ORIGINAL ARTICLE

Networks

Selecting Fast Algorithms for the Capacitated
Vehicle Routing Problem with Machine Learning

Techniques.
Roberto Asin-Achal® | Alexis Espinoza?” | Olivier
Goldschmidt®* | Dorit S. Hochbaum** | Isaias I.

Huerta?"

1Department of Informatics, Universidad
Técnica Federico Santa Maria, Chile

2Department of Computer Science,
Universidad de Concepcion, Chile

SRiverside County Office of Education, USA

4Department of Industrial Engineering and
Operations Research, University of
California, Berkeley, USA

Correspondence

Roberto Asin-Achd, Department of
Computer Science, Universidad Técnica
Federico Santa Maria, Chile

Email: roberto.asin@usm.cl

Funding information
This research was supported in part by Al
Institute NSF Award 2112533.

We present machine learning methods for automatically se-
lecting a “best" performing fast algorithm for the Capaci-
tated Vehicle Routing Problem (CVRP) with unit demands.
Algorithm selection is to automatically choose among a port-
folio of algorithms the one that is predicted to work best
for a given problem instance, and algorithm configuration
is to automatically select algorithm’s parameters that are
predicted to work best for a given problem instance. We
present a framework incorporating both algorithm selec-
tion and configuration for a portfolio that includes the auto-
matically configured “Sweep Algorithm", the first generated
feasible solution of the Hybrid Genetic Search (HGS) algo-
rithm, and the Clarke & Wright (CW) algorithm. The auto-
matically selected algorithm is shown here to deliver high-
quality feasible solutions within very small running times
making it highly suitable for real-time applications and for
generating initial feasible solutions for global optimization
methods for CVRP. These results bode well to the effective-
ness of utilizing Machine learning for improving combinato-

rial optimization methods.

: Equally contributing authors.

2 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

KEYWORDS
Vehicle routing, machine learning, algorithm selection.

1 | INTRODUCTION

The Capacitated Vehicle Routing Problem (CVRP) is a well-known NP-hard problem that has been extensively studied
due to its importance in applications in logistics and transportation. An instance of this problem consists of a depot,
where trucks are located, and customer locations and their demands. The goal is to assign customers to trucks and
devise tours for trucks, visiting all customers, so that the total demand of the assigned customers does not exceed
the trucks’ capacity, and so that the sum of the tour lengths is minimum.

Numerous exact and heuristic algorithms have been devised for CVRP. However, no single algorithm dominates
the others for all problem instances, either in the case that a solution is required within a short running time, e.g.
real-time, or in the case where closeness to optimality is paramount even at the expense of long running times. Our
focus here is on algorithms for CVRP that deliver feasible solutions within very short running times.

Algorithm selection is to construct machine-learning-based oracles that are given a portfolio of algorithms, and
predict, a priori, which of these algorithms will perform best for a given input instance. The meta-solver is the algorithm
that queries the automatic algorithm selector and runs the predicted algorithm. We consider here a portfolio of fast
algorithms, that includes the well-known heuristic, the Clarke & Wright “savings” algorithm (CW) which is used in one
of the most competitive CVRP solvers to date - FILO CVRP solver [3]. A second algorithm in the portfolio is based on
the highly competitive Hybrid Genetic Search (HGS) solver [58]. The third algorithm is the automatically configured
“Sweep Algorithm”, the Meta-Sweep-Algorithm (MSA) [10].

In [10] we introduced a parameterized variant of the Sweep Algorithm. The Sweep Algorithm assigns customers
to a truck, in a wedge area of a circle around the depot. The algorithm assigns trucks to serve either “close” or “far”
customers where the parameter that controls what is considered “close" or “far" is the radius parameter, which is
the fraction of the distance from the depot to the farthest customer. As analyzed in [10], the choice of the radius
parameter affects the output of the algorithm, and its best value depends on the instance characteristics. This led
to the construction of a machine learning algorithm to automatically configure the Sweep Algorithm. That algorithm,
the Meta-Sweep-Algorithm (MSA), provides fast and high-quality solutions for CVRP instances and is included in the
portfolio of algorithms here.

For the algorithm selector, we compare here the performance of several machine learning methods (Random For-
est, k-Nearest Neighbors, Ada Boost, Gradient Boosting) for the purpose of predicting the best-performing algorithm.
The machine learning method that delivered the best accuracy is Random Forest (RF) [30]. A unique aspect of the
work presented here is the incorporation of automatic algorithm configuration within an automatic algorithm selection
framework. Section 3.1 presents this hierarchical framework.

The performance of the automatic selection algorithm, as well as the performance of the automatic configuration
algorithm, are measured in terms of several metrics. For the algorithm selection we trained classification models that
were evaluated in terms of accuracy. For the algorithm configurator, we used regression models that were evaluated in
terms of the Mean Square Error metric (MSE). The resulting meta-solver is evaluated in comparison to two baselines:
the single best solver (SBS), i.e. the solver in the portfolio that, on average, performs best, and the virtual best solver
(VBS), that is a the solver that performs best for each problem instance. Details and definitions of these performance
metrics are given in Section 2.7.

We present here extensive experimental results in which the meta-solver is tested on benchmarks from the CVRP

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 3

Library (CVRPLIB)L. These are set to use unit demands and the distances are set to be either the L1 (Manhattan) or the
L2 (Euclidean) distance norms. For the training dataset, we generate synthetic data sets described in Section 3.2.1.

We note that in [10], the automatically configured Sweep Algorithm, MSA, was originally trained and tested on
instances from new benchmarks that are based on real customer addresses in Los Angeles (LA)2 and New York (NY)3.
Even though these benchmarks are different from the ones used here, both, for training and testing, the performance
of MSA remains robust and of high quality in comparison to the other algorithms in the portfolio.

Our experimental results validate the effectiveness of automatic algorithm selection and configuration. Our hier-
archical meta-solver outperforms the Single Best Solver, MSA for both norms instances, by a significant margin, and
is able to deliver solutions that are, on average, within 1% from the best obtainable solutions by any of the solvers in
the portfolio.

The paper is structured as follows: Section 2 presents the basic concepts and terminology used here as well
as relevant related work. Section 3, describes the setup and implementation of our automatically configured Sweep
Algorithm, MSA. Experimental results are presented in Section 4. Section 5 includes conclusions and pointers to future
research.

2 | PRELIMINARIES AND RELATED WORK
2.1 | The Capacitated Vehicle Routing Problem

Capacitated Vehicle Routing Problem (CVRP) consists of a set of customers with known demands and an unlimited
collection of trucks, of given capacity, located at the “depot" which are to deliver the goods to the customers so as to
satisfy their demands. A solution to the problem is a partition of the set of customers, assigning to each truck a subset
of the customers and a route, that begins and ends in the depot, and visits all assigned customers. Each assigned set
of customers’ demand does not exceed the truck’s capacity. The goal is to minimize the sum of the lengths of the
tours traversed by all the trucks.

CVRP is a well-known NP-hard problem for which multiple algorithms were devised. In general terms, the pro-
posed algorithms for CVRP can be classified as heuristic, exact, and Machine-learning-based. A recent review of heuris-
tic algorithms is provided in [27]. A recent exact algorithm by [47] was shown to outperform previous exact CVRP

approaches. Machine-Learning-based heuristics were recently proposed, for small-size problem instances [13, 4, 28].

2.2 | Clarke & Wright “savings” algorithm

The Clarke & Wright [24] (CW) algorithm, also known as the “savings” algorithm, is a classic heuristic for the CVRP
problem that has been extensively used in the literature and as part of different CVRP solvers, like the state-of-the-art
FILO solver proposed in [3]. Most of these solvers use the output of CW as a first solution, which they iteratively
refine using various stopping criteria. CW is a deterministic algorithm that works as follows:

1. For every pair of customers (i, j), compute the “saving” s(i,j) = d(D, i) +d(D,j) —=d(i,j), where d(a, b) corresponds
to the distance from customer a to customer b, and D corresponds to the Depot. The “saving” s(i, j) results from
including arc i, j in the solution.

Ihttp://vrp.galgos.inf.puc-rio.br/index.php/en/
2https://data.lacity.org
3h1:1:ps ://data.cityofnewyork.us

4 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

2. Sort the savings list in descending order.
3. Pick next s(i,j) in the sorted list, add arc (i, j) to route ry; if feasibility is maintained, and if:
e iandjare notincluded in a route. In this case, add a new truck to the solution with route t;; = {D,i,j, D}.
e Either i or j, but not both, is included in some route ry; and i or j are, respectively, the last or first customer in
the truck.
e iis the last customer of one route and j is the first of another route, in which case, both routes can be merged.
4. If thereis nos(i,j) left on the list, for each unattended customer i, create route t; = {D, i, D} and return all routes
; otherwise, goto step 3.

As can be seen, for n customers, this procedure requires the computation of all O(n?) distances between customers.
Most of the implementations of CW, in order to reduce this quadratic computation, consider the pair (i,j) only if j is
among the k closest customers to i, or i is among the k closest customers to j. In this paper we use the implementation
of the CW algorithm included in the FILO solver [3], using the default setting k = 100.

2.3 | Hybrid Genetic Search algorithm

The Hybrid Genetic Search Algorithm (HGS) for CVRP [57] starts by generating an initial population of feasible and
infeasible solutions to the CVRP. To generate a candidate solution one starts from a random permutation of customer
indices. This is translated to a feasible solution formed by collection of tours that cover all customers. A process
of local search is then used to improve the quality of the solution in terms of a “fitness function" that allows for
infeasibility by assigning penalties to violated trucks’ capacities. The local search uses operations that include 2-opt,
a variant of 2-opt called 2-opt*, relocate, swap, and a variant of swap called swap*. This process is repeated until
there is no improvement in the fitness function. At that point, if the resulting solution is feasible, it is added to the
population. Otherwise, with probability half the infeasible solution is added to the population, and with probability
half the local search continues with adjusted penalties.

Once the initial population is formed, HGS evolves the population over generations using selection, crossover,
mutation, and local search operators. The algorithm terminates after a fixed number of generations or when a time
limit is reached. The best solution is returned.

Our implementation of the HGS algorithm is to run it until the first feasible solution is generated. This is almost
always a solution in the initial population. In our experiments that solution was always the first, second or third
candidate added to the initial population. In fact, in 95% of the runs it was the first such candidate.

24 | The Sweep Algorithm and Our Automatically Configured Implementation

The Sweep Algorithm [34, 25, 32] consists of two phases. In the first phase, customers are allocated to trucks and in the
second phase, a short route for each truck is computed, starting from the depot, serving its customers, and returning
to the depot. The second phase can use any Travelling Salesperson Problem (TSP) algorithm. In our implementation
we solve the TSP using the Lin-Kernigan [41] heuristic, as implemented in the Concorde [8] package, in C language.

The first phase of the Sweep Algorithm, in which customers are allocated to trucks, consists of two sub-phases:

1. Customers are partitioned into two groups. The first group consists of the customers who are within a given
distance parameter, radius, from the depot. The remaining customers form the second group.

2. Ineach group:

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 5

a. With respect to the depot, compute the polar coordinates of each customer and sort the customers by in-
creasing angle to the depot.

b. One by one, assign the sorted customers such that the total demand of customers assigned to a truck doesn’t
exceed the truck capacity. Note that customers allocated to a truck in the first group are located in a wedge

of the circle centered at the depot, see Figure 1.

FIGURE 1 For the case of truck capacity 4 and unit demands, this figure illustrates an inner wedge and an outer
wedge for the Sweep Algorithm.

A B [E [Golden [M tai A B [E [Golden 1M tai
AGS CMT [F [P Uchoa AGS CMT [F [P Uchoa
50 50
40 40
w w
£ 301 £ 30
= B
b k3
iy 204 Iy 20
10 10
0 - — 0 | == —
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Parameter value Parameter value

(a) Number of wins per each possible parameter value, using (b) Number of wins per each possible parameter value, using

L2-norm. L1-norm.

FIGURE 2 Number of instances out of a total of 262, classified by benchmark, which are best solved per each
parameter value, using L1 and L2 distance metrics.

The Sweep Algorithm’s parameter: We will use the “radius” parameter r, which is computed as the ratio of the
radius of the inner circle divided by the distance to the farthest customer from the depot. This parameter r takes
values in the range [0, 1].

Figure 2 shows the number of instances in the CVRPLIB, per benchmark, for which each possible value of r is the
best choice. Figure 2a shows the case for Euclidean distances, and Figure 2b, the case where distances are computed
using the L1-norm. As can be seen, for all the benchmarks, values close to 0 are highly dominant, which means that
trucks serve jointly “close” and “far” customers. Otherwise, the optimal parameter value is hard to predict without the

6 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

aid of Machine Learning algorithms.

2.5 | Machine Learning Models for Algorithm Selection

Machine Learning (ML) is an Artificial Intelligence field that is considered a powerful tool for processing and analyzing
big data volumes [6]. ML models seek to learn, from given data, called training set, a function f that maps an input
instance to a corresponding scalar (vector) output, referred to as label(s). ML models can be classified based on how f
is learned. When the learning process is based on the use of ground truth labels, consisting of a set of input instances
and the associated correct output labels (discrete or continuous), then the model is known as supervised, e.g. [20].
When labels are not available, the model finds patterns by analyzing the nature of the input data, then the model is
said to be unsupervised, e.g. [5]. If the learning process of the model is based on both ground-truth data and pattern
analysis of the input data, then it is known as semi-supervised, e.g. [60]. ML models are also classified based on the
output of the mapping f. If the output assumes discrete values, known as “classes”, that are used to separate the
possible inputs on different categories, the model is said to be a classification model. If the output is given as real
(floating-point) values, then the model is called a regression model.

Automatic algorithm selection consists of predicting for a given problem instance and a portfolio of algorithms,
which of the algorithms in the portfolio delivers the best quality solution for the instance. Automatic algorithm con-
figuration is to predict the value of a given algorithm’s parameters that perform best on a given instance. We consider
automatic algorithm selection and configuration with supervised machine learning.

The supervised ML algorithms used here are both classification and regression models.

Random Forest (RF), [18], is an ensemble method [17] that constructs a parameterized (n_estimators) humber of
decision trees [48], that are trained, each one, with a different subset of instances belonging to the training set.
To compute the output label, each of the trees “proposes” a result. The final result is determined by a consensus
scheme that varies depending if the model is a regression or a classification one. In the regression case, the
consensus corresponds to the average of all the decision trees’ outputs, while for the classification version, the
final output corresponds to the label that repeats (is voted) the most, among the trees’ outputs.

k-Nearest Neighbors (KNN), [30], is a ML algorithm that bases the output label on the labels of the k closest training
examples to the input point we want to label. Although several distance metrics can be used, the Euclidean
distance between feature vectors is the most common one. For classification tasks, KNN assigns the output label
as the most repeated label among the k neighbors. In the case of a regression task, the label corresponds to the
average of the labels of the k neighbors.

Ada Boost (AB), [50], belongs to a class of ensemble methods known as boosting [49]. The ensemble is composed of
several ML models of the same type (e.g. decision trees, KNN). In principle, the type of ML model, usually referred
to as the “base model”, is any ML method that supports weighting the samples. The technique consists of, itera-
tively, refining the weakest model in the ensemble (i.e. the worst-performing model). First, this weakest model is
trained with the complete training set, then a higher weight is assigned to the data points which contribute the,
say 10%, largest deviations of the metric being optimized. The weights are computed using a parameter called
learning_rate. The new weights model is then added to the ensemble. This is repeated for a number of iterations
which is given as a parameter (n_estimators).

Gradient Boosting (GB), [31], combines multiple ML models of the same type (e.g. decision trees, KNN). Gradient
Boosting works by starting with an initial model, and computing for that model the gradient of the loss func-

tion associated with the predictions. A new model is then trained to reduce errors using a gradient descent-like

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 7

approach during training. The new model is added to the ensemble with a weight generated according to the
parameter learning_rate. The process is then repeated for predictions computed as the weighted average across
the ensemble. The process ends when a stopping rule criterion is met, such as maximum number of iterations, a
given value for accuracy, or a convergence threshold. Other than the learning_rate Gradient Boosting uses the
parameter n_estimators, the number of new models. The final ensemble is then composed of a set of models
where each one contributes to the overall prediction based on its weight.

2.6 | Related Work on Automatic Algorithm Selection and Configuration

In the last few years multiple studies were introduced for algorithm selection and configuration in combinatorial op-
timization problems. These include research on timetabling [38, 51, 15, 16, 59], MaxSAT [7], scheduling [45, 55],
Traveling Salesperson Problem [38, 51, 15, 16, 59, 35], and Multi-Agent Path-Finding [19, 52]. The growing interest
in algorithm selection systems motivated algorithm selection competitions [43] and the maintenance of an algorithm
selection library ASLib [12].

For CVRP, we are aware of only one work on algorithm selection described in [28]. There, the authors present
a Convolutional-Neural-Network-based meta-solver that predicts, from a portfolio of four heuristic algorithms, the
one algorithm that performs best. The four algorithms in the portfolio were: the Clarke & Wright (CW) heuristic
[24], implemented as described in [39], the Sweep Algorithm [32], implemented as described in [46], an evolutionary
algorithm implemented to work with GPUs [1], and a Self-Organizing Map (SOM) algorithm [53]. The prediction is
reported to be successful for 79% of the test instances. The authors also report that the CW heuristic is the single
best solver, SBS, for 49.8% of the instances. The instances in [28] were generated using a modification of the instance
generator proposed in [56], with number of customers in the range [100, 1000]. Even though this work includes two
of the algorithms used in this paper, the overall setup is considerably different: Firstly, in [28] the training and testing
is done on the same set of instances, whereas here the training instances are randomly generated but the testing sets
are public benchmarks from the CVRP Library. Secondly, the implementations of the CW and Sweep Algorithms are
less advanced than the implementations used here. In particular, the Sweep Algorithm is not configured, as is the
case here. Lastly, the execution time of the algorithms is not a factor in [28], with the genetic algorithm reported to
take many hours of runtime, whereas here we focus on very fast algorithms that produce a solution within a few CPU
seconds.

Additional research on algorithm selection and configuration is surveyed in [36] including for the satisfiability prob-
lem, SAT, as well as continuous optimization problems. In this survey there is a proposed taxonomy of algorithm se-
lection and configuration methods indicating that algorithm configuration generalizes algorithm selection, and in that
sense is harder. The taxonomy differentiates between “per-set” and “per-instance” algorithm selection/configuration.
The “per-set" selection or configuration aims to predict an algorithm from a given portfolio that performs best, on
average, for a given set of instances, see e.g. [44]. The “per-instance" definition coincides with the “per-set" definition
when the set of instances each consists of a single instance. In this study, we only refer to “per-instance" selection

and configuration.

2.7 | Performance Metrics

For evaluating the performance of different regression ML models on the quality of the predicted parameter r for
MSA, we use the Mean Squared Error [21] (MSE). This measures the average of the squares of the differences between

the predicted performance values associated with the different values of r and the best possible performance value

8 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

associated with the best choice of r. This best value is determined for each instance by estimating the performance
of all possible values of r and picking the one which gives the lowest value of the length of the tours. This best value
is referred to as the ground-truth label of the instance.

The algorithm selection model is a classification problem. Here we use accuracy defined as the ratio between the
number of correct labels predicted by the model and the total number of testing instances.

To evaluate algorithm selection methods, two baselines are frequently used:

Single Best Solver (SBS): relates to the performance of the solver with the best average behavior across all the in-
stances used for the first phase (i.e. the best solver on average for the training set).

Virtual Best Solver (VBS): relates to a virtual solver that delivers a perfect selection of the best-performing algorithm
for each individual instance.

In this context, to measure the performance of a given algorithm a, we consider a set of instances | and a portfolio

of algorithms A. For each algorithm in the portfolio, we compute an evaluation metric m, that measures the average

_ Zietmali
- 1

performance of a across all instances i € I. This is m,) , where m, (i) is the performance of a on individual

instance i. For CVRP, we define m, (i) as the objective value delivered by a on i (objective, (i)) divided by the best

objective value delivered by any of the algorithms in the portfolio for i (i.e. the objective value of the VBS), m, (i) =
objective, (i)
objectiveygs (i)

VBS, which is always > 1. Note that the value of this metric, for VBS, is equal to 1, mygs = 1, which is the best value

This quantity can be viewed as the average approximation factor of algorithm a in comparison to the

possible.

We adopt here the performance measure i introduced in [43] for the purpose of evaluating the performance of
an algorithm selection system s. In our case we study the performance of three algorithm selection systems: automatic
algorithm selection, automatic algorithm configuration, or a hierarchical combination of both automatic selection and
configuration. The performance of a system is expected to improve on the performance of SBS while approximating

as closely as possible the performance of VBS. To that end, s for a system s is defined as follows:

Ms — MyBS 1)

ms = ,
msBs — MvBs

where mg is computed with the objective values delivered for each instance by the system, e.g. the meta-solver. Values
of Mg = 0 mean that the selector/configurator performs as well as the VBS and g = 1 means that it performs as well
as the SBS. Greater than 1 values of rhg mean that the use of the selector/configurator is worse than using a single
algorithm/configuration, SBS, for all the instances in the test. The closer to zero the value of g the better is the
performance of the system.

3 | ALGORITHM SELECTION AND CONFIGURATION FOR CVRP
3.1 | Algorithm Selection-Configuration Framework

We propose here a hierarchical framework to create a meta-solver composed of both algorithm selection and config-
uration. Figure 3 provides a schematic illustration of this framework. A meta-solver based on this framework receives
as input an instance of a problem. It computes a characterization of that instance that is then fed into a trained algo-
rithm selector that predicts which algorithm in the portfolio of p algorithms would give the best possible solution. A,
possibly modified, characterization of the instance is then fed into the chosen algorithm’s trained configurator which

recommends a most promising set of parameters’ values for the given instance. In our case p = 3 and only MSA

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 9

requires a single parameter configuration, r.

An alternative to this framework would be to merge in a single ML Oracle the task of choosing both, the most
promising algorithm and its parameters, considering all possible set of parameters of each of the candidate algorithms
as one distinct algorithm. However, we do not use this approach due to its drawbacks: First, such a model would
have to learn and predict from a huge number of, likely unbalanced, classes which is much more challenging for a
Machine Learning algorithm than dealing with a smaller number of classes. Second, with modifications such as adding
an algorithm to the portfolio, or adding parameters to the algorithms, one would have to train the model from scratch,

whereas the hierarchical approach used here would only require adjusting the affected modules.

We treat algorithm configuration here as algorithm selection by choosing (100) discrete values for the parameter
r in the range [0 — 1] and considering each parameter value in the Sweep Algorithm as a distinct algorithm. This is
a setup mentioned in [42] for situations where there is a bounded continuous domain for the parameter, that can be
discretized.

The process for building the algorithm selector and configurator is composed of the following tasks:

Training and testing data preparation: For this task, benchmark sets have to be collected, and all possible algorithms/
configurations have to be tested against those benchmark sets. For each experiment, the cost obtained by the
algorithm and the time of the execution is stored. In [2], some guidelines about this task are given. Details on
how we carried out this task for CVRP can be seen in Subsection 3.2.1.

Instance characterization: The instances are characterized by devising and selecting a set of features that are most
informative. It is also important that computation of the features of an instance is done efficiently since the focus

of algorithm selection is low running time overall. The characterization for CVRP is discussed in Subsection 3.3.

Algorithm selector

Training and testing data preparation

‘ Instance Characterization ‘ Instance labeling

Machine Learning Training l

Supervised
Input < Output
classification model !

Algorithm 1 configurator Algorithm 2 configurator Algorithm p configurator

Training and testing data preparation Training and testing data preparation Training and testing data preparation

Instances Instances Instances
Instance Characterization Instance Characterization Instance Characterization

Supervised Supervised Supervised
regr/class model regr/class model

Parameter values —3» Costs

v v

Instance labeling

v

<— Output

Parameter values —3» Costs

v v

Instance labeling

|

<— Output

Parameter values —3» Costs

v v

Instance labeling

v

<€— Output

regr/class model

FIGURE 3 Hierarchical algorithm selection and configuration framework.

10 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

Instance labeling: Since our approach here is supervised, we need to label our training set. For the algorithm selector,
these labels correspond to CW, HGS or MSA, depending if the best-computed solution is found by CW, HGS or
MSA, respectively. For MSA's configurator, the labels correspond to the expected normalized cost per each of
the 100 possible values of r. Details on this are provided in Subsection 3.4

Machine learning models: A machine learning model is defined by its input, output, and the function that maps the
input into the output. The input consists of features determined in the characterization step and the output
corresponds to labels. The learning of the mapping is then computed by ML algorithms that adjust the parameters
of the underlying structure of the model (neural network, decision trees, etc). After this, the model is validated by
comparing the model’s output with the labels in the testing data. Our algorithm selector is a classification model
since its output corresponds to one of the three possible classes: CW, HGS or MSA. The MSA’s configurator is a
regression model since its output corresponds to a real value which corresponds to the expected normalized cost

for each possible value of r. Details on the algorithms used to train these models are given in Subsection 3.5.

3.2 | Generating CVRP Benchmarks for Training and Testing

As discussed in [2], choosing adequate training and testing sets for building ML models for Combinatorial Optimization
problems is crucial for their further applicability and use by Operations Research practitioners. Here we follow a
principle used in [35], where the training set corresponds to a synthetically generated data set built with the objective
of capturing as much variation in the instances as possible. If such training synthetic data is successfully generated,

then the trained models should perform well on public benchmarks that mimic real-world instances.

3.2.1 | Training set

To generate the training set we used TSP instance generators and converted the TSP instances to CVRP instances. The
TSP generators used are NETGEN, NETGENM, and TSPGEN, where NETGEN and NETGENM were proposed in [37]
and the TSPGEN was proposed in [14]. These generators were successfully used for automatic algorithm selection
for TSP problems, [35].

We used a total of 1500 TSP instances: 500 from NETGEN, 500 from NETGENM, and 500 from TSPGEN. The size
of the instances varies from 20 to 15360 with the average instance size equal to 2547. Each of these TSP instances are
converted into CVRP instances by first choosing three possible positions of the depot: 1) randomly, 2) at the center,
and 3) at a randomly chosen corner of the bounding box. Secondly, for each modified instance, four different truck
capacities were selected. An alternative way of expressing truck capacity is specifying the minimum number of trucks
required to satisfy the total demand. For capacity value g, the minimum number of trucks required is [g]. The truck
capacities were randomly generated in the range [1,+/n] following a uniform distribution. These result in a total of
18000 instances in the training set?.

To understand the profile of the training dataset, we ran the Sweep Algorithm for 100 values of the radius param-
eter. Table 1 lists the 10 best parameter values and their percentage of wins on the entire training set for the Sweep
Algorithm. From the results, reported in Table 1, we determine the best parameter of the Sweep Algorithm for each
instance. We call the Sweep Algorithm with the best parameter, the Virtual Best Sweep Algorithm (VSw). We then
ran HGS and CW solvers and compared their results to those of the VSw. The percentage of wins of each solver and

average running times are reported in Tables 2 and 3 respectively.

“4The collection of instances in the training set is accessible at https://drive.google.com/file/d/1wDcus6q¥zt8CSIu2KUyVu26PhQS- pz1K/view7usp=

drive_link.

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 11

Parameter Value r L2 norm 0.00 0.01 0.02 0.03 0.04 0.98 0.94 0.95 0.96 0.93
% Wins L2 norm 30.43 29.71 27.68 2550 23.67 23.63 23.58 23.51 2342 2340
Parameter Value r L1 norm 0.00 0.01 0.02 0.03 0.04 0.98 0.97 0.96 0.92 0.95

% Wins L1 norm 29.88 29.21 27.19 2513 2328 2328 2323 23.21 23.16 23.16

TABLE 1 Ranked list of ten best parameter values for the Sweep algorithm in order of percentage of wins for the
training set instances with L2 and L1 norms.

Norm %VSw % CW % HGS
L2 norm 52.7 1.3 46.0
L1 norm 51.7 1.0 47.3

TABLE 2 Percentage of best-solved instances per algorithm for training set instances with L2 and L1 norms.

Norm t.Sw t CW t_HGS
L2norm = 0.504 2156 169.426
L1 norm 0451 1909 167.027

TABLE 3 Average runtime in CPU seconds per algorithm for training set instances with L2 and L1 norms.

The results, in Tables 2 and 3, are shown for L2 and L1-norms. The results reported in Table 2 show the Virtual
Best Sweep Algorithm (VSw) is dominant in more than half of the instances for both norms. HGS ranks second with a
share of around 45% of the instances, and CW ranks last with fewer than 2% wins. We also observe that the success
rate of HGS is slightly higher for L1-norm, than it is for L2-norm.

Concerning the running times, Table 3, shows that HGS is by far the slowest and VSw is faster than CW, taking,
approximately, a quarter of the time needed by CW. This is despite running HGS, in most cases, only until the first
candidate solution is added to the population. We note here that for several of the largest instances (size greater than
10000), HGS is not able to compute its first solution in a time limit we set to 1 hour. The times reported in Table 3 do
not consider such instances.

3.2.2 | Testing set

As specified earlier, our testing set instances are taken from CVRPLIB benchmarks. These include sets A, B, and P
from [11], set E from [23], set F from [29], sets M and CMT from [22], Golden from [33], Li from [40], Uchoa from
[56], and AGS from [9]. The number of instances in each benchmark A, B, P, E, F, M, CMT, Li, Uchoa, and AGS are
27,23,23,13,3,5, 14,12, 100 respectively.

The total number of instances in the testing set is 264. The average instance size, excluding AGS, is 263 and
the average instance size of AGS is 12200. Since here we consider instances with unitary demand only, we adapted
the instances in the CVRPLIB, with customers’ demands bigger than one, to unitary demands and, for each instance,
we scaled the truck’s capacity to a randomly generated value in the range [1,+/n], where n is the total number of
customers of the instance.

To understand the profile of the testing set, we provide, in Table 4, the percentage of wins of the ten best param-
eter values for the Sweep Algorithm and their percentage of wins. Table 5 reports the percentage of wins of HGS,
CW, and VSw in the test set.

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

Parameter Value r L2 norm 0.00 0.02 0.05 0.06 0.07 0.08 0.10
% Wins L2 norm 5496 54.58 49.23 46.18 4227 40.84 36.26
Parameter Value r L1 norm 0.02 0 0.05 0.06 0.07 0.08 0.09
% Wins L1 norm 53.82 53.44 48.09 4542 41.60 39.31 34.73

TABLE 4 For the testing set, with L2 and L1 norms: List of the ten best parameter values ordered according to
the percentage of best-solved instances.

Bench. % VSw % CW % HGS Bench. % VSw % CW % HGS
A 18.52 3.7 77.78 A 55.56 3.7 40.74
AGS 90.0 0.0 10.0* AGS 100.0 0.0 0.0
B 39.13 13.04 47.83 B 47.83 17.39 34.78
CMT 50.0 0.0 50.0 CMT 78.57 0.0 2143
E 54.55 0.0 45.45 E 63.64 0.0 36.36

F 0.0 0.0 100.0 F 33.33 33.33 33.33
Golden 90.0 0.0 10.0 Golden 75.0 25.0 0.0
Li 58.33 16.67 25.0 Li 50.0 41.67 8.33

M 80.0 20.0 0.0 M 100.0 0.0 0.0

P 62.5 0.0 37.5 P 70.83 417 25.0
tai 38.46 15.38 46.15 tai 23.08 15.38 61.54
Uchoa 64.0 0.0 36.0 Uchoa 68.0 0.0 320

(a) Percentage of wins comparison between VSw, CW, and (b) Percentage of wins comparison between VSw, CW, and

HGS, for L2-norm instances. HGS, for L1-norm instances.

TABLE 5 Percentage of best-solved instances per algorithm per benchmark set. Headings legend: % VSw, % CW,
% HGS = percentage of instances in the benchmark best solved by Virtual Best Sweep (VSw), CW, and HGS
respectively.

To compare the profiles of the test set versus that of the training set, we note that VSw dominates HGS and
CW on most of the benchmarks in the test set. On average, for the L2 instances, VSw dominates on 56.85% of the
instances, HGS dominates on 39.69% of the instances, and CW dominates on 3.43% of the instances. For the L1
instances, VSw dominates the other solvers on 64.50% of the instances, HGS dominates on 28.24% of the instances,
and CW does so on 7.25% of the instances. In the test set the differences in running times between the three solvers
is negligible, since most of the instances can be considered small (average size of 263). This is with the exception of
the benchmark set AGS whose instances, on average, have size 12200. Again for most of the instances in the AGS
benchmark set, HGS is not able to compute its first solution within a time limit of 1 hour.

3.3 | Instance Characterization and Features
We use features of CVRP instances that are fast-to-extract descriptive statistics. The following features proved to be
most successful in preliminary experimentation:

Number of customers: The total number of customers in the CVRP problem.

Capacity: The capacity of the trucks. For this work, we consider uniform capacity across all the trucks, but this can
easily be converted to a vector of capacities if this is not the case.

Distance of the depot to the center: The distance between the depot and the center of the map of customers (cen-
troid), divided by the distance of the depot to its farthest customer.

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 13

Number of trucks: The minimum number of trucks needed to solve the problem.

k-circular convolution: To capture the distribution of the customers, we take k-concentric circles, centered at the
depot, so that the last circle’s radius is equal to the distance of the depot to the farthest customer, rmax. The radii
of the other k — 1 circles r;, i = 1...k — 1, are equal to ﬁ - rmax. FOr each circle i > 0, we compute the percentage
of customers that lie in the ring between circles i and i — 1. We choose here k = 10.

3.4 | Instance Labeling

We used the results generated for the training set to create labels for the instances. For the algorithm selector, the
labels indicate which of the three algorithms provides the best value, HGS, CW, or VSw. In case of ties, the tie is
broken in favor of the faster algorithm.

For the algorithm configurator, we label each instance i with a 100-array of real values each of which is the nor-
malized objective value norm_objective(i, r), defined below, which is a value in [0, 1]. The definition of the normalized
objective for instance i uses the following notation: Let objective(i, r) be the objective value delivered by the Sweep
Algorithm with parameter value r; min _objective(i) be the best/smallest objective value among all values of r; and
max _objective(i) be the worst/largest objective value among all values of r. With this notation the normalized objec-
tive is defined as:

objective(i,r) — min _objective(i)

bjective(i,r) =
norm_objective(i.) max _objective(i) — min _objective(i)

3.5 | Comparing the Performance of the Machine Learning Models
® KNN
0.801"° RF
e GB
0.78 1 ® AB

Accuracy
o
~
()]
)

0.74 A

0.72 4 ®

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
Time (s)

FIGURE 4 Accuracy and Time plot of Classification Machine Learning algorithms trained for the algorithm
selector.

To select a suitable machine learning model, we compared the performance of the four machine learning models,
discussed in Section 2.5: k-Nearest Neighbors, Random Forest, Gradient Boost, and Ada Boost on the training set.

The implementation used for these models is the one in the Scikit-learn modules of Python. The parameters of the

14 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

models were adjusted by performing a grid search, using k-fold cross validation [54], with k = 5.

The training and testing of the four ML algorithms was done on a computer with an Intel Xeon Haswell proces-
sor@2.3Ghz and 64GB of RAM. The performance of the models is compared and reported here for the L2-norm
instances of the training set. For Ada Boost and Gradient Boost, we use decision trees as base models. The perfor-
mance on the L1-norm instances is very similar.

For the algorithm selector, we trained a classification model using the labels described in subsection 3.4. The
performance of the machine learning models is measured in terms of accuracy (bigger is better), and average running
time. As shown in Figure 4 Random Forest (RF) provides the highest accuracy. Although GB is the fastest method, all
running times are negligible, whereas the improvement in the accuracy of RF is significant. The selected parameters

of RF are: criterion = gini, n_estimators = 200.

® KNN
0.13 A [RF
e GB
0.12 4 ® AB
w {
g 0.11 A
0.10 A
0.09 A
[
0.00 0.01 0.02 0.03 0.04
Time (s)

FIGURE 5 MSE and Time plot of Regression Machine Learning algorithms trained for the MSA configurator.

For the algorithm configurator, we trained a regression model that outputs a 100-array of real values as de-
scribed in section 3.4. The performance of the four ML models is measured in terms of Mean Square Error (MSE)
(lower is better), and average running time. As seen in Figure 5, Gradient Boosting (GB) has the best quality MSE
and fastest running time. Hence we choose GB for the algorithm configurator. The selected parameters of GB are:

loss = squared_error, learning_rate = 0.1, n_estimators = 100.

4 | EXPERIMENTAL RESULTS
4.1 | The Effectiveness of the Algorithm Configurator

To assess the effectiveness of the algorithm configurator, we first compare the performance of the automatically
configured Sweep Algorithm (MSA) with the performance of the other algorithms in the portfolio. This comparison
is shown in Table 6 for the L2 and L1-norm test instances. The results in the table demonstrate that MSA and HGS
are highly dominant as compared to CW, for most benchmarks, for both norms. Overall, MSA finds the best solutions
for 45.8% of the L2-norm instances and 55.3% of the L1-norm instances. HGS finds the best solutions for 50% of the

L2-norm instances and 34% of the L1-norm instances. Finally, CW finds the best solutions for 4.2% of the L2-norm

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 15

instances and 10.7% of the L1-norm instances. The sizes of all testing instances, with the exception of AGS, are quite
small. The slower running time performance of HGS is therefore clearly manifested only for that benchmark in the
testing set. However, for the training instances which are much larger, with 2547 customers on average, HGS is slower
by a factor of 100 or more.

Next we compare MSA, the output of the algorithm configurator, with the virtual best Sweep Algorithm, VSw. For
this we contrast the results shown in Table 6 with those presented in Table 5, Section 3.2.2. This comparison indicates
that the percentage of wins of MSA, is reduced compared to the percentage of wins of VSw. The difference, in favor
of VSw is, 11% for the L2-norm, and 9% for the L1-norm.

In terms of the quality of the configurator’s prediction, we trace the errors in the prediction to two sources, both
related to the dominant performance of the value r = 0. When the ground truth value is 0, our configurator often
predicts other values, though mostly values of r < 0.3. A second source of errors originates in predicting r = 0 even

though the ground truth is other values.

Bench. = %MSA tMSA %CW t.CW %HGS t.HGS Bench. %MSA tMSA %CW tCW %HGS t_HGS

A 18.52 0.004 37 0.005 77.78 0.01 A 55.56 0.004 37 0.006 40.74 0.01

AGS 80.0 1.988 00 20586 200 139258 AGS 90.0 1.965 00 18674 100 159.834

B 39.13 0.007 13.04 0.006 47.83 0.01 B 39.13 0.007 26.09 0.007 34.78 0.01

cMT 50.0 0.009 0.0 0.007 50.0 003 CMT 71.43 0.01 0.0 0.007 28.57 0.03

E 45.45 0.004 0.0 0.006 54.55 0.02 E 63.64 0.004 0.0 0.006 36.36 0.01

F 0.0 0.01 0.0 0.006 100.0 0.02 F 0.0 0.01 66.67 0.007 33.33 0.02

Golden 65.0 0.03 0.0 0.019 35.0 021 Golden 60.0 0.044 30.0 0.019 10.0 0.22

Li 8.33 0.121 25.0 0.068 66.67 0.136 Li 0.0 0.117 83.33 0.064 16.67 0.126

M 80.0 0.015 20.0 0.009 0.0 0.06 M 80.0 0.016 0.0 0.01 20.0 0.05

P 58.33 0.003 0.0 0.005 41.67 0.01 P 70.83 0.003 417 0.006 25.0 0.01

tai 23.08 0.023 23.08 0.008 53.85 0.05 tai 23.08 0.02 15.38 0.008 61.54 0.04

Uchoa 51.0 0.094 0.0 0.03 49.0 045 Uchoa 59.0 0.082 0.0 0.035 410 0.01
(a) Percentage of wins and average runtime comparison (b) Percentage of wins and average runtime comparison

between MSA, CW, and HGS, for L2-norm instances. between MSA, CW, and HGS, for L1-norm instances.

TABLE 6 Percentage of best-solved instances per algorithm and average runtime, grouped by benchmark set.
Headings legend: % MSA, % CW, % HGS = percentage of instances in the group best solved by MSA, CW, and HGS,
respectively. t_MSA, t_CW, t_HGS = average runtime in seconds required to generate a first feasible solution by
MSA, CW, and HGS respectively.

Another metric evaluation of the algorithm configurator is a measure that calibrates its performance compared to
the SBS and the VSw. This is achieved via the g metric, as defined in Section 2.7. As proposed in [26], we generalize
this evaluation to a version of MSA that incorporates not only one but p values of r for each instance, for p a positive
integer. Here we set p < 10. For that, we trained the configurator to output p best values for r, and build p-MSA, the
generalized version of MSA, which computes, p solutions, one for each of the p values predicted by the ML model. The
same logic applies for p—SBS, a generalized version of SBS, which computes p solutions, using the best p values of r
in the training set. The top-ranked p parameter values are found in Table 1 which ranks the parameters in descending
order of number of wins on the training set. With this notation, SBS is identical to 1-SBS and MSA is identical to
1-MSA.

The comparison between the solution qualities of p—MSA, p—SBS, and VBS, expressed as the value of metric
Mp_MsA, is given in Figure 6. Here, for both norms, for p = 1, we observe that MSA performs only slightly better
than the SBS, whereas with increasing values of p the advantage in performance of p—MSA as compared to p—SBS

also increases. This happens all the way until value p = 10 for both norms. For larger values of p the performance of

16 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

p—MSA and p—SBS are quite even. We notice that the larger the value of p, the closer the quality of the solutions
delivered by p—SBS and p—MSA are to the quality of the solutions delivered by the VBS. For p > 4, the differences in
the qualities of the solutions tend to be marginal. This justifies the selection of 4—MSA to be the version to include on
our Hierarchical Meta-Solver. Note that even increasing the average time of MSA by a factor of four, it is still much
faster than HGS, and takes approximately the same time as CW.

1.04 1.0 1

0.9 0.9 1

0.8 0.8 1

0.7 0.7

0.6 0.6
. — p-SBS . —— p-SBS
M o5 p-MSA M 0.5 p-MSA

— VBS — VBS

0.4 4 0.4

0.3 0.3

0.2 0.2 1

0.1 0.1

0.0 0.0 1

o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
P P
(a) g values for L2-norm instances. (b) s values for L1-norm instances.

FIGURE 6 i values for p-MSA on L2 and L1 instances.

The authors introduced MSA in [10] where both the training set and the testing set were generated from customer
addresses in Los Angeles, and in New York city. The distances in those data sets are Euclidean, or L2-norm. The set
up here is different in a few ways: Firstly the configurator is part of the selector and both are trained on a training
set generated synthetically as discussed in Section 3.2.1. Secondly, the testing set here is unrelated to the training
set-it consists of public benchmark sets from the CVRPLib, with distances generated using the L2-norm and the
L1-norm. This difference between the sources of the training and testing set results in different performance of the
respective ML algorithms: The best-performing ML algorithm in [10] was KNN whereas here it is Gradient Boosting.
This difference also affects the m performance. The value of r here is higher than that in [10] due to the generated
training set not sharing the same source as the benchmarks of the testing set. Lastly, in terms of the portfolio, in [10]
we compared MSA’s performance to that of CW and the first feasible solution of Google’s OR-tools’ CVRP solver.
Here we compare MSA, CW and HGS, since the latter is much superior to Google’s OR-tools’ CVRP solver.

4.2 | The Effectiveness of the Hierarchical Meta-Solver

The Hierarchical Meta-Solver HMS works as follows. First, it computes the features of the input instance and feeds
them to the algorithm selector, that predicts, among 4—MSA, HGS, and CW, which one is expected to work best. We
select 4—MSA to include in HMS; since, as discussed in Section 4.1, p = 4 offers the best tradeoff between speed and
solution quality. When the selected solver is, for example, 4—MSA, the configurator is called and 4-MSA is set to run
with the four values of r predicted by the configurator. When the selected solvers are either CW or HGS, then that
solver is is run and the output of HMS is the output of the solver in the portfolio it that was selected. The accuracy

of the selector is 64.50% for the L2-norm instances and 54.20% for the L1-instances. In general, the mistakes of the

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 17

Li_23 (n=640, Q=1400)
* depot

400 * customers

200

-200

400

-400 -200 0 200 400

FIGURE 7 Customers and Depot locations for instance Li_23.

selector tend to happen either in instances that are very different from the instances in the training set or when the

solution quality of the selected solver is very close to the solution quality of the VBS.

We can trace the errors made by the selector to two sources. One source is in stylized instances that are designed
to test extreme cases. Such are the instances in the Li benchmark set. One such example instance is depicted in
Figure 7. Because the instances in the training set are of more randomized nature, the selector tends to miss on the
selection of the best solver. A second source of errors is when all solvers have similar performance. In this latter case,
the errors made by the selector do not affect much the quality of the meta-solver.

In addition to accuracy, we measure the effectiveness of the Hierarchical Meta-Solver HMS by comparing the ob-
jective values it delivers to those computed by all the individual solvers in the portfolio. Table 7 shows the percentage
of wins and the average values of m4_msa, mcw, Mums, and the ones corresponding to the hierarchical meta-solver
HMS, mpywms, for each benchmark set. Recall that the m, metric, defined in Section 2.7, computes the average approx-
imation factor of the objective delivered by a solver a compared to VBS. For CVRP, which is a minimization problem,
the closer the value of m, to 1, the better is the performance.

We consider m, values that are equal or greater than 5% of the VBS value to indicate poor performance. With
this measure of performance, for L2-norm instances, 4—MSA performs poorly for benchmarks B, F, Li, and tai; CW
performs poorly across the board with the exception of B and tai; HGS performs poorly on Li and M; and the hierar-
chical meta-solver performs poorly only on Li. For the L1-norm instances, 4—MSA performs poorly on B, F, Li, and tai;
CW performs poorly on almost all benchmarks: A, AGS, B, CMT, E, Golden, M, P, tai, and Uchoa; HGS performs poorly
on F, Golden, and Li; and the hierarchical meta-solver performs poorly on only F and Li. This validates the utility of
the algorithm selector-configurator that improves greatly on individual solvers in the portfolio.

With the data in Table 7, it is possible to compute the g values for HMS, which calibrate its performance with
the performance of the Virtual Best Solver (VBS) and the Single Best Solver (SBS). For this, we notice that the Single
Best Solver, for both norms is 4—MSA, since it has better average m, values among 4—MSA, HGS, and CW, across all
the instances in the testing set. For L2-norm instances myms = 0.5, and for L1-norm instances myms = 0.74. These
values indicate that it is harder for HMS to improve the performance of the SBS (4—MSA\) in the L1-norm instances
than it is to improve the performance of the SBS (4—MSA) in the L2-norm instances. Overall, for both norms, HMS is
able to, on average, compute solutions that are around 1% worse than the best computable solutions by any of the

solvers in the portfolio.

18 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

Bench. Size %4-MSA 3P4 MSA %CW gap_CW %HGS 8aPHGS %HMS gaPHMS

A 27 18.52 3.88% 3.70 5.81% 77.78 0.35% 8148 0.10%
AGS 10 90.00 0.10% 0.00 7.45% 10.00 3.41% 90.00 0.10%
B 23 39.13 6.11% 13.04 4.21% 47.83 3.13% 47.83 3.13%
CMT 14 50.00 2.02% 0.00 6.45% 50.00 1.37% 50.00 1.25%
E 11 45.45 1.15% 0.00 7.39% 54.55 1.11% 63.64 0.43%
F 3 0.00 9.63% 0.00 1.33% 100.00 0.00% 100.00 0.00%
Golden 20 75.00 0.77% 0.00 10.87% 25.00 3.45% 80.00 0.22%
Li 12 16.67 4.63% 25.00 9.23% 58.33 4.60% 16.67 4.77%
M 5 80.00 0.30% 20.00 5.97% 0.00 5.44% 60.00 1.75%
P 24 58.33 1.13% 0.00 7.02% 41.67 1.45% 58.33 1.13%
tai 13 38.46 5.02% 15.38 3.78% 46.15 1.42% 53.85 1.32%
Uchoa 100 57.00 1.13% 0.00 7.09% 43.00 2.43% 69.00 1.09%
All 262 50.38 2.25% 3.82 6.83% 45.80 2.27% 64.89 1.22%

(a) Percentage of wins and m, values for 4-MSA, CW, and HGS, and HMS for L2-norm instances.

Benchmark set #instances %4-MSA m,_ MSA %CW mcw %HGS mHGs %HMS mH{MS

A 27 55.56 1.03 3.70 1.07 40.74 1.02 48.15 1.02
AGS 10 90.00 1.00 0.00 1.09 10.00 1.04 90.00 1.00
B 23 39.13 1.06 26.09 1.05 34.78 1.02 43.48 1.02
CMT 14 7143 1.01 0.00 1.07 28.57 1.03 50.00 1.01
E 11 63.64 1.01 0.00 1.07 36.36 1.02 54.55 1.01
F 3 33.33 1.08 33.33 1.01 33.33 1.05 33.33 1.05
Golden 20 65.00 1.01 30.00 1.06 5.00 1l 55.00 1.02
Li 12 16.67 1.06 66.67 1.03 16.67 1.09 16.67 1.06
M 5] 100.00 1.00 0.00 1.10 0.00 1.03 60.00 1.01
P 24 70.83 1.01 4.17 1.08 25.00 1.01 45.83 1.01
tai 13 23.08 1.05 15.38 1.05 61.54 1.02 61.54 1.02
Uchoa 100 63.00 1.01 0.00 1.08 37.00 1.08 75.00 1.01
All instances 262 58.78 1.02 9.54 1.07 31.68 1.04 59.54 1.01

(b) Percentage of wins and m, values for 4-MSA, CW, and HGS, and HMS for L1-norm instances.

TABLE 7 Percentage of best-solved instances and accumulated performance metric mg values per algorithm,
grouped by benchmark set. Headings legend: % MSA, % CW, % HGS, % HMS = percentage of best solved instances
by MSA, CW, HGS, and HMS respectively. mpsa, mcw, MHuGgs, mums = accumulated performance m, value for
MSA, CW, HGS, and meta-solver HMS respectively.

5 | CONCLUSIONS AND FUTURE WORK

We demonstrate here that using machine learning (ML) for the automatic selection of an algorithm and the automatic
configuration of an algorithm’s parameters is an approach that can improve significantly the quality of the solution
provided. This proof of concept is given here for the capacitated vehicle routing problem (CVRP) where the focus is

on selecting very fast algorithms that generate good-quality solutions.

The portfolio of algorithms considered here includes the Hybrid Genetic Search (HGS) algorithm from which the
first feasible solution generated is extracted, the Clarke & Right (CW) algorithm as implemented in the state-of-the-art
FILO solver [3], and the Meta-Sweep-Algorithm (MSA) which is an automatically configured “Sweep Algorithm”.

One novelty in our work is the hierarchical combination of an automatic configurator with an automatic selector.
The automatically configured Meta-Sweep-Algorithm (MSA) is fast and highly competitive and its variant 4-MSA, as

shown here, dominates the performance of the other algorithms and is the Single Best Solver.

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 19

Future research plans include the construction of CVRP meta-solvers with expanded portfolio of algorithms based

on local search and exact methods with time limits that are less restrictive than the ones considered here. In that con-

text we will explore anytime automatic selection algorithms that predict the best performing algorithm in the portfolio,

within a user-specified time limit.

References

(1]

[12]

[13]

[15]

M.F. Abdelatti and M.S. Sodhi, An improved gpu-accelerated heuristic technique applied to the capacitated vehicle routing
problem, Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 2020, pp. 663-671.

L. Accorsi, A. Lodi, and D. Vigo, Guidelines for the computational testing of machine learning approaches to vehicle routing
problems, Oper. Res. Lett. 50 (2022), 229-234.

L. Accorsi and D. Vigo, A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems, Transp.
Sci. 55 (2021), 832-856.

F. Alesiani, G. Ermis, and K. Gkiotsalitis, Constrained clustering for the capacitated vehicle routing problem (cc-cvrp), Appl.
Artificial Intelligence (2022), 1-25.

M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A.J. Aljaaf, A systematic review on supervised and unsupervised
machine learning algorithms for data science, Supervised unsupervised learning data science (2020), 3-21.

E. Alpaydin, Machine learning, MIT Press, 2021.

C. Ansotegui, J. Gabas, Y. Malitsky, and M. Sellmann, Maxsat by improved instance-specific algorithm configuration, Artificial
Intelligence 235 (2016), 26-39.

D.L. Applegate, R.E. Bixby, V. Chvatal, W. Cook, D.G. Espinoza, M. Goycoolea, and K. Helsgaun, Certification of an optimal
tsp tour through 85,900 cities, Oper. Res. Lett. 37 (2009), 11-15.

F. Arnold, M. Gendreau, and K. Sérensen, Efficiently solving very large-scale routing problems, Comput. operations research
107 (2019), 32-42.

R. Asin-Ach4, O. Goldschmidt, D.S. Hochbaum, and I.I. Huerta, Fast algorithms for the capacitated vehicle routing problem
using machine learning selection of algorithm’s parameters, Proceedings of the 14th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and Knowledge Management, 2022, pp. 29-39.

P. Augerat, D. Naddef, J. Belenguer, E. Benavent, A. Corberan, and G. Rinaldi, Computational results with a branch and
cut code for the capacitated vehicle routing problem, Tech. report, Institut National Polytechnique, 38 - Grenoble (France),
1995.

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H.H. Hoos, F. Hutter, K. Leyton-Brown, K. Tier-
ney, and J. Vanschoren, ASlib: A Benchmark Library for Algorithm Selection, Artificial Intelligence J. (AlJ) (2016), 41-58.

A. Bogyrbayeva, M. Meraliyev, T. Mustakhov, and B. Dauletbayev, Learning to solve vehicle routing problems: A survey,
arXiv preprint arXiv:2205.02453 (2022).

J. Bossek, P. Kerschke, A. Neumann, M. Wagner, F. Neumann, and H. Trautmann, Evolving diverse tsp instances by means
of novel and creative mutation operators, Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms, 2019, pp. 58-71.

J. Bossek and F. Neumann, Exploring the feature space of tsp instances using quality diversity, Proceedings of the Genetic
and Evolutionary Computation Conference, 2022, pp. 186-194.

20

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

[16]

(21]

(22]

(23]

[24]

[25]

(31]
(32]

(33]

[34]

(35]

(36]

W. Bozejko, A. Gnatowski, T. Nizynski, M. Affenzeller, and A. Beham, Local optima networks in solving algorithm selection
problem for tsp, International Conference on Dependability and Complex Systems, 2018, pp. 83-93.

L. Breiman, Bagging predictors, Machine learning 24 (1996), 123-140.
L. Breiman, Random forests, Machine learning 45 (2001), 5-32.
V. Bulitko, Evolving real-time heuristic search algorithms, Artificial Life Conference Proceedings 13, 2016, pp. 108-115.

N. Burkart and M.F. Huber, A survey on the explainability of supervised machine learning, J. Artificial Intelligence Res. 70
(2021), 245-317.

R. Carbone and J.S. Armstrong, Note. evaluation of extrapolative forecasting methods: results of a survey of academicians
and practitioners, J. Forecasting 1 (1982), 215-217.

M. Christofides, Toth, 1979 christofides n., mingozzi a., toth p., the vehicle routing problem, Combinatorial Optim., John
Wiley Sons, Lond. (1979).

N. Christofides and S. Eilon, An algorithm for the vehicle-dispatching problem, J. Oper. Res. Soc. 20 (1969), 309-318.

G. Clarke and J.W. Wright, Scheduling of vehicles from a central depot to a number of delivery points, Oper. research 12
(1964), 568-581.

R. Dondo and J. Cerda, A sweep-heuristic based formulation for the vehicle routing problem with cross-docking, Comput.
Chemical Eng. 48 (2013), 293-311.

I. Dunning, S. Gupta, and J. Silberholz, What works best when? a systematic evaluation of heuristics for max-cut and qubo,
INFORMS J. Comput. 30 (2018), 608-624.

R. Elshaer and H. Awad, A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its
variants, Comput. Indus. Eng. 140 (2020), 106242.

J. Fellers, J. Quevedo, M. Abdelatti, M. Steinhaus, and M. Sodhi, Selecting between evolutionary and classical algorithms
for the cvrp using machine learning: optimization of vehicle routing problems, Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2021, pp. 127-128.

M.L. Fisher, Optimal solution of vehicle routing problems using minimum k-trees, Oper. research 42 (1994), 626-642.

E. Fix and J.L. Hodges, Discriminatory analysis: nonparametric discrimination: consistency properties, Nearest Neighbor
(NN) Norms: NN Pattern Classification Techniques (1991), 32-39.

J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. statistics (2001), 1189-1232.
B.E. Gillett and L.R. Miller, A heuristic algorithm for the vehicle-dispatch problem, Oper. research 22 (1974), 340-349.

B.L. Golden, E.A. Wasil, J.P. Kelly, and I.M. Chao, The impact of metaheuristics on solving the vehicle routing problem:
algorithms, problem sets, and computational results, Fleet management logistics (1998), 33-56.

M. Haimovich and A.H. Rinnooy Kan, Bounds and heuristics for capacitated routing problems, Math. operations Res. 10
(1985), 527-542.

I.I. Huerta, D.A. Neira, D.A. Ortega, V. Varas, J. Godoy, and R. Asin-Achd, Improving the state-of-the-art in the traveling
salesman problem: An anytime automatic algorithm selection, Expert Syst. with Appl. 187 (2022), 115948.

P. Kerschke, H.H. Hoos, F. Neumann, and H. Trautmann, Automated algorithm selection: Survey and perspectives, Evolu-
tionary computation 27 (2019), 3-45.

Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta 21

(37]

(38]

(39]

[40]

[41]

[45]

[46]

[47]

(51]

(52]

(53]

(54]

[55]

(56]

P. Kerschke, L. Kotthoff, J. Bossek, H.H. Hoos, and H. Trautmann, Leveraging tsp solver complementarity through machine
learning, Evolutionary computation 26 (2018), 597-620.

L. Kotthoff, P. Kerschke, H. Hoos, and H. Trautmann, Improving the state of the art in inexact tsp solving using per-instance
algorithm selection, International Conference on Learning and Intelligent Optimization, 2015, pp. 202-217.

G. Laporte, M. Gendreau, J.Y. Potvin, and F. Semet, Classical and modern heuristics for the vehicle routing problem, Int.
transactions operational research 7 (2000), 285-300.

F. Li, B. Golden, and E. Wasil, Very large-scale vehicle routing: new test problems, algorithms, and results, Comput. Oper.
Res. 32 (2005), 1165-1179.

S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem, Oper. research 21 (1973),
498-516.

M. Lindauer, H.H. Hoos, F. Hutter, and T. Schaub, Autofolio: An automatically configured algorithm selector, J. Artificial
Intelligence Res. 53 (2015), 745-778.

M. Lindauer, J.N. van Rijn, and L. Kotthoff, The algorithm selection competitions 2015 and 2017, Artificial Intelligence 272
(2019), 86-100.

M. Lépez-Ibanez, J. Dubois-Lacoste, L.P. Caceres, M. Birattari, and T. Stiitzle, The irace package: Iterated racing for auto-
matic algorithm configuration, Oper. Res. Perspectives 3 (2016), 43-58.

D. Miiller, M.G. Mliller, D. Kress, and E. Pesch, An algorithm selection approach for the flexible job shop scheduling problem:
Choosing constraint programming solvers through machine learning, Eur. J. Oper. Res. 302 (2022), 874-891.

T. Paolo and D. Vigo, The vehicle routing problem, siam monographs on discrete mathematics and applications, Soc. Indus.
Appl. Math. (2002).

A.A. Pessoa, M. Poss, R. Sadykov, and F. Vanderbeck, Branch-cut-and-price for the robust capacitated vehicle routing prob-
lem with knapsack uncertainty, Oper. Res. 69 (2021), 739-754.

J.R. Quinlan, Induction of decision trees, Machine learning 1 (1986), 81-106.

R.E. Schapire, Using output codes to boost multiclass learning problems, ICML, Vol. 97, 1997, pp. 313-321.

R.E. Schapire, “Explaining adaboost," Empirical inference, Springer, 2013, pp. 37-52.

M. Seiler, J. Pohl, J. Bossek, P. Kerschke, and H. Trautmann, Deep learning as a competitive feature-free approach for
automated algorithm selection on the traveling salesperson problem, International Conference on Parallel Problem Solving

from Nature, 2020, pp. 48-64.

D. Sigurdson and V. Bulitko, Deep learning for real-time heuristic search algorithm selection, Thirteenth Artificial Intelligence
and Interactive Digital Entertainment Conference, 2017.

M. Steinhaus, The application of the self organizing map to the vehicle routing problem, University of Rhode Island, 2015.

M. Stone, Cross-validatory choice and assessment of statistical predictions, J. royal statistical society: Ser. B (Methodologi-
cal) 36 (1974), 111-133.

S. Strassl and N. Musliu, Instance space analysis and algorithm selection for the job shop scheduling problem, Comput. Oper.
Res. 141 (2022), 105661.

E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian, New benchmark instances for the capacitated vehicle
routing problem, Eur. J. Oper. Res. 257 (2017), 845-858.

22 Asin-Acha, Espinoza, Goldschmidt, Hochbaum, Huerta

[57]1 T.Vidal, Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood, Comput. Oper. Res. 140
(2022), 105643.

[58] T. Vidal, T.G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei, A hybrid genetic algorithm for multidepot and periodic vehicle
routing problems, Oper. Res. 60 (2012), 611-624.

[59] K.Zhao,S. Liu, J.X. Yu, and Y. Rong, Towards feature-free tsp solver selection: A deep learning approach, 2021 International
Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-8.

[60] X.Zhu and A.B. Goldberg, Introduction to semi-supervised learning, Synthesis lectures artificial intelligence machine learn-
ing 3 (2009), 1-130.

