto present as covering problems,
and then techniques that extend those in this chapter are applicable (see Chapter 4 and
Section 9.2.1). Also, the vertex cover and independent set problems defined on special
classes of graphs have better approximationsthan the general cases. These special cases
are described in detail in Section 3.7.

Thelinear programming (LP) relaxation plays an important role for all these prob-
lems. All known approximation algorithms for the set cover problem [Chv79] [Hoc82]
use the (weak) duality theorem of linear programming and the superoptimality of the
linear programming relaxation. For the vertex cover, the best known approximation al-
gorithms are provided by independent set and integer programs with two variables per
inequality; i.e., the preprocessing technique based on the properties of the linear pro-
gramming solutions [Hoc83] [HMNT93]. We start by defining the problems discussed
in this chapter and how they are related.

3.1.1 DEFINITIONS, FORMULATIONS AND APPLICATIONS

A vertex cover inan undirected graph G = (V, E) isaset of vertices C such that each
edge of G has at least one endpoint in C. The vertex cover problem is the problem of
finding a cover of the smallest weight in a graph whose vertices carry positive weights.
This problem is known to be NP-complete even when the input is restricted to planar
cubic graphswith unit weights[GJS76]. Anindependent setinagraphisaset of pairwise
nonadjacent vertices (also referred to asvertex packing). Thelargest weight independent
set is the complement of the smallest weight vertex cover.
A natural integer programming formulation of the vertex cover problem with node
weightswj for j e V, |[V|=n, s,
Min Z?:l WiXj
subjectto xj+X;>1 (foreveryedge(i, j) inthe graph)
0<xj<1 (j=1,...,n
Xj integer (j=1,....,n).

VO

96 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

The formulation of the independent set problem (1S) is similar, with “Max” replac-
ing “Min” and with thedirection of thefirst set of inequalitiesreversed. Theindependent
set problem is also known as the “vertex packing” problem or as the “stable set” prob-
lem. Toillustrate the problems, consider the graphin Figure 3.1 with all weightsequal to
1. The minimum vertex cover is the set of nodes {1, 3, 4, 6} and the maximum indepen-
dent set isthe set of nodes {2, 5}. Thelinear programming relaxation of (V C) is obtained
by removing the integrality constraints on the x;’s.

Among the multiple applications of the vertex cover and the independent set prob-
lems are finding nonconflicting schedul es. Then assigning the smallest number of watch
guardslocated at verticesso that all links (edges) have at | east one guard surveying them.

A genera packing problem is the set packing problem. Here the goal is to find the
maximum weight collection of sets so that no two overlap:

maximize {wx| A-x < e} for x binary, eacolumnvector of onesand A azero-onematrix.

This problem can be represented as the independent set problem by constructing agraph
(called the derived graph) whose vertices are columnsof A, and two such verticesbeing
adjacent if the two columns have anonzero dot product. Theindependent set problemis
also a special case of the set packing problem, and hence the two problems are polyno-
mially equivalent. As such, any result for the independent set problem is also applicable
to the set packing problem. Thereforethe set packing problem will not be discussed here
separately.

The vertex cover problem is a special case of the set cover problem. Given a set |
of m elementsto be covered and acollectionof setsS; e I, j € J ={1,...,n}. Each set
has weight w; associated with it. The characteristic vector of set S; isthe 0 — 1 vector
{aij}",. Theset cover problem istoidentify the smallest weight collection of sets so that
all elements of | are included in their union (or “covered”): minimize {wx| A-X > €}
for x binary. A vertex cover problem is a set cover problem where each element can
be covered by exactly two sets. These two sets correspond to the endpoints of an edge
in the graph. Unlike the set packing problem which is equivalent to the vertex packing
problem, the set cover problemisastrict generalization of the vertex cover problem, and
the two problems are distinguished by the quality of approximation algorithmsthat can
be devised for them.

FIGURE 3.1

3.1 INTRODUCTION 97

The set cover problem has applicationsin diverse contexts such as efficient testing,
statistical design of experiments, [FNT74], and crew scheduling for airlines[MMK79].
It also arises as a subproblem of many integer programming problems. For surveys on
the set cover problems see Garfinkel and Nemhauser [GN72], Christofides and Korman
[CK75], Balas and Padberg [BP76], Padberg [Pad79], and an annotated bibliography by
Trotter [Tro85)].

Some applicationsof the set cover problem require an extension where each element
is to be covered a specified number of times. This extension is called the multicover
problem. The multicover problem has applicationswherereliability of coveragerequires
extraredundancy. Among the applications of the problem are the location of emergency
servicefacilities, communication systems, military applications marketing applications,
crew scheduling, and security checking (Van Slyke 81 [V S81]). In theformulation of the
multicover problem, each element i isto be covered at least b; times.

Min Z?zleXj

subjectto Y0 jaijxj >=bi (fori=1,....m)
0<x;j<1 (j=1...,n
Xj integer (j=1,...,n).

(MC)

When the amount of required coverage b; = 1 for all i, the multicover problem
reduces to the set cover problem (SC).

The maximum coverage problem generalizes the set cover problem and the multi-
cover problem. Here, instead of seeking the smallest number of sets that cover al ele-
ments, we seek the largest number of elements (accounting for their multiplicities) that
can be covered by a prespecified number of sets, k. When this largest number ism—the
total number of elementsto be covered—the solution is also a set cover. The maximum
coverage problemis also defined in aweighted context: find the largest number of ele-
ments that can be covered by sets of total weight not exceeding W —the budget limit.

Both formulations of the vertex cover and independent set problems have two vari-
ables per inequality. Another problem that is formulated as integer programming opti-
mization with two variables per inequality is the problem of minimizing the weight of
true variablesin a 2-satisfiability truth assignment. In the 2-SAT problem we are given
acollection of clauses in conjunctive normal form (CNF) of length 2 each, where each
variablehasacertain weight associated with setting it to True. The vertex cover problem
could be viewed as 2-SAT with no negation of variables. As such, integer programming
with two variables per inequality, P2, captures in its structure a number of other prob-
lems. Indeed, as we shall see, much of the insight about these three problems can be
derived from the analysis of IP2. The formulation of IP2 s,

Min er]:leXj

subjectto aixj +bix,, >¢ (fori=1,....m)
O<xj<uj (j=1,....n
Xj integer (j=1,...,n),

(1P2)

wherel < ji, ki <n,wj >0(i =1,...,n),andall the coefficientsare integer. We denote
the largest upper bound by U = maxj—1__ nUj.

IP2 with aj = bj = ¢j = u; = 1 is the vertex cover problem. With u; = 1 and
aj,bi, ¢ € {—1,0,1} IP2 isthe 2-SAT problem.

98 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

N

FIGURE 3.2

Figure 3.2 depicts schematically the rel ationship between vertex cover and the other
minimization problems.

3.1.2 LOWER BOUNDS ON APPROXIMATIONS

All problems discussed here are Max-SNP-complete, which means that there are no
polynomial approximation schemes, PASs, for these problems unless NP = P. Stronger
lower bounds have been derived for these problems (and are getting improved continu-
ously). The strongest lower bounds at the time of this writing are:

e [or vertex cover problem there is no §-approximation for § < 16/15 unless
NP =P, [BGS95].

e Theindependent set problem is equivalent to the maximum clique problem onthe
complement graph. The maximum clique problem has been studied extensively
for lower bounds, and there are extremely large (and thus discouraging) lower
bounds that apply also to the independent set problem. The current champion
lower bound is /n [Hastad, private communication] meaning that we cannot
guarantee an approximation factor n 35 for any positive § unlessNP = P.

e There have been some constant lower bounds proved for approximating set cover
that hold unlessNP = P. Stronger boundswere proved under the assumption that
NP = DTIME(n©(09'99m) | other words, if NP problems are not solvable in
time that is quasi-polynomial, or exponential in loglogn, then the lower bound
holds. A lower bound proved recently by Feige[F95] is (1—¢) Inn provided that
NP £ DTIME(n©(loglogmy

A lower bound for multicover follows from that of set cover, and alower bound to 1P2
follows from the bound for vertex cover.

When considering these lower bounds one has to keep in mind that these are worst
case lower bounds. Indeed, there are approximation algorithms for set cover instances

3.2 THE GREEDY ALGORITHM FOR THE SET COVER PROBLEM 99

that have small set sizes or have small coverage duplicity (the number of sets covering
agiven element), that have performance better than the lower bound. For instance, the
approximation factor for an independent set on bounded degree graphs is substantially
better than the lower bound of /n implies, and similarly for many other special classes
of problems demonstrated in this chapter. Table 3.1 summarizes such results.

3.1.3 OVERVIEW OF CHAPTER

The chapter is arranged in chronological order of developments—with some minor ex-
ceptions. We begin with a discussion of the set cover problem and the greedy algorithm
which was the first approximation algorithm devised for it. The analysis of the greedy
was the first use of linear programming duality in approximations. We then present the
Linear Programming (LP) approximation algorithm that mades use of the dual optimal
solution; then the dual -feasible al gorithm making use of a dual solution that is only fea-
siblerather than optimal, and finally using other relaxationsof the set cover problem that
lead to avariety of dual-feasible algorithms. These are applicable to the set cover prob-
lem, and someare only applicableto its special case—the vertex cover problem. Wethen
extend the analysis of thelinear programming algorithm and the dual -feasible algorithm
to the multicover problem.

Next, we demonstrate the value of the optimal dual solution in a preprocessing ap-
proach that yields improved approximation bounds to the vertex cover or the indepen-
dent set problems. In this section we describe alarge number of special classes of these
problemsalong with the improved approximation bounds. All known approximation al-
gorithmsto date for these problems are then summarized in Table 3.1.

Section 3.8 investigates the nature of the factor of 2 approximation for the vertex
cover problem (which we also conjecture to be best possible), and describes how the
ideas of preprocessing and the use of the optimal linear programming solution apply also
in the more general set up of integer programming with two variables per inequality.

Finally, we discuss the performance of the greedy algorithm for the maximum cov-
erage problem, which is an extension of the set cover problem (as a decision problem).
Thisproblemisof particular interest because of the analysis of the generic type of greedy
algorithm involved.

Thenotation used in thischapter includesbold fontsfor vectors; e denotesthe vector
of al 1's, and g denotes the vector of all 0's except for alinthei'™ position.

e
THE GREEDY ALGORITHM FOR THE
SET COVER PROBLEM

B2

A greedy algorithm is the most natural heuristic for set cover. It works by selecting one
set at a time that covers the most elements among the uncovered ones. Johnson and

100 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

Lovész ([Joh74], [Lov75]) were the first to demonstrate that the greedy algorithmis a
‘H(d)- approximation algorithm for the unweighted set cover problem, where H(d) =
Z?:l % and d isthe size of the largest set. H(d) is bounded by 1+ logd.

Chvétal [Chv79] extended the applicability of the greedy to the weighted set cover.
Thisversion of greedy selectsaset with the minimumratio of weight to remaining cover-
age. Chvétal proved that this greedy algorithmis still a7 (d)-approximation algorithm.
Although the algorithm is easily stated, its analysisis far from trivial. That analysisis
particularly instructive asit introduces the use of linear programming duality in approx-
imations, which we will present next. The formal statement of the greedy is,

THE GREEDY ALGORITHM [CHVATAL]
Step0: SetC® =¢; S?=5;,jeJ; 1 ={L....m};k=0.

Step 1: k<—k+1.SeIectasetSjk,suchthat|‘§—gk‘=minjejl’g—g‘.
Jk]
Step2: SetC® « CCU{ji}andSi =sk\Sk jed, I < 1\sk.

Step 3: If | =, stop and output cover C©. Else, go to Step 1.

Consider the linear programming relaxation of (SC), with the upper bound x ; < 1
constraints omitted (an optimal solution will satisfy those constraints automatically).
The dual problemis

Max ity
(SC-dual) subjectto " aijyi<w; (forj=1,..., n)
yi >0 i=1,...,m).
The analysis of greedy relies on allocating the weights of the set selected by the

greedy heuristic to the elements covered, and interpreting those as a form of dual, not
quite feasible, solution.

THEOREM 3.1 The greedy heuristic is a7 (d)-approximation algorithm.

Proof. To prove the desired result, it suffices to show that for any cover C, indicated
by the characteristic vector {X;}, and a cover delivered by the greedy C©,

D H@wj =) Hdwixj = Y wj. (3.1)
=1

jeC jece

Applying thisinequality to C*, the optimal cover, yields that the value of the solu-
tion delivered by the greedy isat most 7 (d) times the value of the optimal solution. To
prove (3.1), it is sufficient to find an “amost feasible’ dual solutiony such that,

m
Y iy <H(Sjhw; j=1....n (3.2)
i=1

3.2 THE GREEDY ALGORITHM FOR THE SET COVER PROBLEM 101

and so that the weight of the sets selected is accounted for by y,

m
Zyi: ij. (3.3)
i=1 jece
Suchy satisfying theseinequalitiesisfeasiblewithin afactor of 7 (d), and it satisfies
(3.1) since,

ZH(d)w, j > Z(Zauyn)xj Z(Zaljxj)yl >Zy| 2 Z wj.

jece (3.4)

Let Sk bethe set S; with the remaining elements at the beginning of iteration k, and
itssize, |S{<| = s'lf. Thedual vector y that will satisfy (3.2) and (3.3) hasfor y; theaverage
price paid by the greedy to cover an element i. Whenever a set is selected, itsweight is
divided evenly among the elementsit has newly covered, y; = l’r

Let thesetsgreedy selectsinthefirst k iterationsbe {1, 2, . k} Sincek istheindex
for which theratio is minimum

w <
S

S

L v (35

—

Assume that there are t iterations altogether. Then, Y, cc wj = _|_; wj. Each
element i € | belongstooneset S\, k = 1,...,t, sofori e Sf, y; = % . (3.3) now

k
follows as,

t

gyl Zzyl lek(lkf Zwk

=1 |ESk k=1

To prove (3.2) observethat, S; N Sf = ¥\ S and I = | J,_, Sf. Hence,

m t

Yam=y ¥ ow=). ¥ w=3 (-5

i=1 k=1jes;nsf k=1jesk\gk+t k=1

For agiven set Sj, let p bethelargest index such that sJP > 0, then

P gk_ sk+l

- giety W 22 i S
DAY= Z(S < wi) S
i1 sk Sj

k=1

We now use the inequality 5'—_;3— < H(s¥) —H(sKH) to establish,
J

m p
Zaijyi = wj Z (H(Slj() _H(sli(+l)> = ij(sjl) '
i=1 k=1

|

The greedy algorithm is thus an O (logn)-approximation agorithm for any set
cover. This matches the recently proved lower bound for approximating the set cover
[F95]. Still considerably better results are possible for special cases. Consider for in-

102 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

stance the performance of the greedy on high coverage instances of unweighted
set cover.

EXERCISE 3.1 [KZ95]: Letanunweighted set cover instance be of a-coverageif ev-
ery element of | belongsto at least «| J | sets. Then the greedy deliversa solution of size
Iogl% n for instances of «-coverage.

As a corollary an enumeration algorithm solves the «-coverage instance in
0O (m©0%9M) steps. The high coverage problem—where is closeto 1—isthus unlikely
to be NP-hard.

—
THE LP-ALGORITHM FOR SET COVER

B

A different approximation algorithm—which is duality based - was devised for the set
cover problem by Hochbaum [Hoc82]. This was motivated by an approximation to
the unweighted vertex cover problem by Gavril (reported as private communication in
[GJ79)]). Gavril’s algorithm is based on the idea of solving for amaximal (not necessar-
ily maximum) matching, and taking both endpoints of the edges in the matching. The
number of edgesin the maximal matching |[M | isalower bound on the optimum |V C *|.
This is because a single vertex cannot cover two edgesin M. On the other hand, if we
pick both endpoints of each matched edge we get a feasible cover, VCM, as otherwise
there would be an edge with both endpoints unmatched. Therefore this edge could be
added to the matching M—contradicting its maximality. These two statements lead to
theinequalities,

IVCM|=2M| <2]VC*|. (3.6)

Hence, this cover is at most twice the optimal cover.

The extension of this idea to the weighted case and to the set cover problem was
inspired by an alternative way of viewing the maximal matching algorithm asafeasible
dual solution. To see that, consider the dual of the linear programming relaxation of the
unweighted vertex cover problem.

Max 2 i.jree Yii
(VC-dual) subjectto > e¥ij<1 forj=1..., n
yijzo, V(i,j)EE.

An integer feasible solution to (VC-dual) is a matching in the graph. Consider a
feasible solution to the dual, y, and let xj = 1 whenever the dua constraint is binding,
> jyee Yij = 1. We show that the solution X is a feasible vertex cover. To that end,
we introduce the concept of maximality: a feasible solution to (VC-dual), vy, is said
to be maximal if there is no feasible solution y such that yij > yij and 3 _; j)ce Vij >

Z(i,j)eE Yij -

3.3 THE LP-ALGORITHM FOR SET COVER 103

LEMMA 3.1 Letybeamaximal feasiblesolutionto (VC —dual). ThenthesetVC =
{i12 6 j)ce Yij = 1) isafeasible solutionto (V C).

Proof. Supposethat V C isnot afeasible cover. Then thereis an edge (u, v) whichis
uncovered, i.e, 3 jyeg Yuj <1and, -, jee Yoj < 1. B

Lets = Min{1—=3" i ce Yuj» 1=, j)cE Yoi}- Thenthevector,y =y +§-e,, (for
ey, denoting the vector of all zeros except for alintheuv entry), is afeasible solution
satisfying yij > yij and Y j)ce Vij > D j)ee Vij- Thiscontradictsthe maximality of y.
Hence, every edge must be covered by V C and VC istherefore afeasible cover. [|

Consider now the generalization of this approach for the set cover problem.

DEFINITION 3.1 A feasible solution to (SC-dual) y is said to be maximal if thereis
nofeasible solutiony suchthat y; > yi and >, vi > >0, Vi

THE LP-ALGORITHM [HOCHBAUM]

Step 1: Find amaximal dual feasible solution for (SC), y.
Step 2: Output thecover CM = {j|>1_; aijyi = wj}.

LEMMA 3.2 CH isafeasiblesolutionto (SC).

Proof. The proof isan obviousextension of Lemma3.1: Consider an element q that is
not covgred. Lets = Min jlgesi{wj — er‘z_laijl)ﬂ} > 0. Then the vector,y =y +34 - &,
is afeasible solution contradicting the maximality of y. [|

Let C* be the optimal cover. Define for any set cover C, w(C) = >, c wj. The
following lemma shows that the the LP- algorithm is a max; {Zi a;j }- approximation
algorithm due to the dual constraint being binding for every j e CH.

LEMMA 3.3 w(CH) <maxi{Y; aij}w(C").

Proof. First,w(CH) =", cnwj=";ccn (O iL;aij¥i). Using theweak duality the-
oremwe get that for any solution to the linear programming relaxation, and in particul ar
for the optimal solution x*,

Yiech Oiiaiyi) < maxi{)jccna@ij) Yol Vi < Maxi{d] jcn @ij} Yo wiX]
= maxi{jccn aijlw(CY).

Now the value of the optimal solution to the linear programming relaxation is a lower
bound to the optimal integer solution. It follows that,
w(CH)§maxi{2j€CHaij}w(C*). [|

This proves a dlightly stronger approximation factor as we can consider the row
sumsrestricted only to those sets in the cover (alternatively the row sums are calcul ated
in the submatrix of the columnsin the cover). For instance, if the cover C" has only one

104 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

set covering each element, then it is optimal. Let the maximum number of sets covering
an element, maxi{}_; aj} be denoted by p.

An immediate corollary of the p-approximation is that the LP-algorithm is a 2-
approximation algorithm for the (weighted) vertex cover problem.

COROLLARY 3.1 The LP-agorithm is a 2-approximation algorithm for the vertex
cover problem.

Proof. (VC)isaspecial case of (SC) with each element—an edge—belonging to pre-
cisely two “sets’ representing its endpoints. Hence, Zi aej = 2for al edgese € E.
[|

Theimplementation of the L P-algorithm proposed in [Hoc82] used the optimal dual

solution as a maximal feasible solution. Still, the role of the dual solution isonly to aid
the analysis of the algorithm. It need not be generated explicitly by the algorithm:

THE ROUNDING ALGORITHM [HOCHBAUM]

Step 1: Solve optimally the linear programming relaxation of (SC). Let an optimal
solution be {xi}

Step 2: Output the cover C™ = {j|x% > 0}. Equivalently, set x| = (xﬂ

The rounding algorithm is indeed a special case of the LP-algorithm as x| > 0
implies that the corresponding dual constraint is binding by complementary slackness
optimality conditions, 3" ; aijVi = wj.

A minor variation of the rounding algorithm is still a p-approximation algorithm.
We replace Step 2 by:

Step 2': Output the cover CH = {j|x} > % .

Thefeasibility of thiscover isobvious, asin any fractional solution x correspondingto a
cover C, Z?:]_Xj > 1, and there are at most p positive entries per such inequality. So at
least onemust beat |east aslargeasthe average <. Thisroundingalgorithm (rounding 1)
will always produce a cover no larger than the rounding algorithm; although it does not
offer any advantage in terms of worst case analysis. Moreover, for any cover produced
by an approximation algorithm, it iseasy to pruneit of unnecessary extrasets, and leave
a“prime” cover, whichis aminimal cover. Although a prime cover can only be a better
solution, this approach has not provided guaranteed tighter approximation factors.

In the next section we seethat it is not necessary to compute an optimal solution to
thelinear programming problem. Rather, there are more efficient ways of finding a max-
imal dual solution, two of which are described in the next section. On the other hand,
as discussed in the section on the preprocessing algorithm, 3.7, the linear programming
solution carries some extra valuable information for the vertex cover and independent
set problems. In addition, for the vertex cover problem it is possible to solve the linear

3.4 THE FEASIBLE DUAL APPROACH 105

programming relaxation by applying a max-flow min-cut algorithm which is more effi-
cient than solving the respective linear program.

It is also shown that the LP-algorithm can also be used in the presence of covering
matriceswith coefficients other than 0 or 1. In Section 3.5it isdemonstrated for adiffer-
ent formulation of the set cover problem. Chapter 4 is devoted entirely to applications
of the agorithm of finding maximal dual solutions to a large variety of covering-type
problems.

—
THE FEASIBLE DUAL APPROACH

e

Solving the linear programming relaxation of set cover can be donein polynomial time.
Yet, much more efficient algorithms are possible that find a feasible and maximal dual
solution. The advantage of such algorithmsisin the improved complexity. The approxi-
mation ratios derived are the same as for the dual optimal solution.

Bar-Yehuda and Even [BYE81] devised an efficient algorithm for identifying a
maximal feasible dual solution to be used in the LP-algorithm. The idea is to identify
afeasible primal constraint and then to increase its dual variabletill at least one of the
dual constraints becomes binding.

As before, the derivation of the dual solutionisimplicit and exists only in order to
analyze the approximation factor. This dual information is placed in square bracketsin
the description of the algorithm to stress that it is not an integral part of the procedure.

THE DUAL-FEASIBLE | ALGORITHM [BAR-YEHUDA AND EVEN]
Step0: SetC =¢; 1 ={1,....,m}; [y=0l.
Step1: Letiel.Let Wiy = minau:le. lyi =wjml; C <« CuU{j)}.
Step 2: {update} For all j suchthataij =1, wj < wj —wja), | < '\ Sj(@).
Step 3: If | =0, stop and output cover C. Else, goto Step 1.

Throughout this procedure the updated w ;s remain nonnegative. The weights wj
are in fact the reduced costs corresponding to the solution y, and at each iteration they
quantify the amount of slack in the dual constraint. In this sense, the algorithm is dual-
feasible—throughout the procedure it maintains the feasibility of the dual vector y. For
any set added to the cover, the updated value of the reduced cost is 0, i.e. the correspond-
ing dual constraint is binding. The resulting dual vector is maximal since each element
belongsto some set in the cover, and thereforeto some set with abinding dual constraint.
Hence, thereis no vector that is larger or equal toy in al its componentswhich is feasi-
ble, unlessitisequal toy.

Lemma 3.3 appliesto the cover delivered by the dual-feasible| agorithm, namely,
dual-feasible | is a p-approximation algorithm to the set cover problem. The

106 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

complexity of the dual-feasible algorithm is O (mn), which is linear in the size of the
input matrix, and hence a considerableimprovement to the complexity of the respective
linear program.

Asin Corollary 3.1, thisalgorithmisa2-approximationto the vertex cover problem.
However, as discussed in the next section, thereis additional information in the optimal
linear programming solution to the vertex cover problem that islost in the dual-feasible
algorithm.

Another variation on the theme of dual feasible solutionswas proposed by Clarkson
[Clar83] for the vertex cover problem. This agorithm is superficially similar to the
greedy algorithm: instead of choosing a vertex based on its minimum weight per edge
covered, it is choosing avertex based on minimum reduced weight. Clarkson did not use
the concept of duality, and his proof for the bound of 2 is consequently more involved.
We adapt thisideafor the set cover problem:

THE DUAL-FEASIBLE ALGORITHM I [AFTER CLARKSON]
Step0: SetC =;S;=S;,jeJ; I ={1....mik=0;[y=0].

Step 1: k=k+1.SeIectasetSjk,suchthat%=minjejl’§—g|.
Jk]
Step 2: {update} Set C < C U{ji} and SK** =sk\ Sk vjeJ, I « I1\sk.
wj < wj =g [S{NSL | [yi = g vi € S]

Step 3: If | =, stop and output cover C. Else, goto Step 1.

Dual-feasible Il has severa interesting aspects. Whenever a set is selected, its cor-
responding dual constraint becomes binding as each of the elements covered by it is
assigned an equal shareof the set’s (reduced) weight. This symmetry among the elements
in the allocation of the dual weights makes the algorithm particularly amenable to par-
allel and distributed implementations. Indeed Khuller, Vishkin, and Young, [KVY 94],
devised a parallel algorithm that runsin time O (log?m log ;1), and produces a solution
that is at most 7 times the optimum.

Inthe next section we demonstrate how Dual-feasible |l could have been conceived
from a different formulation of the set cover problem. This underlies the connection
between formulations and algorithms.

—
USING OTHER RELAXATIONS TO DERIVE DUAL
FEASIBLE SOLUTIONS

- E2

Imagine an aternative formulation of the set cover problem that has many additional
constraints compared to the standard formulation. Let C be any feasible set cover and
anySCl=1{1,..., m}. Then, obviously Zj65|81 N S| > |S|. This leads to a new

3.6 APPROXIMATING THE MULTICOVER PROBLEM 107

formulation with the following L P relaxation of the set cover problem:

Min erlzleXj
subjectto Y0, [SjNS|x; =S| VSCI
Xj 2;0, j c J.
Observe that this formulation contains al the constraints of (SC) for S =i, € I.

All the additional constraints are redundant. The coefficientsin the constraint matrix are
no longer 0 and 1 as before. The dual to thisrelaxation is

Max Zs|s|y5
subjectto Y ¢ ISjNSlys <wj, je
ys >0 Scl.

Consider now the dual feasible algorithm applied to this formulation. For every
violated primal constraint (uncovered element), we increase the corresponding ys pro-
portionaly to its coefficient in al dual constraints until at least one becomes binding.
This means setting

wj
1S;NS|’

In particular, we may choose S = | and add the set Sy for which the minimum is attained
to the cover; update | < 1\ Sy and repeat.

Notice that this algorithm is precisely Dual-feasible 1. To see that the same p-
approximation follows notice that for every pair of feasible coversC and C,

Y ISinsI<pls<p)_IS;ns|.

jeC jeC

Ys = Minjs;nsxp

Let the optimal integer solution be |[SC*|. We now have similar inequalities as before,

Y wi=Y " ISjNSlys =Y Y ISjNSlys < pY_IS|ys < pISC*|.
jeC jeC s S jeC S
This type of approach that uses alternative formulations has lead to considerably
better approximationsfor specific types of covering problems and network design prob-
lems as described in Chapter 4. For an aternative 2-approximation for the vertex cover
problem, see Section 9.2.1.

—
APPROXIMATING THE MULTICOVER PROBLEM

£

Inthissection we present variationsof the L P-algorithm, the rounding algorithm, and the
dual-feasiblealgorithmthat al so work for the multicover problem (M C). The description
of the dual-feasible algorithm and its analysis are from [HH86]. Consider the linear

108 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

programming relaxation of the multicover problem and its dual:
MC* = Min Z?zleXj
(MCR) subject to diaixp=b (fori=1,....m)
0<x;<1 (j=1,...,n)

MC* obviously bounds from below the optimal value to the multicover problem.
The dual to the linear programming relaxation above reads:

Max iy biyi = >0 vj
(MC-dual) subjectto Y aijyi—vj <wj (forj=1,...,n)
yi,vj =0 (i=12....mj=1..., n)

Here afeasible dual solution (y, V) is called maximal if it satisfies:

(i) Thereisnootherfeasiblesolution (y,v) suchthaty; > yi, vi > viand > |-, biyi —
Z?:lvj > Z:nzl biyi — erlzllTi :
(II) v_J = 0 whenever Z{“zlaijyi < wj.
(i) Xy yi = 2 biyi— i 0]
With this definition of maximality, thefollowing L P-algorithmworksasa p-approx-
imation algorithm, where p = maxi{Zj aj}.

THE LP-ALGORITHM FOR MULTICOVER

Step 1: Find amaximal dual feasible solution for (MC), y, v.
Step 2: Output the cover C™ = {j| Y I_; aijyi — vj = wj}.

LEMMA 3.4 The LP-algorithmisa p-approximation algorithm for (MC).

Proof. First, we establish that CH is a feasible multicover. Consider an uncovered
element (row) q. Notice that for the problem to befeasible, every row i needs at least b;
setscoveringit. Let § = Min jjges; {6; = wj — er‘zlaij)ﬂ and §; > 0}. Since there must
be at least by setsthat g belongsto, and at most by — 1 of themarein CH, it follows that
8 iswell defined. Now set, y =y +6-e; andVv=V+} _; q/qes 98-

It is easy to verify that the vector (y, V) is afeasible solution, thus contradicting
property (i) of themaximality of (y, v). Thisisbecausethefirst term hasat | east increased
by by whereas the second term has at most increased by (bq — 1)8, thus contributing to
anet increase of the objective function by at least 6.

Now (y, V) isafeasible dual solution, hence the weak duality theorem applies:

Zbiﬁf min(Zw,x,-) +Zv_j < MC*+ZU_1'
iel jeld jeld jeld
From that and property (iii),

ZYi <MC*. (3.7)

iel

3.6 APPROXIMATING THE MULTICOVER PROBLEM 109

Using the construction of CH:

zwwzm:zz%y—i:z(z%)y—i

jecH jecH jeCHiel iel \ jeCH
< |maxday | ¥i=p-MC
c jecH iel

Thelast inequality follows from 3.7 and the definition of p. Recalling that the vj’'s are
nonnegative and that MC* < w(C*) where w(C*) is the value of the optimal integer
solution, we derive the stated result. [|

A rounding algorithmis also a p-approximation algorithm. It offers the advantage
of asmaller weight multicover.

THE ROUNDING ALGORITHM [HALL AND HOCHBAUM]

Step 1: Solvethelinear programming relaxation of (MC) optimally. Let an optimal
solution be {xi}

Step 2: Output the cover C™ = {j|x¥ >).

ol

Thefeasibility of thiscover isobvious, asin any fractional solution x corresponding
to a cover C, Z'}:laijxj > bj. So at least b; entries must be at least as large as the
average %

Next we present a dual-feasible algorithm that delivers a p-approximate solution to
the multicovering problem. Thisalgorithm has a better complexity than the one required
to solve the relaxation optimally.

The input to the algorithm is the matrix A and the vectors b and w. The output is
COVER-theindicesof thesetsselected and avector (yi,i =1,... ,m;vj, j=1,...,n)
that will later be proved to constitute afeasible dual solution.

THE DUAL-FEASIBLE MC ALGORITHM

Step 0: (initilize) v; =0,j € J.y;=0,i € J. COVER=.

Step 1: Letiel.Letwy=min{wj|j e J-COVERanda;; = 1}. (k istheminimum
cost column covering row i.) If no such minimum exists, stop - the problem
isinfeasible.

Step 2: Sety; < Vi +wy. COVER < COVERU{k}. Forall j € J suchthataj; =1
setwj < wj—wk. Ifwj <0thenvj < vj —wj and wj < 0.

Step3: Setb; < bj—1,i=1,...,m. Fordli’suchthatbj =0,1 <« I —{i’}. If
| = ¢ stop. Elsego to Step 1.

The agorithm repeats Step 1 at most n times, since if following n iterations the
set | isnot yet empty, then there is no feasible solution. This could occur for instance

110 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

if the amount of required coverage exceeds the number of covering sets, n. At each
iteration there are at most (max{n, m}) operations resulting in a total complexity of
O (max{n,m}-n).

The output of the algorithm is the set COVER of indices of the selected sets that
multicover all elements, or astatement that the problemisinfeasible. We shall now prove
that dual vector derived is maximal and satisfies the three properties.

In the proofs of the facts that follow we shall use the notation S = {i|a;; = 1}, i.e,
S; denotesthe jth Set.

Fact 1. For each j € COVER, wj =35 Vi —vj.

Proof. By construction w; +vj = » ;.]

ieS;j
Fact 2. ZiESj Vi <wj+v; Vjel.

Proof. Thisfollows from Fact 1 and from Step 1 since the minimum cost column is
always selected. [|

Fact 3. Theoutput of the algorithm (y, v) = ({yi i ?:1) isafeasible solution
to the dual problem.

Proof. First, yi, vj areaways nonnegative. Thisfollows sincey; is equal to acost w;
during one of theiterationsand the w;s are always maintained as nonnegative numbers.
Each v; is asum of positive numbers, and hence, nonnegative as well. Finally, Fact 2
establishes the feasibility with respect to the constraints.]

Fact4.v; =0for al j € J-COVER. Thisfact follows from the selection made at
Step 1 of the algorithm.
The following lemmais useful in the proof of property (iii).

LEMMA 3.5 > i cover?i =< 2ici@i—1)yi (notethat by > 1iel).

Proof. The values of the left-hand side and the right hand side of the inequality vary
during the algorithm’s iteration.

Welet thevalueof vj and y; after iterationt be denoted by v{” and y;"’ respectively.
Let T bethe number of iterations. We shall prove by inductionont that

S <Y -ny?, =17,

jeCOVER icl
Fort = 1, theleft-hand sideis zero and the right-hand side nonnegative. We shall assume
by induction that the inequality holdsfort =1,...,1 — 1 and provefor .

Let M = wy bethe minimum column cost selected at iteration I; then the right-hand
sideincreasesby (b; —1)- M with y; increasing by M. Each v{” might beincreased by at
most M compared to the previousiteration but for no more than (bj — 1) columns. This
is the case since a cost of a column could become negative (thus triggering the increase
in v?)), onlyif itisaready b; columnsor morecoveringrow i in COVER. Thenthisrow

3.6 PREPROCESSING 111

would have been removed from the set |, and thus could not be considered at iteration
I. Therefore, theinequality is preserved at each iteration, and hence, the desired resullt.
[]

From the proof of the theorem it follows that the heuristic solution value does not
in fact exceed (max Z ajj) times the value of the optimum. This quantity could be

1€l jeCovEr
much smaller than p.

The derivation of the dua vector as a by-product of the heuristic also provides a
certificate of optimality for the selected set COVER (or any other solution) satisfying

n n
Y iccoverWj = i1 biyi — Zj:lvj'

—
THE OPTIMAL DUAL APPROACH FOR THE VERTEX

COVER AND INDEPENDENT SET PROBLEMS:
PREPROCESSING

- E

Aswe saw earlier, finding the optimal dual solution rather than a feasible one does not
offer improved approximation bounds in general but requires more running time. Still,
for the vertex cover and independent set (and the more general integer programs with
two variables per inequality), the optimal dual solution provides important information
about the problem, and allowsit to improve the approximation bounds. For vertex cover,
the use of the optimal dual solution guarantees that any heuristic used along with that
information as preprocessing, yields an approximation ratio strictly better than 2.

Many intuitively reasonable heuristics for the vertex cover problem, (with the ex-
ception of the L P-algorithm), may fare quite badly compared to the optimal solution to
the problem. For instance, anatural heuristic to consider isto take thelargest degree ver-
tex inthe graph for the unweighted problem. Thisisthe greedy algorithm, and, as shown
by Johnson [Joh74], this heuristic applied to a graph of maximum degree k may deliver
a cover whose weight exceeds the weight of an optimal cover by afactor of (k) even
if al weights are unit.

Another heuristic is available when the set of vertices of the graph V is split into
independent sets{V1, ... , Vk}. (Methodsof obtaining such asplit will bedescribed | ater.)
Each set V \ Vj isacover. In particular, V \ V; of the smallest weight may seem to be a
good candidatefor acover C. Still, theratio %CC)) may be arbitrarily large even when G
is fixed. Indeed, consider the path with vertices {1, 2, 3, 4} and weights w; = ws = M,
wy = w3 = 1 for some large M. When V is partitioned into two independent sets, the
strategy proposed hereyieldsacover C withw(C) = M + 1 and yet the optimal cover C*
hasw(C*) = 2. Somemoreillustrations of such undesirable behavior of other heuristics
are quite common. Still, it seems that the LP-heuristic alone employs relatively little
information about the underlying structure of the graph, and one should be able to fare
better with additional graph information taken into account.

112 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

This idea has motivated the use of the preprocessing procedure of [Hoc83] that
makes use of the linear programming information and additional information about the
graph. Indeed, the quality of the solution delivered by any heuristic can be improved if
we first partition the graph into two subgraphs with the property that in one subgraph
an optimal selection of a cover is known and in the other the weight of the optimal
cover isat least half of the total weight of al vertices. The existence of such a partition,
implied by the fractional solution to the problem, has been established by Nemhauser
and Trotter [NT75].

More precisely, Nemhauser and Trotter [NT75], Balinski and Spielberg [BS69],
and Lorentzen [Lor66] have shown that there exists an optimal solution to the linear
programming relaxation of (V C), x*, such that x7 €{0,1, %}. We call this property the
half integrality property. Nemhauser and Trotter have further proved that there exists an
optimal integer solution that is equal to x* in its integer components. We refer to this
property as the ““fixing variables™ property. Both the half integrality property and the
“fixing variables’ property were proved to hold also for P2 (see [HMNT93] or 3.8).

One possible algorithmic use of fixing variablesis that an optimal integer solution
may be obtained by rounding the components of x* that are equal to % The rounding
could beup or downto 1 or O respectively. Since thereare 2" possible rounding schemes
(some of which may not lead to a feasible solution), this fact in itself does not aid in
speeding up the search for an optimal solution. It does, however, provide us with ahead-
start in the search towards a solution: consider an optimal solution x* to (V CR), and the
implied partition:

jeP if xj=1

1
. T
j € Q if x; >
jeR if x;=0.

Then, using the fixing variables property we conclude,

(i) atleast oneoptimal coverinC contains P,
(ii) eachvertexin R hasall itsneighborsin P,
(iii) eachcoverin G hasweight at least w(P) + 2w(Q).

From (i) and (ii), it follows instantly that at least one optimal cover in G consists
of the set P and of an optimal cover in the subgraph H induced by Q. Thus, it suffices
to find an optimal cover in H; working with H rather than with G is what we mean by
“fixing variables.”

Fixing variables is a trick which can be applied not only in the context of finding
optimal covers but also in the context of heuristics for finding near-optimal covers. In
this context, the trick has a nice corollary: If C isany cover in H, then (by (ii)) PUC
isacoverin G, and (by (iii)) itsweight is at most twice the weight of an optimal cover.
Thusany heuristic for finding near-optimal covers can be madeto deliver a cover whose
weight is at most twice the weight of an optimal cover: it suffices to preprocess G by
finding P, Q, R, and then to apply the heuristic to H rather than directly to G. Formally,

3.7 PREPROCESSING 113

let CH bethe cover delivered by the heuristic on the subgraph H. Then,
w(CHUP) _ w(CH) +w(P) _ 2w(CH)
wC T Jw@Q+wP) T w@Q)

The conseguence of using the preprocessing techniqueisthat any heuristic for the vertex
cover problem delivers a solution that is less than twice times the optimum. C" is a
subset of Q, and one can always remove just one vertex from Q that is of maximum
weight and consider the rest as the heuristic cover.

The preprocessing technique has become the basis of most “ good” heuristicsfor the
vertex cover problem, and it can be used toimprove by afactor of two the approximation
ratio for the independent set problems. Unlike the vertex cover, we cannot guarantee an
approximation ratio better than half (or factor of two off the optimum) for the indepen-
dent set problem. To see why, consider a heuristic applied to the subgraph H delivering
an independent set 1 S . Theratio of the weight of the resulting independent set to the
optimal independent set 1S* is,

w(ISHUR) - w(ISM) +w(R) >2w(ISH)
wds) T w(Q+w®) T w(@Q

Now IS could be arbitrarily small, so the ratio may be arbitrarily close to O. If
on the other hand the heuristic procedure guarantees a certain positive ratio, the use of
the preprocessing technique may double this ratio. Whether or not the ratio is doubled
depends on whether the graph property is hereditary and maintained for the subgraph.
When applying the procedureto a graph with asmall largest claw number, for instance,
thereis no improvement with preprocessing (as this property is not hereditary), and the
bound on the optimum relies on the bounded claw number of the graph. This algorithm
will be demonstrated in alater section.

Pulleyblank [Pul 79] observed the following with regard to the size of the subsets
P and Q. He proved that almost al graphs (randomly generated) have an L P-relaxation
for which the solution is a vector of %s and no integer entries. In that sense, the use of
the preprocessing is more to guarantee that the graph has no integer nodes, rather than
to attempt to find many integer values.

3.7.1 THE COMPLEXITY OF THE LP-RELAXATION OF VERTEX COVER
AND INDEPENDENT SET

In order to apply the preprocessing solution the optimal LP solution must be available.
Although in principleit is possible to solve linear programsin polynomial time (using
Ellipsoid method or interior-point methods), such proceduresare | ess effi cient than many
combinatorial algorithms. In particular, the LP-relaxation of the vertex cover is solvable
by the max-flow min-cut algorithm.

The LP-relaxation of the vertex cover problem can be solved by finding an optimal
cover in abipartite graph with two verticesfor each vertex in the original graph, and two
edgesfor each edgein the original graph (see Figure 3.3). In the bipartite graph avertex
cover may be identified from the solution of a corresponding minimum cut problem.
Specifically, as suggested by Edmonds and Pulleyblank and noted in [NT75], the LP-

114 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

relaxation can be solved by finding an optimal cover C in the bipartite graph with two
vertices aj, b; of weight w; for each vertex j of G, and two edges (aj, bj), (a;j. b;i) for
each edge (i, j) of G: thenit sufficesto set

Xj=1 if a,-,bj eC,
1
Xj=3 if a,€C.bj¢C, or a;¢C.b;€C,

Xj=0 if aj&/c,bjﬁ/c.

In turn, the problem of finding C can be reduced into a minimum cut problem;
the bipartite graph can be converted into a network by making each edge (a;, bj) into
adirected arc (aj,bj) of an infinite capacity, adding a source s with an arc (s, a;) of
capacity w; for each i, and adding asink t with an arc (bj,t) of capacity w; for each
j.-Now aminimumcut (S, T) withs € Sandt € T pointsout the desired C: it suffices
toseta; € Ciffaj € T andbj € Ciff bj € S. A description of theresulting graphisgiven
in Figure 3.3.

Theminimum cut can befound by efficient al gorithmsfor maximum flow on (bipar-
tite) graphs. For instance, if one uses Goldberg and Tarjan’s algorithm, [GT88], it takes
only O(mnlog %2) stepsto preprocess G with n verticesand m edges by partitioning the
set of verticesinto P, Q and R. Thisalgorithmisaspecial case of the algorithm used to
find the half integer solution for P2 where min cut is also used for preprocessing (see
Section 3.8).

FIGURE 3.3

3.7 PREPROCESSING 115

We now present an alternative method of reducing the LP-relaxation to a flow
problem that is illuminating as to why min cut solves this problem. Consider the LP-
relaxation of the vertex cover problem (VCR),

Min Z?:lexj
(VCR) subjectto xj+xj>1 (forevery edge (i, j) inthe graph)
0<x;j<1 (j=1,...,n.

Replace each variable x; by two variables, xj+ and x;, and each inequality by two
inequalities:
Xt —x; =1
—X +xf =1,

Thetwo inequalities have one 1 and one —1 in each, and thus correspond to a dual of a
network flow problem. The upper and lower bounds constraints are transformed to

O<x{<1
—1§x;50.

In the objective function, the variable x j is substituted by %(x}L —Xj).

Theresulting constraint matrix of the new problemistotally unimodular. Hence, the
linear programming (optimal basic) solution isinteger, and in particular can be obtained
using a minimum cut algorithm. When the origina variables are recovered, they are
integer multiples of 2.

We will see in Section 3.8 that this transformation is applicable to all integer pro-
gramswith two variables per inequality. That, in addition to the “fixing variables’ prop-
erty that applies, guarantees that any heuristic will give abound of 2 or better.
Remark: When the problem is unweighted, the network flow that solves the LP relax-
ation is defined on simple networks. These are networkswith all arcs of capacity 1, and
every node has either one incoming arc or one outgoing arc. In this case, the arcs in
the bipartition of the type (ai, bj) can be assigned capacity 1 instead of co. For simple
networks, Dinic’s algorithm for maximum flow worksin O (,/nm) time—a significant
improvement in running time.

3.7.2 EASILY COLORABLE GRAPHS

It is now demonstrated how to exploit certain graph properties with the preprocessing
technique so as to obtain approximation factors better than 2 for the vertex cover prob-
lem, and improved approximations for the independent set problem. For many classes
of graphsit is easy to split the nodesinto independent sets. Assigning each independent
set acolor resultsin avalid coloring with adjacent vertices having distinct colors.

THEOREM 3.2 Let G be aweighted graph with n vertices and m edges; let k be an
integer greater than one. If it takesonly s stepsto color the verticesof G ink colors, then
it takesonly s + O(nmlog %2) steps to find an independent set whose weight is at |east
2/k times the weight of an optimal independent set and to find a cover whose weight is
at most 2 — 2/k times the weight of an optimal cover.

116 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

Proof. It takesonly s + O(nmlog ”EZ) steps to color G in k colors and to find the set
P, Q, R of the preceding section. (Note that it suffices to color only the vertices of Q.)
The coloring of G splits Q into k color classes; if S denotes the heaviest of them then
W(S) > W(Q)/k. Theset RUS isindependent since

2

1 1
w(RUS) z w(R) + w(Q) = ¢ ((w(R)+§w(Q)),

itsweightisat least 2/ k timestheweight of an optimal independent set. The complement
Cof RUS isacover since

2k — 1)

w(C)fw(P)Jrk%lw(Q) < (w<P>+%w(Q)>,

itsweight isat most 2 — 2/k times the weight of an optimal cover.]

The remainder of this section consists of various corollaries of Theorem 3.2. To
beginwith, let D(G) denotethe largest d such that G contains asubgraph in which each
vertex hasdegreeat least d. Asproved by Szekeresand Wilf [SW68], every graph G can
becoloredin D(G) + 1 colors. For the sake of completeness, we shall describe away of
finding such acoloring and evaluating D(G) inonly O (n+m) steps. To evaluate D(G),
it sufficesto dismantle G by successive removals of vertices of minimum degree.

MAXIMUM MINIMUM DEGREE SUBGRAPH

Step0: Setd =0.
Step 1: If G has no vertices left, then stop; otherwise choose a vertex v of the
smallest degree.

Step 2: Replace d by the maximum of d and the degree of v. Then remove v (and
all the edges incident with v) from G and return to Step 1.

If v; denotesthe vertex removed from G in theithiteration, then each v; has at most
d neighbors among the vertices v, vij2, ..., vp. To color G in no more than d + 1
colors, it suffices to scan the sequence of vjs from v, to v, assigning to each v; the
smallest positive integer not yet assigned to any of its neighbors.

COROLLARY 3.2 It takesonly O(nmlog %2) steps to find, in any weighted graph G
with n verticesand m edges such that m > 0, an independent set whoseweight is at |east
2/(D(G) + 1) times the weight of an optimal independent set and a cover whose weight
isat most 2—2/(D(G) + 1) times the weight of an optimal cover.

The celebrated theorem of Brooks[Bro41] assertsthefollowing: if G isaconnected
graph of amaximum degree A such that A > 3 and if G isnot the complete graph with
A+ 1 vertices, then G is A-colorable. An elegant and constructive proof of thistheorem,
dueto Lovasz [Lov754], provides an algorithm which finds the coloring in only O (An)
steps. (The algorithm requires finding cutpoints and endblocks in a graph. This can be
donein O(m) steps by depth-first search as described, for instance, in [Baarg]).

3.7 PREPROCESSING 117

COROLLARY 3.3 It takes only O(An2log™) steps to find, in any weighted graph
with n vertices and a maximum degree A such that A > 2, an independent set whose
weightisat least 2/ A timesthe weight of an optimal independent set and a cover whose
weight isat most 2 — 2/ A times the weight of an optimal cover.

Proof. \We may assume that A > 3; otherwise each component is a cycle or a path
and a straightforward dynamic programming algorithm finds an optimal independent
set and an optimal cover in only O(n) steps. Furthermore, we may assume that the
graph is connected; otherwise each component may be treated separately. Finaly, we
may assume that the graph is not complete: otherwise an optimal independent set and
an optimal cover may be found trivially in O (n) steps. But then the desired conclusion
follows directly from Brooks' theorem and Theorem 3.2. [|

We will show in the next subsection that the % guarantee for independent set can be
improved by using a better partition.

The coloration heuristics are not counterexamples to our conjecture that vertex
cover isimpossibleto approximatewithin aratio strictly lessthan 2. To show that, welet
agraph G bedefined asfollows. Consider A A-cliquesand A (A — 1)-independent sets.
Each clique has one edge connecting it to one of the verticesof anindependentset. A — 1
of the independent sets are one set of verticesin acomplete bipartite graph with the Ath
independent set as the second set of vertices. For such family of graphs, one can easily
verify that G is A chromatic and G = H. One feasible! A-coloration consists of each
one of the independent sets colored by one of the A-colors. The heuristic then deliversa
cover C of size (2A —1)(A — 1). Theoptimum cover C* isof size A(A—1) +(A—1)
and theratio
. 2—-3/A
w(C)/w(C*) =2 A—1/A
which could be arbitrarily close to 2.

The standard proof due to Heawood that every planar graph is five-colorable (see,
forinstance, [Har69]) has been converted into linear timealgorithms[CNS81] [MST80].

COROLLARY 3.4 It takes only O(n?log ”HZ) steps to find, in any weighted planar
graph with n vertices, an independent set whose weight is at least 0.4 times the weight
of an optimal independent set and a cover whose weight is at most 1.6 times the weight
of an optimal cover.

Furthermore, the proof that every planar graph is four-colorable[AH77] [AHK77]
isconvertibleinto an algorithmwhich actually findsthe col oring in apolynomia number
of steps.

COROLLARY 3.5 It takes a polynomia number of steps to find, in any weighted
planar graph, an independent set whose weight is at least 0.5 times the weight of an

TIn order to make this coloration unique we add afew edges to the graph: The verticesinthe cliques
that connect each clique to each independent set are linked together to make a complete subgraph. The
i independent set is connected to all these vertices except for the i vertex.

118 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

optimal independent set and a cover whose weight is at most 1.5 times the weight of
an optimal cover.

3.7.3 A GREEDY ALGORITHM FOR INDEPENDENT SET
IN UNWEIGHTED GRAPHS

Sparse graphs have large independent sets. More precisely, the celebrated Theorem of
Turan [Turdl] asserts that every graph with n vertices and an average degree § (this
guantity is not necessarily an integer) contains a independent set of size at least ﬁ
An elegant proof of Turan'stheorem, due to Erdos[Erd70], is easily converted into the

following algorithm for finding aindependent set S in a most O (m) steps.

GREEDY ALGORITHM [ERDOS]

Step0: Set S=0.
Step 1: If G hasno verticesthen stop; otherwise chooseavertex v with the smallest
degreed in the current graph.

Step 2: Addvto S, deletev and all its neighbors (along with all the edgesincident
with at least one of these vertices) from G, and return to Step 1.

To show that the size of the independent set S delivered upon termination is at
|east ﬁ we observe that whenever a vertex v; of degree d; (thisisthe degree of v; in
the reduced graph from which v; is selected and subsequently removed) is chosen and
deleted, we eliminate atotal of d; + 1 vertices from the graph and the sum of the degrees
of theverticesdeleted is at least d; (d; +1). If g = |S| isthe number of vertex selections

performed in the greedy algorithm, then
g q
> didi+1)<ns and » (di+1)=n. (3.9)
i=1 i=1

By adding these two equationstogether and then applying the Cauchy-Schwarz inegqual -
ity, we get that

g 2
N6+D =Y G+ =
i1 q
fromwhichit followsthat q > 515.

By using the greedy algorithm in conjunction with preprocessing, we get the fol-
lowing result.

THEOREM 3.3 [Hoc83] Inany graphG withn verticesand averagedegrees it takes
o(sn3) steps to find an independent set of size at least le times the size of maximum
independent set.

3.7 PREPROCESSING 119

Proof. Preprocessing an unweighted graph can be executed in only O(m/n) steps
[HK73]. Oncethepartition P, Q, R isobtained we apply the algorithm above to the sub-
graph H. Thetotal number of stepsdoesnot exceed O (§n ?). Thesizeof thei ndependent
set delivered by the algorithm is at least |R| + (JH—%, where § isthe average degreein
H. (Incidentally, notethat §; > 2 asthereisaways a solution with no vertices of degree
onein the subgraph H.) Now we note that:

Fact 1. G isaconnected graph, hence,
- |Qln + |R| +|P]
= |QI+I[R[+]P]

(notethat n = |Q|+|R| +|P]).

Fact 2. |R| > |P|, otherwise setting G = H (i.e,, all vertices are assigned the value
%) impliesan “LP relaxation” solution of valuelarger than |R| + %lQl, contradiction.
To complete the proof it suffices to show (using Fact 1) that

IRIﬂfil>2<|Q|8H+|R|+|P|>1
IRI+31QI ~ "\ IQI+IRI+IP|)
Rearranging thisinequality we reduceit to

|QI(IR[SH B — 1) — P01 —1) —|P[(6n — 1)) > 0.

Thevalidity of thisinequality follows easily from Fact 2.]

Halldérsson and Radhakrishnan ([HR94]) have recently tightened this analysis to
achieve an improved bound on q. Consider an optimal independent set, and let k; bethe
number of nodes from this independent set deleted at stage i of the greedy a gorithm.
Then, because an edge can have only one of its endpointsin the maximum independent
set, the equations (3.8) can be tightened:

q q
D didi+ D +kikki—D <nsand Y (di+1)=n.
i=1 i=1
Adding these two equations along with Z?:l ki = 1S*, and applying the Cauchy-
Schwarz inequality yields,
q 2 |1S* 2
G Inaz Yo7z T
i=1

which impliesthat q > n?;j;(lil)il)sz Because this quantity is maximized at | S* = n, the

following improved bound for the quality of the greedy solution is found:

> — .
42512

When used in conjunction with the preprocessing technique, asin Theorem 3.3, a better

performance bound of 5> is achieved.

[HR94] also provides an analysis that yields a performance guarantee in terms of
the maximum degree A in an unweighted graph of q > Ai-&-2 for the greedy algorithm.
Thisis better than the bound in Corollary 3.3 when the graph is unweighted and A > 5.

120 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

Aswe discussin the next subsection, the idea of subgraph removal can beincorporated
to further improve the performance guarantee given for the greedy agorithm.

3.7.4 A LOCAL-RATIO THEOREM AND SUBGRAPH REMOVAL

In some cases, the absence of a particular family of subgraphs H (for example, odd cy-
cles) fromagraph G canimply animproved approximation guaranteefor finding an op-
timal structurein G. Bar-Yehudaand Even [BE85] have devel oped alocal-ratio theorem
that, by removing problematic subgraphs, yields several new approximation algorithms
which improve upon previously known results for the weighted vertex cover problem.
Their main result isa (2 — I;'ﬁﬂ%)-aoproximation algorithm that relies on eliminating
“small” odd cycles. This subsection describes their approach and its extension to other
approximation problems.

Let H be aset of graphs. Let A, be an approximation algorithm for the weighted
vertex cover problem. Consider the following algorithm to find a vertex cover in the
graph G = (V, E), with weight function w.

SUBGRAPH REMOVAL ALGORITHM [BAR-YEHUDA AND EVEN]

Step 0: Set wo <« w.

Step 1: While there exists a subgraph H of G that is isomorphic to some member
of H and whose vertices have positiveweight, do: Vv € V (H) set wo(v) <
wo(v) — &, where § < minfwo(v)|v € V (H)}.

Step 2: Set: VCp <« {v € Glwp(v) =0}; V1 <V —VCy.

Step 3: Let VC; bereturned by applying Az on G(V1), with the weight function
wp. Return VC < VCoUVCy.

ForeachentryinH e H, letry = 2—: whereny isthe number of verticesin H and
cy isthe cardinality of a minimum unweighted vertex cover in H.ry iscalled the local-
ratio of the graph H. The quality of solution returned by the above algorithm is given

by the following theorem from [BE85]:

THEOREM 3.4 Local-Ratio Theorem Letry =maxy<n{ry}andra,, betheappro-
ximation factor guaranteed by the algorithm A, oninput G (V;). Then, the vertex cover
V C returned by the Subgraph Removal Algorithm hasweight at most r = max{r, ra,, }
times that of the optimal vertex cover.

In order to establish Theorem 3.4, we need a preliminary lemma.

LEMMA 3.6 Let G = (V, E) beagraph, and w, wy, and w, be weight functions on
the vertices VV, with optimal vertex coversV C*, V C; and V C;, respectively. Suppose
that w(v) > w1 (v) + wo(v), for every v € V. Then,

w(VC*) > wi(VC) +w2(VC3) .

3.7 PREPROCESSING 121

Proof.

wVCH = Y w) > Y (wi(v)+wa(v))
veV C* veVC*
=w1(VC*)+wa(VC*) > wa(VC)) +wa(VC3) .

Proof. (Local-Ratio Theorem) The proof is by induction on k, the number of times
that the do-while loop in Step 1 of the Subgraph Removal Algorithmisiterated through.
For k = 0 the theorem is obviously true.

Now consider the case k = 1. Let VC* and VC{ be the optimal solutions with
respect to w and wo, and let V C be the vertex cover returned by the algorithm. Then,

w(VC) <wo(VC)+8ny <ra,, wo(VC*) +rudcu
<r(wo(VC*) +dcy) <rw(VC¥).

For k > 1, imagine running Step 1 through one iteration. Then, by considering the
remainder of the algorithm as* A" with performance guaranteer (from the induction
hypothesis), we arein thek = 1 case, from which the result follows.]

By selecting H appropriately and designing the approximationa gorithm A4, totake
advantage of the absence of such subgraphs, the Subgraph Removal Algorithm achieves
approximation procedures with improved efficiency and/or approximation guarantee
over previously known algorithms. The following is a summary of the results presented
in[BES85].

1. Hisanedge: Anedgehasalocal-ratio of 2. By removing edgesduring Step 1 of
the Subgraph Removal Algorithm, we are left with an empty graph at Step 2 (for
which ry, vacuously equals 1). Thus, the algorithm gives a 2-approximation.

2. H is a triangle: By removing triangles during Step 1, which have a loca-ratio
of 1.5, we are left with atriangle-free graph at Step 2. Then, by using the 2 — %
approximation algorithm from [Hoc83] as A, where k is the number of colors
needed to color the remaining graph, two results follow:

a. Wigderson has shown [Wig83] that triangle free graphs can be colored with
k = 2/n colorsin linear time. Thisyieldsamin{1.5,2 — %} =2 % (for
n > 4) approximation guarantee for general graphs. (Halldorsson [H94] has
noted the existence of anicealgorithm [She83] that colorstrianglefree graphs

withk =2 /log%n colors, yieldinga2—,/ '0%” approximation guarantee.)

b. Triangle-freeplanar graphscan becoloredwithk =4 colorsinlinear time (see
[Har69)]), yielding an algorithm that matches the known 1.5 approximation
guarantee of [Hoc83] for planar graphs. The advantageis that the complexity
of the general 4-coloring algorithmsfor planar graphsis avoided.

3. H is the set of “small” odd cycles: Odd cycles up to length 2k — 1, where
(2k—1)* > n (s0, k < [5095), are removed. This set of cycles has local ratio
ry = #=1 =2— 1. For Ay, we use an algorithm, with the same performance

ratio, developed in [BE85] for graphs in which al odd cycles have length at

122 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

least 2k + 3. Thisyields an approximation ratio guarantee of 2— & < 2 1991%9",

(Monien and Speckenmeyer [M S85] have used asimilar approach to achi eveo?m-
proved results for the unweighted vertex cover problem.)

Halldoérsson and Radhakrishnan [HR94] have used the strategy of triangle removal,
in conjunctionwith preprocessing, to achieve several additional resultsfor finding vertex
coversin unweighted graphs:

1. Removing triangles and applying the coloring algorithm of [She83] yieldsa2 —
19249() approximation guarantee, where A is the maximum degree of avertex
in the graph.

2. Consider a graph that is p-claw free. After removing triangles, the size of the
largest claw is equal to the maximum degree of the remaining graph. Thus, the
preceding result holdswith A replaced by p — 1.

Halldérsson and Radhakrishnan [HR94] also employ a strategy of subgraph re-
moval to achieve improved approximation algorithms for finding large (unweighted)
independent sets. Their general schema, which entails removing all cliques of a given
size from the graph and then running any particular independent set algorithm on the
resulting graph, is used to achieve improved performance bounds for the particular in-
dependent set algorithm. Used in conjunction with the greedy algorithm, for instance,
they achieve an asymptotic performanceratio of 3-T76 by removing 8-cliques. Better per-
formance bounds may be achievableif it is used in conjunction with other heuristics.

3.7.5 ADDITIONAL ALGORITHMS WITHOUT PREPROCESSING

3.7.5.1 Independent Set in Weighted Graphs

By applying a graph theoretic result of Lovasz [Lov66], it is possible to improve the
approximation guarantee for the weighted independent set problem in bounded degree
graphsfrom % to [riq where A isthe maximum degree of avertex in the graph.

Theideaisto consider a partition of a graph into k subgraphs, for some integer k;
that is, partition the verticesinto k subsets and consider the k subgraphsinduced by each
of thek subsets. Being able to find an optimal independent set in each subgraph implies
being able to find an independent set with weight within afactor of % of the optimal in
the original graph. Thisfact is established in the next theorem.

THEOREM 3.5 Consider aweighted graph G = (V, E), andlet V4, ..., Vk beaparti-
tion of the vertices V into k subsets. If | S;* is an optimal independent set in G; (where
Gj isthe subgraph of G induced by theverticesV;) fori =1, ...k, and | S* an optimal
independent set in G, then

ifﬁ(,k{w(lsr)} > %w(ls*).

3.7 PREPROCESSING 123

Proof. Because | S* isanindependent setin G, 1 S*UV; isanindependent set in G;i.
&)1

k k
Zw(ISi*) > Z(wus*)mvi) = w(lS*).
i=1 i=1
Now, the result follows by the pigeonhole principle. [|

Thus, being ableto partition agraph into k subgraphsin which optimal independent
sets can be found in polynomial timeleadsto a %-aoproximation algorithm for weighted
independent set. Of the optimal independent sets in the subgraphs, select the one with
maximum weight. More generally, being able to solve the independent set problem for
each subgraph within a factor 8 of the optimal implies a é—approxi mation algorithm.
Halldbrson has noted the existence of a partitioning that can be used in this manner by
applying the following theorem due to Lovasz:

THEOREM 3.6 Lovasz Let G(V, E) be agraph with maximum degree A. Let k be
any integer suchthat 1 <k < A, andlet A,..., A be nonnegativeintegers such that,

A1+Ar+.. . +A = A—k+1.

Then, V canbepartitionedintok subsetsVi, ... , Vi, suchthat Aj isthe maximumdegree
of avertex in the subgraph of G induced by Vj, fori =1,... k.

Moreover, a crude analysis of the algorithm implied by the proof of the above the-
orem shows that the partitioning of the graph can be carried out in O (mk) time. The
previous two theorems lead to the following corollary:

COROLLARY 3.6 Let G beaweighted graph with maximum degree A. Anindepen-
dent set with weight within afactor of rtilw of theoptimal canbefoundin O(mA) time.

Proof. Applying Theorem 3.6, agraph can be partitioned into k = (AT”} subgraphs,
each with maximumdegree 2,in O (mA) time. Now, an optimal independent set in such
graphs can be found in linear time. Thus, by Theorem 3.5, we can find an independent
set with weight within @ of the optimal. |

3.7.5.2 Vertex cover in unweighted large min-degree graphs

Karpinski and Zelikovsky [KZ95] recently proposed an a gorithm for which the approxi-
mationisimproved for graphswith large minimum degree. L et agraph be called §-dense
if each vertex is adjacent to at least §n vertices. Let N (v) bethe set of neighborsof v in
G = (V,E). Thefollowingisa 1_is approximation algorithm:

124 CHAPTER 3

procedure 725~ approximation

3

forall v eV do

V(v) < V\{N(v)Uuv}

apply dual-feasible | algorithm to find afeasible vertex cover
V C(v) inthe graph induced on V (v).

V C(v) <« VC()U{N(v)}

Return V C (u) where [VC (u)| = minyeyv |V C(v)].

The algorithm makesn callsto dual-feasiblel, henceits complexity is O (mn). The
proof that the bound is valid is derived by assessing the ratios for the cases when the

optimum cover OPT satisfies|OPT| < (1—8)nand|OPT|> (1-§)n.

3.7.6 SUMMARY OF APPROXIMATIONS FOR VERTEX COVER
AND INDEPENDENT SET

We present here two tables al ong with anotation legend with the best known approxima-
tion results to date for vertex cover and independent set. The following legend explains

the meanings of the symbolsused in Table 3.1:

Symbol | Meaning
n number of verticesin the graph
m number of edges in the graph
o value of optimal independent set
X chromatic number
A maximum vertex degree
8 average vertex degree
D(G) | maXpce{min,cn{degree(v)}}
p-claw | asubset of (p+1) vertices that induces a p-star
T(n,m) | complexity of finding a minimum cut in a network with n nodes, m arcs
S complexity of applying Shearer’s coloring algorithm
3 minimum vertex degree

References and comments: (1) [Hoc83]; (2) [Hoc83], A-coloring via Brooks'
theorem; (3) [HR94]; (4) [HR94]; (5) [Hoc83],(sy is ave degree in subgraph H.);

(6) [Hoc83]; (7) [Hoc83]; this running time isfrom [BE8S]; (8) [Bak83],
approximation scheme; (9) [BE85], via coloring agorithm in [Wig83]; (10) [BE85];
(12) [Hoc83] ¢ isafixed constant; (12) [MS85]; (13) [Hoc83]; (14) [YG92];

(15) [HR94]; (16) [KZ95]; (17) [Hoc83]; (18) [H94], using graph decomposition of
[Lov66]; (19) [HR94], analysis of greedy algorithm; (20) [Hoc83]; (21) [HR94];

(22) [HR94], analysis of greedy algorithm; (23) [Hoc83]; (24) [Hoc83]; (25) [Bak83],
approximation scheme; (26) [Hoc83]; (27) [YG92].

APPROXIMATING COVERING AND PACKING PROBLEMS

3.7 PREPROCESSING 125
| Vertex Cover Problem |
Graph Approximation Complexity Unweighted| No Pre- | Ref
Parameter Guarantee Only processing
2
A 2-2 O(An?logn) 2
2-%5 T(n,m) * 3
2 1294400 T(h,m)+S * 4
5 2- 2 O@un?) . 5
D(G) 2— D(eﬁ T(n,m) 6
Planar 2 T(n,m) 7
1+e 0(t8en) * * 8
n 2— % T(n,m) 9
— T(n,m) 10
22—z 1
— O(nm) « 12
p-claw free 2— p%l T(n,m) 13
-2 O(nmlogn +nd) * 14
2 tapo T(n,m)+$. 15
5 fé O(mn) * * 16
| Independent Set Problem |
Graph Approximation Complexity Unweighted| No Pre- | Ref
Parameter Guarantee Only processing
2
A - — W o(A) * 18
3
A%Z O(m) * * 19
3
B = 0(snz) * 20
3
23 O(@snz) * 21
5 o(m) * * 22
2
D(G) 571 T(n,m) 23
Planar 3 4-coloring 24
1-e 0(%87n) « « 25
p-claw free p%1 O(nlogn+m) 26
max{%,ga—g(g—l) 0(n?) * * 27

Table 3.1: Approximation Results for Vertex Cover and Independent Set

126 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

e
INTEGER PROGRAMMING WITH TWO VARIABLES
PER INEQUALITY

&2

The analysis of integer programming with two variables per inequality (1P2 for short)
provides insight as to why approximations to vertex cover, independent set and the
2SAT problemswork. Moreover, any minimization | P2 is at |east as hard to approximate
as the vertex cover problem (Section 3.8.3). That means that such problems are Max-
SN P-hard and approximating them with afactor better than 2 will imply similar factor
approximation for the vertex cover problem.

As this book goes to print we have discovered another problem that is a special
case of 1P2, the minimum satisfiability problem, where one seeks a minimum weight
collection of clausesthat are satisfied. We also found an extension of P2, [Hoc96], that
implies a 2-approximation for the feasible cut problem, and gives, in polynomial time,
super optimal half integral solution for several other problems, including the sparsest cut
(see Chapter 5 for adiscussion of this problem).

3.8.1 THE HALF INTEGRALITY AND THE LINEAR
PROGRAMMING RELAXATION

Many linear programming relaxations have solutions that are integer multiples of %
Theseincludethe vertex cover, independent set and the dual of matching. Here we show
that the reason for this property lies with the formul ation’s structure of two variables per
constraint.

Asdiscussed later, many | P2 problems have L P rel axations whose solutions are not
integer multiples of % One way of deriving half integral solutionsisto convert the sys-
tem of constraint inequalitiesinto a system of monotone inequalities where the conver-
sion may map integer solutionto half integers. A polynomial time algorithm (Hochbaum
and Naor [HN94]) is then used for optimizing over a system of monotone inequalities
in bounded integer variables. An inequality in two variablesis called monotone if it is
of theform

axj —bxg >c

wherea and b are both nonnegative. Although, as proved by Lagarias[Lag85], even the
problem of finding afeasible solution of a system of monotone inequalitiesin integers
is NP-complete, the algorithm of Hochbaum and Naor [HN94] finds an optimal solu-
tionintime O (mnU?log(Un?/ m)) where U isthe largest upper bound, i.e. in pseudo-
polynomial time. For IP2s that include nonmonotoneinequalities, we use atransforma-
tion of nonmonotone inequalities to monotone inequalities proposed by Edelsbrunner,
Rote, and Welzl [ERW89]. The transformation does not preserve integrality, yet each
solution to the transformed problem corresponds to a feasible solution of the original
problem; and in addition it consists of integer multiples of %

3.8 INTEGER PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 127

Consider a generic nonmonotone inequality of the form ax + by > ¢ wherea and
b are positive. (Any nonmonotone inequality can be written in this form, perhaps with
areversed inequality.) Replace each variable x by two variables, x+ and x —, and each
inequality by two inequalities:

axt—by >c
—ax~ +byt>c.

The two resulting inequalities are monotone. Note that upper and lower bounds con-
straints £j < X < u; aretransformed to

. + .
i =<Xj =uj
—Uuj =X S—Kj.

i
In the objective function, the variable x is substituted by %(x+ —X7).

Monotoneinequalities remain so by replacing the variables x and y in oneinequal-
ity by x ™ and y ™, andinthe second, by x ~ and y —, respectively. Notethat the alternative
formulation of the vertex cover problemthat yiel dsaminimum cut problem on abipartite
graph (presented in Section 3.7.1), isa specia case of this transformation of nonmono-
tone to monotoneinequalities.

Let A be the matrix of the constraints in the original system and let A® be the
matrix of the monotone system resulting from the abovetransformation. The matrix A ?
consists of 2m inequalities with two variables per inequality, and 2n upper and lower
bound constraints. The order of this matrix is therefore (2m + 4n) x 2n.

We now sketch the algorithm of [HN94] which finds an optimal solution for an
integer programming problem over monotone inequalitiesin time

O(mnU?log(Un?/ m)).
Consider the optimization problem over a monotone system (1PM),
Min Z?:leXj
(IPM) subjectto aixj —bix, >¢i (=1,...,m)
£ <xj<uj, Xxjinteger (j=1,...,n),

where a;,bi,ci (i=1,...,m),and w; (j =1,...,n) arerational, and £; and uj (j =
1,...,n) areintegers. The coefficientsa; and b; (i =1, ..., m) are nonnegative but the
objective function coefficients wj (j = 1,...,n) may be negative. Note that we allow
nonzero lower bounds on the variables that can be made nonnegative by translation.

A directed graph G is created where for each variable xj in the interval [£;,u;],
thereareuj — £+ 1 nodesrepresenting it, onefor each integer valuein therange. A set
of nodesissaid to beclosed if it contains all the nodesthat can be reached viaadirected
path fromany nodein the set. It is shown that a maximum weight closed set in this graph
corresponds to an optimal solution of (IPM). A section of the graph created is depicted
in Figure 3.4

For eachinteger p intherange, thereisanarc (p, p — 1) from the node representing
thevalue p to the node representing thevalue p — 1. The node representing ¢ ; hasan arc
directed to it from the source node s. Thus, if the source nodeisin a closed set then so
areal ¢ nodes. The monotone inequalities are represented by arcs. For each potential
value p of variable x,, al inequalities in which x, appears with a negative coefficient

128 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

Xj—chain Xj—chain

Wi @wj

!

Y

. b
wj wj P1= l-pTJrC-|

?

FIGURE 3.4

Representing the inequality ax; — bx; > ¢ between the
chains for x; and x;.

impose a minimum value on the variable x j; that appears in the same inequality with a
positive coefficient,

Thisisrepresented by an arc going from node p of x ,, to node p1 of ;. If p1>uj,
then the value p of the variable x,; isinfeasible, and the upper bound of x, is reset to
p — 1. A closed set containing s corresponds to afeasible solution to (IPM) where the
variable xj assumes the value of the largest node representing it in the closed set.

The nodes are now assigned weights as follows: node ¢ ; of variable xj is assigned
the value —w;¢;, and all other nodes representing variable x j are assigned the value
—wj. A maximum weight closed set corresponds then to an optimal solution to the
minimization problem (IPM). The maximum closurein agraph is derived from solving
a minimum cut problem in the graph after adding a source and a sink, placing arcs
from the source to al nodes of positive weight with capacity equal to that weight, and
placing arcs from al nodes with negative weight to the sink with capacity equal to the
absolute value of that weight. All other arcs are assigned infinite capacity. The source

3.8 INTEGER PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 129

set of aminimum cut in this graph correspondsto amaximum weight closed set with the
weights as specified. Thejustification for the algorithm of maximum closureis given by
Picard [Pic7]. For the case of vertex cover, the algorithm reducesto the minimum cut in
the bipartite network described in Figure 3.3 on page 114.

Whereas, for (VC) an optimal solution to the LP-relaxation of (VC) consists of
integer multiplesof 2, suchis not necessarily the case for | P2 where the use of the above
transformation is necessary. | P2 problems may have L P relaxation solutions that are not
integer multiple of 1, and in fact it is even NP-hard to get an optimal solution among all
those that are an integer multiple of % as we demonstrate next.

Given a system of inequalities with two variables per inequality, let the set of fea-
sible solutions for this system be

S={xeR"| Ax < ¢},

and the feasible solutions to the monotone system resulting from the transformation
above,

S@ = ((xt,x) | AP xT,x") <c?, x",x" e R"} .

If x e S, xt = x, and x~ = —x, then (x*,x~) € S©@. So, for every feasible solution
in S, there exists a feasible solution in S@. Conversely, if (x*,x7) € S@, thenx® =
%(X+ —Xx7) € S. Hence, for every feasible solutionin S@, thereis afeasible solution in
S.

LetS; ={xe S |xinteger}, andlet

1
S {§(x+—x) | (xt,x7) € $@ and x™,x~ integer })

If xS, thenx e S{?. Thus, S, € S{? C S.
In fact, the set of solutions S\’ is even smaller than the set of feasible solutions that
areinteger multiples of 1. To seethat, let

1
s<%>={x|Ax5candxe§z”}.

The claim is that S{? ¢ $(2), and S'2) may contain points not in S The following
exampleillustrates such a case:

5x+2y <6
O<x,y<l1.

Obviously, (x =1, y =) isafeasible solutionin S(2). But there is no corresponding
integer solution in S:Z) asxt = —x~ = limpliesthat y* =y~ = 0. It follows that the
bound derived from optimizing over S istighter than abound derived from optimizing
over S(2). Not only isthislatter optimization weaker, but it isalso in general NP-hard as
stated in the following Lemma (proved in [HMNT93]).

LEMMA 3.7 Minimizing over asystem of inequalitieswith two variables per inequal-
ity forx € 3-Z", isNP-hard.

130 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

3.8.2 COMPUTING AN APPROXIMATE SOLUTION

Here we show how to obtain a 2-approximation for the optimum of a bounded integer
program with two variables per inequality in O (mnU ?log(Un?/m)) time. Assume that
thegiveninteger program has afeasibleinteger solutiondenotedby z4, ... , z,. (Thiscan
be tested in polynomial time as proved in Lemma3.9.)

Wefirst transform the integer program into amonotoneinteger system and compute
an optimal solution for the monotone system as in the previous section. For every vari-
ablex; (i =1,...,n),letm;" and m;" denote the respective values of x;" and x;” in the
optimal solution of the monotone system. Fori = 1,....n, letm? = 2(m;" —m;"). We
definethefollowing solution vector, denotedby €= (¢4, ...,¢,),wherefori=1,...,n:

min{m;", —m;"} if zi <min{m;}", —m;"},
i =14 zi if min{m;*, —m;"} <z < max{m;", —m;},
max{m;", —m;} if zi > max{m;", —m;}. (3.9)

LEMMA 3.8 Thevector £ isafeasible solution of the given integer program.

Proof. Letax;+bx;j > c beaninequality wherea and b are nonnegative. We check all
possible cases. If ¢; is equal to zj or min{m;",—m}, and ¢; is equa to zj or
min{m}’, —m}}, then clearly, a¢; 4+ b¢; > az; +bz; > c. Suppose ¢; > z; and ¢j =
max{m?, —mj }. By construction, we know that

am —bm; >c and —am; +bm; >c.

If ¢; > —m;, then, a¢; +-b¢; > —am;” +bm] > c. Otherwise, at; +b¢;j > am} —bm7j >
c. Thelast case iswhen ¢; = max{m;", —m;"}, and ¢; = max{m, —m7}. Inthis case,
ati+bej > am —bm; >c.

The other types of inequalities are handled similarly.]

We showed that vector £ is afeasible solution. We now arguethat it also approxi-
mates the optimum.

THEOREM 3.7

1. Thevector £ isa2-approximate solution of the bounded integer program.

2. Thevalue of the objectivefunction at the vector m* is at least a half of the value
of the objective function of the best integer solution.

Proof. By construction, £ < 2m*. From the previous subsection we know that the
vector m* providesalower bound on the value of the objective function for any integral
solution. Hence, the theorem follows. []

The complexity of the algorithm is dominated by the complexity of the procedure
in [HN94] for optimizing over a monotone system. The running time is
O(mnUZ?log(Un2/m)).

3.8 INTEGER PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 131

3.8.3 THE EQUIVALENCE OF IP2 TO 2-SAT AND 2-SAT TO VERTEX COVER

The integer programming problem in two variables per inequality is in fact equivalent
to a2-SAT problem. Hence, 2-SAT aready capturesall the interesting propertiesof 1P2.
Thishasal so agorithmic consequences—implyingafast algorithmfor finding afeasible
solution to IP2. We also demonstrate a reduction of 2-SAT to (VC). That implies the
“fixing variables’ property for 2-SAT and therefore for 1P2.

The equivalence to 2-SAT is shown using an idea of T. Feder: Recall that for
each variable x; we have 0 < x; < uj < 0o (i = 1,...,n). We replace each variable
Xi by u;j binary variables xj; (¢ = 1,...,u;), with the constraints X, > Xj 41 (£ =
1,...,u; — 1). Subject to these constraints, the correspondence between x; and the u;-
tuple (Xi1, ..., Xiy,) is one-to-one and is characterized by xj, = 1 if and only if x; > ¢
(¢=1,...,uj), or, equivalently, xj = >_," ; Xic.

We now explain how to transform the constraints of the given system into con-
straintsin terms of the x;,’s. Suppose

akiXi + ajXj > by

isone of the given constraints. There are several cases to be distinguished. Without loss
of generality, assume both ay; and ay; are nonzeros. Consider the case where both are
positive, and assume without loss of generality that O < by < axj Ui +axju . For every ¢

(t=0,...,u), let
by — £ayi
W:[uw_l.
akj

Itis easy to seethat for an integer solution X, axi Xi +axjX;j > by if and only if for every
L(=0,...,u),
either x; > £ or Xj > ax
or, equivalently,
either xi > €+1 or Xj>oake+1.

Under the above transformation between the x;’s and the x;,’s, this is equivalent to:

1 Forevery ¢ (¢ =0,1,...,u; — 1), if 0 < axe < uj, then either xj o417 = 1 or

Xjae+1 =1, andif axe > uj, then xi g1 = 1.
2. For ¢ = uj, if o, > O, thenXj g, +1 = 1 (Since we have oy, < Uj).

Thedisjunctionin (i) can be written as
Xio41+ Xjoper1 > 1.

Thus, altogether we have replaced one original constraint on x; and X by at most u; +1
constraints on the variables x;, and X j,. The other cases, corresponding to different sign
combinations of ay;, axj, and by, can be handled in asimilar way.

If the abovetransformationis applied to amonotone system of inequalities, thenthe
resulting 2-SAT integer program is also monotone.

To summarize, we replace the n original variables and m original constraints by
u= er‘zluj new variables and at most mU -+ u new constraints, where U = max; U;.

132 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

The time bounds for finding a feasible solution are as follows.

LEMMA 3.9 A feasible solution to abounded integer program with two variables per
inequality can be computedin O(m +n -+ u+mU) time.

Proof. A feasible solution to a 2-SAT integer program can be found in linear time
using the algorithm of [EIS76]. Encoding a bounded integer program as a 2-SAT integer
program generates u variables and at most mU + U constraints. Hence, the time bound
follows. [|

We now show that any 2-SAT is equivalent to a vertex cover problem, i.e. to a
nonmonotone form of 2-SAT. This has been observed by Seffi Naor. Given a 2-CNF
formula F. We compute the transitive closure of F, T (F). This is done by repeating
the following step until no more new clauses are generated: For every pair of clauses of
theformx vy and x v z, add the clause y v z.

In an aternative approach for computing T (F), one can create a directed graph.
For each variable we have two nodes in the graph, one corresponding to the variable x,
and the other to x. Given aclause x v y, we replace it by two directed arcs, y — x and
X — y. We now consider the set of directed edgesin the transitive closure of the graph.
This transitive closure is symmetric and corresponds to the transitive closure of the set
of clauses, F, by replacing every pair of symmetric directed arcs (of theform y — x and
X — y) by aclause.

Now generate a new undirected graph G = (V, E) from the transitive closure of
the clauses. For each variable we have two nodesin the graph, one corresponding to the
variable x being true, and the other x corresponding to the variable x being false. Given
aclause x v y we place an edge (x, y) € E. Finaly, add the edges (x, x) tothe set E.

The claim is that a vertex cover in G corresponds to a satisfying assignment and
vice versa. Obvioudly at least one of the endpoints of the edges of the form (x, x) must
be in the cover. We need to show that both x and X cannot be selected simultaneously
in some optimal cover. Let N(x) be the set of neighbors of x. Then the set of edges
induced by N(x) and N (X) contains a complete bipartite graph, due to the transitive
closure property. Any feasible vertex cover in a complete bipartite graph must contain
at least one set of the bipartition. Therefore, either x or x are redundant in the cover and
exactly oneof thetwoisin thevertex cover. So, with the reduction abovewe showed that
any 2-SAT problemon n variablesand m clausesis equivalent to avertex cover problem
on O(n) variablesand O (m?) edges.

Since we established that IP2 is equivalent to 2-SAT, which in turn is equivalent
to vertex cover (VC), it followsin particular that 1P2 is equivalent to vertex cover. The
2-approximation to 1P2 could hence be also deduced from this equivalence.

The solution to the relaxation of the vertex cover problem (VCR) has the “fixing
variables’ property that there exists an optimal solution that coincides with the relaxed
solutioninall integer components. Thefollowing lemmademonstratesthat precisely the
same idea applies to any integer programming problem 1P2, after it is transformed to a
2-SAT.

With the reduction of 2-SAT to vertex cover, the direct proof to thislemmamay be
substituted by the corresponding lemma of Nemhauser and Trotter [NT75].

3.8 INTEGER PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 133

LEMMA 3.10 [HMNT93] Letx@ beanoptimal solutionof 2-SAT intheset S®. Let
INT={j |x?=0or x?=1}.
Then thereis an optimal integer solution z of 2-SAT such that z; = x{? for j e INT.
For theinteger problem | P2 thefixing of variablesimply that there exists an optimal
solution z* such that,
min{m;", —m;"} <z < max{m;", —m;}.

If the upper and lower bounds are equal, then z; may befixed at that value. The interval
gets smaller as more of the 2-SAT binary variables are fixed.

3.8.4 PROPERTIES OF BINARY INTEGER PROGRAMS

Inthis section we further investigate the properties of 2-SAT integer programs(or binary
IP2s). We first consider the linear relaxation of a 2-SAT integer programming problem.
It turns out that solutions of thisrelaxation always have denominators not greater than 2.
Consequently, the basic solutions are integer multiples of % . Thisfollowsfrom the state-
ment in the next lemma about the determinants of 2-SAT’s nonseparable submatrices.
A matrix is nonseparable if there is no partition of the columns and rows to two sub-
sets (or more) Cq, C, and R1, Ry such that al nonzero entriesin every row and column
appear only in the submatrices defined by the sets C; x R; and C, x R,. Thefollowing
lemmaapplies only to nonseparable matrices, since one can construct a separable 2-SAT
or (VC) matrix with an arbitrary number, K, of nonseparable ones on its diagonal, each
of determinant 2. Thus we achieve a matrix with a determinant that is 2.

LEMMA 3.11 The determinants of all nonseparable submatrices of a 2-SAT linear
programming problem have absolute value at most 2.

Proof. Let A denote the constraint matrix of a 2-SAT integer program. Thus, A has
at most two non-zero entries in every row. We show that the absolute value of the
determinant of any nonseparable square submatrix of A can be either 0, 1, or 2. The
proof of this claim is by induction on the size of the submatrix. Since the entries of
A are from {—1, 0, 1}, the claim holds for 1 x 1 submatrices. Assume it holds for any
(m —1) x (m — 1) submatrix and we show that the claim holdsfor any m x m submatrix.

We may assume that each row and column in A has exactly two non-zero entries.
Otherwise, theremust bearow or acolumnwhereall entries, possibly with the exception
of one, are zero. In either case, we can apply theinductive assumption directly and prove
the claim. Let A;j denote the submatrix obtained by deleting the i'th row and the j’th
column fromA.

Without loss of generality, we may assume that the two non-zero elementsin row i
of A arein columnsi andi 4+ 1 (modulom). (Dueto the nonseparability of the submatrix,
this can be achieved by appropriate row and column interchanges.) Hence,

det(A) = A[1,1] - det(Ayy) — (=1)™A[m, 1] - det(Am1)

134 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

The absolute values of the determinants of Ay; and Ay are equal to 1, since both are
triangular matriceswith nonzero diagonal elements. Therefore, the absolute value of the
determinant of A is at most 2. []

An immediate corollary of Lemma 3.11 is the fact that the value of every variable
inabasic solution of the 2-SAT linear programisin the set {0, % 1}. Although for binary
integer problems the subdeterminants can be of value greater than 2, and hence the
solutionswould not beinthisset, weget rid of these* unnecessary” solutions by reducing
the problem first to 2-SAT. In a 2-SAT system the variables are assumed to be binary.
Lemma 3.11, however, applies to any linear programming problem with a constraint
matrix with coefficients 0, 1, —1, and at most two nonzero elements in each row. We
call such asystem generalized 2-SAT. Note that we do not assume the existence of finite
upper bounds on the variables. We will show that a 2-approximation can be achieved
even for such systems.

LEMMA 3.12 A generalized 2-SAT hasthe property that S = S(2),

Proof. It sufficesto provethat Sz’ iscontainedin (. Let x € S2). Defineasolution
(xT,x7) asfollows. For j =1,...,n,

1. If xj isaninteger, sef X" = —x| = X;.

2. If xj isanoninteger, then set x| = xj + 3 and x| = —X;j + 3.

Itiseasy to show that (x, x™) satisfies the (three) generic types of constraints defining
S\?. For example, consider a constraint of the form x — x> c. Since x is feasible,
we have xj + xx > c. If either both x; and xi are integer or both are noninteger, then
we have x}L — X, = Xj + Xk > ¢. Assuming that xj + X is noninteger, if x; +xx > ¢
then x;j 4+ X — 3 > ¢. Using the fact that x| > x; and —x,” > x — 3, it follows that
X[=X = X)X — 3 > ¢. The other cases follow from similar considerations. n

One corollary of Lemmas 3.11 and 3.12 is that the linear programming relaxation
of a 2-SAT and a generalized 2-SAT can be solved by optimizing over the respective
monotone system. Both problems are then solvable in strongly polynomia time: the
2-SAT asamaximum flow (or rather minimum cut) problem, and the generalized 2-SAT
asadual of alinear flow problem. Note that one could aso solve these linear programs
in strongly polynomial time without using the transformation to a monotone system by
directly applying the algorithm of [Tar86]. The latter, however, is not as efficient as the
best-known algorithms for solving maximum flow problems or linear flow problems.

We next show how to obtain a 2-approximation for a generalized 2-SAT integer
program. First, we note that the procedure described abovefor 1P2 is not applicable here
since the variables might not have finite upper bounds. Since we already know how to
solve the monotone system, the difficulty lies in finding a feasible integer solution or
verifying that none exists. We perform this latter task as follows.

Let (x™,x ™) be an optimal solution of the monotone system, i.e., X = %(x+ —X7)
solvesthe linear programming relaxation. Using, if necessary, the transformationin the
proof of Lemma3.12, we may assumethat x;” = —xj orx{ = —x; +1(j=1,...,n).
Next, weapply Lemma3.8to concludethat the given generalized 2-SAT integer program

3.9 THE MAXIMUM COVERAGE PROBLEM AND THE GREEDY 135

is feasible if and only if there exists a feasible rounding of x. The latter can be tested
by the linear time algorithm in [EIS76]. Moreover, Theorem 3.8 ensures that if such a
rounding exists, then it is a 2-approximation.

3.8.5 DUAL FEASIBLE SOLUTIONS FOR IP2

Theapproach described for devising a2-approximationalgorithmfor | P2 isanal ogousto
the preprocessing or dual optimal approach for the vertex cover. Exploring this analogy
more carefully raises the question whether an analogue of the dua feasible approach
could apply as well. The advantage would be to do away with the need to solve the
minimum cut problem on a graph optimally (or solving the respective linear program).

This turns out to be possible by reducing 1P2 to an equivalent vertex cover prob-
lem and then applying any dual-feasible algorithm. For instance, if we choose the al-
gorithm of Bar-Yehuda and Even (dual-feasible I), its running time is linear in the
number of edges in the resulting graph which is O(m2U?). This represents a minor
improvement (if at all) compared to the running time of the min-cut-based procedure,
O(mnUZ?log(Un?/ m)).

e
THE MAXIMUM COVERAGE PROBLEM AND
THE GREEDY

- E

Consider the maximum coverage problem. Given a set system S and a parameter k,
the maximum coverage problemisto find k sets such that the total weight of elements
covered is maximized. This problemis clearly NP-hard, as set cover isreducibleto it.
For the maximum coverage problemweareinterested in describing the performance
of a simple greedy algorithm. Consider the performance of a greedy algorithm, as de-
pictedin Figure 3.5, that selectsk sets by iteratively picking the set that coversthe max-
imum weight group of currently uncovered elements. The performance of the greedy
heuristic when optimizing a submodular function has been studied by Nemhauser and
Wolsey [NW72] and Conforti and Cornuegjols [CC84]; Vohra and Hall [VH93] have

GREEDY <« ¢}

for I=1...kdo
select G| € S that maximizes wt(GREEDY U G))
GREEDY <« GREEDY UG,

end

output GREEDY

FIGURE 3.5
Greedy heuristic for the maximum coverage problem

136 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

explicitly noted that maximum coverage fallsinto this context. Applications of the max-
imum coverage problem can be found in Section 3.9.2; the method discussed next for
dealing with this problemis from [HP94].

3.9.1 THE GREEDY APPROACH

We establish the following theorem regarding the quality of solution returned by the
greedy heuristic, where wi(GREEDY) and wt(OPT) are the total weight of elements
covered by the greedy solution and the optimal solution, respectively. G, refers to the
I"th set selected by the greedy algorithm.

THEOREM 3.8 Wt(GREEDY) > [1 —(1- %)k] WH(OPT) > (1— 1) wt(OPT).

Thus, the greedy heuristicisa (1 — %)—approximation algorithm for the maximum
coverage problem.

In fact, there is an example given in [HP94], taken from [DJS93], that shows this
bound to be tight.

In order to prove the bound, we need to establish two lemmas.

LEMMA 3.13 wi(U!_,G;) —wi(Ul=1G;) > WHOPTI-WIULI0) or 1 2 . k.

Proof. At least Wt(OPT)—Wt(U!jGi) worth of elements not covered by the first
(I — 1) sets selected by the greedy heuristic are covered by the k setsof OPT. Hence,
by the pigeonhole principle, one of the k setsin the optimal solution must cover at least
wi(©);wtw:;iei) worth of these elements. Since G, is a set that achieves maximum
additional coverage, it must aso. (Note that wt(U!_,G;) — wt(UI_1G;) represents the
additional coverage achieved by G,.) [|

LEMMA 3.14 wt(U}_,Gi) > [(1— (1 — ")]wt(OPT), forl =1,2,... k.

Proof. \We proceed by induction on I. For | = 1, the result holds: wt(G1) > w,

from Lemma 3.13. Now,
WU Gy = wi(Ul_; Gi) + WU Gy) —wi(UL_, Gy))
wt(OPT) —wt(Ul_,Gj)

> wt(Ul_,Gi) + "
—1- %)wtw!zlei) + Wt((lpr)

wt(OPT)
k

> (1- %)(1— (1- %)')wt(OPTH

=1-1- %)'“)wt(OF’T),

wherethefirst inequality comesfrom Lemma3.13, and the second inequality isfromthe
induction hypothesis. u

3.9 THE MAXIMUM COVERAGE PROBLEM AND THE GREEDY 137

Theorem 3.8 follows directly from Lemma 3.14 by letting | = k, and noting that
because limy_ 01— (1— %)k =1-tand1-(1- %)k is decreasing, it follows that
1-(1-1)>1-1> 632

The quality of the greedy heuristic for the maximum coverage problem was also
studied in [VH93] in the context of a“maximal covering location problem.” By inter-
preting the problem as one of maximizing asubmodular function, they were ableto apply
results from [CC84] and [NW72] to achieve the performance guarantee of Theorem 3.8
for their location problem. Asdiscussed in [HP94], however, in some applications of the
maximum coverage problemthesetsin S may beimplicitly defined rather than explicitly
given. For instance, consider the problem of covering a maximum weight set of edges
of agraph with k cutsets; this problem arises in an application involving the testing of
printed circuit boardsfor short-circuits[Lou92]. The greedy heuristic entails selecting a
maximum cut in agraph at each step, which isitself NP-hard!

Thus, in some cases finding the optimal set at a given stage may itself be NP-hard.
Suppose, however, that a solution within afactor of 8 of the optimal is selected at each
step of the greedy heuristic; what can we then say about the quality of solution returned
by this greedy-like algorithm? By modifying the analysis used to prove Theorem 3.8,
the following theorem from [HP94] can be obtained:

THEOREM 3.9 Suppose that a modified version of the algorithm of Figure3.5isrun
so that Gy, is a set that causes an increase in coverage that is within a factor g of the
maximum increase possible rather than being the set that causes the maximum increase
in overall coverage at iteration |. Then, the solution returned by the algorithm achieves
coverage with weight within afactor of

B

E)k -t

1- oF

of the optimal.

Proof. First of al, Lemma 3.13 can be easily generalized to establish that, for | =
1,2,....k,

_ I-1G.
wt(Ul_, Gi) —wt(U_1Gy) zﬁWt(OPT) WHUi—1G1))

k
Secondly, Lemma3.14 can be easily generalized to establish that, forl =1, 2, ... Kk,
Wt(U;_;Gi) > [(1— 1- é)')} wt(OPT) .
Then, the theorem follows by setting | = k in the above result, and noting that
1-(1- é)k, whichisdecreasingink, haslimit 1 — ei,; ask approaches co. [|

For themaximum cut problem, thereexistsapolynomial algorithmwith g = .878. ..
(see [GW94]), yielding a polynomial time a gorithm with an approximation ratio guar-
antee of (1— ei,;) > .584 for the circuit-testing application.2

2|t has been pointed out by M. Goemans that for this problem of covering edges withk cut sets, em-
ploying an algorithm based on the method of conditional expectations provides a performance guarantee
of 1— 2—1k See Chapter 11 for more on the method of conditional expectation.

138 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

We next briefly describe some additional problems that are instances of the maxi-
mum coverage problem.

3.9.2 APPLICATIONS OF THE MAXIMUM COVERAGE PROBLEM

Problems, are considered from a variety of applications regarding covering graphswith
subgraphs, packing, and fixed parameter combinatorial optimization.

e Covering Graphs by Subgraphs: As aready mentioned, the problem of cover-
ing edges by cut-sets arisesin testing printed circuit boards for short-circuits. At
each stage of the greedy algorithm, we are to find a maximum cut in the graph
consisting of those edges not already covered. Now, althoughMAX CUT isitself
NP-hard (see[GJ79]), thereis asimple greedy MAX CUT algorithmwith 8 = 1,
and amoreinvolved onewith 8 = ming<y<, %l_‘gm =.878... (see[GW94] and
Chapter 11).

Problems of covering the edges of a graph by subgraphs satisfying some
particular structure arise in other contexts as well. For example, we may wish to
cover the maximum weight set of edges in a graph G using k subgraphs from
aclass R; R may consist of triangles or other small cliques (see [GHY 94]), or
spanningtrees, etc. At each stage, an optimal structurefromtheclass R isselected
in the graph that is identical to G except that previously covered edges have
weight 0.

Consider ak-stageforestry probleminwhich aset of cellsareto be harvested
at each stage, under the restriction that no two adjacent cells can be harvested dur-
ing agiven stage; that is, at each stage an Independent Set set must be selectedina
corresponding graph (see [BWE92]). At each stage, a maximum weight indepen-
dent set isto befound. While the independent set problem is NP-hard for general
graphs(indeed, guaranteeing a 8-approximate solution for any fixed 8 > 0isNP-
hard), for certain classes of graphs (as we have seen) approximation algorithms
of varying quality are available.

e Packing and Layout Problems. Now consider packing problems with a given
set U of objects to pack. The common nature of these applications is that the
objectiveisto pack the maximum weight set of objectsinto k identical bins. Our
greedy approach is to pack, as best possible, asingle bin at atime using objects
of U not already packed. Some examples:

1. Circuit Layout and Design: Recent advancesin multilayer 1C technology have
led to design problemsin which an optimal assignment of objectsto layersis
to be made. For example, it has been shown that the topological planar routing
problem, in which a maximum weight set of netsis to be assigned to k given
layerssuchthat all netsassigned to agivenlayer can be routed without any two
nets crossing each other, is NP-hard (see [CL90]). On the other hand, finding
a maximum weighted subset of nets to assign to asingle Iai/er can be solved
in polynomial time (see [Sup87]), yielding a (1 — (1— {)")-approximation
algorithmto the topological planar routing problem using the greedy heuristic.

REFERENCES 139

2. Scheduling: Suppose we are given a set of jobs to assign to k identical ma-
chines, where each machine has a set of restrictions as to which jobs can be
grouped together The goal isisto schedulethe largest weight set of jobsto the
k machines. How well asingle machine can be packed in astage of our greedy
approach will depend on the restrictions as to what can be scheduled together
on amachine, and depend, on the set of jobs to be schedul ed.

3. Logistics: Consider alogistics problemin which k identical vehiclesareto be
packed with a maximum weight set of items for delivery to a common desti-
nation. Given a set of items to be delivered, each having a specified benefit,
we attempt to pack the vehicles, one at a time, with items of maximum total
benefit.

e Fixed Parameter Combinatorial Optimization: In some standard optimization
problems, the goal isto cover al the elementsin a set using the smallest number
of subsets. We will look at the versions of these problemsin which, given afixed
parameter k that limits the number of subsetsthat we can select, we wish to cover
the maximum weight set of elements.

For instance, consider Vertex Cover inwhich we need to cover the maximum
weight set of edgesinagraph G usingk vertices. At each stage, we select avertex
that covers the maximum weight set of edges not previously covered.

Other such (1— (1— %)k)-approxi mation algorithms can be derived for fixed
parameter versions of well-known combinatorial optimization problems such as
Dominating Set, Minimum Test Set, Hitting Set, and Minimum Test Collection.
Refer to the glossary and [GJ79] for complete specifications of these problems.

We notethat several location problems, in which the goal isto locatek facili-
tiesso that as many customersas possi ble can each be served within a prespecified
cost, can be modeled as a fixed-parameter version of the Dominating Set prob-
lem. For example, a problem in which the goal is to locate k new facilities so
as to maximize market share (see [MZH83)]), can be modeled as such; while the
resultsin [MZH83] give specia cases of the problem that can be solved in poly-
nomial time, our greedy approach provides an «-approximation algorithm for
general instances of the problem considered. We a so note that asimilar problem
concerning the optimal location of bank accountswas given in [CFN77]; indeed,
they provide a greedy algorithm that is shown to have a a-approximation guar-
anteeviaadifferent, and more complicated, analysisthan the one presented here.

REFERENCES

[AH77] K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging.
Ilinois J. Math. 21:429-490, 1977.

[AHK77] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II: Re-
ducibility,” lllinois J. Math. 21:491-567, 1977.

[Baa78] S. Baase. Computer Algorithms: Introduction to Design and Analysis, Addison-
Wesley, Reading, MA, 1978.

[BP76] E.Baasand M. Padberg. Set partitioning: A survey. SIAM Review 18: 710760, 1976.

140

[BS69]

[Baks3]

[BWE92]

[BYESI]

[BESS]

[BGS95]

[Bro4i]

[cCs4]

[CFN77]

[CL9O]

[CNS81]

[cM91]

[CK75]

[Chv79]

[Clar83]

[DJS93]

[ERWSY]

[Erd70]
[EIS76]

CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

M. Balinski and K. Spielberg. Methods for integer programming: algebraic, combi-
natorial and enumeration. J. Aronofsky, editor, Progress in Operations Research, 111
295-292, 1969.

B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
In Proceedings of the 24th Annual Symposium on Foundations of Computer Science,
|EEE, 265-273, 1983.

F. Barahona, A. Weintraub, and R. Epstein. Habitat dispersion in forest planning and
the stable set problem. Operations Research, 40:14-21, 1992.

R. Bar-Yehudaand S. Even. A linear time approximation algorithm for the weighted
vertex cover problem. J. of Algorithms 2:198-203, 1981.

R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25:27-45, 1985.

M. Bellare, O. Goldreich, and M. Sudan. Free bits and nonapproximability. Pro-
ceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science
(FOCS95). 422431, 1995.

R. L. Brooks. On coloring the nodes of a network. Proc. Cambridge Philos. Soc.
37:194-197, 1941.

M. Conforti and G. Cornugjols. Submodular functions, matroids and the greedy algo-
rithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theo-
rem. Discrete Applied Mathematics 7:257-275, 1984.

G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to
optimize float: an analytic study of exact and approximate alogrithms. Management
Science, 23(8):789-810, 1977.

J.Congand C. L. Liu. Onthek-layer Planar Subset and ViaMinimization Problems.
InProceedings of the European Design Automation Conference, pages 459463, 1990.

N. Chiba, T. Nishizeki and N. Saito. A linear 5-coloring algorithm of planar graphs.
J. of Algorithms 2:317-327, 1981.

E. Cohen and N. Megiddo. Improved algorithmsfor linear inequalities with two vari-
ables per inequality. In Proceedings of the Twenty Third Symposium on Theory of
Computing, New Orleans, 145-155, 1991.

N. Christofides and S. Korman. A computational survey of methods for the set cov-
ering problem. Management Science 21:591-599, 1975.

V. Chvétal. A Greedy Heuristic for the Set-Covering Problem Math. of Oper. Res.
Vol. 4, 3, 233-235, 1979.

K. L. Clarkson. A modification of the Greedy agorithm for the vertex cover. Info.
Proc. Lett. 16:23-25, 1983.

B. Dasgupta, R. Janardan, and N. Sherwani. On the greedy algorithm for a covering
problem. Unpublished manuscript, February 1993.

H. Edelsbrunner, G. Rote, and E. Welzl. Testing the necklace condition for shortest
tours and optimal factors in the plane. Theoretical Computer Science 66:157-180,
1989.

P. Erdds. On the Graph-Theorem of Turan. Math. Lapok, 21:249-251, 1970.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing 5:691-703, 1976.

REFERENCES 141

[F95]

[FNT74]

[GHY94]

[GJ79]

[GJST6]

[GN72]

[GP92]

[GT88]

[GW94]

[H94]

[HR94]

[HH86]

[Har69]

[Hoc82]

[Hoc83]

[Hoc96]

[HN94]

U. Feige. A threshold of Inn for approximating set cover. Manuscript, 1995.

D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter, J. Two computationally difficult
set covering problemsthat arisein computing the 1-width incidence matrices of steiner
triple systems. Mathematical Programming Study 2:72-81, 1974.

O. Goldschmidt, D. S. Hochbaum, and G. Yu. Approximation Algorithms for the k-
clique covering problem. To appear SIAM J. of Discrete Math, 1994.

M. R. Garey and D. S. Johnson. Computers and Intractability, W. H. Freeman, San
Francisco, 1979.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoret. Comput. Sci. | 237-267, 1976.

R. S. Garfinkel and G. L. Nemhauser. Optimal set covering: A survey. InPerspectives
on optimization: A collection of expository articles, A. M. Geoffrion, ed., 164-183,
1972.

D. Gusfield and L. Pitt. A bounded approximation for the minimum cost 2-SAT prob-
lem. Algorithmica 8:103-117, 1992.

A. V. Goldberg and R. E. Tarjan. A new approach for the maximum flow problem.
J.of ACM 35:921-940, 1983.

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Submitted to
Journal of the ACM, 1994.

M. M. Halldorsson. Private communication, 1994.

M. M. Halldérsson and J. Radhakrishnan. Greed is good: approximating independent
sets in sparse and bounded-degree graphs. Proceedings of 26th ACM Symposium on
Theory of Computing, 439448, 1994.

N. G. Hall and D. S. Hochbaum. A fast approximation algorithm for the multicovering
problem. Discrete Applied Mathematics 15:35-40, 1986.

F. Harary. Graph Theory, Addison-Wesley, Reading, MA, 19609.

D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Comput. 11(3) 1982, an extended version: W.P. #64-79-80, GSIA,
Carnegie-Mellon University, April 1980.

D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics 6:243-254, 1983.

D. S. Hochbaum. A framework for half integrality and 2-approximations with appli-
cations to feasible cut and minimum satisfiability. Manuspcript, 1996.

D. S. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer pro-
grams with two variables per inequality. SIAM Journal on Computing, 23(6) 1179—
1192, 1994.

[HMNT93] D. S. Hochbaum, N. Megiddo, J. Naor and A. Tamir. Tight bounds and 2-approxima-

[HK73]

[(HP94]

tion algorithms for integer programs with two variables per inequality. Mathematical
Programming 62:69-83, 1993.

J.E. Hopcroft and R.M. Karp. A n algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2:225-231, 1973.

D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in covering prob-
lems. Unpublished manuscript, 1994.

142

CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

[HSVW90] J. M. Ho, M. Sarrafzadeh, G. Vijayan, and C. K. Wong. Layer Assignment for Mul-

[Joh74]

[KZ95]

[KVY94]

[Lagss]

[Lor66]

[Lou92]

[Lov6s]

[Lov75a]

[Lov75]

[MMK79]

[MST80]

[MS85]

[MZH83]

[Megag]

[NT75]

[NW72]

[Pad79]

[Pic7]

[Pu79]

tichip Modules. IEEE Transactions on Computer-Aided Design, 9:1272-12 77, 1990.

D. S. Johnson. Approximation Algorithms for Combinatorial Problems. J. Comput.
System Sci., 9:256-278, 1974.

M. Karpinski and A. Zelikovsky. Approximating dense cases of covering problems
(preliminary draft). Manuscript, Sept. 1995.

S. Khuller, U. Vishkin, and N. Young. A primal-dual parallel approximation technique
applied to weighted set and vertex cover. J. of Algorithms, 17(2):280-289, 1994.

J. C. Lagarias. The computational complexity of simultaneous diophantine approxi-
mation problems. SIAM Journal on Computing 14:196-209, 1985.

L. C. Lorentzen. Noteson covering of arcsby nodesin an undirected graph. Technical
Report ORC 66.16, University of California, Berkeley, 1966.

R. Loulou. Minima Cut Cover of a Graph with an Application to the Testing of
Electronic Boards. Operations Research Letters, 12(5):301-306, 1992.

L. Lovasz. On Decomposition of Graphs. Studia Scientiarum Mathematicarum Hun-
garica 1:237-238, 1966.

L. Lovasz. Three short proofs in graph theory. J. Combin. Theory (B) 19:269-271,
1975.

L. Lovasz. On the Ratio of Optimal Integral and Fractional Covers. Discrete Math.
13 383-390, 1975.

R. E. Marsten, M. R. Muller, and C. L. Killion. Crew Planning at Flying Tiger: A
successful application of integer programming. Management Science 25:1175-1183,
1979.

D. Matula, Y. Shiloach, and R. Tarjan. Two linear-time algorithms for 5-coloring a
planar graph. Stanford Department of Computer Science, Report No. STAN-CS-80-
830, 1980.

B. Monien and E. Speckenmeyer. Ramsey Numbers and an approximation algorithm
for the vertex cover problem. Acta Informatica 22:115-123, 1985.

N. Megiddo, E. Zemel, and S. L. Hakimi. The maximum coverage location problem.
SIAM Journal of Algebraic and Discrete Methods, 4(2):253-261, 1983.

N. Megiddo. Towards a genuinely polynomia algorithm for linear programming.
SIAM Journal on Computing 12:347—-353, 1983.

G. L. Nemhauser and L. E. Trotter, Jr. Vertex packings: Structura properties and
algorithms. Mathematical Programming 8:232—248, 1975.

G. L. Nemhauser and L. Wolsey. Maximizing submodular set functions: formulations
and analysis of algorithms. In Studies of Graphs and Discrete Programming North-
Holland, Amsterdam, 279-301, 1972.

M. W. Padberg. Covering and packing and knapsack problems. Annals of Discrete
Mathematics 4:265-287, 1979.

J. C. Picard. Maximal closure of agraph and applications to combinatorial problems.
Management Science 22:1268-1272, 1976.

W. R. Pulleyblank. Minimum node coversand 2-bicritical graphs. Mathematical Pro-
gramming 17:91-103, 1979.

REFERENCES 143

[Shes3]
[Sup87]
[SWeg]
[Targe]

[Tro85]
[Tur41]
[VH93]

[VS81]
[Wig83]

[YG92]

J. B. Shearer. A note on the independence number of triangle-free graphs. Discrete
Mathematics 46:(1983) 83-87.

K. Supowit. Finding a Maximum Planar Subset of a Set of Netsin a Channel. IEEE
Transactions on Computer-Aided Design, 6:93-94, 1987.

G. Szekeres and W. S. Wilf. An inequality for the chromatic number of a graph.
Combin. Theory 4:1-3, 1968.

E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research 34:250-256, 1986.

L. E. Trotter. Discrete packing and covering. in, O’ hEigeartaigh et a. 21-31, 1985.
P. Turén. An External Problem in Graph Theory. Mat. Fiz. Lapok, 48:436-452, 1941.

R. V. Vohraand N. G. Hall. A probabilistic analysis of the maximal covering location
problem. Discrete Applied Mathematics 43:175-183, 1993.

R. van Slyke. Covering problemsin CCCI systems. Report to the Air Force Office of
Scientific Research, 1981.

A. Wigderson. Improving the performance guarantee for approximate graph coloring.
Journal of the ACM 30:729-735, 1983.

G. Yu and O. Goldschmidt. On locally optimal independent sets and vertex covers.
Technical Report ORP92-01: Graduate School in Operations Research The University
of Texas at Austin, 1992.

