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Abstract. Many applications in the area of production and statistical estimation are problems
of convex optimization subject to ranking constraints that represent a given partial order. This
problem, which we call the convex cost closure (CCC) problem, is a generalization of the known
maximum (or minimum) closure problem and the isotonic regression problem. For a CCC problem
on n variables and m constraints we describe an algorithm that has the complexity of the minimum
cut problem plus the complexity of finding the minima of up to n convex functions. Since the
CCC problem is a generalization of both minimum cut and minimization of n convex functions, this
complexity is the fastest one possible. For the quadratic problem the complexity of our algorithm is

strongly polynomial, O(mn log n2

m
). For the isotonic regression problem the complexity is O(n logU)

for U the largest range for a variable value.
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1. Introduction. A common problem in statistical estimation is that observa-
tions do not satisfy preset ranking order requirements. In that case the problem is
to find an adjustment of the observations that fits the ranking order constraints and
minimizes the total deviation penalty. The deviation penalty is a convex function of
the fitted values.

Formally, we define the problem for a directed graph G = (V,A) and a convex
function fj() associated with each node j ∈ V . The formulation of the convex cost
closure (CCC) problem is then

(CCC) Min
∑

j∈V fj(xj)

subject to xi − xj ≥ 0 ∀(i, j) ∈ A,
	j ≤ xj ≤ uj integer j ∈ V.

This problem generalizes the isotonic regression problem in which the graph is a
partial order graph for linear order—the arcs of A are of the form (i, i+ 1). Another
well-known problem that CCC generalizes is the minimum closure problem. That
problem is the binary case of CCC:

(Minimum Closure) Min
∑

j∈V wj · xj

subject to xi − xj ≥ 0 ∀(i, j) ∈ A,
0 ≤ xj ≤ 1 integer j ∈ V.
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Picard established in 1976 [17] that the closure problem is equivalent to a minimum
cut problem on a graph associated with G to which we add a source and a sink. This
construction is described in section 3. Solving the CCC problem is thus at least as
hard as solving the minimum cut problem on the associated graph.

When the graph is empty the CCC problem reduces to the integer minimization
of n convex functions, each in a given interval. Thus CCC generalizes the problem of
convex functions integer minimization in bounded intervals.

The challenge of the convex optimization problem is that searching for a minimum
of a convex function involves an unavoidable factor such as logU in the running
time for U the length of the interval containing the optimal value of the variable.
Although one can replace other parameters that depend on the variability of the
functions, the running time cannot be made strongly polynomial using the arithmetic
complexity model (see [11] for details on this result). The algorithm presented here
differs from previous algorithms in that the search for the minima of the convex
functions is separate from the rest of the algorithm. The main body of the algorithm
identifies disjoint intervals that are guaranteed to contain the optimal values of each
variable and satisfy the partial order constraints. The run time of our algorithm,

O(mn log n2

m + n logU) for U = maxi{ui − 	i}, is the fastest known for the problem,
and it either matches or improves the complexity of algorithms devised for special
cases of CCC.

In dealing with nonlinear functions it is necessary to specify the complexity model
used. We assume the unit cost model and no restriction on the structure of the convex
functions; i.e., we assume the existence of an oracle returning function values for
every polynomial length argument input in O(1). Since we will search for an optimal
solution among the integers we will be interested only in integer arguments. Any
arithmetic operation or comparison involving function values is executed in unit time
in this model. Derivatives, or rather subgradients, are required as finite differences,
f ′
j(x) = fj(x+ 1)− fj(x).

In the next section we give an overview of the literature and applications of the
problem. In section 3 the link of the closure problem to the maximum flow problem
is reviewed. Section 4 discusses a linear time algorithm that is employed to verify
whether an instance of CCC is feasible. Section 5 provides the main theoretical un-
derpinning of the algorithm, the so-called threshold theorem. Section 6 describes the
entire algorithm and its correctness and complexity. Section 7 details the implemen-
tations in strongly polynomial time for the quadratic case and the O(n logU) for the
isotonic regression problem. In Section 8 we provide an algorithm for the continuous
version of CCC. In Section 9 we conclude with several remarks and extensions.

2. Related applications and literature. We sketch first several classes of
applications for the CCC problem.

In the problem of selection of discrete contingent projects a number of projects
j ∈ N can be undertaken, but only at discrete levels lj , lj + 1, . . . , uj . These projects
are contingent in that, for specified pairs of projects (i, j) ∈ A, each unit of project i
requires one unit of project j: xi ≤ xj . Different projects i, k, . . ., however, can use
the same units of project j (otherwise, we might consider j as part of project i). For
instance, projects i and k may use j at different times. The objective is to maximize
the total net profit associated with the selected project levels. Here, −fj(xj) denotes
the net profit associated with level xj of project j. The convexity of −fj thus reflects
decreasing returns of scale for project j. Additional information about this problem
is provided by Picard and Queyranne [18].
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Maxwell and Muckstadt [16] considered nested power-of-two policies in a multi-
stage production/inventory problem. In this continuous-time deterministic model,
demand for end-products arises at a constant rate. Intermediate products are con-
sumed in the production of other products, as reflected by the directed graph (V,A).
Given are positive inventory-related holding costs gj and production setup costs Kj .
The problem is to find production intervals Tj = T02

kj , with kj integer, that are
nested, that is, Ti ≤ Tj for (i, j) ∈ A. The objective is to minimize the average total
cost per unit time,

c(T ) =
∑
j

gjTj +Kj/Tj .

Roundy [20] extends the Maxwell–Muckstadt model by considering joint setup costs
and relaxing the nestedness condition. He shows that the total cost is now

c(T ) =
∑
R

GRmax{Tj : j ∈ R}+
∑
F

KF /(min{Tj : j ∈ F}),

where R and F are suitably defined subsets of products, and GR and KF are corre-
sponding (nonnegative) costs. Although the constraints Ti ≤ Tj thus disappear, the
modeling capabilities of variable upper bound constraints are reflected in the han-
dling of joint setup costs and holding costs. For that, Roundy extends the product
set N by adding all the R and F sets and “defines” corresponding variables TR (TF ,
respectively) by the inequalities Tj ≤ TR (TF ≤ Tj , respectively) for all j ∈ R (F ,
respectively). The resulting problem is thus recast into the Maxwell–Muckstadt form
above. Roundy’s major result is that optimal power-of-two policies thus constructed
are 94% effective; that is, the cost of an optimal policy cannot be less than 94% of
an optimum power-of-two policy. He also shows that searching for an optimal base
interval T0 yields a 98% effective solution. The present paper extends this approach
to general convex average cost functions fj(kj) = cj(T02

kj ). The 94% and 98% effec-
tiveness results, however, hold only for the specific functions c above.

Sokkalingam, Ahuja, and Orlin [23] discuss the inverse spanning tree problem.
In this problem there is a spanning tree T given in an edge weighted graph. The
problem is to modify the edge weights so that the given tree is a minimum spanning
tree and the cost of the deviation is minimum. In order for a tree to be a minimum
spanning tree each out-of-tree edge j must have a weight wj greater than or equal to
each of the edges in the tree on the unique path between its endpoints. That is, the
constraints enforcing that T be a minimum spanning tree are of the form wj ≥ wi

for j ∈ E \ T , i ∈ T . The corresponding graph is a bipartite graph—a structure
that can be used to reduce the complexity of our algorithm for the resulting CCC.
Sokkalingam, Ahuja, and Orlin devised algorithms for three specific convex deviation
functions: sum of absolute differences, weighted sum of absolute differences, and
maximum absolute differences. All these functions are convex for which the minima
can be found in a single step. Our algorithm’s run time is thus strongly polynomial
and is better than O(mn log2 n) for this type of function, and with an additional
additive factor of n logC for general convex functions, where C is the maximum edge
weight. The complexity reported in [23] for the weighted absolute deviation problem is
weakly polynomial O(n2m log(nC)). Our algorithm can be further adapted to provide
substantial improvements for special cases as reported in [14].

Statistical problems of partially ordered estimation have been discussed exten-
sively in the literature; see, e.g., Veinott [24] and Barlow et al. [4]. Let p1, . . . , pn
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denote parameters to be jointly estimated and let fj(xj) denote the loss associated
with estimating that pj = xj for j = 1, . . . , n. A typical instance is when fj(xj) is
the negative of the logarithm of the likelihood, given pj = xj , that related random
variables assume observed values. The model being estimated may specify a partial
order on the parameters, as reflected by constraints xj ≤ xi for a set A of pairs (i, j),
as well as simple upper and lower bounds on the parameter values. If, in addition,
the model requires the parameter values to be integer, then the problem of jointly
estimating the parameter values so as to minimize total loss is precisely an instance
of the CCC problem. If there is no such integrality restriction, then the problem is
an instance of the continuous relaxation of CCC, which is discussed in section 8.

Algorithms for the CCC problem have been previously devised. Picard and
Queyranne [19] proposed an algorithm solving the problem with a running time of

O(n(mn log n2

m + n logU)). Ahuja, Hochbaum, and Orlin [3] addressed a generaliza-
tion of CCC—a convex cost dual of minimum cost network flow. Their algorithm for

this convex cost dual of minimum cost flow has running time of O(mn log n2

m log(nU)).

The method of Hochbaum and Naor [9] solves integer problems on monotone in-
equalities in at most two variables per inequality. A monotone inequality is of the
form ax − by ≤ c, where the coefficients of x and y are of opposite signs. Obvi-
ously, the constraints of CCC are monotone inequalities. The algorithm of Hochbaum

and Naor runs in pseudopolynomial time O(
∑

i(ui − 	i)mU log n2U
m ). It is possible

to combine that algorithm with a scaling approach implemented for CCC in time

O(mn logU log n2U
m ); see [2]. Hochbaum [12] generalized the concept of monotone

inequality to include three variables, ax − by ≤ c + z, for a, b ≥ 0. The run time for
solving integer programming on such inequalities was shown in [12] to be solved in
the same time as the algorithm in [2].

The algorithm described here solves CCC in time O(mn log n2

m + n logU). The
first term in the complexity expression is the run time required to solve the min-
imum closure problem, and the second factor is the run time required to find the
integer minima of n convex functions. Since CCC generalizes both these problems,
as discussed above this is the best complexity achievable for CCC. It is likely that
if a faster algorithm for the minimum closure problem is discovered, then the run
time of the algorithm can be respectively improved. For the second term the factor
of log U cannot be avoided, as any algorithm solving a constrained nonlinear and
nonquadratic optimization problem may not run in strongly polynomial time [11].
When the functions fi are quadratic convex, the algorithm runs in strongly polyno-

mial time O(mn log n2

m + n log n). For the isotonic regression problem the running
time improves to O(n log n + n logU), and thus the complexity of our algorithm is
O(n log(max{n,U})).

There are efficient algorithms known for solving several special cases of CCC. Any
maximum flow algorithm can be used to solve the minimum (or maximum) closure
problem. The most efficient algorithm known to date, due to Goldberg and Tarjan
[8], solves the maximum flow and thus the minimum cut, and the closure problems

have complexity of O(mn log n2

m ).

The isotonic regression problem is an instance of CCC defined on a linear order.
Ahuja and Orlin report on an O(n logU) time algorithm for this problem [1]. The
problem has been reviewed extensively in the statistical study of observations. Barlow
et al. [4] provide an excellent review of applications and algorithms for the isotonic
regression problem as well as the CCC problem.
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3. Solving the minimum closure as a minimum cut problem. Recall that
the minimum closure problem is a special case of CCC attained by setting the variables
to be binary. We review here the procedure for solving the minimum closure problem
with a minimum cut algorithm. Although CCC is a problem far more general than the
minimum closure, our algorithm for CCC also solves the minimum closure problem
in the most efficient complexity known.

A set of nodes S ⊆ V in a directed graph G = (V,A) is said to be closed if all
predecessor nodes of S are also included in S; i.e., if j ∈ S and (i, j) ∈ A, then i ∈ S.
Equivalently, S is said to be closed if it has no incoming arcs.

We review here the reduction of Picard [17], demonstrating that the minimum
closure problem is solved using a minimum cut procedure. We first define an s, t-graph
that contains a source and a sink and that is associated with the minimum closure
problem: the graph has a node j associated with each variable xj . A source, and
sink nodes s and t, are now added to the graph. If the weight of the variable wj is
positive, then node j has an arc from the source into it with capacity wj . If the node
has weight wj which is negative, then there is an arc from j to t with capacity −wj .
Let V + be the set of nodes with positive weights and V − be the set of nodes with
negative weights.

Each inequality xi ≥ xj is associated with an arc (i, j) of infinite capacity. Con-
sider any finite s, t-cut in the graph that partitions the set of nodes into two subsets
commonly referred to as the source set of the cut and the sink set of the cut, {s} ∪ S
and {t} ∪ S̄. It is easy to see that S̄ is a closed set if there are no infinite capacity
arcs from S to S̄.

We denote by (A,B) the collection of arcs with tails at A and heads at B. The
corresponding sum of capacities of these arcs is denoted by C(A,B), C(A,B) =∑

i∈A,j∈B cij , where cij is the capacity of arc (i, j) . Let w(A) =
∑

j∈A wj .

Given a finite cut ({s} ∪ S, S̄ ∪ {t}), we have

minS̄⊆V [C({s} ∪ S, S̄ ∪ {t})] = minS̄⊆V

∑
j∈S̄∩V + wj +

∑
j∈S∩V −(−wj)

= minS̄⊆V

∑
j∈S̄∩V + wj − (

∑
i∈V − wi −

∑
i∈S̄∩V − wi)

= minS̄⊆V

∑
j∈S̄ wj − w(V −).

In the last expression the term w(V −) is a constant. Thus the closed set S̄ of minimum
weight is also the sink set of a minimum cut and vice versa—the sink set of a minimum
cut (without t), which has to be finite, also minimizes the weight of the closure.

4. Verifying feasibility in linear time. We define a graph associated with
CCC that has one node representing each variable in the problem. We let the set
of nodes be denoted by V . Each inequality xi ≥ xj is associated with an arc (i, j).
We let the set of arcs be denoted by A. If the directed graph (V,A) has strongly
connected components, then each node in the strongly connected component shares
a directed cycle with each of the other nodes in the strongly connected component,
and thus the values of the corresponding variables must be equal.

Finding the strongly connected components of a graph can be accomplished in
O(m) time; see, e.g., [6, Chap. 23]. The strongly connected components partition the
nodes of the graph into V1 ∪ · · · ∪ Vk. In each strongly connected component Vi we
let 	(Vi) be the tightest lower bound in Vi and let u(Vi) be the tightest upper bound
in Vi. That is,

	(Vi) = max
v∈Vi

	v and u(Vi) = min
v∈Vi

uv.
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A necessary condition for feasibility is that all variables in the same strongly con-
nected component assume the same value that falls in the interval range [	(Vi), u(Vi)].
Since the above recursion is performed in linear time, verifying this necessary condi-
tion amounts to checking that 	(Vi) ≤ u(Vi) in O(m+ n) steps.

We now consolidate each strongly connected component into a single node Vi

defined on the interval [	(Vi), u(Vi)]. The function associated with such a node (or
variable) is the sum of the convex functions associated with all nodes in Vi, which is
a convex function. The graph of strongly connected components is thus a directed
acyclic graph (DAG).

Let Vi be a predecessor of Vj in different strongly connected components. Then
the following updates are valid:

	(Vi)← max{	(Vj), 	(Vi)}, u(Vj)← min{u(Vi), u(Vj)}.
All these updates can be performed in time O(m). A necessary condition for

feasibility is that for i = 1, . . . , k, 	(Vi) ≤ u(Vi). This condition is also sufficient since,
if satisfied, there exists a feasible solution which is, say, to set all variables to the
lower bounds of their corresponding intervals.

Our optimization algorithm runs faster if the feasibility preprocessing step is
performed and the interval bounds are adjusted. This preprocessing step, however, is
not essential and does not affect the worst case complexity.

5. The threshold theorem. The threshold theorem is the cornerstone of our
algorithm. The theorem is an extension of an earlier result of Picard and Queyranne
[19].

Let α be a scalar in the interval (	, u) = (mini∈V 	i,maxi∈V ui). Consider further
the convex extension of the functions fi() on the real line by setting f ′

i(x) to be equal
to M at values of x > ui, and to −M for values x < 	i, for M a suitably large value.
We will comment after the statement of the theorem on how large M should be. The
functions fi() are therefore defined for any real value x as follows:

fi(x) =




fi(ui) +M(x− ui) if x > ui,
fi(x) if 	i ≤ x ≤ ui,
fi(	i) +M(	i − x) if x < 	i.

Consider now the minimum closure problem with variable weights wi = wi(α)
that are the subgradients of fi at α, wi = f ′

i(α) = fi(α + 1) − fi(α). The theorem
establishes that all elements i in the minimum weight closed set S∗ satisfy that for any
optimal solution x, xi > α, and satisfy that for all elements j in the complement of
S∗, xj ≤ α. Consequently, the theorem allows for the reduction of CCC to a sequence
of minimum closure problems.

In case there are several optimal minimum closed sets, we define a minimal mini-
mum closed set as a minimum closed set that does not contain other minimum closed
sets. Similarly, a maximal minimum closed set is defined as a minimum closed set
that is not contained in another minimum closed set.

Theorem 5.1. Let wi = f ′
i(α) be the weight assigned to node i, i = 1, . . . , n, in

a minimum closure problem defined on the directed graph G = (V,A). Let S∗ be the
minimal minimum weight closed set in this graph. Then an optimal solution x∗ to the
CCC problem satisfies x∗

i > α if i ∈ S∗ and x∗
i ≤ α if i ∈ S̄∗.

Proof. The proof is by contradiction. Let S∗ be the minimal minimum weight
closed set, and suppose there is a nonempty subset So ⊆ S∗ such that at an optimal
solution x∗, x∗

j ≤ α for all j ∈ So.
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Since at the optimum x∗
j > α for j ∈ S∗ \So, the set S∗ \So must be closed, as it

has no predecessors (larger values) in So. But this set is not a minimal minimum closed
set, as S∗ is minimal. Thus the weight of nodes in So—the total sum of subgradients—
must be negative,

∑
j∈So f ′

j(α) < 0. Furthermore, increasing the values of all x∗
j in

this set to α+ ε ≤ mini∈S∗\So x∗
i for some ε > 0 does not violate feasibility, since the

values of their predecessors in S∗ \ So are all ≥ α + ε. Thus replacing x∗
j for j ∈ So

by α is feasible and strictly reduces the weight of the closure compared to an optimal
solution. This contradicts the assumption that x∗ is optimal.

An analogous contradiction is reached if we assume that an optimal solution has
in the set S̄∗ a variable with value > α.

As a result of the theorem, we can decompose the set of nodes into subsets that
imply a narrowing of the interval in which the optimal value of the respective variable
is to be found: For a given value of α we solve the minimum closure problem with
wi = f ′

i(α) for a minimal minimum closure S∗. For all i ∈ S∗ we conclude that
x∗
i ∈ (max{	i, α}, ui] and for all j ∈ S̄∗, x∗

j ∈ [	j ,min{α, uj}].
Concerning the value of M , it is sufficient to set M =

∑
imax{f ′

i(ui), |f ′
i(	i)|}.

We claim that for a feasible problem a node with weight M is never in a minimum
weight closed set, and a node with weight −M is always in a minimum weight closed
set. If that were not the case, then either we can generate a closed set of a strictly
lower value by including nodes of weight −M and excluding nodes of weight M or
else there is a node j of weight −M that has as its predecessor a node i of weight M .
But that means that the given value of α satisfies ui < α < 	j , and there is no feasible
solution where the value of xi ∈ [	i, ui] is at least as large as the value of xj ∈ [	j , uj ].

Indeed, the algorithm we employ to solve CCC can be used to verify feasibility as
well—for every value of α the nodes of weight M must be in the source set and the
nodes of weight −M must be in the sink set or else the problem is infeasible. Yet, if
the feasibility test of section 4 is used, then whenever the threshold theorem is invoked
in the algorithm the nodes of weight −M are known a priori to be in the minimum
closure and thus in the sink set, and those nodes of weight M are known to be in the
source set. This permits the “shrinking” of nodes of weight M with the source and
nodes of weight −M with the sink. The size of the graph is thus reduced and the
value of M is not explicitly used if the feasibility test is invoked as a preprocessing
step.

6. The algorithm. One obvious method of using the threshold theorem for
solving CCC is to perform a search by calling for the solution of the minimum closure
problem for all integer values of α in the interval (	, u). When done, the output of
such a process is a partition of the set of variables V into q sets, and the interval into
q disjoint intervals, so that all variables in the same set have their optimal values in
the same interval. The goal would be to find for each variable xj the largest value of
α for which it is still in the source set and to find the smallest value of α for which
it is no longer in the source set. With this information we narrow down the value of
xj at an optimal solution to an interval defined by these values. We later show that
once these intervals are identified, all variables assigned to the same interval assume
the same value in that interval, and that value is the lower end of the interval. One
drawback of the approach just described is that it makes U calls to a minimum cut
procedure and is thus pseudopolynomial.

It is easy to see that a binary search type approach could be used to implement
the procedure of identifying the intervals to a polynomial time procedure. Next we
show that one can do still better by implementing the process of identifying the set
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and interval partitioning in strongly polynomial time and in the complexity of solving
a single minimum cut problem.

The key to our approach is to utilize parametric minimum cut to generate all the
breakpoints of the decompositions. This can be done, as is shown here, by adapting
the method of Gallo, Grigoriadis, and Tarjan [7], which works in the same running
time as a single minimum cut procedure.

6.1. The parametric graph Gλ. We create a graph with parametric capaci-
ties, Gλ = (V ∪{s, t}, A). Each node j ∈ V has an incoming arc from s with capacity
max{0, f ′

j(λ)} and an outgoing arc to the sink t with capacity −min{0, f ′
j(λ)}. The

capacities of the arcs adjacent to the source in this graph are monotone nondecreasing
as a function of λ, and the arcs adjacent to the sink have capacities that are monotone
nonincreasing as a function of λ. Note that each node is connected with a positive
capacity arc, either to source, or to sink, but not to both. Denote the source set of a
minimum cut in the graph Gλ by Sλ.

Restating the threshold theorem in terms of the corresponding minimum cut for
the graph Gλ associated with the closure graph, any optimal solution x satisfies that
xj > λ for j ∈ S̄λ and xj ≤ λ for j ∈ Sλ, where Sλ is the maximal source set of a
minimum cut.

Let 	 be the lowest lower bound on any of the variables and u the largest up-
per bound. Consider varying the value of λ in the interval [	, u]. As the value of λ
increases, the sink set becomes smaller and contained in the previous sink sets cor-
responding to smaller values of λ, specifically, for some λ ≤ 	 Sλ = {s} and some
λ ≥ u Sλ = V ∪ {s}. We call each value of λ, where Sλ strictly increases, a node-
shifting breakpoint. For λ1 < · · · < λ� the set of all node-shifting breakpoints we get
a corresponding nested collection of source sets,

{s} = Sλ1 ⊂ Sλ2
⊂ · · · ⊂ Sλ�

= {s} ∪ V.

Our goal is to partition the variables into the subsets S(k) = Sλk
− Sλk−1

, k =
2, . . . , 	. The property of each subset S(k) is that all variables in the set have optimal
value in the interval (λk−1, λk]. As we prove next, the optimal value of all variables
in S(k) is x∗, where

x∗ = λk−1 + 1.

Lemma 6.1. For j ∈ S(k), the value of xj at an optimal solution, x
∗
j , is λk−1+1.

Proof. According to the threshold theorem, λk−1 is the largest value so that for
j ∈ S(k), xj > λk−1.

It follows that xj = λk−1 + 1.

6.2. Identifying an integer node-shifting breakpoint. Since we are inter-
ested only in integer valued solutions, we can consider the convex functions fj(x) to be
piecewise linear segments connecting the values of fj(k) on integer points 	j ≤ k ≤ uj .
For such functions the derivatives at the integer points are not well defined and in-
deed could be any subgradient of the function at the respective integer point. We
will consider the derivative f ′

j(x) to be a step function with the value in the interval
(k − 1, k] equal to fj(k)− fj(k − 1).

We denote a maximal minimum cut source set in Gλ by Smax
λ and a minimal

minimum cut source set by Smin
λ .

The source set of a minimum cut of Gλ remains invariant for λ ∈ (k−1, k]. Thus,
in order to verify that λ is a node-shifting breakpoint, it suffices to compare Smax

λ
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with Smin
λ+ε for ε > 0 sufficiently small. In our case we consider only integer values of

λ, and ε = 1 is a small enough value. So if Smax
λ ⊂ Smin

λ+1, then λ is a node-shifting
breakpoint.

The existence of a breakpoint in an interval (λ1, λ2) is confirmed if and only if
Smax
λ1
⊂ Smin

λ2
.

6.2.1. Parametric analysis. Gallo, Grigoriadis, and Tarjan [7] devised a com-
plete parametric analysis algorithm using the push-relabel algorithm that runs in the
same time as a single push-relabel algorithm and identifies all node-shifting break-
points. The algorithm is applicable to graphs with source adjacent arcs having ca-
pacities monotone nondecreasing in the parameter λ and sink adjacent arcs having
capacities nonincreasing in λ. The running time of the algorithm for linear capacity

functions is O(mn log n2

m ). The same result is achieved using the pseudoflow algorithm
[13] with a running time of O(mn log n). We let the generic run time be Qmn, where

Q is a constant times log n2

m for push-relabel and a constant times logn for pseudo-
flow. Whenever we refer in the analysis below to a minimum cut algorithm it can
be either the push-relabel algorithm or the pseudoflow algorithm (and its variants).
Other minimum cut algorithms do not satisfy the necessary requirements to make
them amenable to the analysis of the parametric procedure.

We assume henceforth that the proceduremin-cut(Gλ) returns both the minimal
and maximal source sets of minimum cuts (if different), Smin

λ , Smax
λ , and Smin

λ+1. The
procedure also returns the state of the graph at the end of the run, which includes node
labels and preflows for the push-relabel algorithm and node labels and pseudoflows
for the pseudoflow algorithm.

For a given interval (λ1, λ2) we can find all node-shifting breakpoints by using
the procedure parametric. The input to the procedure includes R1 and R2, which
are runs of the minimum cut algorithm that are initiated on an s, t-graph G and the
reverse graph GR, respectively.

Procedure parametric (G,λ1, λ2, S
max
λ1

, Smin
λ2

, R1, R2).
Contract in G: s← s ∪ Smax

λ1
, t← t ∪ S̄min

λ2
. If V = {s, t}, or, if λ2 − λ1 ≤ 1, halt

“no breakpoints.”

Else, let λ∗ = �λ1+λ2

2 �.
Call min-cut(Gλ∗ , R1, R2) for the output S

min
λ∗ , Smax

λ∗ , and R∗.
If λ∗ is a breakpoint, output λ∗ and Smin

λ∗ .
Call parametric (G,λ1, λ

∗, Smax
λ1

, Smin
λ∗ , R1, R

∗).
Call parametric (G,λ∗, λ2, S

max
λ∗ , Smin

λ2
, R∗, R2).

end

The choice of λ∗ as the median in the interval (λ1, λ2) leads to an additional run
time of O(n log(λ1 − λ2)), where n is the number of adjusted capacity functions. For
specific capacity functions λ∗ is replaced by the intersection of the two cut capacity
functions.

The analysis of the complexity of the procedure follows arguments used in [7].1 It
is essential that the algorithm used in the runs for minimum cut satisfies the following
properties:

1The source of some of this analysis is from private communication of the first author with R.
Tarjan in 1996.
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• Reflectivity: The complexity of the algorithm remains the same whether run
on the graph or reverse graph.
• Monotonicity: Running the algorithm on a monotone sequence of parameter
values has the same complexity as a single run.

The main recursive procedure is min-cut(Gλ∗ , R1, R2), where R1 is the status
of the graph (labels assigned to nodes and flow values) Gλ1 after a minimum cut was
identified and R2 is the state of the graph after the minimum cut was found on the
reverse graph GR

λ2
.

The procedure is implemented as follows: Run a maximum flow algorithm on
Gλ∗ as a monotone continuation of the run R1. Concurrently, run a maximum flow
algorithm on GR

λ∗ as a monotone continuation of the run R2. Suppose that the
algorithm for the forward direction (on G) stops first (the other case is symmetric).
If |Smin

λ∗ | > n/2, complete the execution of the maximum flow algorithm on GR and
let R∗ be the resulting state of the graph.

Consider the execution that follows immediately of the recursive calls to para-
metric (G,λ1, λ

∗, Smax
λ1

, Smin
λ∗ , R1, R

∗), and to parametric (G,λ∗, λ2, S
max
λ∗ , Smin

λ2
,

R∗, R2). Consider graphs G(S̄min
λ∗ ) and G(Smax

λ∗ ) on which min-cut is called recur-
sively. Let R3 and R4, respectively, be the forward and backward runs on G(S̄min

λ∗ )
when min-cut is applied. Let R5 and R6, respectively, be the forward and backward
runs on G(Smax

λ∗ ) when min-cut is applied. We distinguish two cases.

Case 1. If n1 > n/2, we regard R4 as a continuation of R2, and regard R3 as a
restart of R1, that is, as a continuation of the run of which R1 was a continuation. We
must charge for R5 and R6 as starts of new runs. The 2Qm1n1 term in the recurrence
for T (m,n) below accounts for the new runs of the push-relabel algorithm that begin
with R5 and R6.

Case 2. Symmetrically, if n1 ≤ n/2, we regard R5 as a continuation of R1, and
regard R6 as a restart of R2. In this case, the 2Qm1n1 term in the recurrence for
T (m,n) below accounts for the new runs that begin with R3 and R4.

In Case 1, we still must account for the cost of R1. In Case 2, we still must account
for the cost of R2. Procedure min-cut runs R1 and R2 concurrently, stopping when
the first one stops. Suppose R1 stops first. Then the cost of R1 is covered by the cost
of R2, which takes care of Case 1. Note that in this case R2 is run to completion,
even though it takes longer than R1 (see implementation); R1 is the abandoned run,
but it is cheaper than R2, which is the good run. Suppose R1 stops first but we are
in Case 2. Although run R2 is abandoned, we have spent no more time on it than the
time spent running R1, which was a good run. In this case, the run of R1 covers the
time spent on (partially) running R2. The situation is symmetric if R2 stops first. In
every case the time spent on the completed good run is at least as much as the time
spent on partially or completely performing the run that is abandoned.

Throughout the procedure the total complexity of abandoned runs is at most
the complexity of one run with monotonically increasing (or decreasing) parameter
values. In addition, the total work for good runs on Gλ∗ and GR

λ∗ is at most twice the
complexity of one run on monotone parameter values. The total complexity charged
for these runs is at most that of three runs of the minimum cut algorithm, 3Qmn.

Let m1 +m2 ≤ m, n1 + n2 ≤ n, and n1 ≤ 1
2n. The running time T (m,n) is the

additional running time required by the algorithm, taking into account the new runs
initiated with each recursive call to min-cut. Let Q be a constant. Then

T (m,n) = T (m1, n1) + T (m2, n2) + 2Qm1n1.
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The solution to the recursion is T (m,n) = Qmn. Thus the overall run time of the

parametric procedure with the push-relabel algorithm is O(mn log n2

m ). The run time
incurred in adjusting capacities is O(n logU) throughout the procedure.

6.3. The algorithm. Let 	 be the lowest lower bound on any of the variables
and u be the largest upper bound. Let U = u− 	.

Procedure convex cost closure (G, fj , j = 1, . . . , n).
Step 1: Call parametric (	, u, ∅, V ).

Let the output be a set of up to n breakpoints λ1, λ2, . . . , λ� and the corre-
sponding sets of source sets of minimum cuts S1 ⊂ S2 · · · ⊂ S�.

Step 2: Output the optimal solution x∗ where for j ∈ Sk − Sk−1, x
∗
j = λk−1 + 1.

The complexity of the algorithm is O(mn log n2

m + n logU).

7. Special cases.

7.1. The quadratic CCC problem. Nonlinear and nonquadratic optimiza-
tion problems with linear constraints were proved impossible to solve in strongly
polynomial time in a complexity model of the arithmetic operations, comparisons,
and the rounding operation [11]. That negative result, however, is not applicable to
the quadratic case, and thus it may be possible to solve constrained quadratic op-
timization problems in strongly polynomial time. Yet, few quadratic optimization
problems are known to be solvable in strongly polynomial time. For instance, it is not
known how to solve the minimum quadratic cost network flow problem in strongly
polynomial time. For the convex quadratic cost closure problem our result adds to
the limited repertoire of quadratic problems solved in strongly polynomial time.

In the quadratic case our algorithm is implemented to run in strongly polynomial
time. This is easily achieved since the derivative functions are linear—a case that is

shown in [7] to be solved in O(mn log n2

m ). Thus the overall run time of the algorithm
is dominated by the complexity of the minimum cut,

O

(
mn log

n2

m

)
.

7.2. Isotonic regression. The isotonic regression problem is a special case of
CCC in which the order is linear and the corresponding graph G = (V,A) is a path
from node n to node 1. In other words, the inequalities associated are of the type

xi ≤ xi+1 for all i = 1, . . . , n.

There are only n possible cuts in such a graph, each with a source set Si of the
form Si = {1, . . . , i}. Each cut is thus ({1, . . . , i}, {i + 1, . . . , n}). The minimum cut
for such graphs is trivially identified in O(n) time by comparing the capacities of
the n possible cuts. The capacity of cut (Si, S̄i) is computed in O(1) by subtracting
from the capacity of (Si−1, S̄i−1) the weight of node i, wi. Indeed, if the weight wi is
positive, then it contributes wi to the capacity of the cut (Si−1, S̄i−1) but not to the
capacity of the cut (Si, S̄i). If wi < 0, then node i contributes −wi to the capacity of
(Si, S̄i) but 0 to the capacity of (Si−1, S̄i−1).

Consider the closure graph in which each node has a weight f ′
j(x) associated with

it for a given value of x. Minimizing the value of the cut is equivalent to minimizing
the sum of weights of the sink set (see section 3). Alternatively, the cut is minimized
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when the weight of the corresponding source set is maximized, thus seeking an index
i to maximize Fi(x) =

∑i
j=1 f

′
j(x). We thus conclude with the following.

Lemma 7.1. If
∑i

j=1 f
′
j(x) = maxk=1,...,n

∑k
j=1 f

′
j(x), then the minimum cut in

the graph Gx is (Si, S̄i).

Consider the partial sum functions

F1(x), F2(x), . . . , Fn(x),

where Fi(x) =
∑i

j=1 f
′
j(x). Recall that the functions f

′
j(x) are monotone nondecreas-

ing in x. Denote the roots of the partial sum functions by bi. Thus Fi(bi) = 0. If
the function is negative in the interval [	, u], then we let bi = u + 1. If the function
is positive throughout the interval, then we let bi = 	 − 1. Let bi1 = mini bi. Then
for x ≤ bi1 the optimal minimum cut is (∅, V ). For this cut, the maximum weight
source set is empty since all the partial sums of weights are nonpositive. The value
of λ1 = bi1 is thus a breakpoint beyond which, for x > bi1 , the source set of the
minimum cut is {1, . . . , i1}.

As the value of x increases sufficiently so that
∑i2

j=i1+1 f
′
j(x) = Fi2(x)−Fi1(x) ≥

0, the nodes {i1, . . . , i2} join the source set of the minimum cut. In other words, the
second breakpoint is the smallest value λ2 so that there is an index i2 > i1 such that

Fi2(λ2)− Fi1(λ2) ≥ 0.

The general procedure is as follows:

Procedure isotonic regression breakpoints.
i0 = 0, λ0 = 	− 1, k = 1
while ik−1 < n, do
Find smallest integer value of λk such that for ik > ik−1, Fik(λk)− Fik−1

(λk) ≥ 0.
k ← k + 1
repeat
Output λ1, . . . , λk.
end

A naive implementation of this algorithm has n iterations with each iteration in-
volving the finding of the roots of O(n) functions. The total complexity is O(n2 logU).
We can do better with the implementation of the parametric search algorithm that
requires the solution of the minimum cut problem for a specific parameter value in
O(n). However, each time the procedure calls for the minimum cut, the weights of
the nodes must be updated for the new parameter value. This update requires O(n)
operation. The additional work of finding the roots of the n functions adds up to a
total complexity of O(n2 + n logU).

To achieve an even better running time we investigate further the properties of the
partial sum functions Fi(x). These functions are obviously monotone nondecreasing
as sums of monotone nondecreasing functions. Another important property proved in
the next lemma is that each pair of such functions intersects at most once.

Lemma 7.2. For i < j and functions Fi and Fj, if for some value of the argument
λ, Fi(λ) < Fj(λ), then Fi(x) < Fj(x) for any x > λ.

Proof. Fj(x)−Fi(x) is a sum of monotone nondecreasing functions
∑j

k=i+1 f
′
k(x).

Thus the difference Fj(x) − Fi(x) > Fj(λ) − Fi(λ) > 0 and can increase only as
the value of x grows. Thus the two functions do not intersect for any value of
x > λ.
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An immediate corollary of the lemma is that any pair of functions Fi, Fj can
intersect at most once.

Consider the upper envelope of the functions Fi represented as an array of func-
tions and breakpoints (	, 0, bi1 , Fi1 , bi2 , Fi2 , . . . , bin , Fin , u). The functions on the en-
velope have the property that for all j,

Fik(x) ≥ Fj(x), x ∈ [bik−1, bik ].

From the lemma it follows that the upper envelope of the partial sums functions
has at most n breakpoints, where the function on the envelope changes. The first
breakpoint is bi1 . The next breakpoint occurs for a value of x when some function
Fi2(x) = Fi1(x). It is easy to see from Procedure isotonic regression breakpoints that
the list of breakpoints of this envelope is precisely the list of the breakpoints that
determine the sequence of cuts.

The following sweep algorithm may be used to find the upper or upper envelope
of a set of functions: Partition arbitrarily the set of functions into two equally sized
sets F1, F2. Compute recursively the upper envelopes of F1, F2. Let E1, E2 denote
the two resulting upper envelopes. Sweep the two upper envelopes E1, E2 from left
to right and compute the upper envelope of the two upper envelopes. For a detailed
description of the above algorithm the reader is referred to [22, pp. 134–136] and [5].

It remains to show how to implement the sweep algorithm for our particular set
of functions. Instead of partitioning arbitrarily the set of functions, we choose the
partition of F1 = {1, . . . , n} to {1, . . . , �n2 �} and F2 = {�n2 + 1, . . . , n�}. That is, one
set contains the lower half-set of indices and the other set contains the upper half-set
of indices.

Consider the first breakpoint in E1 and E2 (recall that at that point the partial
sum values are still 0). If the first breakpoint of E1 is larger than the first breakpoint
of E2, then the first portion of E1 is below the first portion of E2. From the lemma
we see that no pairs of functions from the two sets intersect, and the entire envelope
E1 lies below the envelope E2. Thus the merged envelope is E2.

If, on the other hand, the first breakpoint of E1 is smaller than the first breakpoint
of E2, then there could be a point where a function from F2 crosses a function from
F1. We consider the array of breakpoints of the envelope E1 for the last breakpoint,
where it is still above E2. Similarly, we search the array of breakpoints of the envelope
E2 for the last breakpoint, where it is still below E1. Since there are O(n) breakpoints
per envelope, the search for that breakpoint is done by binary search in O(log n) steps.
The intersection point is then to be determined between this breakpoint and the next
one on each envelope. Finding the intersection of Fi(x) and Fj(x) takes at most
O(logU) steps.

Thus the merger of two envelopes of functions is executed inO(log n+logU). Since
there are at most n mergers in the procedure, the total running time is O(n log n +
n logU).

Once all the upper envelopes have been identified we have the implied source sets
of the associated cuts:

{1, . . . , i1}, {1, . . . , i2}, . . . , {1, . . . , iq}.
If i ∈ {ik−1, . . . , ik}, then x∗

i ∈ (bik−1
, bik ]. It remains to apply Lemma 6.1 in

order to determine an optimal solution:

x∗
i = bik−1

+ 1.
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Thus the total complexity of the algorithm for the isotonic regression problem is
O(n(logU + log n)). In the quadratic case this leads to a complexity of O(n log n).

8. The continuous CCC problem. When solving the problem in continuous
variables, one has to determine how to output the solution. For instance, the minimum
of a cubic function can be irrational even if all coefficients are integers. To fully
provide the output would then require infinite complexity. To that end we employ
the ε-accurate complexity model introduced in [10]. According to this model a solution
x(ε) is specified as an integer multiple of ε; i.e., it lies on the so-called ε-grid. The
solution is such that there is an optimal vector x∗ so that

||x(ε) − x∗||∞ < ε.

The continuous problem can be solved using the same algorithm used for the
integer case. The only modification required is in the parametric analysis procedure
where the choice of λ∗ is such that a median point in the interval (λ1, λ2) lies on the
ε-grid. This is done in additional O(n log(U/ε) time. The complexity of the algorithm
is thus the complexity of finding the roots of the n functions plus the complexity of a

minimum cut, O(mn log n2

m + n log(U/ε)).

9. Conclusions and extensions. The results here have been extended to a
problem that is more general than the CCC problem. The problem is the convex s-
excess problem which generalizes the s-excess problem discussed in [13]. The problem
is formulated as follows:

(Convex s-excess) Min
∑

j∈V fj(xj) +
∑

eijzij
subject to xi − xj ≤ zij for (i, j) ∈ A,

uj ≥ xj ≥ 	j , j = 1, . . . , n,
zij ≥ 0, (i, j) ∈ A.

This problem is solved with precisely the same complexity as the minimum closure
problem. To that end, we proved a generalization of the threshold theorem reported
in [15].

There are applications of the convex s-excess problem in the areas of image seg-
mentation and Markov random fields. The problem is of further interest because of
its relationship to the minimum cost network flow problem.

Notice that the terms associated with the variables zij are linear. This is signifi-
cant because the dual of the minimum cost network flow (MCNF) problem is

(Dual MCNF) Min
∑

j∈V bjxj +
∑

eijzij ,

subject to xi − xj ≤ cij + zij for (i, j) ∈ A,
uj ≥ xj ≥ 	j , j = 1, . . . , n,
zij ≥ 0, (i, j) ∈ A.

That is, the right-hand sides of the constraints have a constant term in addition to
the term zij . Thus, if one can solve the convex s-excess problem with convex function
term

∑
eij(zij), then it would have been possible to solve also the dual of the MCNF

in the same running time for a single application of maximum flow or minimum cut.

Notes added in proof. (1) The parametric algorithm was shown in [7] to work
in strongly polynomial time for linear capacity functions. Hochbaum and Hong [About
strongly polynomial time algorithms for quadratic optimization over submodular con-
straints, Math. Programming, 69 (1995), pp. 269–309] showed that the same run
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time applies when the monotone capacity functions are piecewise linear. The number
of pieces in the piecewise linear functions N adds O(Nn) to the complexity of the
parametric minimum cut procedure. Since for CCC the capacity functions are deriva-
tives of convex functions it follows that for convex functions that are piecewise linear
or piecewise quadratic the run time remains strongly polynomial.

(2) In [13] Hochbaum shows that the pseudoflow algorithm solves the maximum
flow minimum cut algorithm for tree graphs in O(n) steps. In tree graphs the set of
arcs other than those adjacent to source and sink form an (undirected) acyclic graph.
Thus when the partial order graph is a tree the CCC is solved in O(n logU) using the
procedure of [13] with the binary search algorithm described in section 6. This is an
alternative algorithm to solve the isotonic regression problem where the linear order
graph is a path and thus a tree.
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