
OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0030-364X |eissn 1526-5463 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

A Computational Study of the Pseudoflow and
Push-relabel Algorithms for the Maximum Flow

Problem
Bala G. Chandran

Analytics Operations Engineering, Inc., bchandran@nltx.com,

Dorit S. Hochbaum
Department of Industrial Engineering and Operations Research and Walter A. Haas School of Business, University of

California, Berkeley hochbaum@ieor.berkeley.edu, http://www.ieor.berkeley.edu/˜hochbaum/

We present the results of a computational investigation of the pseudoflow and push-relabel algorithms for the
maximum flow and minimum s-t cut problems. The two algorithms were tested on several problem instances
from the literature. Our results show that our implementation of the pseudoflow algorithm is faster than
the best known implementation of push-relabel on most of the problem instances within our computational
study.

Subject classifications : Flow algorithms; parametric flow; normalized tree; lowest label; pseudoflow
algorithm; maximum flow

Area of review : Networks/graphs

1. Introduction

The maximum flow or max-flow problem on a directed capacitated graph with two distinguished
nodes—a source and a sink—is to find the maximum amount of flow that can be sent from the
source to the sink while satisfying flow balance constraints (flow into each node other than the
source and the sink equals the flow out of it) and capacity constraints (the flow on each arc does
not exceed its capacity).

The minimum s-t cut problem, henceforth referred to as the min-cut problem, defined on the
above graph, is to find a bi-partition of nodes—one containing the source and the other containing
the sink—such that the sum of capacities of arcs from the source set to the sink set is minimized.

Ford and Fulkerson (1956) established the max-flow min-cut theorem, which states that the value
of the max flow in a network is equal to the value of the min cut. Algorithms developed so far for the
max-flow problem implicitly solve the min-cut problem and have the same theoretical complexity
for both problems.

Max-flow and min-cut problems are of considerable practical interest, with applications that
range from job scheduling to mining. The chapter on maximum flows in the book by Ahuja,
Magnanti and Orlin (1993) describes these and other applications. The wide applicability of these
problems has resulted in a substantial amount of theoretical and experimental work on the subject.

Among algorithms for the max-flow and min-cut problems, the push-relabel algorithm (some-
times referred to as the preflow-push algorithm) of Goldberg and Tarjan (1988) performs well in
theory as well as in practice. The complexity of this algorithm (for the max-flow and min-cut
problems) is O(nm log(n2

m
)), using the dynamic trees data structure of Sleator and Tarjan (1983).

Several studies have shown push-relabel to be computationally very efficient (for example, Ahuja
et al. 1997, Anderson and Setubal 1991, Derigs and Meier 1989, Goldberg and Cherkassky 1997).
The highest level variant of the push-relabel algorithm was found to have the best performance in
practice (see Goldberg and Cherkassky (1997) and page 242 of Ahuja, Magnanti and Orlin (1993)).

1

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
2 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Hochbaum (1997) introduced the pseudoflow algorithm for the maximum flow problem, based
on an algorithm of Lerchs and Grossman (1965) for the maximum closure problem. A lowest label
variant of the pseudoflow algorithm has the strongly polynomial complexity of O(nm logn) using
dynamic trees. Anderson and Hochbaum (2002) introduced the highest label pseudoflow variant
that has the same strongly polynomial complexity, and performed an extensive computational
study comparing the pseudoflow algorithm to push-relabel. The highest label pseudoflow algorithm
was found to perform competitively with push-relabel on many problem instances.

The pseudoflow algorithm can be initialized with any pseudoflow. A straightforward variation
of the push-relabel algorithm can also be started with any pseudoflow. Anderson and Hochbaum
(2002) observed that pseudoflow algorithms can sometimes be sped up significantly if started with
a good initial pseudoflow.

The contribution of this paper is that we demonstrate that our implementation of the highest
label pseudoflow algorithm with a generic initialization is faster than the best known implementa-
tion of highest level push-relabel on most instance classes.

This paper is organized as follows: we establish our notation in Section 2. We describe the push-
relabel in Section 3, followed by the pseudoflow algorithm in Section 4. In Section 5, we show how
the pseudoflow and push-relabel algorithms can be initialized with a pseudoflow. We then present
our experimental setup in Section 6, followed by our results in Section 7.

2. Preliminaries

Let Gst be a graph (Vst,Ast), where Vst = V ∪{s, t} and Ast = A∪As ∪At in which As and At are
the source-adjacent and sink-adjacent arcs respectively. The number of nodes |Vst| is denoted by n,
while the number of arcs |Ast| is denoted by m. A flow vector f = {fij}(i,j)∈Ast is said to be feasible
if it satisfies

(i) Flow balance constraints: for each j ∈ V ,
∑

(i,j)∈Ast
fij =

∑
(j,k)∈Ast

fjk (i.e., inflow(j) =
outflow(j)), and

(ii) Capacity constraints: the flow value is between the lower bound and upper bound capacity
of the arc, i.e., `ij ≤ fij ≤ uij. We assume henceforth that `ij = 0.

A maximum flow is a feasible flow f∗ that maximizes the flow out of the source (or into the
sink). The value of the maximum flow is

∑
(s,i)∈As

f∗si.
Given a capacity-feasible flow, an arc (i, j) is said to be a residual arc if (i, j)∈Ast and fij < cij

or (j, i) ∈ Ast and fji > 0. For (i, j) ∈ Ast, the residual capacity of arc (i, j) with respect to the
flow f is cf

ij = cij − fij, and the residual capacity of the reverse arc (j, i) is cf
ji = fij. Let Af denote

the set of residual arcs for flow f in Gst which are all arcs or reverse arcs with positive residual
capacity.

A preflow is a flow vector that satisfies capacity constraints but inflow into a node is allowed
to exceed the outflow. The excess of a node v ∈ V is the inflow into that node minus the outflow
denoted by e(v) =

∑
(u,v)∈Ast

fuv−
∑

(v,w)∈Ast
fvw. A pseudoflow is a flow vector that satisfies capac-

ity constraints but may violate flow balance in either direction (inflow into a node need not equal
outflow). A negative excess is called a deficit.

3. The push-relabel algorithm

The push-relabel algorithm was developed by Goldberg and Tarjan (1988). In this section, we pro-
vide a sketch of a straightforward implementation of the algorithm. For a more detailed description,
see Ahuja, Magnanti and Orlin (1993).

The push-relabel algorithm works with preflows, i.e., a flow that satisfies capacity constraints
but flow into a node is allowed to exceed its outflow. A node with strictly positive excess is said to
be active.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 3

Each node v is assigned a label `(v) that satisfies (i) `(t) = 0, and (ii) `(u)≤ `(v)+1 if (u, v)∈Af .
A residual arc (u, v) is said to be admissible if `(u) = `(v)+ 1.

Initially, all nodes are assigned a label of 0, and source-adjacent arcs are saturated creating a set
of source-adjacent active nodes (all other nodes have zero excess). An iteration of the algorithm
consists of selecting an active node in V , and attempting to push its excess to its neighbors along
an admissible arc. If no such arc exists, the node’s label is increased by 1. The algorithm terminates
with a maximum preflow when there are no more active nodes with label less than n. The set of
nodes of label n then forms the source set of a minimum cut and the current preflow is maximum
in that it sends as much flow into the sink node as possible. This ends Phase 1 of the Push-relabel
algorithm. In Phase 2, the algorithm transforms the maximum preflow into a maximum flow. In
practice, Phase 2 is much faster than Phase 1. A high-level description of the push-relabel algorithm
is shown in Figure 1.

Figure 1 High-level description of Phase I of the generic push-relabel algorithm.

/*
Generic push-relabel algorithm for maximum flow. The nodes with label equal to n at
termination form the source set of the minimum cut.
*/

procedure push-relabel(Vst,Ast, c):
begin

Set the label of s to n and that of all other nodes to 0;
Saturate all arcs in As;
while there exists an active node u∈ V of label less than n do

if there exists an admissible arc (u, v) do
Push a flow of min{e(u), cf

uv} along arc (u, v);
else do

Increase label of u by 1 unit;
end

In the highest label and lowest label variants, an active node with highest and lowest labels
respectively are chosen for processing at each iteration. In the FIFO variant, the active nodes are
maintained as a queue in which nodes are added to the queue from the rear and removed from the
front for processing.

The generic version of the push-relabel algorithm runs in O(n2m) time. Using the dynamic trees
data structure of Sleator and Tarjan (1983), the complexity is improved to O(nm log n2

m
).

Two heuristics that are employed in practice significantly improve the running time of the algo-
rithm:

1. Gap relabeling: If the label of an active node is ` and there are no nodes of label `− 1, the
sink is no longer reachable through this node. The node is now known to be in the source set, and
this node and all its arcs are removed from the graph for the rest of Phase 1 of the algorithm.

2. Global relabeling: The labels of the nodes are periodically recomputed by a finding the dis-
tance of each node from the sink in the residual graph. This “tightens” the labels and leads to
significantly improved performance in practice.

Once a minimum cut has been identified, a feasible flow is recovered by flow decomposition
(discussed in Section 5). In practice, the time for Phase 1 dominates the time for Phase 2.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
4 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

4. The pseudoflow algorithm

In this section we provide a description of the pseudoflow algorithm. Our description here is different
from than in Hochbaum (1997, 2008) although the algorithm itself is the same. This description uses
terminology and concepts similar in spirit to push-relabel in order to help clarify the similarities
and differences between the two algorithms1. .

The first step in the pseudoflow algorithm, called the Min-cut Stage finds a minimum cut in
Gst. Source-adjacent and sink-adjacent arcs are saturated throughout this stage of the algorithm;
consequently, the source and sink have no role to play in the Min-cut Stage.

The algorithm may start with any other pseudoflow that saturates arcs in As ∪At. Other than
that, the only requirement of this pseudoflow is that the collection of free arcs, namely the arcs
that satisfy `ij < fij < uij, form an acyclic graph.

Each node in v ∈ V is associated with at most one current arc (u, v) ∈ Af ; the corresponding
current node of v is denoted by current(v) = u. The set of current arcs in the graph satisfies the
following invariants at the beginning of every major iteration of the algorithm:

Property 1 (a) The graph does not contain a cycle of current arcs.
(b) If e(v) 6= 0, then node v does not have a current arc.

Each node is associated with a root that is defined constructively as follows: starting
with node v, generate the sequence of nodes {v, v1, v2, . . . , vr} defined by the current arcs
(v1, v), (v2, v1), . . . , (vr, vr−1) until vr has no current arc. Such node vr always exists, as otherwise a
cycle will be formed, which would violate Property 1(a). Let the unique root of node v be denoted
by root(v). Note that if a node v has no current arc, then root(v) = v.

The set of current arcs forms a current forest. Define a component of the forest to be the set of
nodes that have the same root. It can be shown that each component is a directed tree, and the
following properties hold for each component.

Property 2In each component of the current forest,
(a) The root is the only node without a current arc.
(b) All current arcs are pointed away from the root.

While it is tempting to view the ability to maintain pseudoflows as an important difference
between the two algorithms, it is trivial to modify the push-relabel algorithm (as shown in Section
5) to handle pseudoflows.

The key difference between the pseudoflow and push-relabel algorithms is that the pseudoflow
algorithm allows flow to be pushed along arcs (u, v) in which `(u) = `(v) whereas this is not allowed
in push-relabel. Goldberg and Rao (1998) proposed a maximum flow algorithm with complexity
superior to that of push-relabel that relied on being able to send flow along arcs with `(u) = `(v).

4.1. Initialization

The pseudoflow algorithm starts with a pseudoflow and an associated current forest. Anderson and
Hochbaum (2002) showed that, in practice, the choice of the pseudoflow and initial current forest
can have a significant impact on the running time of the algorithms.

The generic initialization is the simple initialization: source-adjacent and sink-adjacent arcs are
saturated while all other arcs have zero flow.

If a node v is both source-adjacent and sink-adjacent, then at least one of the arcs (s, v) or (v, t)
can be pre-processed out of the graph by sending a flow of min{csv, cvt} along the path s→ v→ t.
This flow eliminates at least one of the arcs (s, v) and (v, t) in the residual graph. We henceforth
assume w.l.o.g. that no node is both source-adjacent and sink-adjacent.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 5

The simple initialization creates a set of source-adjacent nodes with excess, and a set of sink-
adjacent nodes with deficit. All other arcs have zero flow, and the set of current arcs is selected to
be empty. Thus, each node is a singleton component for which it serves as the root, even if it is
balanced (with 0-deficit).

A second type of initialization is obtained by saturating all arcs in the graph. The process of
saturating all arcs could create nodes with excesses or deficits. Again, the set of current arcs is
empty, and each node is a singleton component for which it serves as the root. We refer to this as
the saturate-all initialization scheme.

4.2. A labeling pseudoflow algorithm

In the labeling pseudoflow algorithm, each node v ∈ V is associated with a distance label `(v) with
the following property.

Property 3The node labels satisfy:
(a) For every arc (u, v)∈Af , `(u)≤ `(v)+ 1.
(b) For every node v ∈ V with strictly positive deficit, `(v) = 0.

Collectively, the above two properties imply that `(v) is a lower bound on the distance (in terms
of number of arcs) in the residual network of node v from a node with strict deficit. A residual arc
(u, v) is said to be admissible if `(u) = `(v)+ 1.

A node is said to be active if it has strictly positive excess. Given an admissible arc (u, v) with
nodes u and v in different components, we define an admissible path to be the path from root(u)
to root(v) along the set of current arcs from root(u) to u, the arc (u, v), and the set of current arcs
(in the reverse direction) from v to root(v).

We say that a component of the current forest is a label-n component if for every node v of the
component `(v) = n. We say that a component is a good active component if its root node is active
and if it is not a label-n component.

An iteration of the pseudoflow algorithm consists of choosing a good active component and
attempting to find an admissible arc from a lowest labeled node u in this component. (Choosing a
lowest labeled node for processing ensures that an admissible arc is never between two nodes of the
same component.) If an admissible arc (u, v) is found, a merger operation is performed. The merger
operation consists of pushing the entire excess of root(u) towards root(v) along the admissible path
and updating the excesses and the arcs in the current forest to preserve Property 1.

If no admissible arc is found, `(u) is increased by 1 unit. A schematic description of the merger
operation is shown in Figure 2. The pseudocode for the generic labeling pseudoflow algorithm is
given in Figures 3 through 5.

4.3. The monotone pseudoflow algorithm

In the generic labeling pseudoflow algorithm, finding the lowest labeled node within a component
may take excessive time. The monotone implementation of the pseudoflow algorithm efficiently finds
the lowest labeled node within a component by maintaining an additional property of monotonicity
among labels in a component.

Property 4 (Hochbaum (1997, 2008))For every current arc (u, v), `(u) = `(v) or `(u) = `(v)−
1.

This property implies that within each component, the root is the lowest labeled node and node
labels are non-decreasing with their distance from the root. Given this property, all the lowest
labeled nodes within a component form a sub-tree rooted at the root of the component. Thus,

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
6 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Figure 2 (a) Components before merger (b) Before pushing flow along admissible path from ri to rj (c) New
components generated when arc (u, v) leaves the current forest due to insufficient residual capacity.

Admissible arc

u

ri

v

j i

rj

u

v

i

rj

ri

j

rj

j

i

v

u

riAD

D

D

C

C
B

B

A

(a) (c)(b)

F

B

E

A

E

F

E

F
C

Figure 3 Generic labeling pseudoflow algorithm.

/*
Min-cut stage of the generic labeling pseudoflow algorithm. All nodes in label-n compo-
nents form the nodes in the source set of the min-cut.
*/

procedure GenericPseudoflow (Vst,Ast, c):
begin

SimpleInit (As,At, c);
while ∃ a good active component T do

Find a lowest labeled node u∈ T ;
if ∃ admissible arc (u, v) do

Merger (root(u), · · · , u, v, · · · , root(v));
else do

`(u)← `(u)+ 1;
end

once a good active component is identified, all the lowest labeled nodes within the component are
examined for admissible arcs by performing a depth-first-search in the sub-tree starting at the root.

In the generic labeling algorithm, a node was relabeled if no admissible arc was found from the
node. In the monotone implementation, a node u is relabeled only if no admissible arc is found and
for all current arcs (u, v) in the component, `(v) = `(u) + 1. This feature, along with the merger
process, inductively preserves the monotonicity property. The pseudocode for the Min-cut Stage
of the monotone implementation of the pseudoflow algorithm is given in Figure 6.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 7

Figure 4 Simple initialization in the generic labeling pseudoflow algorithm.

/*
Saturates source- and sink-adjacent arcs.
*/

procedure SimpleInit(As,At, c):
begin

f, e← 0;
for each (s, i)∈As do

e(i)← e(i)+ csi;
for each (i, t)∈At do

e(i)← e(i)− cit;
for each v ∈ V do

`(v)← 0;
current(v)←∅;

end

Figure 5 Push operation in the generic labeling pseudoflow algorithm.

/*
Pushes flow along an admissible path and preserves invariants.
*/

procedure Merger(v1, · · · , vk):
begin

for each j = 1 to k− 1 do
if e(vj) > 0 do

δ←min{c(vj, vj+1), e(vj)};
e(vj)← e(vj)− δ;
e(vj+1)← e(vj+1)+ δ;

if e(vj) > 0 do
current(vj)←∅;

else do
current(vj)← vj+1;

end

The monotone implementation simply delays relabeling of a node until a later point in the
algorithm, which does not affect correctness of the labeling pseudoflow algorithm.

4.4. Complexity summary

In the monotone pseudoflow implementation, the node labels in the admissible path are non-
decreasing. To see that notice that for a merger along an admissible arc (u, v) the nodes along
the path root(u), · · · , u all have equal label and the nodes along the path v, · · · , root(v) have non-
decreasing labels (from Property 4). A merger along an admissible arc (u, v) either results in arc
(u, v) becoming current, or in (u, v) leaving the residual network. In both cases, the only way (u, v)
can become admissible again is for arc (v,u) to belong to an admissible path, which would require
`(v)≥ `(u), and then for node u to be relabeled at least once so that `(u) = `(v) + 1. Since `(u) is

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
8 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Figure 6 The monotone pseudoflow algorithm.

/*
Min-cut stage of the monotone implementation of pseudoflow algorithm. All nodes in
label-n components form the nodes in the source set of the min-cut.
*/

procedure MonotonePseudoflow (Vst,Ast, c):
begin

SimpleInit (As,At, c);
while ∃ a good active component T with root r do

u← r;
while u 6= ∅ do

if ∃ admissible arc (u, v) do
Merger (root(u), · · · , u, v, · · · , root(v));
u←∅;

else do
if ∃w ∈ T : (current(w) = u)∧ (`(w) = `(u)) do

u←w;
else do

`(u)← `(u)+ 1;
u← current(u);

end

bounded by n, (u, v) can lead to O(n) mergers. Since there are O(m) residual arcs, the number of
mergers is O(nm).

The work done per merger is O(n) since an admissible path is of length O(n). Thus, total work
done in mergers including pushes, updating the excesses, and maintaining the arcs in the current
forest, is O(n2m).

Each arc (u, v) needs to be scanned at most once for each value of `(u) to determine if it is
admissible since node labels are non-decreasing and `(u)≤ `(v)+1 by Property 3. Thus, if arc (u, v)
were not admissible for some value of `(u), it can become admissible only if `(u) increases. The
number of arc scans is thus O(nm) since there are O(m) residual arcs, and each arc is examined
O(n) times.

The work done in relabels is O(n2) since there are O(n) nodes whose labels are bounded by n.
Finally, we need to bound the work done in the depth-first-search for examining nodes within

a component. Each time a depth-first-search is executed, either a merger is found or at least one
node is relabeled. Thus, the number of times a depth-first-search is executed is O(nm+n2) which
is O(nm). The work done for each depth-first-search is O(n), thus total work done is O(n2m).

Lemma 4.1The complexity of the monotone pseudoflow algorithm is O(n2m).

Regarding the complexity of the algorithm, Hochbaum (1997, 2008) showed that an enhanced
variant of the pseudoflow algorithm is of complexity O(mn logn). That variant uses dynamic trees
data structure and is not implemented here. Recently, however, Hochbaum and Orlin (2007) showed
that the “highest label” version of the pseudoflow algorithm has complexity O(mn log n2

m
) and

O(n3), with and without the use of dynamic trees, respectively.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

4.5. Lowest and highest label variants

In the lowest label pseudoflow algorithm, a good active component with the lowest labeled root
is processed at each iteration. In the highest label algorithm, a good active component with the
highest labeled root node is processed at each iteration.

4.6. Implementation

We now describe some details of our implementation. To maintain simplicity of the code, we do
not use any sophisticated data structures.

4.6.1. Limiting the number of arc scans During the labeling algorithm, the arcs adjacent
to each node are examined at most once for each value of the node’s label. To implement this, we
maintain a pointer at each node to the arc that was last scanned to find a merger. If any node is
visited more than once for a given label, the search for mergers resumes from the last scanned arc,
thus ensuring that each arc is scanned at most once for each label. When a node is relabeled, the
pointer is reset to the start of its list of adjacent arcs.

4.6.2. Root management The lowest and highest label variants require that all roots with
positive excess and of a particular label be available when queried. To achieve this, the roots are
maintained in an array of buckets, where a bucket contains all roots with positive excess and with
a particular label. The order in which roots within a bucket are processed for mergers appears
to make a difference to the pseudoflow algorithm. Anderson and Hochbaum (2002) experimented
with three root management policies:

1. FIFO: Each bucket is maintained as a queue; roots are added to the rear of the queue, and
roots are retrieved from the front of the queue.

2. LIFO: Each bucket is maintained as a stack; roots are added to the top of the stack, and
roots are retrieved from the top of the stack.

3. Wave: This is a variant of the LIFO policy. Each bucket is still maintained as a stack, with
roots being added to the top of the stack and being retrieved from the top. However, when the
excess of a root changes while it is in the bucket, it is moved up to the top of the stack.

Note that the wave management policy is the same as the LIFO policy for the lowest label variant
since the excess of a root with positive excess does not change while it is in a bucket. (When a root
is processed in the lowest label algorithm, all mergers are from a component with positive excess
to one with non-positive excess, leaving all other roots with positive excess unchanged.)

4.6.3. Gap Relabeling We use the gap-relabeling heuristic of Derigs and Meier (1989), who
introduced it in the context of push-relabel. When we process a component whose root has label `
and there are no nodes in the graph with label `−1, we conclude that the entire component has no
residual paths to the sink and is hence a part of the source set of a min cut. The entire component
can thus be ignored for the rest of the algorithm. In practice, this is achieved by setting the labels
of all nodes in that component to n.

4.7. Flow recovery

The Min-cut Stage of the pseudoflow algorithm terminates with the minimum cut and a pseudoflow.
Flow recovery refers to the process of converting the pseudoflow at the end of the Min-cut Stage
to a maximum feasible flow.

Given a feasible flow in a network, flow decomposition refers to the process of representing the
flow as the sum of flows along a set of s-t paths, and flows along a set of directed cycles, such
that no two paths or cycles are comprised of the same set of arcs (details are in Ahuja, Magnanti
and Orlin (1993), pages 79-83). Hochbaum (1997, 2008) showed that flow recovery can be done in
O(m logn) by flow decomposition in a related network.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
10 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

An equivalent implementation of flow decomposition that was used by Anderson and Hochbaum
(2002) starts with each excess node and performs a depth-first-search (DFS) in the reverse flow
graph (arcs with strictly positive flow) to identify paths back to the source node or cycles, and
decreases flow along these paths or cycles until all excesses have been returned to the source. For
the strict deficit nodes, a DFS is performed starting at each deficit node to find paths to the sink,
and flow is reduced along these paths until all deficits have been returned to the sink.

Our initial experiments indicated that this form of flow recovery is not very robust since this
procedure could end up finding several paths/cycles with relatively small amounts of flow on them.
In order to correct this, we use a different approach that is theoretically less efficient, but is faster
and more reliable in practice.

Our experiments indicated that the time spent in flow recovery is in most cases small compared
to the time to find the minimum cut.

5. Initialization for push relabel and pseudoflow algorithms

As discussed in Section 4.1, the pseudoflow algorithm can be initialized with any pseudoflow and
a corresponding current forest. In this section, we describe how to initialize both the pseudoflow
and push-relabel algorithms with an arbitrary pseudoflow. We do this by constructing a graph
corresponding to the pseudoflow such that the min cut and max flow can be obtained by solving
the min cut and max flow problems on this new graph.

For a pseudoflow f in the graph Gst = (Vst,Ast), we construct a graph G′, where pseudoflow f
is feasible, by adding the following arcs to Ast:

1. A set of excess arcs denoted by A′
s = {(i, s) ∀i ∈ V : e(i) > 0}. Each arc (i, s) has capacity

c′is = e(i).
2. A set of deficit arcs denoted by A′

t = {(t, i) ∀i ∈ V : e(i) < 0}. Each arc (t, i) has capacity
c′ti = |e(i)|.
The capacities of all other arcs in G′ are the same as that in G, i.e., c′ij = cij ∀ (i, j) ∈Ast. Since
only added arcs are directed from the sink and into the source, the minimum cut partition in G′

is the same as that in Gst.
Let the flow vector f ′ in G′ be obtained by setting f ′ij = fij ∀(i, j) ∈ Ast and f ′ij = c′ij ∀(i, j) ∈

A′
s ∪A′

t. The flow f ′ is feasible in G′ since flow balance is enforced at all nodes by construction.
Hence, the residual graph G′f ′ for this feasible flow will have the same minimum cut partition as
that in G′, and hence the same as that in Gst.

This leads to the following claim:

Claim 5.1The minimum cut in graph Gst initialized with an arbitrary pseudoflow f can be obtained
using any minimum cut algorithm by solving for the minimum cut in the graph G′f ′.

To summarize, our initialization procedure given a pseudoflow f in Gst is to generate the graph
G′f ′ which has node set Vst and the following arcs:

1. For each (i, j) ∈Ast with flow fij and capacity cij, A′f ′ contains two arcs—an arc (i, j) with
capacity cij − fij and an arc (j, i) with capacity fij.

2. For each node i∈ V with excess e(i) > 0, A′f ′ contains the arc (s, i) with capacity e(i).
3. For each node i∈ V with excess e(i) < 0, A′f ′ contains the arc (i, t) with capacity |e(i)|.
We now show how to convert a maximum flow in G′f ′ to a maximum flow in Gst.

Claim 5.2Given a maximum flow in G′f ′, it is possible to construct a maximum flow in Gst in
O(m logn) time.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 11

Table 1 Average running times for Dimacs machine calibration tests.

Test 1 Test 2
real user system real user system

No optimization 0.4 0.4 0.0 3.3 3.3 0.0
-O4 flag 0.2 0.1 0.0 2.0 1.9 0.0

L et the maximum flow in G′f ′ be denoted by f∗. Since G′f ′ is simply the residual graph corre-
sponding to a feasible flow in G′, the maximum flow in G′ is given by (f ′ij + f∗ij − f∗ji) for each arc
(i, j)∈A′.

Since we have a feasible flow, we decompose the maximum flow in G′ into a set of simple paths
and cycles. Since arcs in A′

s∪A′
t are either directed into the source or out of the sink, they cannot

belong to any of the simple paths from s to t. Thus, the flows on arcs A′
s and A′

t can only belong
to the set of cycles in the decomposed flow. Eliminating the flow on all cycles which contain A′

s

and A′
t, we obtain a flow vector such that the flow on the arcs A′

s and A′
t is zero. This flow vector

is feasible to Gst since
1. The flows on A′

s and A′
t are zero, so these arcs can be removed from G′; this gives us Gst.

2. Eliminating cycles preserves flow balance at all nodes.
3. The flow f ′ ≤ c′ij = cij for all arcs in Ast. Therefore, reducing f ′ will generate a capacity-

feasible flow in Gst.
Further, since we only eliminated flows along cycles, the resulting flow vector achieves the same
total flow as the maximum flow in G′ and is hence optimal to Gst.

G′ has at most (m+n) arcs and n nodes, so the total work done in flow decomposition is O(mn).
Using the dynamic trees data structure of Sleator and Tarjan (1983), this can be improved to
O(m logn). Q.E.D.

6. Experiments

This section describes our experimental setup and testing methodology.

6.1. Implementations

We implemented five variants of the pseudoflow algorithm: highest label with FIFO buckets
(pseudo hi fifo), highest label with LIFO buckets (pseudo hi lifo), highest label with wave buckets
(pseudo hi wave), lowest label with FIFO buckets (pseudo lo fifo), and highest label with LIFO
buckets (pseudo hi lifo). The latest version of the code (version 3.21) is available at Pseudoflow
solver (2007).

The implementation of the highest level push-relabel algorithm hi pr (version 3.6) was obtained
from Goldberg (2007). This implementation is an improvement over the h prf implementation by
Goldberg and Cherkassky (1997) which was previously considered to be the best implementation
of push-relabel.

6.2. Computing Environment

The experiments were run on a Sun UltraSPARC workstation with a 270 MHz CPU and 192 MB of
RAM. All codes were written in C and compiled with the gcc compiler using the -O4 optimization
flag.

We performed the machine calibration experiment as suggested by DIMACS (1990). Table 1
shows the running times for the two tests with and without compiler optimization.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
12 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

6.3. Problem Classes

The problem instances we use are the well-known generators used in DIMACS (1990) and are
available as part of CATS (2007). Unless otherwise stated, the instance generated depends on a
random seed. These problem classes are:
• AC: The acyclic dense network family with parameter k has n = 2k nodes and n(n+1)/2 arcs.
• AK: The AK generator was designed by Goldberg and Cherkassky (1997) as a hard set of

instances for push-relabel and Dinic’s algorithms. Given a parameter k, the program generates a
unique network with 4k+6 nodes and 6k+7 arcs. The instance does not depend on a random seed
in that the graph, given the number of nodes, is unique.
• GENRMF-Long: This family is created by the RMFGEN generator of Goldfarb and Grigo-

riadis (1988). A network with n = 2x nodes is generated using parameters a = 2x/4 and b = 2x/2.
• GENRMF-Wide: This family is created by the RMFGEN generator. A network with n = 2x

nodes is generated using parameters a = 22x/5 and b = 2x/5.
• Washington RLG-Long: A network with n = 2x nodes in this family is generated by the

Washington generator using function = 2, arg1 = 64, arg2 = 2x−6, and arg3 = 104.
• Washington RLG-Wide: A network with n = 2x nodes in this family is generated by the

Washington generator using function = 2, arg1 = 2x−6, arg2 = 64, and arg3 = 104.
• Washington Line-Moderate: A network with n = 2x nodes in this family is generated by

the Washington generator using function = 6, arg1 = 2x−2, arg2 = 4, and arg3 = 2(x/2)−2.
• Maximum Closure: A set of nodes D⊆ V in a directed graph G = (V,A) is called closed if

all the successors of nodes in D are also contained in D. The maximum closure problem is stated as
follows: Given a directed graph G = (V,A), and node weights (positive, negative or zero) bi for all
i∈ V , find a closed subset V ′ ⊆ V such that

∑
j∈V ′ bj is maximum. The maximum closure problem

has many applications such as open-pit mining (Picard 1976). The maximum closure problem
reduces to a minimum s-t cut problem in a so-called “closure” graph where all source-adjacent and
sink-adjacent arcs have finite capacity and all other arcs have infinite capacity.

The instance generator creates graphs from the following four inputs.
1. n: The number of nodes in the graph.
2. p: The probability of existence of each arc (i, j). Note that this could create cycles in the

graph.
3. w: The probability that each node is weighted. Given that a node is weighted, its weight is

an integer uniformly distributed in [−10000,10000].
4. s: A random seed to initialize the random number generator.

6.4. Testing Methodology

We first compared the different variants of the pseudoflow algorithms (highest with FIFO, LIFO,
and Wave buckets and lowest with FIFO and LIFO buckets) to see if there is a difference in their
performance (all algorithms have the same theoretical complexity). The relative running times of
the algorithms for small instances for small instances is shown in Table 2.

The lowest label algorithm is clearly dominated by the highest label algorithm for all instances
except the AC problem family. While there is usually little difference between the highest label vari-
ants, the FIFO variant clearly out-performs the others on the GENRMF-Wide family of instances.
Overall, we chose the FIFO variant to be the best overall and compared this variant to the highest
level push relabel algorithm, which was shown to be best of the push-relabel variants by Goldberg
and Cherkassky (1997).

For each problem type of a particular size, we generated 10 instances each using a different seed.
The sequence of seeds was itself generated randomly. For each instance, we averaged times over
5 runs. Thus, for instances that depend on a random seed, each data point for a given problem

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 13

Table 2 Relative running times of highest and lowest label pseudoflow algorithms on “small” instances. Times
include time for flow recovery.

Highest Label Lowest Label

Instance family n m FIFO LIFO Wave FIFO LIFO

AC 256 32,640 1.320 1.760 1.440 1.360 1.000
512 130,816 1.397 1.381 1.365 1.143 1.000

1,024 523,776 1.472 1.385 1.442 1.121 1.000
2,048 2,096,128 1.840 2.001 1.849 1.162 1.000

AK 8,198 12,295 1.009 1.000 1.005 2.017 2.012
16,390 24,583 1.002 1.000 1.001 2.021 2.019
32,774 49,159 1.000 1.001 1.001 2.367 2.358
65,542 98,311 1.000 1.003 1.001 2.097 2.084

GENRMF-Long 9,100 41,760 1.057 1.000 1.039 16.600 16.471
15,488 71,687 1.000 1.079 1.072 22.967 23.088
30,589 143,364 1.162 1.000 1.011 34.253 35.073
65,536 311,040 1.000 1.095 1.021 50.851 53.685

GENRMF-Wide 8,214 38,813 1.000 1.646 1.434 2.217 8.706
16,807 80,262 1.000 1.467 1.845 2.521 13.211
32,768 157,696 1.000 2.131 1.993 2.519 16.328
63,504 307,440 1.000 2.839 2.478 3.605 18.750

RLG-Long 16,386 49,088 1.052 1.000 1.017 24.036 24.217
32,770 98,240 1.092 1.000 1.092 55.414 56.138
65,538 196,544 1.124 1.000 1.030 123.417 126.579

131,074 393,152 1.088 1.000 1.022 259.719 267.464

RLG-Wide 8,194 24,448 1.068 1.000 1.004 6.829 6.938
16,386 48,896 1.071 1.001 1.000 8.455 8.568
32,770 97,792 1.042 1.006 1.000 8.336 8.224
65,538 195,584 1.089 1.000 1.096 7.907 8.022

Line-moderate 4,098 65,023 1.004 1.000 1.062 9.996 10.912
8,194 187,352 1.029 1.000 1.033 9.926 10.969

16,386 522,235 1.000 1.060 1.139 19.649 20.985
32,770 1,470,491 1.035 1.007 1.000 17.231 18.529

size is the average of 50 runs. For the AK problem family (where the graph is unique for a given
problem size), each data point was the average of 5 runs of the instance.

In order to demonstrate the effect of initialization on push-relabel and pseudoflow, we consider
only the AK problem class where the saturate-all initialization was found to substantially improve
the performance of both algorithms.

We collected operation counts for all runs. For each family, we report on the “common” operations
to both algorithms, i.e., relabels, arc scans, and pushes. For push-relabel, the number of relabels
does not include those performed during global relabeling.

We report run-times (time to find minimum cut and time to find the maximum flow) for all
instances. These run-times are CPU times obtained using the getrusage function in C, and does
not include time to read the input or print the solution. Since operation counts (which involve
long integer addition) from interfering with the run-time, we ran each instance twice—once with
operation counts being collected and once without—and report run-times are from the runs during
which no operation counts were collected.

7. Results

In this section, we provide the results of our experiments for each problem family.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
14 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Figure 7 Run times and operation counts for GENRMF-Long instances.

 0.1

 1

 10

 100

6516002708481306826553630589154889100

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

RMF Long Scaling

pseudo_hi_fifo
hi_pr

simple initialization

Minimum cut Maximum flow

Time (sec.) Relative time Time (sec.) Relative time

n m pseudo- push- pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel flow relabel

9,100 41,760 0.111 0.183 1.000 1.649 0.126 0.213 1.000 1.689
15,488 71,687 0.208 0.330 1.000 1.588 0.234 0.375 1.000 1.602
30,589 143,364 0.587 0.665 1.000 1.132 0.652 0.779 1.000 1.195
65,536 311,040 1.395 1.484 1.000 1.064 1.512 1.711 1.000 1.132

130,682 625,537 2.935 5.472 1.000 1.864 3.325 6.081 1.000 1.829
270,848 1,306,607 7.627 17.509 1.000 2.295 8.169 18.582 1.000 2.275
651,600 3,170,220 23.483 73.272 1.000 3.120 24.893 76.553 1.000 3.075

Pushes Relabels Arc scans

n m pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel

9,100 41,760 62,168 65,820 53,765 38,953 192,386 384,584
15,488 71,687 103,083 117,142 93,847 69,189 337,308 656,046
30,589 143,364 223,333 228,170 205,848 137,018 754,240 1,283,615
65,536 311,040 542,475 473,126 511,926 292,081 1,913,935 2,933,002

130,682 625,537 1,175,273 1,620,216 1,046,223 1,158,262 3,958,944 11,401,882
270,848 1,306,607 2,650,312 4,685,107 2,564,604 3,381,599 9,808,078 30,466,028
651,600 3,170,220 7,858,941 16,987,429 6,826,351 13,254,386 26,496,009 131,500,478

7.1. GENRMF-Long

Push-relabel is slower than pseudoflow on the smaller instances but appears to almost catch up with
pseudoflow for the medium-sized instances. However, it subsequently becomes relatively slower,
and the gap between the two algorithms appears to increase with problem size. This appears to
correlate with the number of relabels performed. Push-relabel initially performs fewer relabels than
does pseudoflow but performs more on the larger instances. The number of global relabels also goes
up for the larger instances; the average number of global relabels performed on the six instances
were 5.1, 5.2, 5.3, 5, 9.5, 13.3, and 21 respectively.

Note that the number of relabels and arc scans reported here for push relabel do not include the
number of relabels performed during global relabeling.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 15

7.2. GENRMF-Wide

Figure 8 Run times and operation counts for GENRMF-Wide instances.

 1

 10

 100

5269042593081232106350432768168078214

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

RMF Wide Scaling

pseudo_hi_fifo
hi_pr

simple initialization

Minimum cut Maximum flow

Time (sec.) Relative time Time (sec.) Relative time

n m pseudo- push- pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel flow relabel

8,214 38,813 0.304 0.679 1.000 2.229 0.321 0.735 1.000 2.292
16,807 80,262 0.808 1.920 1.000 2.375 0.872 2.078 1.000 2.384
32,768 157,696 2.184 4.540 1.000 2.079 2.313 5.668 1.000 2.450
63,504 307,440 4.803 11.575 1.000 2.410 5.046 16.255 1.000 3.221

123,210 599,289 14.489 29.938 1.000 2.066 15.906 37.209 1.000 2.339
259,308 1,267,875 45.228 84.931 1.000 1.878 50.007 107.161 1.000 2.143
526,904 2,586,020 99.951 223.596 1.000 2.237 102.228 301.137 1.000 2.946

Pushes Relabels Arc scans

n m pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel

8,214 38,813 318,368 242,160 79,765 119,899 324,192 1,264,679
16,807 80,262 795,596 610,992 185,494 302,675 760,255 3,118,748
32,768 157,696 1,906,289 1,245,410 385,992 677,448 1,581,645 7,157,116
63,504 307,440 4,109,525 2,946,034 850,820 1,627,468 3,509,773 17,566,754

123,210 599,289 13,924,860 7,446,489 1,798,138 4,018,154 7,442,460 41,840,711
259,308 1,267,875 40,741,173 19,432,456 3,902,188 10,923,983 16,160,617 117,956,644
526,904 2,586,020 82,202,433 46,445,026 9,423,555 26,388,184 38,835,979 283,460,191

The pseudoflow implementation is consistently faster than push-relabel (it performs more pushes
than push-relabel but fewer relabels and arc scans). We also observed that push-relabel performs
an order of magnitude more global relabels compared to other instances.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
16 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

7.3. AK

Figure 9 Run times and operation counts for AK instances with simple initialization.

 1

 10

 100

 1000

1310786554232774163908198

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

AK Scaling (simple initialization)

pseudo_hi_fifo
hi_pr

simple initialization

Minimum cut Maximum flow

Time (sec.) Relative time Time (sec.) Relative time

n m pseudo- push- pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel flow relabel

8,198 12,295 0.852 1.806 1.000 2.120 0.856 1.810 1.000 2.114
16,390 24,583 3.428 7.520 1.000 2.194 3.438 7.534 1.000 2.191
32,774 49,159 16.428 30.876 1.000 1.879 16.446 30.906 1.000 1.879
65,542 98,311 76.322 133.248 1.000 1.746 76.356 133.310 1.000 1.746

131,078 196,615 317.770 544.794 1.000 1.714 317.840 544.926 1.000 1.714

Pushes Relabels Arc scans

n m pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel

8,198 12,295 2,108,420 2,112,487 10,243 10,245 16,388 2,141,498
16,390 24,583 8,411,140 8,419,460 20,483 20,485 32,772 8,478,188
32,774 49,159 33,599,492 33,615,862 40,963 40,965 65,540 33,731,795
65,542 98,311 134,307,844 134,341,737 81,923 81,925 131,076 134,576,974

131,078 196,615 537,051,140 537,116,756 163,843 163,845 262,148 537,581,429

The highest label pseudoflow FIFO variant is faster than push-relabel, though it is noted that
the AK family of instances were designed to be a hard set of problems for push-relabel and poor
performance is to be expected. We see that while both pseudoflow and push-relabel perform roughly
the same number of pushes and relabels, push-relabel performs a significantly larger number of arc
scans.

The run-time of both algorithms decreases significantly when the saturate-all initialization is
used, as shown in Figure 10. We report only the time to minimum cut for this initialization since the
transformation described in Section 5 preserves only the minimum cut in the graph and additional
work (equivalent to flow decomposition) needs to be done to recover the maximum flow in the
original graph.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 17

Figure 10 Run times and operation counts for AK instances with saturate-all initialization.

 0.01

 0.1

 1

1310786554232774163908198

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

AK Scaling (saturate-all initialization)

pseudo_hi_fifo
hi_pr

saturate-all initialization

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

8,198 12,295 0.008 0.014 1.000 1.750
16,390 24,583 0.020 0.034 1.000 1.700
32,774 49,159 0.036 0.074 1.000 2.056
65,542 98,311 0.076 0.150 1.000 1.974

131,078 196,615 0.142 0.304 1.000 2.141

Pushes Relabels Arc scans

n m pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel

8,198 12,295 2,049 8,802 6 4,097 4,095 22,157
16,390 24,583 4,097 18,337 6 8,193 6,389 45,770
32,774 49,159 8,193 36,800 6 16,383 16,383 91,740
65,542 98,311 16,385 71,795 6 32,769 32,767 179,657

131,078 196,615 32,769 146,743 6 65,537 34,458 364,427

An AK instance is an acyclic network in which saturating all arcs preserves flow balance for
many nodes. This results in a residual network in which a large number of nodes are unreachable
from the source and/or from which the sink is unreachable, which makes the problem easy to solve.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
18 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

7.4. Acyclic Dense

Figure 11 Run times and operation counts for acyclic dense (AC) instances.

 0.001

 0.01

 0.1

 1

 10

20481024512256

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

AC Scaling

pseudo_hi_fifo
hi_pr

simple initialization

Minimum cut Maximum flow

Time (sec.) Relative time Time (sec.) Relative time

n m pseudo- push- pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel flow relabel

256 32,640 0.005 0.050 1.000 10.870 0.007 0.057 1.000 8.576
512 130,816 0.041 0.369 1.000 8.903 0.053 0.395 1.000 7.489

1,024 523,776 0.123 1.862 1.000 15.189 0.146 1.968 1.000 13.481
2,048 2,096,128 1.149 9.056 1.000 7.880 1.342 9.493 1.000 7.072

Pushes Relabels Arc scans

n m pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel

256 32,640 562 1,571 365 522 23,246 126,603
512 130,816 1,441 3,782 1,195 1,377 178,125 653,232

1,024 523,776 2,650 7,954 1,913 2,862 495,358 2,702,803
2,048 2,096,128 7,803 20,378 6,594 7,135 4,451,181 13,078,897

The pseudoflow implementation is significantly faster than push-relabel on all instance sizes;
we observe that push-relabel performs significantly many more arc scans and pushes. We noticed
that the number of pushes per merger was comparable to the number of nodes (for the largest
instances, it is 40–50% of the number of nodes). We suspect that these long push sequences (along
arcs in which both end points possibly have the same label) are responsible for pseudoflow’s good
performance.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 19

7.5. Line Moderate

Figure 12 Run times and operation counts for Line Moderate instances.

 0.1

 1

 10

 65538 32770 16386 8194 4098

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Line-Moderate Scaling

pseudo_hi_fifo
hi_pr

simple initialization

Minimum cut Maximum flow

Time (sec.) Relative time Time (sec.) Relative time

n m pseudo- push- pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel flow relabel

4,098 65,023 0.038 0.077 1.000 2.037 0.045 0.099 1.000 2.181
8,194 187,352 0.124 0.221 1.000 1.780 0.164 0.304 1.000 1.851

16,386 522,235 0.252 0.637 1.000 2.523 0.294 0.778 1.000 2.650
32,770 1,470,491 0.904 2.002 1.000 2.215 1.185 2.651 1.000 2.238
65,538 4,186,085 2.215 6.880 1.000 3.106 2.852 8.499 1.000 2.980

Pushes Relabels Arc scans

n m pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel

4,098 65,023 11,125 12,746 8,662 4,730 78,639 176,949
8,194 187,352 21,617 25,229 19,675 9,273 272,051 483,119

16,386 522,235 41,045 49,754 32,916 18,101 550,411 1,285,367
32,770 1,470,491 81,213 99,056 79,929 35,709 2,148,608 3,498,246
65,538 4,186,085 153,277 189,258 146,661 70,134 5,251,717 9,594,976

The pseudoflow implementation is again faster on all instances due to fewer arc scans. This was
one of only two families where pseuduflow performed more relabels.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
20 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

7.6. RLG Long

Figure 13 Run times and operation counts for RLG-Long instances.

 0.1

 1

 10

1048578524290262146131074655383277016386

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

RLG Long Scaling

pseudo_hi_fifo
hi_pr

simple initialization

Minimum cut Maximum flow

Time (sec.) Relative time Time (sec.) Relative time

n m pseudo- push- pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel flow relabel

16,386 49,088 0.164 0.272 1.000 1.653 0.188 0.310 1.000 1.653
32,770 98,240 0.319 0.484 1.000 1.517 0.357 0.548 1.000 1.535
65,538 196,544 0.687 1.073 1.000 1.562 0.778 1.220 1.000 1.568

131,074 393,152 1.449 2.054 1.000 1.417 1.646 2.365 1.000 1.437
262,146 786,368 2.744 3.863 1.000 1.408 3.156 4.472 1.000 1.417
524,290 1,572,800 6.771 7.318 1.000 1.081 7.637 8.614 1.000 1.128

1,048,578 3,145,664 12.867 12.007 1.072 1.000 14.552 14.195 1.025 1.000

Pushes Relabels Arc scans

n m pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel

16,386 49,088 95,273 146,351 80,491 49,978 191,360 424,079
32,770 98,240 176,177 278,940 154,187 97,107 362,301 826,264
65,538 196,544 343,385 580,581 327,157 207,667 757,382 1,757,393

131,074 393,152 678,708 1,096,443 693,000 386,306 1,587,599 3,303,730
262,146 786,368 1,285,622 1,995,391 1,294,217 699,376 2,957,115 6,080,414
524,290 1,572,800 2,498,234 3,711,744 2,689,543 1,283,366 6,081,694 11,327,436

1,048,578 3,145,664 4,797,765 6,087,748 5,058,970 1,969,792 11,425,647 18,228,497

Push-relabel scales better than pseudoflow with problem size, although it is better than pseud-
oflow only on the largest instances. This was one of only two families where pseuduflow performed
more relabels.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 21

7.7. RLG Wide

Figure 14 Run times and operation counts for RLG-Wide instances.

 0.1

 1

 10

 100

5242902621461310746553832770163868194

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

RLG Wide Scaling

pseudo_hi_fifo
hi_pr

simple initialization

Minimum cut Maximum flow

Time (sec.) Relative time Time (sec.) Relative time

n m pseudo- push- pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel flow relabel

8,194 24,448 0.101 0.168 1.000 1.666 0.114 0.188 1.000 1.652
16,386 48,896 0.234 0.437 1.000 1.872 0.257 0.474 1.000 1.841
32,770 97,792 0.624 1.293 1.000 2.072 0.680 1.375 1.000 2.022
65,538 195,584 1.719 3.521 1.000 2.049 1.843 3.691 1.000 2.002

131,074 391,168 4.299 11.163 1.000 2.597 4.627 11.506 1.000 2.487
262,146 782,336 10.135 30.838 1.000 3.043 11.181 31.618 1.000 2.828
524,290 1,564,672 26.488 78.538 1.000 2.965 30.359 80.322 1.000 2.646

Pushes Relabels Arc scans

n m pseudo- push- pseudo- push- pseudo- push-
flow relabel flow relabel flow relabel

8,194 24,448 59,204 100,287 45,181 35,101 110,922 291,507
16,386 48,896 127,923 230,186 91,458 81,527 226,446 670,912
32,770 97,792 276,483 587,053 201,804 216,799 496,752 1,753,941
65,538 195,584 588,634 1,296,152 456,952 482,079 1,108,638 3,882,692

131,074 391,168 1,303,234 3,345,024 979,796 1,291,646 2,372,407 10,169,333
262,146 782,336 2,723,785 7,895,722 2,105,484 3,137,422 5,060,915 24,296,062
524,290 1,564,672 5,780,423 18,368,338 5,081,726 7,440,283 11,899,792 56,996,936

Pseudoflow is faster on all instances in addition to scaling better than push-relabel. The operation
counts do not provide much insight into the differences between the two algorithms.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
22 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

7.8. Maximum Closure

We report the results of our instances on nine classes of graphs: three values of density of weighted
nodes in the graph (1%, 10% and 100%), and three values of arc densities (0.05%, 5% and 50%)
for each of the weight densities.

We report only the time to the minimum cut since the maximum closure problem, by definition,
is only to solve for the minimum cut.

Figure 15 Results for low density closure instances (arc density 0.5%).

 0.001

 0.01

 0.1

 1

163848192409620481024

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (low density, 1% of nodes weighted)

pseudo_hi_fifo
hi_pr 1% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

1,024 5,263 0.002 0.003 1.000 1.333
2,048 20,995 0.011 0.024 1.000 2.125
4,096 83,930 0.022 0.098 1.000 4.495
8,192 336,031 0.054 0.263 1.000 4.899

16,384 1,343,460 0.242 1.207 1.000 4.996

 0.001

 0.01

 0.1

 1

163848192409620481024

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (low density, 10% of nodes weighted)

pseudo_hi_fifo
hi_pr 10% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

1,024 5,333 0.002 0.004 1.000 1.750
2,048 21,199 0.009 0.025 1.000 2.886
4,096 84,154 0.020 0.077 1.000 3.832
8,192 336,167 0.092 0.416 1.000 4.512

16,384 1,345,002 0.533 2.300 1.000 4.315

 0.01

 0.1

 1

163848192409620481024

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (low density, 100% of nodes weighted)

pseudo_hi_fifo
hi_pr 100% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

1,024 6,269 0.005 0.009 1.000 1.913
2,048 22,977 0.014 0.036 1.000 2.662
4,096 88,091 0.052 0.201 1.000 3.869
8,192 344,121 0.175 0.863 1.000 4.938

16,384 1,359,906 0.749 3.950 1.000 5.271

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 23

Figure 16 Results for medium density closure instances (arc density 5%).

 0.001

 0.01

 0.1

 1

8192409620481024512

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (medium density, 1% of nodes weighted)

pseudo_hi_fifo
hi_pr 1% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

512 12,997 0.003 0.006 1.000 2.000
1,024 52,178 0.009 0.040 1.000 4.422
2,048 209,470 0.036 0.146 1.000 4.073
4,096 838,568 0.242 0.634 1.000 2.618
8,192 3,355,771 0.800 2.325 1.000 2.907

 0.001

 0.01

 0.1

 1

8192409620481024512

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (medium density, 10% of nodes weighted)

pseudo_hi_fifo
hi_pr 10% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

512 12,983 0.002 0.008 1.000 4.100
1,024 52,245 0.011 0.051 1.000 4.849
2,048 209,440 0.055 0.228 1.000 4.116
4,096 838,571 0.165 0.879 1.000 5.322
8,192 3,355,380 0.767 3.906 1.000 5.094

 0.001

 0.01

 0.1

 1

 10

8192409620481024512

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (medium density, 100% of nodes weighted)

pseudo_hi_fifo
hi_pr 100% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

512 13,509 0.001 0.009 1.000 11.250
1,024 53,211 0.007 0.053 1.000 7.216
2,048 211,418 0.041 0.335 1.000 8.166
4,096 842,690 0.205 1.508 1.000 7.356
8,192 3,363,345 0.749 6.903 1.000 9.214

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
24 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Figure 17 Results for high density closure instances (arc density 50%).

 0.0001

 0.001

 0.01

 0.1

 1

20481024512256128

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (high density, 1% of nodes weighted)

pseudo_hi_fifo
hi_pr 1% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

128 7,943 0.000 0.002 1.000 6.000
256 32,226 0.004 0.014 1.000 3.400
512 130,052 0.016 0.064 1.000 3.927

1,024 522,184 0.063 0.315 1.000 5.022
2,048 2,092,818 0.296 1.283 1.000 4.338

 0.0001

 0.001

 0.01

 0.1

 1

20481024512256128

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (high density, 10% of nodes weighted)

pseudo_hi_fifo
hi_pr 10% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

128 7,920 0.000 0.004 1.000 9.500
256 32,309 0.004 0.017 1.000 4.421
512 130,050 0.018 0.073 1.000 4.136

1,024 522,596 0.057 0.318 1.000 5.615
2,048 2,093,115 0.255 1.395 1.000 5.467

 0.001

 0.01

 0.1

 1

20481024512256128

T
im

e
(C

P
U

 s
ec

on
ds

)

Nodes

Closure Scaling (high density, 100% of nodes weighted)

pseudo_hi_fifo
hi_pr 100% of nodes weighted

Minimum cut

Time (sec.) Relative time

n m pseudo- push- pseudo- push-
flow relabel flow relabel

128 8,043 0.001 0.003 1.000 2.167
256 32,561 0.004 0.017 1.000 4.300
512 130,548 0.019 0.077 1.000 4.118

1,024 523,278 0.053 0.336 1.000 6.312
2,048 2,094,890 0.276 1.448 1.000 5.238

The pseudoflow code is faster across all closure instances, and is scales better for the low density
instances. The only observation we made from the operation counts was that while the number of
pushes and relabels were roughly the same for both implementations, push-relabel performed an
order of magnitude more arc scans than pseudoflow.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 25

8. Conclusions

The highest label pseudoflow implementation is faster than push-relabel on all but the largest
instances of one problem class (RLG-long). Our work is of significance because it was widely
accepted until now that push-relabel was the fastest algorithm in practice for the maximum flow
problem. Since the min-cut and max-flow are of interest both as stand-alone problems and as sub-
routines in other algorithms, our implementation could be used to efficiently solve a wide range of
problems.

Among the different pseudoflow variants, the highest label algorithm was in general faster and
more robust across different problem families than the lowest label algorithm. This is similar to
past findings for push relabel (for example, by Ahuja et al. (1997)) in which the lowest label variant
was found to be slower than the highest label variant.

We observed that the number of relabels performed by push-relabel was generally greater than
that of pseudoflow, in spite of the global relabeling heuristic used in push-relabel. One possible
explanation is that pseudoflow allows pushes along arcs where both ends of the arc have the same
label. Such arcs would be inadmissible in push-relabel, needing at least one relabel in order to push
flow along such an arc.

Endnotes

1. We thank an anonymous referee for proposing this description

Acknowledgments
The research of the second author was supported in part by NSF awards No. DMI-0620677 and CBET-
0736232.

References
Andrew Goldberg’s network optimization library. http://www.avglab.com/andrew/soft.html, accessed Jan-

uary 2007.

The first DIMACS algorithm implementation challenge: The core experiments.
http://dimacs.rutgers.edu/pub/netflow/general-info/, accessed October 2004.

CATS: Combinatorial Algorithms Test Sets. http://www.avglab.com/andrew/CATS/gens/, accessed Jan-
uary 2007.

Ahuja, R. K, M. Kodialam, A. K. Mishra, and J. B. Orlin. 1997. Computational investigations of maximum
flow algorithms. European Journal of Operational Research, 97(3) 509–542.

Ahuja, R. K, T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall.

Anderson, C., D. S Hochbaum. 2002. The performance of the pseudoflow algorithm for the maximum flow
and minimum cut problems. UC Berkeley manuscript.

Anderson, R. J., J. C. Setubal. 1991. Goldberg’s algorithm for maximum flow in perspective: a computational
study. In Network flows and matching: First DIMACS implementation challenge, volume 12 of DIMACS
series in discrete mathematics and theoretical computer science, 123–133.

Chandran, B., D. S. Hochbaum. Pseudoflow solver, accessed January 2007.
http://riot.ieor.berkeley.edu/riot/Applications/Pseudoflow/maxflow.html.

Derigs, M., W. Meier. 1989. Implementing Goldberg’s max-flow algorithm – a computational investigation.
ZOR – Methods and models of Operations research, 33 383–403.

Dinic, E. A. 1970. Algorithm for the solution of a problem of maximal flow in networks with power estimation.
Soviet Math. Doklady, 11:1277–1280.

Ford, L. R., D. R. Fulkerson. 1956. Maximal flow through a network. Canadian Journal of Math., 8:339–404.

Chandran and Hochbaum: Computational study of the Pseudoflow algorithm
26 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Goldberg, A. V., B. V. Cherkassky. 1997. On implementing the push-relabel method for the maximum flow
problem. Algorithmica, 19:390–410.

Goldberg, A. V., R. E. Tarjan. 1988. A new approach to the maximum flow problem. Journal of the ACM,
35(4):921–940.

Goldfarb, D., M. Grigoriadis. 1988. A computational comparison of the Dinic and network simplex algorithms
for maximum flow. Annals of Operations Research, 13:83–123.

Goldberg, A. V., S. Rao. 1998. Beyond the Flow Decomposition Barrier. Journal of the ACM 45(5): 783-797.

Hochbaum, D. S., J. B. Orlin. The pseudoflow algorithm in O(mn log n2

m
) and O(n3). UC Berkeley manuscript.

2007. Submitted.

Hochbaum, D. S. 1997. The pseudoflow algorithm for the maximum flow problem. Manuscript, U C Berkeley,
1997 (Revised 2002). Extended abstract in The pseudoflow algorithm and the pseudoflow-based simplex
for the maximum flow problem. Procdeedings of IPCO 98, June 1998. Lecture Notes in Computer
Science, Bixby, Boyd and Rios-Mercado (Eds.), 1412, Springer, 325–337.

Hochbaum, D. S. 2008. The Pseudoflow algorithm: A new algorithm for the maximum flow problem. To
appear in Operations Research.

Lerchs, H., I. Grossman. 1965. Optimum design of open pit mines. Transactions, C.I.M, 68:17–24.

Picard, J. 1976. Maximal Closure of a Graph and Applications to Combinatorial Problems. Management
Science, 22:1268–1272.

Sleator, D. D., R. E. Tarjan. 1983. A data structure for dynamic trees. Journal of Computer and System
Sciences, 26:362–391.

