
C H A P T E R

3
APPROXIMATING COVERING AND
PACKING PROBLEMS: SET COVER,

VERTEX COVER, INDEPENDENT SET
AND RELATED PROBLEMS

Dorit S. Hochbaum

This chapter presents the developments that lead to the use
of linear programming formulation as an essential approxi-
mation tool. These tools were initially developed for the set
cover—the most important and general covering problem—
and the vertex cover problem. We describe here the use
of linear programs’ optimal solution and feasible dual so-
lution for effective approximations for the set cover prob-
lem and several closely related problem of covering and
packing type. The problems analyzed here in detail include
(in addition to the set cover and vertex cover problems),
the independent set problem, the multicover problem, the
set packing problem, the maximum coverage problem, and
the problem of integer programming that extends the vertex
cover and independent set problems. We also analyze the
properties of the greedy algorithm for covering problems.

INTRODUCTION

3.1

One of the most important tools to have emerged in the design of approximation algo-
rithms is the use of linear programming relaxation of the problem and its dual. We trace

94

3.1 INTRODUCTION 95

the history and development of this approach as it evolved for the set cover, set packing,
and related problems.

The problems discussed in this chapter include the vertex cover problem and the
independent set problem, the set cover problem, the multicover problem, and the set
packing problem. In addition, we address the problem of maximum covering of elements
with minimum number of sets and the problem of integer programs with two variables
per inequality. The latter problem is neither a covering nor a packing problem; yet it
engulfs in its structure the very properties of the vertex cover problem and the indepen-
dent set problem that are instrumental in making improved approximation algorithms
possible. The analysis of integer programs with two variables per inequality deepens
our insights for the reasons that make vertex cover and related problems approximable
within a factor of 2 or better.

Other forms of covering and packing problems that are more structured can have
improved approximations exploiting the special structure. Some Euclidean covering and
packing approximations are described in Chapter 8 and Section 9.3.3. Some network
design problems and connectivity problems are possible to present as covering problems,
and then techniques that extend those in this chapter are applicable (see Chapter 4 and
Section 9.2.1). Also, the vertex cover and independent set problems defined on special
classes of graphs have better approximations than the general cases. These special cases
are described in detail in Section 3.7.

The linear programming (LP) relaxation plays an important role for all these prob-
lems. All known approximation algorithms for the set cover problem [Chv79] [Hoc82]
use the (weak) duality theorem of linear programming and the superoptimality of the
linear programming relaxation. For the vertex cover, the best known approximation al-
gorithms are provided by independent set and integer programs with two variables per
inequality; i.e., the preprocessing technique based on the properties of the linear pro-
gramming solutions [Hoc83] [HMNT93]. We start by defining the problems discussed
in this chapter and how they are related.

3.1.1 DEFINITIONS, FORMULATIONS AND APPLICATIONS

A vertex cover in an undirected graph G = (V, E) is a set of vertices C such that each
edge of G has at least one endpoint in C . The vertex cover problem is the problem of
finding a cover of the smallest weight in a graph whose vertices carry positive weights.
This problem is known to be NP-complete even when the input is restricted to planar
cubic graphs with unit weights [GJS76]. An independent set in a graph is a set of pairwise
nonadjacent vertices (also referred to as vertex packing). The largest weight independent
set is the complement of the smallest weight vertex cover.

A natural integer programming formulation of the vertex cover problem with node
weights w j for j ∈ V , |V | = n, is,

(VC)

Min
∑n

j=1 w j x j

subject to xi + x j ≥ 1 (for every edge (i, j) in the graph)
0 ≤ x j ≤ 1 (j = 1, . . . ,n)

x j integer (j = 1, . . . ,n).

96 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

The formulation of the independent set problem (IS) is similar, with “Max” replac-
ing “Min” and with the direction of the first set of inequalities reversed. The independent
set problem is also known as the “vertex packing” problem or as the “stable set” prob-
lem. To illustrate the problems, consider the graph in Figure 3.1 with all weights equal to
1. The minimum vertex cover is the set of nodes {1,3,4,6} and the maximum indepen-
dent set is the set of nodes {2,5}. The linear programming relaxation of (VC) is obtained
by removing the integrality constraints on the x j ’s.

Among the multiple applications of the vertex cover and the independent set prob-
lems are finding nonconflicting schedules. Then assigning the smallest number of watch
guards located at vertices so that all links (edges) have at least one guard surveying them.

A general packing problem is the set packing problem. Here the goal is to find the
maximum weight collection of sets so that no two overlap:

maximize {wx| A ·x ≤ e} for x binary, e a column vector of ones and A a zero-one matrix.

This problem can be represented as the independent set problem by constructing a graph
(called the derived graph) whose vertices are columns of A, and two such vertices being
adjacent if the two columns have a nonzero dot product. The independent set problem is
also a special case of the set packing problem, and hence the two problems are polyno-
mially equivalent. As such, any result for the independent set problem is also applicable
to the set packing problem. Therefore the set packing problem will not be discussed here
separately.

The vertex cover problem is a special case of the set cover problem. Given a set I
of m elements to be covered and a collection of sets S j ∈ I , j ∈ J = {1, . . . ,n}. Each set
has weight w j associated with it. The characteristic vector of set Sj is the 0 − 1 vector
{ai j}m

i=1. The set cover problem is to identify the smallest weight collection of sets so that
all elements of I are included in their union (or “covered”): minimize {wx| A ·x ≥ e}
for x binary. A vertex cover problem is a set cover problem where each element can
be covered by exactly two sets. These two sets correspond to the endpoints of an edge
in the graph. Unlike the set packing problem which is equivalent to the vertex packing
problem, the set cover problem is a strict generalization of the vertex cover problem, and
the two problems are distinguished by the quality of approximation algorithms that can
be devised for them.

6

5

4

2

3

1

FIGURE 3.1

3.1 INTRODUCTION 97

The set cover problem has applications in diverse contexts such as efficient testing,
statistical design of experiments, [FNT74], and crew scheduling for airlines [MMK79].
It also arises as a subproblem of many integer programming problems. For surveys on
the set cover problems see Garfinkel and Nemhauser [GN72], Christofides and Korman
[CK75], Balas and Padberg [BP76], Padberg [Pad79], and an annotated bibliography by
Trotter [Tro85].

Some applications of the set cover problem require an extension where each element
is to be covered a specified number of times. This extension is called the multicover
problem. The multicover problem has applications where reliability of coverage requires
extra redundancy. Among the applications of the problem are the location of emergency
service facilities, communication systems, military applications marketing applications,
crew scheduling, and security checking (Van Slyke 81 [VS81]). In the formulation of the
multicover problem, each element i is to be covered at least bi times.

(MC)

Min
∑n

j=1 w j x j

subject to
∑n

j=1 ai j x j ≥ bi (for i = 1, . . . ,m)

0 ≤ x j ≤ 1 (j = 1, . . . ,n)

x j integer (j = 1, . . . ,n).

When the amount of required coverage bi = 1 for all i , the multicover problem
reduces to the set cover problem (SC).

The maximum coverage problem generalizes the set cover problem and the multi-
cover problem. Here, instead of seeking the smallest number of sets that cover all ele-
ments, we seek the largest number of elements (accounting for their multiplicities) that
can be covered by a prespecified number of sets, k. When this largest number is m—the
total number of elements to be covered—the solution is also a set cover. The maximum
coverage problem is also defined in a weighted context: find the largest number of ele-
ments that can be covered by sets of total weight not exceeding W—the budget limit.

Both formulations of the vertex cover and independent set problems have two vari-
ables per inequality. Another problem that is formulated as integer programming opti-
mization with two variables per inequality is the problem of minimizing the weight of
true variables in a 2-satisfiability truth assignment. In the 2-SAT problem we are given
a collection of clauses in conjunctive normal form (CNF) of length 2 each, where each
variable has a certain weight associated with setting it to True. The vertex cover problem
could be viewed as 2-SAT with no negation of variables. As such, integer programming
with two variables per inequality, IP2, captures in its structure a number of other prob-
lems. Indeed, as we shall see, much of the insight about these three problems can be
derived from the analysis of IP2. The formulation of IP2 is,

(IP2)

Min
∑n

j=1 w j x j

subject to ai x ji +bi xki ≥ ci (for i = 1, . . . ,m)

0 ≤ x j ≤ u j (j = 1, . . . ,n)

x j integer (j = 1, . . . ,n),

where 1 ≤ ji ,ki ≤ n, wi ≥ 0 (i = 1, . . . ,n), and all the coefficients are integer. We denote
the largest upper bound by U = max j=1,... ,nu j .

IP2 with ai = bi = ci = ui = 1 is the vertex cover problem. With ui = 1 and
ai ,bi ,ci ∈ {−1,0,1} IP2 is the 2-SAT problem.

98 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

VC
SC 2-SAT

MC
IP2

FIGURE 3.2

Figure 3.2 depicts schematically the relationship between vertex cover and the other
minimization problems.

3.1.2 LOWER BOUNDS ON APPROXIMATIONS

All problems discussed here are Max-SNP-complete, which means that there are no
polynomial approximation schemes, PASs, for these problems unless NP = P. Stronger
lower bounds have been derived for these problems (and are getting improved continu-
ously). The strongest lower bounds at the time of this writing are:

• For vertex cover problem there is no δ-approximation for δ < 16/15 unless
NP = P, [BGS95].

• The independent set problem is equivalent to the maximum clique problem on the
complement graph. The maximum clique problem has been studied extensively
for lower bounds, and there are extremely large (and thus discouraging) lower
bounds that apply also to the independent set problem. The current champion
lower bound is

√
n [Håstad, private communication] meaning that we cannot

guarantee an approximation factor n
1
2 −δ for any positive δ unless NP = P.

• There have been some constant lower bounds proved for approximating set cover
that hold unless NP = P. Stronger bounds were proved under the assumption that
NP �= DTIME(nO(log logn)). In other words, if NP problems are not solvable in
time that is quasi-polynomial, or exponential in loglogn, then the lower bound
holds. A lower bound proved recently by Feige [F95] is (1−ε) lnn provided that
NP �= DTIME(nO(log logn)).

A lower bound for multicover follows from that of set cover, and a lower bound to IP2
follows from the bound for vertex cover.

When considering these lower bounds one has to keep in mind that these are worst
case lower bounds. Indeed, there are approximation algorithms for set cover instances

3.2 THE GREEDY ALGORITHM FOR THE SET COVER PROBLEM 99

that have small set sizes or have small coverage duplicity (the number of sets covering
a given element), that have performance better than the lower bound. For instance, the
approximation factor for an independent set on bounded degree graphs is substantially
better than the lower bound of

√
n implies, and similarly for many other special classes

of problems demonstrated in this chapter. Table 3.1 summarizes such results.

3.1.3 OVERVIEW OF CHAPTER

The chapter is arranged in chronological order of developments—with some minor ex-
ceptions. We begin with a discussion of the set cover problem and the greedy algorithm
which was the first approximation algorithm devised for it. The analysis of the greedy
was the first use of linear programming duality in approximations. We then present the
Linear Programming (LP) approximation algorithm that mades use of the dual optimal
solution; then the dual-feasible algorithm making use of a dual solution that is only fea-
sible rather than optimal, and finally using other relaxations of the set cover problem that
lead to a variety of dual-feasible algorithms. These are applicable to the set cover prob-
lem, and some are only applicable to its special case—the vertex cover problem. We then
extend the analysis of the linear programming algorithm and the dual-feasible algorithm
to the multicover problem.

Next, we demonstrate the value of the optimal dual solution in a preprocessing ap-
proach that yields improved approximation bounds to the vertex cover or the indepen-
dent set problems. In this section we describe a large number of special classes of these
problems along with the improved approximation bounds. All known approximation al-
gorithms to date for these problems are then summarized in Table 3.1.

Section 3.8 investigates the nature of the factor of 2 approximation for the vertex
cover problem (which we also conjecture to be best possible), and describes how the
ideas of preprocessing and the use of the optimal linear programmingsolution apply also
in the more general set up of integer programming with two variables per inequality.

Finally, we discuss the performance of the greedy algorithm for the maximum cov-
erage problem, which is an extension of the set cover problem (as a decision problem).
This problem is of particular interest because of the analysis of the generic type of greedy
algorithm involved.

The notation used in this chapter includes bold fonts for vectors; e denotes the vector
of all 1’s, and ei denotes the vector of all 0’s except for a 1 in the i th position.

THE GREEDY ALGORITHM FOR THE
SET COVER PROBLEM

3.2

A greedy algorithm is the most natural heuristic for set cover. It works by selecting one
set at a time that covers the most elements among the uncovered ones. Johnson and

100 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

Lovász ([Joh74], [Lov75]) were the first to demonstrate that the greedy algorithm is a
H(d)- approximation algorithm for the unweighted set cover problem, where H(d) =∑d

i=1
1
i and d is the size of the largest set. H(d) is bounded by 1+ logd.

Chvátal [Chv79] extended the applicability of the greedy to the weighted set cover.
This version of greedy selects a set with the minimum ratio of weight to remaining cover-
age. Chvátal proved that this greedy algorithm is still a H(d)-approximation algorithm.
Although the algorithm is easily stated, its analysis is far from trivial. That analysis is
particularly instructive as it introduces the use of linear programming duality in approx-
imations, which we will present next. The formal statement of the greedy is,

THE GREEDY ALGORITHM [CHVÁTAL]

Step 0: Set CG = ∅; S1
j = Sj , j ∈ J ; I = {1, . . . ,m}; k = 0.

Step 1: k ← k +1. Select a set Sjk , such that
w jk

|Sk
jk

| = min j∈J
w j

|Sk
j |

.

Step 2: Set CG ← CG ∪{ jk} and Sk+1
j = Sk

j \ Sk
jk
, j ∈ J , I ← I \ Sk

jk
.

Step 3: If I = ∅, stop and output cover C G . Else, go to Step 1.

Consider the linear programming relaxation of (SC), with the upper bound x j ≤ 1
constraints omitted (an optimal solution will satisfy those constraints automatically).
The dual problem is

(SC-dual)

Max
∑m

i=1 yi

subject to
∑m

i=1 ai j yi ≤ w j (for j = 1, . . . ,n)

yi ≥ 0 (i = 1, . . . ,m).

The analysis of greedy relies on allocating the weights of the set selected by the
greedy heuristic to the elements covered, and interpreting those as a form of dual, not
quite feasible, solution.

THEOREM 3.1 The greedy heuristic is a H(d)-approximation algorithm.

Proof. To prove the desired result, it suffices to show that for any cover C , indicated
by the characteristic vector {x j}, and a cover delivered by the greedy C G ,

∑
j∈C

H(d)w j =
n∑

j=1

H(d)w j x j ≥
∑
j∈CG

w j . (3.1)

Applying this inequality to C∗, the optimal cover, yields that the value of the solu-
tion delivered by the greedy is at most H(d) times the value of the optimal solution. To
prove (3.1), it is sufficient to find an “almost feasible” dual solution y such that,

m∑
i=1

ai j yi ≤ H(|Sj |)w j j = 1, . . . ,n (3.2)

3.2 THE GREEDY ALGORITHM FOR THE SET COVER PROBLEM 101

and so that the weight of the sets selected is accounted for by y,
m∑

i=1

yi =
∑
j∈CG

w j . (3.3)

Such y satisfying these inequalities is feasible within a factor ofH(d), and it satisfies
(3.1) since,

n∑
j=1

H(d)w j x j
(3.2)≥

n∑
j=1

(

m∑
i=1

ai j yi)x j =
m∑

i=1

(

n∑
j=1

ai j x j)yi ≥
m∑

i=1

yi
(3.3)=

∑
j∈CG

w j .

(3.4)

Let Sk
j be the set Sj with the remaining elements at the beginning of iteration k, and

its size, |Sk
j | = sk

j . The dual vector y that will satisfy (3.2) and (3.3) has for yi the average
price paid by the greedy to cover an element i . Whenever a set is selected, its weight is
divided evenly among the elements it has newly covered, yi = wk

sk
k

.
Let the sets greedy selects in the first k iterations be {1,2, . . . ,k}. Since k is the index

for which the ratio is minimum
wk

sk
k

≤ w j

sk
j

∀ j. (3.5)

Assume that there are t iterations altogether. Then,
∑

j∈CG w j = ∑t
j=1 w j . Each

element i ∈ I belongs to one set Sk
k ,k = 1, . . . , t , so for i ∈ Sk

k , yi = wk

sk
k

. (3.3) now

follows as,
m∑

i=1

yi =
t∑

k=1

∑
i∈Sk

k

yi =
t∑

k=1

sk
k (

wk

sk
k

) =
t∑

k=1

wk .

To prove (3.2) observe that, S j ∩ Sk
k = Sk

j \ Sk+1
j and I = ⋃t

k=1 Sk
k . Hence,

m∑
i=1

ai j yi =
t∑

k=1

∑
i∈S j∩Sk

k

yi =
t∑

k=1

∑
i∈Sk

j \Sk+1
j

yi =
t∑

k=1

(
sk

j − sk+1
j

) wk

sk
k

.

For a given set S j , let p be the largest index such that s p
j > 0, then

m∑
i=1

ai j yi =
p∑

k=1

(sk
j − sk+1

j)
wk

sk
k

(3.5)≤ w j

p∑
k=1

sk
j − sk+1

j

sk
j

.

We now use the inequality
sk

j −sk+1
j

sk
j

≤ H(sk
j)−H(sk+1

j) to establish,

m∑
i=1

ai j yi ≤ w j

p∑
k=1

(
H(sk

j)−H(sk+1
j)

)
≤ w jH(s1

j) .

The greedy algorithm is thus an O(logn)-approximation algorithm for any set
cover. This matches the recently proved lower bound for approximating the set cover
[F95]. Still considerably better results are possible for special cases. Consider for in-

102 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

stance the performance of the greedy on high coverage instances of unweighted
set cover.

EXERCISE 3.1 [KZ95]: Let an unweighted set cover instance be of α-coverage if ev-
ery element of I belongs to at least α|J | sets. Then the greedy delivers a solution of size
log 1

1−α
n for instances of α-coverage.

As a corollary an enumeration algorithm solves the α-coverage instance in
O(mO(logn)) steps. The high coverage problem—where α is close to 1—is thus unlikely
to be NP-hard.

THE LP-ALGORITHM FOR SET COVER

3.3

A different approximation algorithm—which is duality based - was devised for the set
cover problem by Hochbaum [Hoc82]. This was motivated by an approximation to
the unweighted vertex cover problem by Gavril (reported as private communication in
[GJ79]). Gavril’s algorithm is based on the idea of solving for a maximal (not necessar-
ily maximum) matching, and taking both endpoints of the edges in the matching. The
number of edges in the maximal matching |M| is a lower bound on the optimum |V C ∗|.
This is because a single vertex cannot cover two edges in M . On the other hand, if we
pick both endpoints of each matched edge we get a feasible cover, V C M , as otherwise
there would be an edge with both endpoints unmatched. Therefore this edge could be
added to the matching M—contradicting its maximality. These two statements lead to
the inequalities,

|V C M | = 2|M| ≤ 2|V C∗|. (3.6)

Hence, this cover is at most twice the optimal cover.
The extension of this idea to the weighted case and to the set cover problem was

inspired by an alternative way of viewing the maximal matching algorithm as a feasible
dual solution. To see that, consider the dual of the linear programming relaxation of the
unweighted vertex cover problem.

(VC-dual)

Max
∑

(i, j)∈E yi j

subject to
∑

(i, j)∈E yi j ≤ 1 for j = 1, . . . ,n

yi j ≥ 0, ∀ (i, j) ∈ E .

An integer feasible solution to (VC-dual) is a matching in the graph. Consider a
feasible solution to the dual, ȳ, and let x̄ j = 1 whenever the dual constraint is binding,∑

(i, j)∈E ȳi j = 1. We show that the solution x̄ is a feasible vertex cover. To that end,
we introduce the concept of maximality: a feasible solution to (VC-dual), ȳ, is said
to be maximal if there is no feasible solution y such that yi j ≥ ȳi j and

∑
(i, j)∈E yi j >∑

(i, j)∈E ȳi j .

3.3 THE LP-ALGORITHM FOR SET COVER 103

LEMMA 3.1 Let ȳ be a maximal feasible solution to (V C −dual). Then the set V C =
{i |∑(i, j)∈E ȳi j = 1} is a feasible solution to (V C).

Proof. Suppose that V C is not a feasible cover. Then there is an edge (u,v) which is
uncovered, i.e.,

∑
(u, j)∈E yu j < 1 and,

∑
(v, j)∈E yv j < 1.

Let δ = Min {1−∑
(u, j)∈E yu j ,1−∑

(v, j)∈E yv j}. Then the vector, y = ȳ+δ ·euv (for
euv denoting the vector of all zeros except for a 1 in the uv entry), is a feasible solution
satisfying yi j ≥ ȳi j and

∑
(i, j)∈E yi j >

∑
(i, j)∈E ȳi j . This contradicts the maximality of ȳ.

Hence, every edge must be covered by V C and VC is therefore a feasible cover.

Consider now the generalization of this approach for the set cover problem.

DEFINITION 3.1 A feasible solution to (SC-dual) ȳ is said to be maximal if there is
no feasible solution y such that yi ≥ ȳi and

∑n
i=1 yi >

∑n
i=1 ȳi .

THE LP-ALGORITHM [HOCHBAUM]

Step 1: Find a maximal dual feasible solution for (SC), ȳ.

Step 2: Output the cover C H = { j |∑n
i=1 ai j ȳi = w j}.

LEMMA 3.2 C H is a feasible solution to (SC).

Proof. The proof is an obvious extension of Lemma 3.1: Consider an element q that is
not covered. Let δ = Min j |q∈S j {w j −

∑n
j=1 ai j ȳi} > 0. Then the vector, y = ȳ+ δ · eq ,

is a feasible solution contradicting the maximality of ȳ.

Let C∗ be the optimal cover. Define for any set cover C , w(C) = ∑
j∈C w j . The

following lemma shows that the the LP- algorithm is a maxi {
∑

j ai j}- approximation
algorithm due to the dual constraint being binding for every j ∈ C H .

LEMMA 3.3 w(C H) ≤ maxi {
∑

j ai j}w(C∗).

Proof. First, w(C H) =∑
j∈CH w j =∑

j∈CH (
∑m

i=1 ai j yi). Using the weak duality the-
orem we get that for any solution to the linear programming relaxation, and in particular
for the optimal solution x∗,∑

j∈CH (
∑m

i=1 ai j yi) ≤ maxi{
∑

j∈CH ai j}
∑m

i=1 yi ≤ maxi {
∑

j∈CH ai j}
∑n

j=1 w j x∗
j

≤ maxi{
∑

j∈CH ai j}w(C∗).

Now the value of the optimal solution to the linear programming relaxation is a lower
bound to the optimal integer solution. It follows that,
w(C H) ≤ maxi{

∑
j∈CH ai j}w(C∗).

This proves a slightly stronger approximation factor as we can consider the row
sums restricted only to those sets in the cover (alternatively the row sums are calculated
in the submatrix of the columns in the cover). For instance, if the cover C H has only one

104 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

set covering each element, then it is optimal. Let the maximum number of sets covering
an element, maxi{

∑
j aij} be denoted by p.

An immediate corollary of the p-approximation is that the LP-algorithm is a 2-
approximation algorithm for the (weighted) vertex cover problem.

COROLLARY 3.1 The LP-algorithm is a 2-approximation algorithm for the vertex
cover problem.

Proof. (VC) is a special case of (SC) with each element—an edge—belonging to pre-
cisely two “sets” representing its endpoints. Hence,

∑
j aej = 2 for all edges e ∈ E .

The implementation of the LP-algorithm proposed in [Hoc82] used the optimal dual
solution as a maximal feasible solution. Still, the role of the dual solution is only to aid
the analysis of the algorithm. It need not be generated explicitly by the algorithm:

THE ROUNDING ALGORITHM [HOCHBAUM]

Step 1: Solve optimally the linear programming relaxation of (SC). Let an optimal
solution be {x∗

j }
Step 2: Output the cover C H = { j |x∗

j > 0}. Equivalently, set x H
j =

⌈
x∗

j

⌉
.

The rounding algorithm is indeed a special case of the LP-algorithm as x ∗
j > 0

implies that the corresponding dual constraint is binding by complementary slackness
optimality conditions,

∑m
i=1 ai j yi = w j .

A minor variation of the rounding algorithm is still a p-approximation algorithm.
We replace Step 2 by:

Step 2′: Output the cover C H = { j |x∗
j ≥ 1

p }.
The feasibility of this cover is obvious, as in any fractional solution x corresponding to a
cover C ,

∑n
j=1 x j ≥ 1, and there are at most p positive entries per such inequality. So at

least one must be at least as large as the average 1
p . This rounding algorithm (rounding II)

will always produce a cover no larger than the rounding algorithm; although it does not
offer any advantage in terms of worst case analysis. Moreover, for any cover produced
by an approximation algorithm, it is easy to prune it of unnecessary extra sets, and leave
a “prime” cover, which is a minimal cover. Although a prime cover can only be a better
solution, this approach has not provided guaranteed tighter approximation factors.

In the next section we see that it is not necessary to compute an optimal solution to
the linear programming problem. Rather, there are more efficient ways of finding a max-
imal dual solution, two of which are described in the next section. On the other hand,
as discussed in the section on the preprocessing algorithm, 3.7, the linear programming
solution carries some extra valuable information for the vertex cover and independent
set problems. In addition, for the vertex cover problem it is possible to solve the linear

3.4 THE FEASIBLE DUAL APPROACH 105

programming relaxation by applying a max-flow min-cut algorithm which is more effi-
cient than solving the respective linear program.

It is also shown that the LP-algorithm can also be used in the presence of covering
matrices with coefficients other than 0 or 1. In Section 3.5 it is demonstrated for a differ-
ent formulation of the set cover problem. Chapter 4 is devoted entirely to applications
of the algorithm of finding maximal dual solutions to a large variety of covering-type
problems.

THE FEASIBLE DUAL APPROACH

3.4

Solving the linear programming relaxation of set cover can be done in polynomial time.
Yet, much more efficient algorithms are possible that find a feasible and maximal dual
solution. The advantage of such algorithms is in the improved complexity. The approxi-
mation ratios derived are the same as for the dual optimal solution.

Bar-Yehuda and Even [BYE81] devised an efficient algorithm for identifying a
maximal feasible dual solution to be used in the LP-algorithm. The idea is to identify
a feasible primal constraint and then to increase its dual variable till at least one of the
dual constraints becomes binding.

As before, the derivation of the dual solution is implicit and exists only in order to
analyze the approximation factor. This dual information is placed in square brackets in
the description of the algorithm to stress that it is not an integral part of the procedure.

THE DUAL-FEASIBLE I ALGORITHM [BAR-YEHUDA AND EVEN]

Step 0: Set C = ∅; I = {1, . . . ,m}; [y = 0].
Step 1: Let i ∈ I . Let w j (i) = minai j =1w j . [yi = w j (i)]; C ← C ∪{ j (i)}.
Step 2: {update} For all j such that ai j = 1, w j ← w j −w j (i), I ← I \ S j (i).

Step 3: If I = ∅, stop and output cover C . Else, go to Step 1.

Throughout this procedure the updated w j s remain nonnegative. The weights w j

are in fact the reduced costs corresponding to the solution y, and at each iteration they
quantify the amount of slack in the dual constraint. In this sense, the algorithm is dual-
feasible—throughout the procedure it maintains the feasibility of the dual vector y. For
any set added to the cover, the updated value of the reduced cost is 0, i.e. the correspond-
ing dual constraint is binding. The resulting dual vector is maximal since each element
belongs to some set in the cover, and therefore to some set with a binding dual constraint.
Hence, there is no vector that is larger or equal to y in all its components which is feasi-
ble, unless it is equal to y.

Lemma 3.3 applies to the cover delivered by the dual-feasible I algorithm, namely,
dual-feasible I is a p-approximation algorithm to the set cover problem. The

106 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

complexity of the dual-feasible algorithm is O(mn), which is linear in the size of the
input matrix, and hence a considerable improvement to the complexity of the respective
linear program.

As in Corollary 3.1, this algorithm is a 2-approximation to the vertex cover problem.
However, as discussed in the next section, there is additional information in the optimal
linear programming solution to the vertex cover problem that is lost in the dual-feasible
algorithm.

Another variation on the theme of dual feasible solutions was proposed by Clarkson
[Clar83] for the vertex cover problem. This algorithm is superficially similar to the
greedy algorithm: instead of choosing a vertex based on its minimum weight per edge
covered, it is choosing a vertex based on minimum reduced weight. Clarkson did not use
the concept of duality, and his proof for the bound of 2 is consequently more involved.
We adapt this idea for the set cover problem:

THE DUAL-FEASIBLE ALGORITHM II [AFTER CLARKSON]

Step 0: Set C = ∅; S1
j = Sj , j ∈ J ; I = {1, . . . ,m}; k = 0 ; [y = 0].

Step 1: k = k +1. Select a set Sjk , such that
w jk

|Sk
jk

| = min j∈J
w j

|Sk
j |

.

Step 2: {update} Set C ← C ∪{ jk} and Sk+1
j = Sk

j \ Sk
jk ,∀ j ∈ J , I ← I \ Sk

jk .

w j ← w j − w jk

|Sk
jk

| · |Sk
j ∩ Sk

jk
|. [yi = w jk

|Sk
jk
| ∀i ∈ Sk

jk
.]

Step 3: If I = ∅, stop and output cover C . Else, go to Step 1.

Dual-feasible II has several interesting aspects. Whenever a set is selected, its cor-
responding dual constraint becomes binding as each of the elements covered by it is
assigned an equal share of the set’s (reduced)weight. This symmetry among the elements
in the allocation of the dual weights makes the algorithm particularly amenable to par-
allel and distributed implementations. Indeed Khuller, Vishkin, and Young, [KVY94],
devised a parallel algorithm that runs in time O(log2 m log 1

ε
), and produces a solution

that is at most p
(1−ε)

times the optimum.
In the next section we demonstrate how Dual-feasible II could have been conceived

from a different formulation of the set cover problem. This underlies the connection
between formulations and algorithms.

USING OTHER RELAXATIONS TO DERIVE DUAL
FEASIBLE SOLUTIONS

3.5

Imagine an alternative formulation of the set cover problem that has many additional
constraints compared to the standard formulation. Let C̄ be any feasible set cover and
any S ⊆ I = {1, . . . ,m}. Then, obviously

∑
j∈C̄ |Sj ∩ S| ≥ |S|. This leads to a new

3.6 APPROXIMATING THE MULTICOVER PROBLEM 107

formulation with the following LP relaxation of the set cover problem:

Min
∑n

j=1 w j x j

subject to
∑n

j=1 |Sj ∩ S|x j ≥ |S| ∀S ⊆ I

x j ≥ 0, j ∈ J.

Observe that this formulation contains all the constraints of (SC) for S = i , i ∈ I .
All the additional constraints are redundant. The coefficients in the constraint matrix are
no longer 0 and 1 as before. The dual to this relaxation is

Max
∑

S |S|yS

subject to
∑

S |Sj ∩ S|yS ≤ w j , j ∈ J

yS ≥ 0 S ⊆ I.

Consider now the dual feasible algorithm applied to this formulation. For every
violated primal constraint (uncovered element), we increase the corresponding y S pro-
portionally to its coefficient in all dual constraints until at least one becomes binding.
This means setting

yS = min j |S j∩S �=∅
w j

|Sj ∩ S| .

In particular, we may choose S = I and add the set Sk for which the minimum is attained
to the cover; update I ← I \ Sk and repeat.

Notice that this algorithm is precisely Dual-feasible II. To see that the same p-
approximation follows notice that for every pair of feasible covers C and C̄ ,∑

j∈C

|Sj ∩ S| ≤ p|S| ≤ p
∑
j∈C̄

|Sj ∩ S|.

Let the optimal integer solution be |SC∗|. We now have similar inequalities as before,∑
j∈C

w j =
∑
j∈C

∑
S

|Sj ∩ S|yS =
∑

S

∑
j∈C

|Sj ∩ S|yS ≤ p
∑

S

|S|yS ≤ p|SC∗|.

This type of approach that uses alternative formulations has lead to considerably
better approximations for specific types of covering problems and network design prob-
lems as described in Chapter 4. For an alternative 2-approximation for the vertex cover
problem, see Section 9.2.1.

APPROXIMATING THE MULTICOVER PROBLEM

3.6

In this section we present variations of the LP-algorithm, the rounding algorithm, and the
dual-feasible algorithm that also work for the multicover problem (MC). The description
of the dual-feasible algorithm and its analysis are from [HH86]. Consider the linear

108 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

programming relaxation of the multicover problem and its dual:

(MCR)

MC∗ = Min
∑n

j=1 w j x j

subject to
∑n

j=1 ai j x j ≥ bi (for i = 1, . . . ,m)

0 ≤ x j ≤ 1 (j = 1, . . . ,n)

MC∗ obviously bounds from below the optimal value to the multicover problem.
The dual to the linear programming relaxation above reads:

(MC-dual)

Max
∑m

i=1 bi yi −
∑n

j=1 v j

subject to
∑m

i=1 ai j yi −v j ≤ w j (for j = 1, . . . ,n)

yi ,v j ≥ 0 (i = 1,2, . . . ,m, j = 1, . . . ,n)

Here a feasible dual solution (ȳ, v̄) is called maximal if it satisfies:

(i) There is no other feasible solution (y,v) such that yi ≥ ȳi ,vi ≥ v̄i and
∑m

i=1 bi yi −∑n
j=1 v j >

∑m
i=1 bi ȳi −

∑n
j=1 v̄ j .

(ii) v̄ j = 0 whenever
∑m

i=1 ai j yi < w j .

(iii)
∑m

i=1 ȳi ≤∑m
i=1 bi ȳi −

∑n
j=1 v̄ j

With this definition of maximality, the following LP-algorithm works as a p-approx-
imation algorithm, where p = maxi{

∑
j aij}.

THE LP-ALGORITHM FOR MULTICOVER

Step 1: Find a maximal dual feasible solution for (MC), ȳ, v̄.

Step 2: Output the cover C H = { j |∑n
i=1 ai j ȳi − v̄ j = w j}.

LEMMA 3.4 The LP-algorithm is a p-approximation algorithm for (MC).

Proof. First, we establish that C H is a feasible multicover. Consider an uncovered
element (row) q. Notice that for the problem to be feasible, every row i needs at least bi

sets covering it. Let δ = Min j |q∈S j {δ j = w j −
∑n

j=1 ai j ȳi and δj > 0}. Since there must
be at least bq sets that q belongs to, and at most bq −1 of them are in C H , it follows that
δ is well defined. Now set, y = ȳ+ δ · eq and v = v̄+∑

j∈cH|q∈Sj
δej.

It is easy to verify that the vector (y,v) is a feasible solution, thus contradicting
property (i) of the maximality of (ȳ, v̄). This is because the first term has at least increased
by bqδ whereas the second term has at most increased by (bq −1)δ, thus contributing to
a net increase of the objective function by at least δ.

Now (ȳ, v̄) is a feasible dual solution, hence the weak duality theorem applies:

∑
i∈I

bi ȳi ≤ min

(∑
j∈J

w j x j

)
+
∑
j∈J

v̄ j ≤ MC∗ +
∑
j∈J

v̄ j .

From that and property (iii), ∑
i∈I

yi ≤ MC∗. (3.7)

3.6 APPROXIMATING THE MULTICOVER PROBLEM 109

Using the construction of C H :

∑
j∈CH

w j +
∑
j∈CH

v j =
∑
j∈CH

∑
i∈I

ai j ȳi =
∑
i∈I

⎛
⎝∑

j∈CH

ai j

⎞
⎠ ȳi

≤
⎛
⎝max

i∈I

∑
j∈CH

ai j

⎞
⎠ ·

∑
i∈I

ȳi ≤ p ·MC∗.

The last inequality follows from 3.7 and the definition of p. Recalling that the v̄ j ’s are
nonnegative and that MC∗ ≤ w(C∗) where w(C∗) is the value of the optimal integer
solution, we derive the stated result.

A rounding algorithm is also a p-approximation algorithm. It offers the advantage
of a smaller weight multicover.

THE ROUNDING ALGORITHM [HALL AND HOCHBAUM]

Step 1: Solve the linear programming relaxation of (MC) optimally. Let an optimal
solution be {x∗

j }
Step 2: Output the cover C H = { j |x∗

j ≥ 1
p }.

The feasibility of this cover is obvious, as in any fractional solution x corresponding
to a cover C ,

∑n
j=1 ai j x j ≥ bi . So at least bi entries must be at least as large as the

average 1
p .

Next we present a dual-feasible algorithm that delivers a p-approximate solution to
the multicovering problem. This algorithm has a better complexity than the one required
to solve the relaxation optimally.

The input to the algorithm is the matrix A and the vectors b and w. The output is
COVER – the indices of the sets selected and a vector (yi , i = 1, . . . ,m;v j , j = 1, . . . ,n)

that will later be proved to constitute a feasible dual solution.

THE DUAL-FEASIBLE MC ALGORITHM

Step 0: (initialize) v j = 0, j ∈ J. y j = 0, i ∈ J. COVER = ∅.

Step 1: Let i ∈ I . Let wk = min{w j | j ∈ J -COVER and ai j = 1}. (k is the minimum
cost column covering row i .) If no such minimum exists, stop - the problem
is infeasible.

Step 2: Set yi ← yi +wk . COVER ← COVER∪{k}. For all j ∈ J such that ai j = 1
set w j ← w j −wk . If w j < 0 then v j ← v j −w j and w j ← 0.

Step 3: Set bi ← bi − 1, i = 1, . . . ,m. For all i ′ such that bi ′ = 0, I ← I −{i ′}. If
I = ∅ stop. Else go to Step 1.

The algorithm repeats Step 1 at most n times, since if following n iterations the
set I is not yet empty, then there is no feasible solution. This could occur for instance

110 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

if the amount of required coverage exceeds the number of covering sets, n. At each
iteration there are at most (max{n,m}) operations resulting in a total complexity of
O (max{n,m} ·n).

The output of the algorithm is the set COVER of indices of the selected sets that
multicover all elements, or a statement that the problem is infeasible. We shall now prove
that dual vector derived is maximal and satisfies the three properties.

In the proofs of the facts that follow we shall use the notation S j = {i |ai j = 1}, i.e.,
Sj denotes the j th set.

Fact 1. For each j ∈ COVER, w j = ∑
i∈S j

yi −v j .

Proof. By construction w j +v j =
∑
i∈S j

yi .

Fact 2.
∑

i∈S j
yi ≤ w j +v j ∀ j ∈ J.

Proof. This follows from Fact 1 and from Step 1 since the minimum cost column is
always selected.

Fact 3. The output of the algorithm (y,v) =
(
{yi}m

i=1,{v j }n
j=1

)
is a feasible solution

to the dual problem.

Proof. First, yi ,v j are always nonnegative. This follows since yi is equal to a cost w j

during one of the iterations and the w ′
j s are always maintained as nonnegative numbers.

Each v j is a sum of positive numbers, and hence, nonnegative as well. Finally, Fact 2
establishes the feasibility with respect to the constraints.

Fact 4. v j = 0 for all j ∈ J -COVER. This fact follows from the selection made at
Step 1 of the algorithm.

The following lemma is useful in the proof of property (iii).

LEMMA 3.5
∑

j∈COVER v j ≤∑
i∈I (bi −1)yi (note that bi ≥ 1, i ∈ I).

Proof. The values of the left-hand side and the right hand side of the inequality vary
during the algorithm’s iteration.

We let the value of v j and yi after iteration t be denoted by v
(t)
j and y(t)

i respectively.
Let T be the number of iterations. We shall prove by induction on t that∑

j∈COVER

v
(t)
j ≤

∑
i∈I

(bi −1)y(t)
i , i = 1, . . . ,T .

For t = 1, the left-hand side is zero and the right-hand side nonnegative. We shall assume
by induction that the inequality holds for t = 1, . . . ,l −1 and prove for l.

Let M = wk be the minimum column cost selected at iteration l; then the right-hand
side increases by (bi −1) · M with yi increasing by M . Each v

(l)
j might be increased by at

most M compared to the previous iteration but for no more than (bi −1) columns. This
is the case since a cost of a column could become negative (thus triggering the increase
in v

(l)
j), only if it is already bi columns or more covering row i in COVER. Then this row

3.6 PREPROCESSING 111

would have been removed from the set I , and thus could not be considered at iteration
l. Therefore, the inequality is preserved at each iteration, and hence, the desired result.

From the proof of the theorem it follows that the heuristic solution value does not
in fact exceed (max

i∈I

∑
i∈COVER

ai j) times the value of the optimum. This quantity could be

much smaller than p.
The derivation of the dual vector as a by-product of the heuristic also provides a

certificate of optimality for the selected set COVER (or any other solution) satisfying∑
i∈COVER w j =∑n

i=1 bi yi −
∑n

j=1 v j .

THE OPTIMAL DUAL APPROACH FOR THE VERTEX
COVER AND INDEPENDENT SET PROBLEMS:
PREPROCESSING

3.7

As we saw earlier, finding the optimal dual solution rather than a feasible one does not
offer improved approximation bounds in general but requires more running time. Still,
for the vertex cover and independent set (and the more general integer programs with
two variables per inequality), the optimal dual solution provides important information
about the problem, and allows it to improve the approximation bounds. For vertex cover,
the use of the optimal dual solution guarantees that any heuristic used along with that
information as preprocessing, yields an approximation ratio strictly better than 2.

Many intuitively reasonable heuristics for the vertex cover problem, (with the ex-
ception of the LP-algorithm), may fare quite badly compared to the optimal solution to
the problem. For instance, a natural heuristic to consider is to take the largest degree ver-
tex in the graph for the unweighted problem. This is the greedy algorithm, and, as shown
by Johnson [Joh74], this heuristic applied to a graph of maximum degree k may deliver
a cover whose weight exceeds the weight of an optimal cover by a factor of H(k) even
if all weights are unit.

Another heuristic is available when the set of vertices of the graph V is split into
independent sets {V1, . . . ,Vk}. (Methods of obtaining such a split will be described later.)
Each set V \ Vi is a cover. In particular, V \ Vi of the smallest weight may seem to be a
good candidate for a cover C . Still, the ratio w(C)

w(C∗) may be arbitrarily large even when G
is fixed. Indeed, consider the path with vertices {1,2,3,4} and weights w1 = w4 = M ,
w2 = w3 = 1 for some large M . When V is partitioned into two independent sets, the
strategy proposed here yields a cover C with w(C) = M +1 and yet the optimal cover C ∗

has w(C∗) = 2. Some more illustrations of such undesirable behavior of other heuristics
are quite common. Still, it seems that the LP-heuristic alone employs relatively little
information about the underlying structure of the graph, and one should be able to fare
better with additional graph information taken into account.

112 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

This idea has motivated the use of the preprocessing procedure of [Hoc83] that
makes use of the linear programming information and additional information about the
graph. Indeed, the quality of the solution delivered by any heuristic can be improved if
we first partition the graph into two subgraphs with the property that in one subgraph
an optimal selection of a cover is known and in the other the weight of the optimal
cover is at least half of the total weight of all vertices. The existence of such a partition,
implied by the fractional solution to the problem, has been established by Nemhauser
and Trotter [NT75].

More precisely, Nemhauser and Trotter [NT75], Balinski and Spielberg [BS69],
and Lorentzen [Lor66] have shown that there exists an optimal solution to the linear
programming relaxation of (V C), x∗, such that x∗

j ∈ {0,1, 1
2 }. We call this property the

half integrality property. Nemhauser and Trotter have further proved that there exists an
optimal integer solution that is equal to x∗ in its integer components. We refer to this
property as the “fixing variables” property. Both the half integrality property and the
“fixing variables” property were proved to hold also for IP2 (see [HMNT93] or 3.8).

One possible algorithmic use of fixing variables is that an optimal integer solution
may be obtained by rounding the components of x∗ that are equal to 1

2 . The rounding
could be up or down to 1 or 0 respectively. Since there are 2n possible rounding schemes
(some of which may not lead to a feasible solution), this fact in itself does not aid in
speeding up the search for an optimal solution. It does, however, provide us with a head-
start in the search towards a solution: consider an optimal solution x∗ to (V C R), and the
implied partition:

j ∈ P if x j = 1

j ∈ Q if x j = 1

2

j ∈ R if x j = 0.

Then, using the fixing variables property we conclude,

(i) at least one optimal cover in C contains P,

(ii) each vertex in R has all its neighbors in P,

(iii) each cover in G has weight at least w(P)+ 1
2w(Q).

From (i) and (ii), it follows instantly that at least one optimal cover in G consists
of the set P and of an optimal cover in the subgraph H induced by Q. Thus, it suffices
to find an optimal cover in H ; working with H rather than with G is what we mean by
“fixing variables.”

Fixing variables is a trick which can be applied not only in the context of finding
optimal covers but also in the context of heuristics for finding near-optimal covers. In
this context, the trick has a nice corollary: If C is any cover in H , then (by (ii)) P ∪ C
is a cover in G, and (by (iii)) its weight is at most twice the weight of an optimal cover.
Thus any heuristic for finding near-optimal covers can be made to deliver a cover whose
weight is at most twice the weight of an optimal cover: it suffices to preprocess G by
finding P, Q, R, and then to apply the heuristic to H rather than directly to G. Formally,

3.7 PREPROCESSING 113

let C H be the cover delivered by the heuristic on the subgraph H . Then,

w(C H ∪ P)

w(C∗)
≤ w(C H)+w(P)

1
2w(Q)+w(P)

≤ 2
w(C H)

w(Q)
.

The consequence of using the preprocessing technique is that any heuristic for the vertex
cover problem delivers a solution that is less than twice times the optimum. C H is a
subset of Q, and one can always remove just one vertex from Q that is of maximum
weight and consider the rest as the heuristic cover.

The preprocessing technique has become the basis of most “good” heuristics for the
vertex cover problem, and it can be used to improve by a factor of two the approximation
ratio for the independent set problems. Unlike the vertex cover, we cannot guarantee an
approximation ratio better than half (or factor of two off the optimum) for the indepen-
dent set problem. To see why, consider a heuristic applied to the subgraph H delivering
an independent set I S H . The ratio of the weight of the resulting independent set to the
optimal independent set I S∗ is,

w(I SH ∪ R)

w(I S∗)
≥ w(I SH)+w(R)

1
2w(Q)+w(R)

≥ 2
w(I SH)

w(Q)
.

Now I SH could be arbitrarily small, so the ratio may be arbitrarily close to 0. If
on the other hand the heuristic procedure guarantees a certain positive ratio, the use of
the preprocessing technique may double this ratio. Whether or not the ratio is doubled
depends on whether the graph property is hereditary and maintained for the subgraph.
When applying the procedure to a graph with a small largest claw number, for instance,
there is no improvement with preprocessing (as this property is not hereditary), and the
bound on the optimum relies on the bounded claw number of the graph. This algorithm
will be demonstrated in a later section.

Pulleyblank [Pul79] observed the following with regard to the size of the subsets
P and Q. He proved that almost all graphs (randomly generated) have an LP-relaxation
for which the solution is a vector of 1

2 s and no integer entries. In that sense, the use of
the preprocessing is more to guarantee that the graph has no integer nodes, rather than
to attempt to find many integer values.

3.7.1 THE COMPLEXITY OF THE LP-RELAXATION OF VERTEX COVER
AND INDEPENDENT SET

In order to apply the preprocessing solution the optimal LP solution must be available.
Although in principle it is possible to solve linear programs in polynomial time (using
Ellipsoid method or interior-point methods), such procedures are less efficient than many
combinatorial algorithms. In particular, the LP-relaxation of the vertex cover is solvable
by the max-flow min-cut algorithm.

The LP-relaxation of the vertex cover problem can be solved by finding an optimal
cover in a bipartite graph with two vertices for each vertex in the original graph, and two
edges for each edge in the original graph (see Figure 3.3). In the bipartite graph a vertex
cover may be identified from the solution of a corresponding minimum cut problem.
Specifically, as suggested by Edmonds and Pulleyblank and noted in [NT75], the LP-

114 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

relaxation can be solved by finding an optimal cover C in the bipartite graph with two
vertices a j , b j of weight w j for each vertex j of G, and two edges (ai ,b j),(a j ,bi) for
each edge (i, j) of G: then it suffices to set

x j = 1 if a j ,b j ∈ C,

x j = 1

2
if a j ∈ C,b j �∈ C, or a j �∈ C,b j ∈ C,

x j = 0 if a j �∈ C,b j �∈ C.

In turn, the problem of finding C can be reduced into a minimum cut problem:
the bipartite graph can be converted into a network by making each edge (ai ,b j) into
a directed arc (ai ,b j) of an infinite capacity, adding a source s with an arc (s,ai) of
capacity wi for each i , and adding a sink t with an arc (b j , t) of capacity w j for each
j . Now a minimum cut (S,T) with s ∈ S and t ∈ T points out the desired C : it suffices
to set ai ∈ C iff ai ∈ T and b j ∈ C iff b j ∈ S. A description of the resulting graph is given
in Figure 3.3.

The minimum cut can be found by efficient algorithms for maximum flow on (bipar-
tite) graphs. For instance, if one uses Goldberg and Tarjan’s algorithm, [GT88], it takes
only O(mn log n2

m) steps to preprocess G with n vertices and m edges by partitioning the
set of vertices into P, Q and R. This algorithm is a special case of the algorithm used to
find the half integer solution for IP2 where min cut is also used for preprocessing (see
Section 3.8).

8

w2

wi

wj

wn

w1
w2

wi

wj

wn

w1

FIGURE 3.3

3.7 PREPROCESSING 115

We now present an alternative method of reducing the LP-relaxation to a flow
problem that is illuminating as to why min cut solves this problem. Consider the LP-
relaxation of the vertex cover problem (VCR),

(VCR)

Min
∑n

j=1 w j x j

subject to xi + x j ≥ 1 (for every edge (i, j) in the graph)
0 ≤ x j ≤ 1 (j = 1, . . . ,n).

Replace each variable x j by two variables, x+
j and x−

j , and each inequality by two
inequalities:

x+
i − x−

j ≥ 1

−x−
i + x+

j ≥ 1 .

The two inequalities have one 1 and one −1 in each, and thus correspond to a dual of a
network flow problem. The upper and lower bounds constraints are transformed to

0 ≤ x+
j ≤ 1

−1 ≤ x−
j ≤ 0 .

In the objective function, the variable x j is substituted by 1
2 (x+

j − x−
j).

The resulting constraint matrix of the new problem is totally unimodular. Hence, the
linear programming (optimal basic) solution is integer, and in particular can be obtained
using a minimum cut algorithm. When the original variables are recovered, they are
integer multiples of 1

2 .
We will see in Section 3.8 that this transformation is applicable to all integer pro-

grams with two variables per inequality. That, in addition to the “fixing variables” prop-
erty that applies, guarantees that any heuristic will give a bound of 2 or better.
Remark: When the problem is unweighted, the network flow that solves the LP relax-
ation is defined on simple networks. These are networks with all arcs of capacity 1, and
every node has either one incoming arc or one outgoing arc. In this case, the arcs in
the bipartition of the type (ai ,b j) can be assigned capacity 1 instead of ∞. For simple
networks, Dinic’s algorithm for maximum flow works in O(

√
nm) time—a significant

improvement in running time.

3.7.2 EASILY COLORABLE GRAPHS

It is now demonstrated how to exploit certain graph properties with the preprocessing
technique so as to obtain approximation factors better than 2 for the vertex cover prob-
lem, and improved approximations for the independent set problem. For many classes
of graphs it is easy to split the nodes into independent sets. Assigning each independent
set a color results in a valid coloring with adjacent vertices having distinct colors.

THEOREM 3.2 Let G be a weighted graph with n vertices and m edges; let k be an
integer greater than one. If it takes only s steps to color the vertices of G in k colors, then
it takes only s + O(nm log n2

m) steps to find an independent set whose weight is at least
2/k times the weight of an optimal independent set and to find a cover whose weight is
at most 2−2/k times the weight of an optimal cover.

116 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

Proof. It takes only s + O(nm log n2

m) steps to color G in k colors and to find the set
P, Q, R of the preceding section. (Note that it suffices to color only the vertices of Q.)
The coloring of G splits Q into k color classes; if S denotes the heaviest of them then
W (S) ≥ W (Q)/k. The set R ∪ S is independent since

w(R ∪ S) ≥ w(R)+ 1

k
w(Q) ≥ 2

k

(
(w(R)+ 1

2
w(Q)

)
,

its weight is at least 2/k times the weight of an optimal independent set. The complement
C of R ∪ S is a cover since

w(C) ≤ w(P)+ k −1

k
w(Q) ≤ 2(k −1)

k

(
w(P)+ 1

2
w(Q)

)
,

its weight is at most 2−2/k times the weight of an optimal cover.

The remainder of this section consists of various corollaries of Theorem 3.2. To
begin with, let D(G) denote the largest d such that G contains a subgraph in which each
vertex has degree at least d. As proved by Szekeres and Wilf [SW68], every graph G can
be colored in D(G)+1 colors. For the sake of completeness, we shall describe a way of
finding such a coloring and evaluating D(G) in only O(n+m) steps. To evaluate D(G),
it suffices to dismantle G by successive removals of vertices of minimum degree.

MAXIMUM MINIMUM DEGREE SUBGRAPH

Step 0: Set d = 0.
Step 1: If G has no vertices left, then stop; otherwise choose a vertex v of the

smallest degree.

Step 2: Replace d by the maximum of d and the degree of v. Then remove v (and
all the edges incident with v) from G and return to Step 1.

If vi denotes the vertex removed from G in the ith iteration, then each vi has at most
d neighbors among the vertices vi+l ,vi+2, . . . ,vn . To color G in no more than d + 1
colors, it suffices to scan the sequence of v′

i s from vn to vl , assigning to each vi the
smallest positive integer not yet assigned to any of its neighbors.

COROLLARY 3.2 It takes only O(nm log n2

m) steps to find, in any weighted graph G
with n vertices and m edges such that m > 0, an independent set whose weight is at least
2/(D(G)+1) times the weight of an optimal independent set and a cover whose weight
is at most 2−2/(D(G)+1) times the weight of an optimal cover.

The celebrated theorem of Brooks [Bro41] asserts the following: if G is a connected
graph of a maximum degree � such that � > 3 and if G is not the complete graph with
�+1 vertices, then G is �-colorable. An elegant and constructive proof of this theorem,
due to Lovász [Lov75a], provides an algorithm which finds the coloring in only O(�n)

steps. (The algorithm requires finding cutpoints and endblocks in a graph. This can be
done in O(m) steps by depth-first search as described, for instance, in [Baa78]).

3.7 PREPROCESSING 117

COROLLARY 3.3 It takes only O(�n2 log n2

m) steps to find, in any weighted graph
with n vertices and a maximum degree � such that � ≥ 2, an independent set whose
weight is at least 2/� times the weight of an optimal independent set and a cover whose
weight is at most 2−2/� times the weight of an optimal cover.

Proof. We may assume that � ≥ 3; otherwise each component is a cycle or a path
and a straightforward dynamic programming algorithm finds an optimal independent
set and an optimal cover in only O(n) steps. Furthermore, we may assume that the
graph is connected; otherwise each component may be treated separately. Finally, we
may assume that the graph is not complete: otherwise an optimal independent set and
an optimal cover may be found trivially in O(n) steps. But then the desired conclusion
follows directly from Brooks’ theorem and Theorem 3.2.

We will show in the next subsection that the 2
�

guarantee for independent set can be
improved by using a better partition.

The coloration heuristics are not counterexamples to our conjecture that vertex
cover is impossible to approximate within a ratio strictly less than 2. To show that, we let
a graph G be defined as follows. Consider � �-cliques and � (�−1)-independent sets.
Each clique has one edge connecting it to one of the vertices of an independent set. �−1
of the independent sets are one set of vertices in a complete bipartite graph with the �th
independent set as the second set of vertices. For such family of graphs, one can easily
verify that G is � chromatic and G = H . One feasible1 �-coloration consists of each
one of the independent sets colored by one of the �-colors. The heuristic then delivers a
cover C of size (2�−1)(�−1). The optimum cover C ∗ is of size �(�−1)+ (�−1)

and the ratio

w(C)/w(C∗) = 2− 2−3/�

�−1/�

which could be arbitrarily close to 2.
The standard proof due to Heawood that every planar graph is five-colorable (see,

for instance, [Har69]) has been converted into linear time algorithms [CNS81] [MST80].

COROLLARY 3.4 It takes only O(n2 log n2

m) steps to find, in any weighted planar
graph with n vertices, an independent set whose weight is at least 0.4 times the weight
of an optimal independent set and a cover whose weight is at most 1.6 times the weight
of an optimal cover.

Furthermore, the proof that every planar graph is four-colorable [AH77] [AHK77]
is convertible into an algorithm which actually finds the coloring in a polynomial number
of steps.

COROLLARY 3.5 It takes a polynomial number of steps to find, in any weighted
planar graph, an independent set whose weight is at least 0.5 times the weight of an

1In order to make this coloration unique we add a few edges to the graph: The vertices in the cliques
that connect each clique to each independent set are linked together to make a complete subgraph. The
i th independent set is connected to all these vertices except for the ith vertex.

118 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

optimal independent set and a cover whose weight is at most 1.5 times the weight of
an optimal cover.

3.7.3 A GREEDY ALGORITHM FOR INDEPENDENT SET
IN UNWEIGHTED GRAPHS

Sparse graphs have large independent sets. More precisely, the celebrated Theorem of
Turán [Tur41] asserts that every graph with n vertices and an average degree δ (this
quantity is not necessarily an integer) contains a independent set of size at least n

δ+1 .
An elegant proof of Turán’s theorem, due to Erdös [Erd70], is easily converted into the
following algorithm for finding a independent set S in at most O(m) steps.

GREEDY ALGORITHM [ERDÖS]

Step 0: Set S = 0.

Step 1: If G has no vertices then stop; otherwise choose a vertex v with the smallest
degree d in the current graph.

Step 2: Add v to S, delete v and all its neighbors (along with all the edges incident
with at least one of these vertices) from G, and return to Step 1.

To show that the size of the independent set S delivered upon termination is at
least n

δ+1 , we observe that whenever a vertex vi of degree di (this is the degree of vi in
the reduced graph from which vi is selected and subsequently removed) is chosen and
deleted, we eliminate a total of di +1 vertices from the graph and the sum of the degrees
of the vertices deleted is at least di(di +1). If q = |S| is the number of vertex selections
performed in the greedy algorithm, then

q∑
i=1

di(di +1) ≤ nδ and
q∑

i=1

(di +1) = n . (3.8)

By adding these two equations together and then applying the Cauchy-Schwarz inequal-
ity, we get that

n(δ +1) ≥
q∑

i=1

(di +1)2 ≥ n2

q
,

from which it follows that q ≥ n
δ+1 .

By using the greedy algorithm in conjunction with preprocessing, we get the fol-
lowing result.

THEOREM 3.3 [Hoc83] In any graph G with n vertices and average degree δ it takes
O(δn

3
2) steps to find an independent set of size at least 2

δ+1 times the size of maximum
independent set.

3.7 PREPROCESSING 119

Proof. Preprocessing an unweighted graph can be executed in only O(m
√

n) steps
[HK73]. Once the partition P, Q, R is obtained we apply the algorithm above to the sub-
graph H . The total number of steps does not exceed O(δn

3
2). The size of the independent

set delivered by the algorithm is at least |R|+ |Q|
δH +1 , where δH is the average degree in

H . (Incidentally, note that δH ≥ 2 as there is always a solution with no vertices of degree
one in the subgraph H .) Now we note that:

Fact 1. G is a connected graph, hence,

δ ≥ |Q|δH +|R|+ |P|
|Q|+ |R|+ |P|

(note that n = |Q|+ |R|+ |P|).
Fact 2. |R| ≥ |P|, otherwise setting G = H (i.e., all vertices are assigned the value

1
2) implies an “LP relaxation” solution of value larger than |R|+ 1

2 |Q|, contradiction.
To complete the proof it suffices to show (using Fact 1) that

|R|+ |Q|
δH +1

|R|+ 1
2 |Q| ≥ 2

(|Q|δH +|R|+ |P|
|Q|+ |R|+ |P|

)−1

.

Rearranging this inequality we reduce it to

|Q|(|R|δH (δH −1)−|P|(δH −1)−|P|(δH −1)) ≥ 0.

The validity of this inequality follows easily from Fact 2.

Halldórsson and Radhakrishnan ([HR94]) have recently tightened this analysis to
achieve an improved bound on q. Consider an optimal independent set, and let k i be the
number of nodes from this independent set deleted at stage i of the greedy algorithm.
Then, because an edge can have only one of its endpoints in the maximum independent
set, the equations (3.8) can be tightened:

q∑
i=1

di(di +1)+ ki(ki −1) ≤ nδ and
q∑

i=1

(di +1) = n .

Adding these two equations along with
∑q

i=1 ki = I S∗, and applying the Cauchy-
Schwarz inequality yields,

(δ +1)n +α ≥
q∑

i=1

(di +1)2 + k2
i ≥ n2 + (I S∗)2

q
,

which implies that q ≥ n2+(I S∗)2

n(δ+1)+I S∗ . Because this quantity is maximized at I S∗ = n, the
following improved bound for the quality of the greedy solution is found:

q ≥ 2

δ +2
.

When used in conjunction with the preprocessing technique, as in Theorem 3.3, a better
performance bound of 5

2δ+3 is achieved.
[HR94] also provides an analysis that yields a performance guarantee in terms of

the maximum degree � in an unweighted graph of q ≥ 3
�+2 for the greedy algorithm.

This is better than the bound in Corollary 3.3 when the graph is unweighted and � ≥ 5.

120 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

As we discuss in the next subsection, the idea of subgraph removal can be incorporated
to further improve the performance guarantee given for the greedy algorithm.

3.7.4 A LOCAL-RATIO THEOREM AND SUBGRAPH REMOVAL

In some cases, the absence of a particular family of subgraphs H (for example, odd cy-
cles) from a graph G can imply an improved approximation guarantee for finding an op-
timal structure in G. Bar-Yehuda and Even [BE85] have developed a local-ratio theorem
that, by removing problematic subgraphs, yields several new approximation algorithms
which improve upon previously known results for the weighted vertex cover problem.
Their main result is a (2 − log logn

2logn)-approximation algorithm that relies on eliminating
“small” odd cycles. This subsection describes their approach and its extension to other
approximation problems.

Let H be a set of graphs. Let AH be an approximation algorithm for the weighted
vertex cover problem. Consider the following algorithm to find a vertex cover in the
graph G = (V, E), with weight function w.

SUBGRAPH REMOVAL ALGORITHM [BAR-YEHUDA AND EVEN]

Step 0: Set w0 ← w.

Step 1: While there exists a subgraph H of G that is isomorphic to some member
ofH and whose vertices have positive weight, do: ∀v ∈ V (H) set w0(v) ←
w0(v)− δ, where δ ← min{w0(v)|v ∈ V (H)}.

Step 2: Set: V C0 ← {v ∈ G|w0(v) = 0}; V1 ← V − V C0.

Step 3: Let V C1 be returned by applying AH on G(V1), with the weight function
w0. Return V C ← V C0 ∪ V C1.

For each entry in H ∈H, let rH = nH
cH

, where nH is the number of vertices in H and
cH is the cardinality of a minimum unweighted vertex cover in H . r H is called the local-
ratio of the graph H . The quality of solution returned by the above algorithm is given
by the following theorem from [BE85]:

THEOREM 3.4 Local-Ratio Theorem Let rH = maxH∈H{rH } and rAH be the appro-
ximation factor guaranteed by the algorithm AH on input G(V1). Then, the vertex cover
V C returned by the Subgraph Removal Algorithm has weight at most r = max{rH,rAH }
times that of the optimal vertex cover.

In order to establish Theorem 3.4, we need a preliminary lemma.

LEMMA 3.6 Let G = (V, E) be a graph, and w, w1, and w2 be weight functions on
the vertices V , with optimal vertex covers V C∗, V C∗

1 and V C∗
2 , respectively. Suppose

that w(v) ≥ w1(v)+w2(v), for every v ∈ V . Then,

w(V C∗) ≥ w1(V C∗
1)+w2(V C∗

2) .

3.7 PREPROCESSING 121

Proof.

w(V C∗) =
∑

v∈V C∗
w(v) ≥

∑
v∈V C∗

(w1(v)+w2(v))

= w1(V C∗)+w2(V C∗) ≥ w1(V C∗
1)+w2(V C∗

2) .

Proof. (Local-Ratio Theorem) The proof is by induction on k, the number of times
that the do-while loop in Step 1 of the Subgraph Removal Algorithm is iterated through.
For k = 0 the theorem is obviously true.

Now consider the case k = 1. Let V C∗ and V C∗
0 be the optimal solutions with

respect to w and w0, and let V C be the vertex cover returned by the algorithm. Then,

w(V C) ≤ w0(V C)+ δnH ≤ rAHw0(V C∗)+ rHδcH

≤ r (w0(V C∗)+ δcH) ≤ r w(V C∗) .

For k > 1, imagine running Step 1 through one iteration. Then, by considering the
remainder of the algorithm as “AH” with performance guarantee r (from the induction
hypothesis), we are in the k = 1 case, from which the result follows.

By selectingH appropriately and designing the approximationalgorithm AH to take
advantage of the absence of such subgraphs, the Subgraph Removal Algorithm achieves
approximation procedures with improved efficiency and/or approximation guarantee
over previously known algorithms. The following is a summary of the results presented
in [BE85].

1. H is an edge: An edge has a local-ratio of 2. By removing edges during Step 1 of
the Subgraph Removal Algorithm, we are left with an empty graph at Step 2 (for
which rH vacuously equals 1). Thus, the algorithm gives a 2-approximation.

2. H is a triangle: By removing triangles during Step 1, which have a local-ratio
of 1.5, we are left with a triangle-free graph at Step 2. Then, by using the 2− 2

k
approximation algorithm from [Hoc83] as AH, where k is the number of colors
needed to color the remaining graph, two results follow:

a. Wigderson has shown [Wig83] that triangle free graphs can be colored with
k = 2

√
n colors in linear time. This yields a min{1.5,2 − 1√

n } = 2 − 1√
n (for

n ≥ 4) approximation guarantee for general graphs. (Halldórsson [H94] has
noted the existence of a nice algorithm [She83] that colors triangle free graphs

with k = 2
√

n
logn colors, yielding a 2−

√
logn

n approximation guarantee.)

b. Triangle-free planar graphs can be colored with k = 4 colors in linear time (see
[Har69]), yielding an algorithm that matches the known 1.5 approximation
guarantee of [Hoc83] for planar graphs. The advantage is that the complexity
of the general 4-coloring algorithms for planar graphs is avoided.

3. H is the set of “small” odd cycles: Odd cycles up to length 2k − 1, where
(2k −1)k ≥ n (so, k ≤ 2logn

log logn), are removed. This set of cycles has local ratio
rH = 2k−1

k = 2 − 1
k . For AH we use an algorithm, with the same performance

ratio, developed in [BE85] for graphs in which all odd cycles have length at

122 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

least 2k +3. This yields an approximation ratio guarantee of 2− 1
k ≤ 2− loglogn

2log n .
(Monien and Speckenmeyer [MS85] have used a similar approach to achieve im-
proved results for the unweighted vertex cover problem.)

Halldórsson and Radhakrishnan [HR94] have used the strategy of triangle removal,
in conjunctionwith preprocessing, to achieve several additional results for finding vertex
covers in unweighted graphs:

1. Removing triangles and applying the coloring algorithm of [She83] yields a 2−
log�+O(1)

�
approximation guarantee, where � is the maximum degree of a vertex

in the graph.

2. Consider a graph that is p-claw free. After removing triangles, the size of the
largest claw is equal to the maximum degree of the remaining graph. Thus, the
preceding result holds with � replaced by p −1.

Halldórsson and Radhakrishnan [HR94] also employ a strategy of subgraph re-
moval to achieve improved approximation algorithms for finding large (unweighted)
independent sets. Their general schema, which entails removing all cliques of a given
size from the graph and then running any particular independent set algorithm on the
resulting graph, is used to achieve improved performance bounds for the particular in-
dependent set algorithm. Used in conjunction with the greedy algorithm, for instance,
they achieve an asymptotic performance ratio of 3.76

�
by removing 8-cliques. Better per-

formance bounds may be achievable if it is used in conjunction with other heuristics.

3.7.5 ADDITIONAL ALGORITHMS WITHOUT PREPROCESSING

3.7.5.1 Independent Set in Weighted Graphs

By applying a graph theoretic result of Lóvasz [Lov66], it is possible to improve the
approximation guarantee for the weighted independent set problem in bounded degree
graphs from 2

�
to 1

� �+1
3 � , where � is the maximum degree of a vertex in the graph.

The idea is to consider a partition of a graph into k subgraphs, for some integer k;
that is, partition the vertices into k subsets and consider the k subgraphs induced by each
of the k subsets. Being able to find an optimal independent set in each subgraph implies
being able to find an independent set with weight within a factor of 1

k of the optimal in
the original graph. This fact is established in the next theorem.

THEOREM 3.5 Consider a weighted graph G = (V, E), and let V1, . . . ,Vk be a parti-
tion of the vertices V into k subsets. If I S∗

i is an optimal independent set in Gi (where
Gi is the subgraph of G induced by the vertices Vi) for i = 1, . . . ,k, and I S∗ an optimal
independent set in G, then

max
i=1,... ,k

{w(I S∗
i)} ≥ 1

k
w(I S∗) .

3.7 PREPROCESSING 123

Proof. Because I S∗ is an independent set in G, I S∗ ∪ Vi is an independent set in Gi .
So,

k∑
i=1

w(I S∗
i) ≥

k∑
i=1

(w(I S∗)∩ Vi) = w(I S∗) .

Now, the result follows by the pigeonhole principle.

Thus, being able to partition a graph into k subgraphs in which optimal independent
sets can be found in polynomial time leads to a 1

k -approximation algorithm for weighted
independent set. Of the optimal independent sets in the subgraphs, select the one with
maximum weight. More generally, being able to solve the independent set problem for
each subgraph within a factor β of the optimal implies a β

k -approximation algorithm.
Halldórson has noted the existence of a partitioning that can be used in this manner by
applying the following theorem due to Lovász:

THEOREM 3.6 Lovász Let G(V, E) be a graph with maximum degree �. Let k be
any integer such that 1 ≤ k ≤ �, and let �1, . . . ,�k be nonnegative integers such that,

�1 +�2 + . . .+�k = �− k +1 .

Then, V can be partitioned into k subsets V1, . . . ,Vk , such that �i is the maximum degree
of a vertex in the subgraph of G induced by Vi , for i = 1, . . . ,k.

Moreover, a crude analysis of the algorithm implied by the proof of the above the-
orem shows that the partitioning of the graph can be carried out in O(mk) time. The
previous two theorems lead to the following corollary:

COROLLARY 3.6 Let G be a weighted graph with maximum degree �. An indepen-
dent set with weight within a factor of 1

� �+1
3 � of the optimal can be found in O(m�) time.

Proof. Applying Theorem 3.6, a graph can be partitioned into k = � �+1
3 � subgraphs,

each with maximum degree 2, in O(m�) time. Now, an optimal independent set in such
graphs can be found in linear time. Thus, by Theorem 3.5, we can find an independent
set with weight within 1

� �+1
3 � of the optimal.

3.7.5.2 Vertex cover in unweighted large min-degree graphs

Karpinski and Zelikovsky [KZ95] recently proposed an algorithm for which the approxi-
mation is improved for graphs with large minimum degree. Let a graph be called δ-dense
if each vertex is adjacent to at least δn vertices. Let N(v) be the set of neighbors of v in
G = (V, E). The following is a 2

1+δ
- approximation algorithm:

124 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

procedure 2
1+δ

- approximation
for all v ∈ V do

V (v) ← V \ {N(v)∪v}
apply dual-feasible I algorithm to find a feasible vertex cover
V C(v) in the graph induced on V (v).
V C(v) ← V C(v)∪{N(v)}

Return V C(u) where |V C(u)| = minv∈V |V C(v)|.

The algorithm makes n calls to dual-feasible I, hence its complexity is O(mn). The
proof that the bound is valid is derived by assessing the ratios for the cases when the
optimum cover O PT satisfies |O PT | ≤ (1− δ)n and |O PT | ≥ (1− δ)n.

3.7.6 SUMMARY OF APPROXIMATIONS FOR VERTEX COVER
AND INDEPENDENT SET

We present here two tables along with a notation legend with the best known approxima-
tion results to date for vertex cover and independent set. The following legend explains
the meanings of the symbols used in Table 3.1:

Symbol Meaning
n number of vertices in the graph
m number of edges in the graph
α value of optimal independent set
χ chromatic number
� maximum vertex degree
δ average vertex degree

D(G) maxH⊆G{minv∈H {degree(v)}}
p-claw a subset of (p +1) vertices that induces a p-star

T (n,m) complexity of finding a minimum cut in a network with n nodes, m arcs
S complexity of applying Shearer’s coloring algorithm
δ minimum vertex degree

References and comments: (1) [Hoc83]; (2) [Hoc83], �-coloring via Brooks’
theorem; (3) [HR94]; (4) [HR94]; (5) [Hoc83],(δH is ave degree in subgraph H .);
(6) [Hoc83]; (7) [Hoc83]; this running time is from [BE85]; (8) [Bak83],
approximation scheme; (9) [BE85], via coloring algorithm in [Wig83]; (10) [BE85];
(11) [Hoc83] c is a fixed constant; (12) [MS85]; (13) [Hoc83]; (14) [YG92];
(15) [HR94]; (16) [KZ95]; (17) [Hoc83]; (18) [H94], using graph decomposition of
[Lov66]; (19) [HR94], analysis of greedy algorithm; (20) [Hoc83]; (21) [HR94];
(22) [HR94], analysis of greedy algorithm; (23) [Hoc83]; (24) [Hoc83]; (25) [Bak83],
approximation scheme; (26) [Hoc83]; (27) [YG92].

3.7 PREPROCESSING 125

Vertex Cover Problem

Graph Approximation Complexity Unweighted No Pre- Ref
Parameter Guarantee Only processing

χ 2− 2
χ

1

� 2− 2
�

O(�n2 logn) 2

2− 3
�+2 T (n,m) � 3

2− log�+O(1)

�
T (n,m)+ S � 4

δ 2− 2
δH +1 O(δH n

3
2) � 5

D(G) 2− 2
D(G)+1 T (n,m) 6

Planar 3
2 T (n,m) 7

1+ε O(1
ε
8

1
ε n) � � 8

n 2− 1√
n

T (n,m) 9

2− 2 logn
loglogn T (n,m) 10

2− 2c
n 11

2− 2 logn
loglogn O(nm) � 12

p-claw free 2− 1
p−1 T (n,m) 13

(2− 2
p) O(nm log n +n3) � 14

2− log p+O(1)

p T (n,m)+ S � 15

δ 2
1+δ

O(mn) � � 16

Independent Set Problem

Graph Approximation Complexity Unweighted No Pre- Ref
Parameter Guarantee Only processing

χ 2
χ

17

� 1
� �+1

3 � O(�) � 18

3
�+2 O(m) � � 19

δ 2
δ+1 O(δn

3
2) � 20

5
2δ+3 O(δn

3
2) � 21

2
δ+2 O(m) � � 22

D(G) 2
D(G)+1 T (n,m) 23

Planar 1
2 4-coloring 24

1−ε O(1
ε
8

1
ε n) � � 25

p-claw free 1
p−1 O(n logn +m) 26

max{ 2
p , k

2 α − n
α
(k

2 −1)} O(n3) � � 27

Table 3.1: Approximation Results for Vertex Cover and Independent Set

126 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

INTEGER PROGRAMMING WITH TWO VARIABLES
PER INEQUALITY

3.8

The analysis of integer programming with two variables per inequality (IP2 for short)
provides insight as to why approximations to vertex cover, independent set and the
2SAT problems work. Moreover, any minimization IP2 is at least as hard to approximate
as the vertex cover problem (Section 3.8.3). That means that such problems are Max-
SNP-hard and approximating them with a factor better than 2 will imply similar factor
approximation for the vertex cover problem.

As this book goes to print we have discovered another problem that is a special
case of IP2, the minimum satisfiability problem, where one seeks a minimum weight
collection of clauses that are satisfied. We also found an extension of IP2, [Hoc96], that
implies a 2-approximation for the feasible cut problem, and gives, in polynomial time,
super optimal half integral solution for several other problems, including the sparsest cut
(see Chapter 5 for a discussion of this problem).

3.8.1 THE HALF INTEGRALITY AND THE LINEAR
PROGRAMMING RELAXATION

Many linear programming relaxations have solutions that are integer multiples of 1
2 .

These include the vertex cover, independent set and the dual of matching. Here we show
that the reason for this property lies with the formulation’s structure of two variables per
constraint.

As discussed later, many IP2 problems have LP relaxations whose solutions are not
integer multiples of 1

2 . One way of deriving half integral solutions is to convert the sys-
tem of constraint inequalities into a system of monotone inequalities where the conver-
sion may map integer solution to half integers. A polynomial time algorithm (Hochbaum
and Naor [HN94]) is then used for optimizing over a system of monotone inequalities
in bounded integer variables. An inequality in two variables is called monotone if it is
of the form

ax ji −bxki ≥ c

where a and b are both nonnegative. Although, as proved by Lagarias [Lag85], even the
problem of finding a feasible solution of a system of monotone inequalities in integers
is NP-complete, the algorithm of Hochbaum and Naor [HN94] finds an optimal solu-
tion in time O(mnU 2 log(Un2/ m)) where U is the largest upper bound, i.e. in pseudo-
polynomial time. For IP2s that include nonmonotone inequalities, we use a transforma-
tion of nonmonotone inequalities to monotone inequalities proposed by Edelsbrunner,
Rote, and Welzl [ERW89]. The transformation does not preserve integrality, yet each
solution to the transformed problem corresponds to a feasible solution of the original
problem; and in addition it consists of integer multiples of 1

2 .

3.8 INTEGER PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 127

Consider a generic nonmonotone inequality of the form ax + by ≥ c where a and
b are positive. (Any nonmonotone inequality can be written in this form, perhaps with
a reversed inequality.) Replace each variable x by two variables, x + and x−, and each
inequality by two inequalities:

ax+ −by− ≥ c

−ax− +by+ ≥ c .

The two resulting inequalities are monotone. Note that upper and lower bounds con-
straints 	 j ≤ x j ≤ u j are transformed to

	 j ≤ x+
j ≤ u j

−u j ≤ x−
j ≤ −	 j .

In the objective function, the variable x is substituted by 1
2 (x+ − x−).

Monotone inequalities remain so by replacing the variables x and y in one inequal-
ity by x+ and y+, and in the second, by x − and y−, respectively. Note that the alternative
formulationof the vertex cover problem that yields a minimum cut problem on a bipartite
graph (presented in Section 3.7.1), is a special case of this transformation of nonmono-
tone to monotone inequalities.

Let A be the matrix of the constraints in the original system and let A(2) be the
matrix of the monotone system resulting from the above transformation. The matrixA (2)

consists of 2m inequalities with two variables per inequality, and 2n upper and lower
bound constraints. The order of this matrix is therefore (2m +4n)×2n.

We now sketch the algorithm of [HN94] which finds an optimal solution for an
integer programming problem over monotone inequalities in time

O(mnU 2 log(Un2/ m)).

Consider the optimization problem over a monotone system (IPM),

(IPM)

Min
∑n

j=1 w j x j

subject to ai x ji −bi xki ≥ ci (i = 1, . . . ,m)

	 j ≤ x j ≤ u j , x j integer (j = 1, . . . ,n),

where ai ,bi ,ci (i = 1, . . . ,m), and w j (j = 1, . . . ,n) are rational, and 	 j and u j (j =
1, . . . ,n) are integers. The coefficients ai and bi (i = 1, . . . ,m) are nonnegative but the
objective function coefficients w j (j = 1, . . . ,n) may be negative. Note that we allow
nonzero lower bounds on the variables that can be made nonnegative by translation.

A directed graph G is created where for each variable x j in the interval [j ,u j],
there are u j −	 j +1 nodes representing it, one for each integer value in the range. A set
of nodes is said to be closed if it contains all the nodes that can be reached via a directed
path from any node in the set. It is shown that a maximum weight closed set in this graph
corresponds to an optimal solution of (IPM). A section of the graph created is depicted
in Figure 3.4

For each integer p in the range, there is an arc (p, p−1) from the node representing
the value p to the node representing the value p−1. The node representing 	 j has an arc
directed to it from the source node s. Thus, if the source node is in a closed set then so
are all 	 j nodes. The monotone inequalities are represented by arcs. For each potential
value p of variable x pi , all inequalities in which x pi appears with a negative coefficient

128 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

uiwi

xi−chain

�...

...

�

pwi

...
�

li +1wi

�

li
wi li

x j −chain

u j w j

�

u j −1 w j

...
�

p1 w j

�...

...

�

l j w j l j

�
p1 = � bp+c

a �

FIGURE 3.4

Representing the inequality axi −bx j ≥ c between the
chains for xi and x j .

impose a minimum value on the variable x ji that appears in the same inequality with a
positive coefficient,

x ji ≥
⌈

bi p + ci

ai

⌉
= p1 .

This is represented by an arc going from node p of x pi to node p1 of x ji . If p1 > u ji ,
then the value p of the variable x pi is infeasible, and the upper bound of x pi is reset to
p − 1. A closed set containing s corresponds to a feasible solution to (IPM) where the
variable x j assumes the value of the largest node representing it in the closed set.

The nodes are now assigned weights as follows: node 	 j of variable x j is assigned
the value −w j	 j , and all other nodes representing variable x j are assigned the value
−w j . A maximum weight closed set corresponds then to an optimal solution to the
minimization problem (IPM). The maximum closure in a graph is derived from solving
a minimum cut problem in the graph after adding a source and a sink, placing arcs
from the source to all nodes of positive weight with capacity equal to that weight, and
placing arcs from all nodes with negative weight to the sink with capacity equal to the
absolute value of that weight. All other arcs are assigned infinite capacity. The source

3.8 INTEGER PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 129

set of a minimum cut in this graph corresponds to a maximum weight closed set with the
weights as specified. The justification for the algorithm of maximum closure is given by
Picard [Pic7]. For the case of vertex cover, the algorithm reduces to the minimum cut in
the bipartite network described in Figure 3.3 on page 114.

Whereas, for (VC) an optimal solution to the LP-relaxation of (VC) consists of
integer multiples of 1

2 , such is not necessarily the case for IP2 where the use of the above
transformation is necessary. IP2 problems may have LP relaxation solutions that are not
integer multiple of 1

2 , and in fact it is even NP-hard to get an optimal solution among all
those that are an integer multiple of 1

2 as we demonstrate next.
Given a system of inequalities with two variables per inequality, let the set of fea-

sible solutions for this system be

S = {x ∈ IRn | Ax ≤ c} ,

and the feasible solutions to the monotone system resulting from the transformation
above,

S(2) = {(x+,x−) | A(2)(x+,x−) ≤ c(2) , x+,x− ∈ IRn} .

If x ∈ S, x+ = x, and x− = −x, then (x+,x−) ∈ S(2). So, for every feasible solution
in S, there exists a feasible solution in S(2). Conversely, if (x+,x−) ∈ S(2), then x(2) =
1
2 (x+ −x−) ∈ S. Hence, for every feasible solution in S(2), there is a feasible solution in
S.

Let SI = {x ∈ S | x integer }, and let

S(2)
I =

{
1

2
(x+ −x−) | (x+,x−) ∈ S(2) and x+,x− integer

}
.

If x ∈ SI , then x ∈ S(2)
I . Thus, SI ⊆ S(2)

I ⊆ S.
In fact, the set of solutions S(2)

I is even smaller than the set of feasible solutions that
are integer multiples of 1

2 . To see that, let

S(1
2) = {x | Ax ≤ c and x ∈ 1

2
Zn} .

The claim is that S(2)
I ⊂ S(1

2), and S(1
2) may contain points not in S(2)

I . The following
example illustrates such a case:

5x +2y ≤ 6
0 ≤ x, y ≤ 1 .

Obviously, (x = 1, y = 1
2) is a feasible solution in S(1

2). But there is no corresponding
integer solution in S(2)

I as x+ = −x− = 1 implies that y+ = y− = 0. It follows that the
bound derived from optimizing over S (2)

I is tighter than a bound derived from optimizing
over S(1

2). Not only is this latter optimization weaker, but it is also in general NP-hard as
stated in the following Lemma (proved in [HMNT93]).

LEMMA 3.7 Minimizing over a system of inequalities with two variables per inequal-
ity for x ∈ 1

2 · Zn, is NP-hard.

130 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

3.8.2 COMPUTING AN APPROXIMATE SOLUTION

Here we show how to obtain a 2-approximation for the optimum of a bounded integer
program with two variables per inequality in O(mnU 2 log(Un2/m)) time. Assume that
the given integer program has a feasible integer solution denoted by z 1, . . . ,zn . (This can
be tested in polynomial time as proved in Lemma 3.9.)

We first transform the integer program into a monotone integer system and compute
an optimal solution for the monotone system as in the previous section. For every vari-
able xi (i = 1, . . . ,n), let m+

i and m−
i denote the respective values of x+

i and x−
i in the

optimal solution of the monotone system. For i = 1, . . . ,n, let m∗
i = 1

2 (m+
i − m−

i). We
define the following solution vector, denoted by �= (1, . . . ,	n), where for i = 1, . . . ,n:

	i =
⎧⎨
⎩

min{m+
i ,−m−

i } if zi ≤ min{m+
i ,−m−

i },
zi if min{m+

i ,−m−
i } ≤ zi ≤ max{m+

i ,−m−
i },

max{m+
i ,−m−

i } if zi ≥ max{m+
i ,−m−

i } . (3.9)

LEMMA 3.8 The vector � is a feasible solution of the given integer program.

Proof. Let axi +bx j ≥ c be an inequality where a and b are nonnegative. We check all
possible cases. If 	i is equal to zi or min{m+

i ,−m−
i }, and 	 j is equal to z j or

min{m+
j ,−m−

j }, then clearly, a	i + b	 j ≥ azi + bz j ≥ c. Suppose 	i ≥ zi and 	 j =
max{m+

j ,−m−
j }. By construction, we know that

am+
i −bm−

j ≥ c and −am−
i +bm+

j ≥ c .

If 	i ≥ −m−
i , then, a	i +b	 j ≥ −am−

i +bm+
j ≥ c. Otherwise, a	i +b	 j ≥ am+

i −bm−
j ≥

c. The last case is when 	i = max{m+
i ,−m−

i }, and 	 j = max{m+
j ,−m−

j }. In this case,

a	i +b	 j ≥ am+
i −bm−

j ≥ c .

The other types of inequalities are handled similarly.

We showed that vector � is a feasible solution. We now argue that it also approxi-
mates the optimum.

THEOREM 3.7

1. The vector � is a 2-approximate solution of the bounded integer program.

2. The value of the objective function at the vector m∗ is at least a half of the value
of the objective function of the best integer solution.

Proof. By construction, � ≤ 2m∗. From the previous subsection we know that the
vector m∗ provides a lower bound on the value of the objective function for any integral
solution. Hence, the theorem follows.

The complexity of the algorithm is dominated by the complexity of the procedure
in [HN94] for optimizing over a monotone system. The running time is
O(mnU 2 log(Un2/m)).

3.8 INTEGER PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 131

3.8.3 THE EQUIVALENCE OF IP2 TO 2-SAT AND 2-SAT TO VERTEX COVER

The integer programming problem in two variables per inequality is in fact equivalent
to a 2-SAT problem. Hence, 2-SAT already captures all the interesting properties of IP2.
This has also algorithmic consequences—implyinga fast algorithm for finding a feasible
solution to IP2. We also demonstrate a reduction of 2-SAT to (VC). That implies the
“fixing variables” property for 2-SAT and therefore for IP2.

The equivalence to 2-SAT is shown using an idea of T. Feder: Recall that for
each variable xi we have 0 ≤ xi ≤ ui < ∞ (i = 1, . . . ,n). We replace each variable
xi by ui binary variables xi	 (= 1, . . . ,ui), with the constraints xi	 ≥ xi,	+1 (=
1, . . . ,ui − 1). Subject to these constraints, the correspondence between xi and the ui -
tuple (xi1, . . . ,xiui) is one-to-one and is characterized by xi	 = 1 if and only if xi ≥ 	

(= 1, . . . ,ui), or, equivalently, xi =∑ui
	=1 xi	.

We now explain how to transform the constraints of the given system into con-
straints in terms of the xi	’s. Suppose

aki xi + akj x j ≥ bk

is one of the given constraints. There are several cases to be distinguished. Without loss
of generality, assume both aki and akj are nonzeros. Consider the case where both are
positive, and assume without loss of generality that 0 < bk < aki ui +akj u j . For every 	

(= 0, . . . ,ui), let

αk	 =
⌈

bk − 	aki

ak j

⌉
−1 .

It is easy to see that for an integer solution x, aki xi +akj x j ≥ bk if and only if for every
	 (= 0, . . . ,ui),

either xi > 	 or x j > αk	

or, equivalently,

either xi ≥ 	+1 or x j ≥ αk	 +1 .

Under the above transformation between the xi ’s and the xi	’s, this is equivalent to:

1. For every 	 (= 0,1, . . . ,ui − 1), if 0 ≤ αk	 < u j , then either xi,	+1 = 1 or
x j,αk	+1 = 1, and if αk	 ≥ u j , then xi,	+1 = 1.

2. For 	 = ui , if αkui ≥ 0, then x j,αkui +1 = 1 (since we have αkui < u j).

The disjunction in (i) can be written as

xi,	+1 + x j,αk	+1 ≥ 1 .

Thus, altogether we have replaced one original constraint on xi and x j by at most ui +1
constraints on the variables xi	 and x j	. The other cases, corresponding to different sign
combinations of aki , akj , and bk , can be handled in a similar way.

If the above transformation is applied to a monotone system of inequalities, then the
resulting 2-SAT integer program is also monotone.

To summarize, we replace the n original variables and m original constraints by
ū = ∑n

j=1 u j new variables and at most mU + ū new constraints, where U = maxi ui .

132 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

The time bounds for finding a feasible solution are as follows.

LEMMA 3.9 A feasible solution to a bounded integer program with two variables per
inequality can be computed in O(m +n + ū +mU) time.

Proof. A feasible solution to a 2-SAT integer program can be found in linear time
using the algorithm of [EIS76]. Encoding a bounded integer program as a 2-SAT integer
program generates ū variables and at most mU + ū constraints. Hence, the time bound
follows.

We now show that any 2-SAT is equivalent to a vertex cover problem, i.e. to a
nonmonotone form of 2-SAT. This has been observed by Seffi Naor. Given a 2-CNF
formula F . We compute the transitive closure of F , T (F). This is done by repeating
the following step until no more new clauses are generated: For every pair of clauses of
the form x ∨ y and x̄ ∨ z, add the clause y ∨ z.

In an alternative approach for computing T (F), one can create a directed graph.
For each variable we have two nodes in the graph, one corresponding to the variable x ,
and the other to x̄ . Given a clause x ∨ y, we replace it by two directed arcs, ȳ → x and
x̄ → y. We now consider the set of directed edges in the transitive closure of the graph.
This transitive closure is symmetric and corresponds to the transitive closure of the set
of clauses, F , by replacing every pair of symmetric directed arcs (of the form ȳ → x and
x̄ → y) by a clause.

Now generate a new undirected graph G = (V, E) from the transitive closure of
the clauses. For each variable we have two nodes in the graph, one corresponding to the
variable x being true, and the other x̄ corresponding to the variable x being false. Given
a clause x ∨ y we place an edge (x, y) ∈ E . Finally, add the edges (x, x̄) to the set E .

The claim is that a vertex cover in G corresponds to a satisfying assignment and
vice versa. Obviously at least one of the endpoints of the edges of the form (x, x̄) must
be in the cover. We need to show that both x and x̄ cannot be selected simultaneously
in some optimal cover. Let N(x) be the set of neighbors of x . Then the set of edges
induced by N(x) and N(x̄) contains a complete bipartite graph, due to the transitive
closure property. Any feasible vertex cover in a complete bipartite graph must contain
at least one set of the bipartition. Therefore, either x or x̄ are redundant in the cover and
exactly one of the two is in the vertex cover. So, with the reduction above we showed that
any 2-SAT problem on n variables and m clauses is equivalent to a vertex cover problem
on O(n) variables and O(m2) edges.

Since we established that IP2 is equivalent to 2-SAT, which in turn is equivalent
to vertex cover (VC), it follows in particular that IP2 is equivalent to vertex cover. The
2-approximation to IP2 could hence be also deduced from this equivalence.

The solution to the relaxation of the vertex cover problem (VCR) has the “fixing
variables” property that there exists an optimal solution that coincides with the relaxed
solution in all integer components. The following lemma demonstrates that precisely the
same idea applies to any integer programming problem IP2, after it is transformed to a
2-SAT.

With the reduction of 2-SAT to vertex cover, the direct proof to this lemma may be
substituted by the corresponding lemma of Nemhauser and Trotter [NT75].

3.8 INTEGER PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 133

LEMMA 3.10 [HMNT93] Let x(2) be an optimal solution of 2-SAT in the set S(2)
I . Let

INT = { j | x (2)
j = 0 or x (2)

j = 1} .

Then there is an optimal integer solution z of 2-SAT such that z j = x (2)
j for j ∈ INT.

For the integer problem IP2 the fixing of variables imply that there exists an optimal
solution z∗ such that,

min{m+
i ,−m−

i } ≤ z∗
i ≤ max{m+

i ,−m−
i }.

If the upper and lower bounds are equal, then z i may be fixed at that value. The interval
gets smaller as more of the 2-SAT binary variables are fixed.

3.8.4 PROPERTIES OF BINARY INTEGER PROGRAMS

In this section we further investigate the properties of 2-SAT integer programs (or binary
IP2s). We first consider the linear relaxation of a 2-SAT integer programming problem.
It turns out that solutions of this relaxation always have denominators not greater than 2.
Consequently, the basic solutions are integer multiples of 1

2 . This follows from the state-
ment in the next lemma about the determinants of 2-SAT’s nonseparable submatrices.
A matrix is nonseparable if there is no partition of the columns and rows to two sub-
sets (or more) C1,C2 and R1, R2 such that all nonzero entries in every row and column
appear only in the submatrices defined by the sets C1 × R1 and C2 × R2. The following
lemma applies only to nonseparable matrices, since one can construct a separable 2-SAT
or (VC) matrix with an arbitrary number, K , of nonseparable ones on its diagonal, each
of determinant 2. Thus we achieve a matrix with a determinant that is 2K .

LEMMA 3.11 The determinants of all nonseparable submatrices of a 2-SAT linear
programming problem have absolute value at most 2.

Proof. Let A denote the constraint matrix of a 2-SAT integer program. Thus, A has
at most two non-zero entries in every row. We show that the absolute value of the
determinant of any nonseparable square submatrix of A can be either 0, 1, or 2. The
proof of this claim is by induction on the size of the submatrix. Since the entries of
A are from {−1,0,1}, the claim holds for 1 × 1 submatrices. Assume it holds for any
(m −1)×(m −1) submatrix and we show that the claim holds for any m ×m submatrix.

We may assume that each row and column in A has exactly two non-zero entries.
Otherwise, there must be a row or a column where all entries, possibly with the exception
of one, are zero. In either case, we can apply the inductive assumption directly and prove
the claim. Let Ai j denote the submatrix obtained by deleting the i ’th row and the j ’th
column from A.

Without loss of generality, we may assume that the two non-zero elements in row i
of A are in columns i and i +1 (modulo m). (Due to the nonseparability of the submatrix,
this can be achieved by appropriate row and column interchanges.) Hence,

det(A) = A[1,1] ·det(A11)− (−1)m A[m,1] ·det(Am1) .

134 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

The absolute values of the determinants of A11 and Am1 are equal to 1, since both are
triangular matrices with nonzero diagonal elements. Therefore, the absolute value of the
determinant of A is at most 2.

An immediate corollary of Lemma 3.11 is the fact that the value of every variable
in a basic solution of the 2-SAT linear program is in the set {0, 1

2 ,1}. Although for binary
integer problems the subdeterminants can be of value greater than 2, and hence the
solutions would not be in this set, we get rid of these “unnecessary” solutions by reducing
the problem first to 2-SAT. In a 2-SAT system the variables are assumed to be binary.
Lemma 3.11, however, applies to any linear programming problem with a constraint
matrix with coefficients 0,1,−1, and at most two nonzero elements in each row. We
call such a system generalized 2-SAT. Note that we do not assume the existence of finite
upper bounds on the variables. We will show that a 2-approximation can be achieved
even for such systems.

LEMMA 3.12 A generalized 2-SAT has the property that S(2)
I = S(1

2).

Proof. It suffices to prove that S(1
2) is contained in S(2)

I . Let x ∈ S(1
2). Define a solution

(x+,x−) as follows. For j = 1, . . . ,n,

1. If x j is an integer, set x+
j = −x−

j = x j .

2. If x j is a noninteger, then set x+
j = x j + 1

2 and x−
j = −x j + 1

2 .

It is easy to show that (x+,x−) satisfies the (three) generic types of constraints defining
S(2)

I . For example, consider a constraint of the form x +
j − x−

k ≥ c. Since x is feasible,
we have x j + xk ≥ c. If either both x j and xk are integer or both are noninteger, then
we have x+

j − x−
k = x j + xk ≥ c. Assuming that x j + xk is noninteger, if x j + xk ≥ c

then x j + xk − 1
2 ≥ c. Using the fact that x+

j ≥ x j and −x−
k ≥ xk − 1

2 , it follows that
x+

j − x−
k ≥ x j + xk − 1

2 ≥ c. The other cases follow from similar considerations.

One corollary of Lemmas 3.11 and 3.12 is that the linear programming relaxation
of a 2-SAT and a generalized 2-SAT can be solved by optimizing over the respective
monotone system. Both problems are then solvable in strongly polynomial time: the
2-SAT as a maximum flow (or rather minimum cut) problem, and the generalized 2-SAT
as a dual of a linear flow problem. Note that one could also solve these linear programs
in strongly polynomial time without using the transformation to a monotone system by
directly applying the algorithm of [Tar86]. The latter, however, is not as efficient as the
best-known algorithms for solving maximum flow problems or linear flow problems.

We next show how to obtain a 2-approximation for a generalized 2-SAT integer
program. First, we note that the procedure described above for IP2 is not applicable here
since the variables might not have finite upper bounds. Since we already know how to
solve the monotone system, the difficulty lies in finding a feasible integer solution or
verifying that none exists. We perform this latter task as follows.

Let (x+,x−) be an optimal solution of the monotone system, i.e., x = 1
2 (x+ − x−)

solves the linear programming relaxation. Using, if necessary, the transformation in the
proof of Lemma 3.12, we may assume that x +

j = −x−
j or x+

j = −x−
j +1 (j = 1, . . . ,n).

Next, we apply Lemma 3.8 to conclude that the given generalized 2-SAT integer program

3.9 THE MAXIMUM COVERAGE PROBLEM AND THE GREEDY 135

is feasible if and only if there exists a feasible rounding of x. The latter can be tested
by the linear time algorithm in [EIS76]. Moreover, Theorem 3.8 ensures that if such a
rounding exists, then it is a 2-approximation.

3.8.5 DUAL FEASIBLE SOLUTIONS FOR IP2

The approach described for devising a 2-approximationalgorithm for IP2 is analogous to
the preprocessing or dual optimal approach for the vertex cover. Exploring this analogy
more carefully raises the question whether an analogue of the dual feasible approach
could apply as well. The advantage would be to do away with the need to solve the
minimum cut problem on a graph optimally (or solving the respective linear program).

This turns out to be possible by reducing IP2 to an equivalent vertex cover prob-
lem and then applying any dual-feasible algorithm. For instance, if we choose the al-
gorithm of Bar-Yehuda and Even (dual-feasible I), its running time is linear in the
number of edges in the resulting graph which is O(m2U 2). This represents a minor
improvement (if at all) compared to the running time of the min-cut-based procedure,
O(mnU 2 log(Un2/ m)).

THE MAXIMUM COVERAGE PROBLEM AND
THE GREEDY

3.9

Consider the maximum coverage problem. Given a set system S and a parameter k,
the maximum coverage problem is to find k sets such that the total weight of elements
covered is maximized. This problem is clearly NP-hard, as set cover is reducible to it.

For the maximum coverage problem we are interested in describing the performance
of a simple greedy algorithm. Consider the performance of a greedy algorithm, as de-
picted in Figure 3.5, that selects k sets by iteratively picking the set that covers the max-
imum weight group of currently uncovered elements. The performance of the greedy
heuristic when optimizing a submodular function has been studied by Nemhauser and
Wolsey [NW72] and Conforti and Cornuejols [CC84]; Vohra and Hall [VH93] have

GREEDY ← ∅
for l = 1 . . . k do

select Gl ∈ S that maximizes wt(GREEDY∪Gl)

GREEDY ← GREEDY ∪Gl

end
output GREEDY

FIGURE 3.5

Greedy heuristic for the maximum coverage problem

136 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

explicitly noted that maximum coverage falls into this context. Applications of the max-
imum coverage problem can be found in Section 3.9.2; the method discussed next for
dealing with this problem is from [HP94].

3.9.1 THE GREEDY APPROACH

We establish the following theorem regarding the quality of solution returned by the
greedy heuristic, where wt(GREEDY) and wt(OPT) are the total weight of elements
covered by the greedy solution and the optimal solution, respectively. G l refers to the
l’th set selected by the greedy algorithm.

THEOREM 3.8 wt(GREEDY) ≥
[
1− (

1− 1
k

)k
]

wt(OPT) > (1− 1
e)wt(OPT).

Thus, the greedy heuristic is a (1 − 1
e)-approximation algorithm for the maximum

coverage problem.
In fact, there is an example given in [HP94], taken from [DJS93], that shows this

bound to be tight.
In order to prove the bound, we need to establish two lemmas.

LEMMA 3.13 wt(∪l
i=1Gi)−wt(∪l−1

i=1Gi) ≥ wt(O PT)−wt(∪l−1
i=1 Gi)

k , for l = 1,2, . . . ,k.

Proof. At least wt(OPT)−wt(∪l−1
i=1Gi) worth of elements not covered by the first

(l −1) sets selected by the greedy heuristic are covered by the k sets of O PT . Hence,
by the pigeonhole principle, one of the k sets in the optimal solution must cover at least
wt(OPT)−wt(∪l−1

i=1 Gi)

k worth of these elements. Since Gl is a set that achieves maximum
additional coverage, it must also. (Note that wt(∪l

i=1Gi) − wt(∪l−1
i=1Gi) represents the

additional coverage achieved by Gl .)

LEMMA 3.14 wt(∪l
i=1Gi) ≥ [

(1− (1− 1
k)l)

]
wt(OPT), for l = 1,2, . . . ,k.

Proof. We proceed by induction on l. For l = 1, the result holds: wt(G1) ≥ wt(O PT)

k ,
from Lemma 3.13. Now,

wt(∪l+1
i=1Gi) = wt(∪l

i=1Gi)+ (wt(∪l+1
i=1Gi)−wt(∪l

i=1Gi))

≥ wt(∪l
i=1Gi)+ wt(OPT)−wt(∪l

i=1Gi)

k

= (1− 1

k
)wt(∪l

i=1Gi)+ wt(OPT)

k

≥ (1− 1

k
)(1− (1− 1

k
)l)wt(OPT)+ wt(OPT)

k

= (1− (1− 1

k
)l+1)wt(OPT),

where the first inequality comes from Lemma 3.13, and the second inequality is from the
induction hypothesis.

3.9 THE MAXIMUM COVERAGE PROBLEM AND THE GREEDY 137

Theorem 3.8 follows directly from Lemma 3.14 by letting l = k, and noting that
because limk→∞ 1 − (

1− 1
k

)k = 1 − 1
e and 1 − (

1− 1
k

)k
is decreasing, it follows that

1− (
1− 1

k

)k
> 1− 1

e > .632.
The quality of the greedy heuristic for the maximum coverage problem was also

studied in [VH93] in the context of a “maximal covering location problem.” By inter-
preting the problem as one of maximizing a submodular function, they were able to apply
results from [CC84] and [NW72] to achieve the performance guarantee of Theorem 3.8
for their location problem. As discussed in [HP94], however, in some applications of the
maximum coverage problem the sets inS may be implicitly defined rather than explicitly
given. For instance, consider the problem of covering a maximum weight set of edges
of a graph with k cutsets; this problem arises in an application involving the testing of
printed circuit boards for short-circuits [Lou92]. The greedy heuristic entails selecting a
maximum cut in a graph at each step, which is itself NP-hard!

Thus, in some cases finding the optimal set at a given stage may itself be NP-hard.
Suppose, however, that a solution within a factor of β of the optimal is selected at each
step of the greedy heuristic; what can we then say about the quality of solution returned
by this greedy-like algorithm? By modifying the analysis used to prove Theorem 3.8,
the following theorem from [HP94] can be obtained:

THEOREM 3.9 Suppose that a modified version of the algorithm of Figure 3.5 is run
so that Gl , is a set that causes an increase in coverage that is within a factor β of the
maximum increase possible rather than being the set that causes the maximum increase
in overall coverage at iteration l. Then, the solution returned by the algorithm achieves
coverage with weight within a factor of

(1− β

k
)k > 1− 1

eβ

of the optimal.

Proof. First of all, Lemma 3.13 can be easily generalized to establish that, for l =
1,2, . . . ,k,

wt(∪l
i=1Gi)−wt(∪l−1

i=1Gi) ≥ β
wt(O PT)−wt(∪l−1

i=1Gi)

k
.

Secondly, Lemma 3.14 can be easily generalized to establish that, for l = 1,2, . . . ,k,

wt(∪l
i=1Gi) ≥

[
(1− (1− β

k
)l)

]
wt(OPT) .

Then, the theorem follows by setting l = k in the above result, and noting that
1− (1− β

k)k , which is decreasing in k, has limit 1− 1
eβ as k approaches ∞.

For the maximum cut problem, there exists a polynomial algorithm with β = .878 . . .

(see [GW94]), yielding a polynomial time algorithm with an approximation ratio guar-
antee of (1− 1

eβ) > .584 for the circuit-testing application.2

2It has been pointed out by M. Goemans that for this problem of covering edges with k cut sets, em-
ploying an algorithm based on the method of conditional expectations provides a performance guarantee
of 1− 1

2k . See Chapter 11 for more on the method of conditional expectation.

138 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

We next briefly describe some additional problems that are instances of the maxi-
mum coverage problem.

3.9.2 APPLICATIONS OF THE MAXIMUM COVERAGE PROBLEM

Problems, are considered from a variety of applications regarding covering graphs with
subgraphs, packing, and fixed parameter combinatorial optimization.

• Covering Graphs by Subgraphs: As already mentioned, the problem of cover-
ing edges by cut-sets arises in testing printed circuit boards for short-circuits. At
each stage of the greedy algorithm, we are to find a maximum cut in the graph
consisting of those edges not already covered. Now, although MAX CUT is itself
NP-hard (see [GJ79]), there is a simple greedy MAX CUT algorithm with β = 1

2 ,
and a more involved one with β = min0≤θ≤π

2
π

θ
1−cosθ

= .878 . . . (see [GW94] and
Chapter 11).

Problems of covering the edges of a graph by subgraphs satisfying some
particular structure arise in other contexts as well. For example, we may wish to
cover the maximum weight set of edges in a graph G using k subgraphs from
a class R; R may consist of triangles or other small cliques (see [GHY94]), or
spanning trees, etc. At each stage, an optimal structure from the classR is selected
in the graph that is identical to G except that previously covered edges have
weight 0.

Consider a k-stage forestry problem in which a set of cells are to be harvested
at each stage, under the restriction that no two adjacent cells can be harvested dur-
ing a given stage; that is, at each stage an Independent Set set must be selected in a
corresponding graph (see [BWE92]). At each stage, a maximum weight indepen-
dent set is to be found. While the independent set problem is NP-hard for general
graphs (indeed, guaranteeing a β-approximate solution for any fixed β > 0 is NP-
hard), for certain classes of graphs (as we have seen) approximation algorithms
of varying quality are available.

• Packing and Layout Problems: Now consider packing problems with a given
set U of objects to pack. The common nature of these applications is that the
objective is to pack the maximum weight set of objects into k identical bins. Our
greedy approach is to pack, as best possible, a single bin at a time using objects
of U not already packed. Some examples:

1. Circuit Layout and Design: Recent advances in multilayer IC technology have
led to design problems in which an optimal assignment of objects to layers is
to be made. For example, it has been shown that the topological planar routing
problem, in which a maximum weight set of nets is to be assigned to k given
layers such that all nets assigned to a given layer can be routed without any two
nets crossing each other, is NP-hard (see [CL90]). On the other hand, finding
a maximum weighted subset of nets to assign to a single layer can be solved
in polynomial time (see [Sup87]), yielding a (1 − (

1− 1
k

)k
)-approximation

algorithm to the topological planar routing problem using the greedy heuristic.

REFERENCES 139

2. Scheduling: Suppose we are given a set of jobs to assign to k identical ma-
chines, where each machine has a set of restrictions as to which jobs can be
grouped together The goal is is to schedule the largest weight set of jobs to the
k machines. How well a single machine can be packed in a stage of our greedy
approach will depend on the restrictions as to what can be scheduled together
on a machine, and depend, on the set of jobs to be scheduled.

3. Logistics: Consider a logistics problem in which k identical vehicles are to be
packed with a maximum weight set of items for delivery to a common desti-
nation. Given a set of items to be delivered, each having a specified benefit,
we attempt to pack the vehicles, one at a time, with items of maximum total
benefit.

• Fixed Parameter Combinatorial Optimization: In some standard optimization
problems, the goal is to cover all the elements in a set using the smallest number
of subsets. We will look at the versions of these problems in which, given a fixed
parameter k that limits the number of subsets that we can select, we wish to cover
the maximum weight set of elements.

For instance, consider Vertex Cover in which we need to cover the maximum
weight set of edges in a graph G using k vertices. At each stage, we select a vertex
that covers the maximum weight set of edges not previously covered.

Other such (1−(
1− 1

k

)k
)-approximation algorithms can be derived for fixed

parameter versions of well-known combinatorial optimization problems such as
Dominating Set, Minimum Test Set, Hitting Set, and Minimum Test Collection.
Refer to the glossary and [GJ79] for complete specifications of these problems.

We note that several location problems, in which the goal is to locate k facili-
ties so that as many customers as possible can each be served within a prespecified
cost, can be modeled as a fixed-parameter version of the Dominating Set prob-
lem. For example, a problem in which the goal is to locate k new facilities so
as to maximize market share (see [MZH83]), can be modeled as such; while the
results in [MZH83] give special cases of the problem that can be solved in poly-
nomial time, our greedy approach provides an αk-approximation algorithm for
general instances of the problem considered. We also note that a similar problem
concerning the optimal location of bank accounts was given in [CFN77]; indeed,
they provide a greedy algorithm that is shown to have a αk-approximation guar-
antee via a different, and more complicated, analysis than the one presented here.

REFERENCES

[AH77] K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging.
Illinois J. Math. 21:429–490, 1977.

[AHK77] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II: Re-
ducibility,” Illinois J. Math. 21:491–567, 1977.

[Baa78] S. Baase. Computer Algorithms: Introduction to Design and Analysis, Addison-
Wesley, Reading, MA, 1978.

[BP76] E. Balas and M. Padberg. Set partitioning: A survey. SIAM Review 18: 710–760, 1976.

140 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

[BS69] M. Balinski and K. Spielberg. Methods for integer programming: algebraic, combi-
natorial and enumeration. J. Aronofsky, editor, Progress in Operations Research, III
295–292, 1969.

[Bak83] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
In Proceedings of the 24th Annual Symposium on Foundations of Computer Science,
IEEE, 265–273, 1983.

[BWE92] F. Barahona, A. Weintraub, and R. Epstein. Habitat dispersion in forest planning and
the stable set problem. Operations Research, 40:14–21, 1992.

[BYE81] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted
vertex cover problem. J. of Algorithms 2:198–203, 1981.

[BE85] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25:27–45, 1985.

[BGS95] M. Bellare, O. Goldreich, and M. Sudan. Free bits and nonapproximability. Pro-
ceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science
(FOCS95). 422–431, 1995.

[Bro41] R. L. Brooks. On coloring the nodes of a network. Proc. Cambridge Philos. Soc.
37:194–197, 1941.

[CC84] M. Conforti and G. Cornuejols. Submodular functions, matroids and the greedy algo-
rithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theo-
rem. Discrete Applied Mathematics 7:257–275, 1984.

[CFN77] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to
optimize float: an analytic study of exact and approximate alogrithms. Management
Science, 23(8):789–810, 1977.

[CL90] J. Cong and C. L. Liu. On the k-layer Planar Subset and Via Minimization Problems.
In Proceedings of the European Design Automation Conference, pages 459–463, 1990.

[CNS81] N. Chiba, T. Nishizeki and N. Saito. A linear 5-coloring algorithm of planar graphs.
J. of Algorithms 2:317–327, 1981.

[CM91] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two vari-
ables per inequality. In Proceedings of the Twenty Third Symposium on Theory of
Computing, New Orleans, 145–155, 1991.

[CK75] N. Christofides and S. Korman. A computational survey of methods for the set cov-
ering problem. Management Science 21:591–599, 1975.

[Chv79] V. Chvátal. A Greedy Heuristic for the Set-Covering Problem Math. of Oper. Res.
Vol. 4, 3, 233–235, 1979.

[Clar83] K. L. Clarkson. A modification of the Greedy algorithm for the vertex cover. Info.
Proc. Lett. 16:23–25, 1983.

[DJS93] B. Dasgupta, R. Janardan, and N. Sherwani. On the greedy algorithm for a covering
problem. Unpublished manuscript, February 1993.

[ERW89] H. Edelsbrunner, G. Rote, and E. Welzl. Testing the necklace condition for shortest
tours and optimal factors in the plane. Theoretical Computer Science 66:157–180,
1989.

[Erd70] P. Erdös. On the Graph-Theorem of Turán. Math. Lapok, 21:249–251, 1970.

[EIS76] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing 5:691–703, 1976.

REFERENCES 141

[F95] U. Feige. A threshold of lnn for approximating set cover. Manuscript, 1995.

[FNT74] D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter, Jr. Two computationally difficult
set covering problems that arise in computing the 1-width incidence matrices of steiner
triple systems. Mathematical Programming Study 2:72–81, 1974.

[GHY94] O. Goldschmidt, D. S. Hochbaum, and G. Yu. Approximation Algorithms for the k-
clique covering problem. To appear SIAM J. of Discrete Math, 1994.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability, W. H. Freeman, San
Francisco, 1979.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoret. Comput. Sci. I 237–267, 1976.

[GN72] R. S. Garfinkel and G. L. Nemhauser. Optimal set covering: A survey. In Perspectives
on optimization: A collection of expository articles, A. M. Geoffrion, ed., 164–183,
1972.

[GP92] D. Gusfield and L. Pitt. A bounded approximation for the minimum cost 2-SAT prob-
lem. Algorithmica 8:103–117, 1992.

[GT88] A. V. Goldberg and R. E. Tarjan. A new approach for the maximum flow problem.
J.of ACM 35:921–940, 1983.

[GW94] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Submitted to
Journal of the ACM, 1994.

[H94] M. M. Halldórsson. Private communication, 1994.

[HR94] M. M. Halldórsson and J. Radhakrishnan. Greed is good: approximating independent
sets in sparse and bounded-degree graphs. Proceedings of 26th ACM Symposium on
Theory of Computing, 439–448, 1994.

[HH86] N. G. Hall and D. S. Hochbaum. A fast approximation algorithm for the multicovering
problem. Discrete Applied Mathematics 15:35–40, 1986.

[Har69] F. Harary. Graph Theory, Addison-Wesley, Reading, MA, 1969.

[Hoc82] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Comput. 11(3) 1982, an extended version: W.P. #64-79-80, GSIA,
Carnegie-Mellon University, April 1980.

[Hoc83] D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics 6:243–254, 1983.

[Hoc96] D. S. Hochbaum. A framework for half integrality and 2-approximations with appli-
cations to feasible cut and minimum satisfiability. Manuspcript, 1996.

[HN94] D. S. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer pro-
grams with two variables per inequality. SIAM Journal on Computing, 23(6) 1179–
1192, 1994.

[HMNT93] D. S. Hochbaum, N. Megiddo, J. Naor and A. Tamir. Tight bounds and 2-approxima-
tion algorithms for integer programs with two variables per inequality. Mathematical
Programming 62:69–83, 1993.

[HK73] J.E. Hopcroft and R.M. Karp. A n
5
2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput. 2:225–231, 1973.

[HP94] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in covering prob-
lems. Unpublished manuscript, 1994.

142 CHAPTER 3 APPROXIMATING COVERING AND PACKING PROBLEMS

[HSVW90] J. M. Ho, M. Sarrafzadeh, G. Vijayan, and C. K. Wong. Layer Assignment for Mul-
tichip Modules. IEEE Transactions on Computer-Aided Design, 9:1272–12 77, 1990.

[Joh74] D. S. Johnson. Approximation Algorithms for Combinatorial Problems. J. Comput.
System Sci., 9:256–278, 1974.

[KZ95] M. Karpinski and A. Zelikovsky. Approximating dense cases of covering problems
(preliminary draft). Manuscript, Sept. 1995.

[KVY94] S. Khuller, U. Vishkin, and N. Young. A primal-dual parallel approximation technique
applied to weighted set and vertex cover. J. of Algorithms, 17(2):280–289, 1994.

[Lag85] J. C. Lagarias. The computational complexity of simultaneous diophantine approxi-
mation problems. SIAM Journal on Computing 14:196–209, 1985.

[Lor66] L. C. Lorentzen. Notes on covering of arcs by nodes in an undirected graph. Technical
Report ORC 66.16, University of California, Berkeley, 1966.

[Lou92] R. Loulou. Minimal Cut Cover of a Graph with an Application to the Testing of
Electronic Boards. Operations Research Letters, 12(5):301–306, 1992.

[Lov66] L. Lovász. On Decomposition of Graphs. Studia Scientiarum Mathematicarum Hun-
garica 1:237–238, 1966.

[Lov75a] L. Lovász. Three short proofs in graph theory. J. Combin. Theory (B) 19:269–271,
1975.

[Lov75] L. Lovász. On the Ratio of Optimal Integral and Fractional Covers. Discrete Math.
13 383–390, 1975.

[MMK79] R. E. Marsten, M. R. Muller, and C. L. Killion. Crew Planning at Flying Tiger: A
successful application of integer programming. Management Science 25:1175–1183,
1979.

[MST80] D. Matula, Y. Shiloach, and R. Tarjan. Two linear-time algorithms for 5-coloring a
planar graph. Stanford Department of Computer Science, Report No. STAN-CS-80-
830, 1980.

[MS85] B. Monien and E. Speckenmeyer. Ramsey Numbers and an approximation algorithm
for the vertex cover problem. Acta Informatica 22:115–123, 1985.

[MZH83] N. Megiddo, E. Zemel, and S. L. Hakimi. The maximum coverage location problem.
SIAM Journal of Algebraic and Discrete Methods, 4(2):253–261, 1983.

[Meg83] N. Megiddo. Towards a genuinely polynomial algorithm for linear programming.
SIAM Journal on Computing 12:347–353, 1983.

[NT75] G. L. Nemhauser and L. E. Trotter, Jr. Vertex packings: Structural properties and
algorithms. Mathematical Programming 8:232–248, 1975.

[NW72] G. L. Nemhauser and L. Wolsey. Maximizing submodular set functions: formulations
and analysis of algorithms. In Studies of Graphs and Discrete Programming North-
Holland, Amsterdam, 279–301, 1972.

[Pad79] M. W. Padberg. Covering and packing and knapsack problems. Annals of Discrete
Mathematics 4:265–287, 1979.

[Pic7] J. C. Picard. Maximal closure of a graph and applications to combinatorial problems.
Management Science 22:1268–1272, 1976.

[Pul79] W. R. Pulleyblank. Minimum node covers and 2-bicritical graphs. Mathematical Pro-
gramming 17:91–103, 1979.

REFERENCES 143

[She83] J. B. Shearer. A note on the independence number of triangle-free graphs. Discrete
Mathematics 46:(1983) 83–87.

[Sup87] K. Supowit. Finding a Maximum Planar Subset of a Set of Nets in a Channel. IEEE
Transactions on Computer-Aided Design, 6:93–94, 1987.

[SW68] G. Szekeres and W. S. Wilf. An inequality for the chromatic number of a graph.
Combin. Theory 4:1–3, 1968.

[Tar86] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research 34:250–256, 1986.

[Tro85] L. E. Trotter. Discrete packing and covering. in, O’hEigeartaigh et al. 21–31, 1985.

[Tur41] P. Turán. An External Problem in Graph Theory. Mat. Fiz. Lapok, 48:436–452, 1941.

[VH93] R. V. Vohra and N. G. Hall. A probabilistic analysis of the maximal covering location
problem. Discrete Applied Mathematics 43:175–183, 1993.

[VS81] R. van Slyke. Covering problems in CCCI systems. Report to the Air Force Office of
Scientific Research, 1981.

[Wig83] A. Wigderson. Improving the performance guarantee for approximate graph coloring.
Journal of the ACM 30:729–735, 1983.

[YG92] G. Yu and O. Goldschmidt. On locally optimal independent sets and vertex covers.
Technical Report ORP92-01: Graduate School in Operations Research The University
of Texas at Austin, 1992.

