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Abstract

We define a class of monotone integer programs with constraints that involve up to three variables each. A generic

constraint in such integer program is of the form ax� by6 zþ c, where a and b are nonnegative and the variable z
appears only in that constraint. We devise an algorithm solving such problems in time polynomial in the length of the

input and the range of variables U. The solution is obtained from a minimum cut on a graph with OðnUÞ nodes and
OðmUÞ arcs where n is the number of variables of the types x and y and m is the number of constraints. Our algorithm is
also valid for nonlinear objective functions.

Nonmonotone integer programs are optimization problems with constraints of the type axþ by6 zþ c without
restriction on the signs of a and b. Such problems are in general NP-hard. We devise here an algorithm, relying on a

transformation to the monotone case, that delivers half integral superoptimal solutions in polynomial time. Such so-

lutions provide bounds on the optimum value that can only be superior to bounds provided by linear programming

relaxation. When the half integral solution can be rounded to an integer feasible solution, this is a 2-approximate

solution. In that the technique is a unified 2-approximation technique for a large class of problems. The results apply

also for general integer programming problems with worse approximation factors that depend on a quantifier mea-

suring how far the problem is from the class of problems we describe.

The algorithm described here has a wide array of problem applications. An additional important consequence of our

results is that nonmonotone problems in the framework are MAX SNP-hard and at least as hard to approximate as

vertex cover.

Problems that are amenable to the analysis provided here are easily recognized. The analysis itself is entirely

technical and involves manipulating the constraints and transforming them to a totally unimodular system while losing

no more than a factor of 2 in the integrality. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We describe here a class of integer programming problems, called monotone, and devise an algorithm
that solves such problems in polynomial time. The problems are characterized by constraints of the form
ax� by6 cþ z, where a and b are nonnegative and the variable z appears only in that constraint. The
direction of the inequality is immaterial and the coefficients a and b can assume any real value as long as
bP 1. (Otherwise it would always be possible to calibrate the coefficients so that the coefficient of z is equal
to 1.) Since any integer programming problem can be expressed in three variables per inequality, the re-
striction that z appears in one constraint limits the applicability to a strict subset of integer programs. The
objective function in these integer programming problems is unrestricted except that the functions of zmust
be convex.
The class of monotone problems is easily recognizable. We demonstrate here that monotone problems

are solved by finding a minimum cut on an associated graph with OðnUÞ nodes where n is the number of
variables (not counting the z variables), and U is the largest range for the variables of the types x and y.
The nonmonotone integer programming problems we address, called IP2, are characterized by con-

straints of the form axþ by6 cþ z. Such problems are in general NP-hard with vertex cover as one well-
known example. For these problems we devise an algorithm that delivers superoptimal solutions that are
half integral. This means that the solution’s objective value is a bound (lower bound for minimization) on
the optimum and each component is an integer multiple of half. The bound achieved here is guaranteed to
be only tighter than the respective linear programming relaxation bound.
For nonmonotone problems that are NP-hard the half integral solution can be rounded, when a feasible

rounding exists, to a 2-approximate solution to the problem. This is therefore a unified technique for de-
vising 2-approximation algorithms with the complexity of minimum cut on the associated graph. On the
other hand, our results imply that these problems are at least as hard to approximate as the vertex cover
problem and are thus MAX SNP-hard. In that sense, the 2-approximations devised are the best possible
unless a better approximation algorithm is found for the vertex cover problem.
The technique for solving monotone integer programs is called binarizing. It amounts to posing the

problem as an equivalent minimum cut problem on an associated graph. The technique for solving
the nonmonotone integer programs for the half integral super optimal solution involves a reduction to the
monotone case called monotonizing. The reduction maps integer solutions to half integer solutions thus
introducing a factor of 2 ‘‘loss of integrality’’ in the transformation from the original set of constraints to a
set of constraints that is totally unimodular.
The algorithms developed here have a wide range of applications, from easy recognition of polynomial

time solvability of a problem, to a unified technique for 2-approximations. An important feature of the
algorithms is that they are combinatorial. That is, the algorithms do not employ numeric operations other
than addition, and only manipulate discrete objects. We sketch next the use of the technique for finding
polynomial algorithms, for use in branch-and-bound, for use as a unified technique for approximations and
for the generation of inapproximability proofs. Specific examples are given in later sections of this paper.

1.1. Applications

1.1.1. A cut-based polynomial algorithm for monotone integer programs
Monotone integer programs are shown here to be solvable in polynomial time even if the objective

function is nonlinear. The algorithm is based on a unified technique that reduces the problem to a minimum
cut problem.
The complexity of solving the monotone problem is dependent on U and in that sense weakly poly-

nomial. It is however impossible to replace the dependence on U by a dependence on logU as Lagarias
(1985) showed that a special case of monotone constraints feasibility (simultaneous approximation) is an
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NP-hard problem. In several interesting applications the monotone constraints are of the form
xi � xj 6 cij þ zij, that is, the constraints coefficients are in f0; 1;�1g (to be defined as binarized later). These
problems are solvable in truly polynomial time that depends on logU , or even in strongly polynomial time
(independent of U ) if the objective is linear.
Examples of monotone IP2s include the convex dual of the minimum cost network flow problem. This

dual is a monotone integer program with a ¼ b ¼ 1. This problem has applications to dial-a-ride
problem and to the inverse spanning tree problem among others discussed in Ahuja et al. (1999b). In a
recent paper by Ahuja et al. (1999a), it is shown that this problem with a convex objective function is
solvable in polynomial time, using the technique described here. The application of the technique is such
that the run time does not depend on the range of variables U, but rather on logU . One by-product of
that algorithm is a new, cut-based, polynomial time algorithm for the minimum cost network flow
problem.
Another application of the algorithm is to the forest harvesting problem on a grid-like forest (Hochbaum

and Pathria, 1997). This problem was recognized as an instance of monotone integer programs and thus
was proved to be solvable in polynomial time. This problem and its NP-hard extension to the generalized
independent set and generalized vertex cover problem are described in Section 8. Another problem that is
recognized as polynomially solvable is the minimum cell selection and image segmentation also described in
Section 8.

1.1.2. Superoptimal half integral bounds
Integer programming tools for NP-hard optimization problems, such as Branch-and-Bound, require good

lower and upper bounds. In particular bounds are obtained by some relaxation of the problem. A relax-
ation yields a superoptimal solution in the sense that the solution is feasible to the relaxed problem and its
objective value is only better than that of the optimum to the problem. The algorithm presented here finds
superoptimal half integral solutions to any IP2 problems. Among the interesting problems for which such
solutions are generated are the well-known sparsest cut problem (Shahrokhi and Matula, 1990), graph
bipartization and other problems described in Section 10.
The superoptimal solutions derived using the technique described are not only derived more efficiently

than those derived by a linear programming relaxation but also the quality of the bound is superior (see
Hochbaum (1997) or Hochbaum et al. (1993) for a detailed proof). An added benefit of the approach here is
that the procedure for finding the superoptimal solution is a combinatorial technique based on minimum
cut. The bounds obtained by the technique are both efficient and tight and thus particularly suitable for use
in enumerative algorithms.

1.1.3. 2-approximations
Prior to proceeding, we provide a few essential definitions. An approximation algorithm is always as-

sumed to be ‘‘efficient’’ – that is, polynomial time solvable. An approximation algorithm delivers a feasible
solution to some NP-hard problem that has a set of instances fIg. Let the value of an optimal solution to
the problem be OPTðIÞ. An approximation algorithmA for a minimization problem is a d-approximation
algorithm if the value it delivers for any problem instance I, AðIÞ, satisfies AðIÞ6 dOPTðIÞ. We use here
dP 1 for minimization problems and 6 1 for maximization problems. The smallest value of d is the ap-
proximation (or performance) ratio RA of the algorithm A.
Devising approximation algorithms tends to be a particularly challenging and ad hoc task. The field does

not have a general purpose technique that is used to develop approximation algorithms. Fundamental
issues in the research on approximation algorithms are
1. Determining the limits of approximability of problems. This amounts to showing whether a given ap-
proximation algorithm for a problem is the best possible and if so, if the running time is the most efficient
possible.
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2. Identifying unified techniques or general purpose methods to substitute an ad hoc collection of algo-
rithms, and provide a coherent framework to facilitate further design of efficient approximation algo-
rithms.
The algorithm described here is a unified technique that delivers polynomial time 2-approximation al-

gorithms for a large collection of NP-hard problems. This is done by finding the half integral superoptimal
solution, and then rounding it to a feasible solution. Among the problems for which an approximation
algorithm was generated using the technique are: minimum satisfiability; a scheduling problem with pre-
cedence constraints (Chudak and Hochbaum, 1999); minimum weight node deletion to obtain a complete
bipartite subgraph (biclique) and various node and edge deletion problems related to the maximum clique
and biclique problems, (Hochbaum, 1998); the class of generalized satisfiability problems (Hochbaum and
Pathria, 2000); the t-vertex cover problem (Hochbaum, 1998); and the feasible cut problem.

1.1.4. Inapproximability
Establishing the limits of approximability of NP-hard problems is a substantial challenge which is

usually approached in an ad hoc manner. Our entire class of NP-hard problems is shown to be at least as
hard, via approximation-preserving reduction, as the vertex cover problem (Hochbaum, 1997, p. 132).
Thus, the 2-approximation algorithms that are devised cannot be improved unless there is a better than a
ratio 2-approximation for the vertex cover problem. This was conjectured to be impossible, unless NP¼P,
in Hochbaum (1983). There has been a steady progress in tightening the lower bound on the inapproxi-
mability of vertex cover with the strongest recent result by H�aastad showing that there is no d-approxi-
mation for d < 7=6 unless NP¼P (H�aastad, 2001).

1.2. The formulation of the nonmonotone problem IP2

We refer to the constraints of the class of integer programming problems as the 2var constraints in
reference to the role of the two variables x and y that can have up to two occurrences per constraint. The
optimization problem is referred to as IP2.
Let A1 and A2 be matrices of sizes n� m1 and n� m2, respectively, with at most two nonzero integer

entries per row. The set of 2var constraints is

ð2var constraintsÞ A1 I
A2 0

� �
x

z

� �
P b;

where z is an integer vector, ‘z6 z6 uz, and x is a bounded integer vector, ‘6x6 u. While ‘ and u must be
finite, ‘z and uz may not be finite. It is also permitted to add other identity matrices while maintaining the
results. Namely, the constraint matrix can be of the form

A1 I 	 	 	 I
A2 0 	 	 	 0

� �
:

Let jE1j ¼ m1; jE2j ¼ m2 and m ¼ m1 þ m2. A formulation of a typical IP2 is

ðIP2Þ Min
Xn

j¼1
wjðxjÞ þ

X
ði;jÞ2E1

eijðzijÞ

subject to: aijxi þ bijxj 6 cij þ zij for ði; jÞ 2 E1;

aijxi þ bijxj 6 cij for ði; jÞ 2 E2;

‘j 6 xj 6 uj; j ¼ 1; . . . ; n;
cij P zij P 0; ði; jÞ 2 E1:

294 D.S. Hochbaum / European Journal of Operational Research 140 (2002) 291–321



It can be assumed that aij, bij are integers as otherwise, by scaling, the coefficient of zij can always be set to 1.
The lower bounds of zij can be set to 0 without loss of generality. The functions eijð Þ are required to be
convex, whereas the functions wjð Þ are any unrestricted nonlinear functions.
The range of x-variables, U ¼ maxj¼1;...;n fuj � ‘jg will be assumed to be polynomially bounded thus

permitting a reference to running time that depends polynomially on U as polynomial running time. In all
applications given here the variables are binary and thus the value of U is 1. We let a generic inequality of
IP2 be aijxi þ bijxj 6 cij þ dijzij, where dij ¼ 0 or dij ¼ 1. Let D ¼ maxij dij.

Definition 1. An inequality axi � bxj 6 cij þ dzij is monotone if a; bP 0, and d ¼ 1.

An important special case of IP2 where the value of U is not necessarily a factor in the complexity
expression for solving the problem is of binarized IP2.

Definition 2. An IP2 problem is said to be binarized if all coefficients in the constraint matrix are in
f�1; 0; 1g. That is, if maxi fjaijj; jbijjg ¼ 1.

Note that a binarized system is not necessarily defined on binary variables. The constraints of a binarized
monotone IP2 are of the type xi � xj 6 cij þ zij. The constraints coefficients matrix of a binarized monotone
IP2 is totally unimodular.

1.3. The main theorem

The main theorem summarizes the results for solving monotone IP2 problems, for finding superoptimal
half integral solutions and for approximating IP2 problems. In the complexity expressions we take T ðn;mÞ
to be the time required to solve a minimum cut problem on a graph with m arcs and n nodes. T ðn;mÞmay be
assumed equal to Oðmn logðn2=mÞÞ (Goldberg and Tarjan, 1988). For binarized IP2 we may use a minimum
cost network flow algorithm of complexity T1ðn;mÞ. For instance, T1ðn;mÞ ¼ Oðm log nðmþ n log nÞÞ is the
complexity of Orlin’s algorithm (1993). We state the main theorem assuming that eijð Þ are linear. We
comment on the change in complexity when eijð Þ are convex after the statement of the theorem.

Theorem 1.1. Given an instance of IP2 on m ¼ m1 þ m2 constraints, x 2 Zn and U ¼ maxj¼1;...;n fuj � ‘jg.
1. A monotone IP2 is solvable optimally in integers in time T ðnU ;mUÞ. A monotone binarized IP2 with a lin-

ear objective function is solved in time T1ðn;mÞ, and with convex objective function in time
Oðmn log n log nUÞ (Ahuja et al., 1999b).

2. A superoptimal half integral solution is obtained for IP2 in polynomial time, T ðnU ;mUÞ. For a binarized IP2
with a linear objective function, a superoptimal half integral solution is obtained in time T1ð2n; 2mÞ. For a
binarized IP2 with a convex objective and D ¼ 0 the complexity is OðT ðn;mÞÞ (Hochbaum and Queyranne,
2000).

3. Given an IP2 with a linear objective function min wxþ ez with w; eP 0.
• For D ¼ 0, if there is a feasible solution then there exists a feasible rounding of the half integral solution

to a 2-approximate solution (Hochbaum et al., 1993). If the problem is also binarized then the complexity
of finding the solution is OðT ðn;mÞÞ (Hochbaum and Queyranne, 2000).

• ForD ¼ 1, if there exists a feasible rounding of the half integral solution, then it is a 2-approximate solution.

In all the applications mentioned in Section 1 and discussed here the running time of the 2-approxi-
mation algorithm is T ðn;mÞ. For nonlinear IP2 problems where the functions eijð Þ are convex the running
time is T ðnU ;mU 2Þ rather than T ðnU ;mUÞ for eijð Þ linear. Recall though that in both cases wjð Þ are ar-
bitrary functions.
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There are some obvious extensions of the algorithms that apply to IP2 when D > 1. In that case each
occurrence of Dz is replaced by z0 and the half integrality of z0 is mapped into an integer multiple of ð1=2DÞ
for z. The corresponding approximation algorithm would then be a 2D-approximation. A similar extension
applies when a variable z appears in several constraints rather than just one.

Remark 1.1. A potentially useful extension applies to problems defined on a dual form of 2var constraints.
These include for instance the edge cover problem and the maximum matching problem. For such problems
we apply the dual form of the algorithm described to transform the constraint matrix into a totally uni-
modular one. The technique has been recently applied to the dual of minimum cost network flow resulting
in a new algorithm for the dual of the minimum cost network flow (Ahuja et al., 1999a).

1.4. Overview

In the next section we describe the algorithm IP2 and the reduction of the IP2 problem to a monotone
IP2 called monotonizing. Section 3 describes how to solve a monotone IP2. This is the main technical
description of the algorithm, consisting of a transformation to a totally unimodular constraint matrix and
the construction of a graph on which a minimum cut solution provides the optimal solution to a monotone
IP2 with general wjð Þ and convex eijð Þ. A simpler network when the IP2 is given in binary variables is given
in Section 3.7.
When the IP2 problem is binarized the algorithm IP2 can be implemented more efficiently. The

various alternative implementations and the conditions under which they are applicable are described in
Section 4.
The remainder of the paper is devoted to examples of some of the applications of the technique and the

algorithm. Sections 5 and 6 describe the formulations and 2-approximation algorithms for the minimum
satisfiability and the feasible cut problems, respectively. Section 7 presents a 2-approximation algorithm for
the complement of the maximum clique problem. In Section 8 we define the generalized independent set
problem and the generalized vertex cover problem and provide several applications and an easy test for
polynomial time instances of the problems. Section 9 shows that the minimum cell selection problem and
the image segmentation problem are monotone IP2s and thus polynomially solvable. Section 10 gives the
IP2 formulation of sparsest cut problem and the derivation of superoptimal half integral solutions. Section
11 summarizes the results for generalized satisfiability problem. In Section 12 we review several applications
of generalized satisfiability to problems of minimum unsatisfiability, graph bipartization and show how to
generate for these problems superoptimal half integral solutions. In Section 13 we provide a number of
open questions and possible directions for extending this line of research.

2. The algorithm

The algorithm IP2 takes as input a nonmonotone IP2. The output is a superoptimal feasible solution
with all components integer multiple of half and a 2-approximate solution if a feasible rounding exists. The
algorithm is a transformation process consisting of two phases. First the nonmonotone problem is trans-
formed to a monotone system with twice as many variables and constraints. The transformation inverse
maps integers to half integers. The second phase is to solve the monotone IP2. It consists of a process we
call ‘‘binarizing’’, which transforms the monotone system to a binarized monotone system in binary
variables. The transformed binarized monotone problem is defined on a totally unimodular constraint
matrix. This equivalent problem has OðnUÞ binary variables and OðmUÞ constraints, and if eijð Þ are convex
then it has OðmU 2Þ constraints. If, at the end of the first phase, the monotone problem is already binarized
and the variables are not necessarily binary, then depending on the value of U and the type of objective
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function it may be preferable to solve it using other, and more efficient techniques. A selection of algorithms
that solve various types of binarized monotone IP2 problems is given separately in Section 4.

Note that the same outcome can be achieved by commuting the order of step 1 and step 3I – first re-
ducing the inequalities to inequalities with all coefficients in f�1; 0; 1g on binary variables, (a binarized
system), and then monotonizing. We later demonstrate in Lemma 4.1, that a binarized system (which is not
necessarily monotonized) has all linear programming basic solutions with components that are integer
multiples of 1

2
. For binarized instances it is thus unnecessary to monotonize the system in order to obtain

superoptimal half integral solutions. Rather, it suffices to solve the problem directly using techniques se-
lected in binarized such as minimum cost network flow algorithm.

2.1. Monotonizing

Consider first a generic nonmonotone inequality axi þ bxj 6 cþ dz. It can be assumed that z is scaled so
that d > 0 and its objective function coefficient is positive. If the inequality is reversed, axi þ bxj P cþ dz, z
is simply set to its lower bound. Replace each variable x by two variables, xþ and x�, and each term dz by z0

and z00. The nonmonotone inequality is then replaced by two monotone inequalities:

axþi � bx�j 6 cþ z0;

�ax�i þ bxþj 6 cþ z00:

The upper and lower bound constraints ‘j 6 xj 6 uj are transformed to

‘j 6 xþj 6 uj;

�uj 6 x�j 6 � ‘j:

In the objective function, the variable xj is substituted by 12ðxþj � x�j Þ and z is substituted by 1
2
ðz0 þ z00Þ.

Monotone inequalities remain so by replacing the variables xi and xj in one inequality by xþi and x
þ
j , and

in the second, by xþi and xþj , respectively. The variable z is duplicated:

axþi � bxþj 6 cþ z0;

ax�i � bx�j 6 cþ z00:

It is easy to see that:

Algorithm IP2 ðminfay : By6 cgÞ
1. Monotonize using the map f : y! yþ, y�, minfa0y0 : B0y06 c0g.
2. If B0 is binarized, call binarizedðminfa0y0 : B0y06 c0g. Go to step 4.
Else continue.

3. Procedure monotone IP2:
I. Binarize: transform problem to minfa00y00 : B00y006 0g, for y00 binary.
II. Solve minfa00y : B00y006 0g using min cut.
III. Recover optimal integer solution ŷyþ, ŷy�.

4. Recover fractional solution ŷy to fBy6 cg by applying f �1ðŷyþ; ŷy�Þ.
5. Round. If a feasible rounding exists, round ŷy to y�.
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Lemma 2.1. If xþi , x�i , xþj , x�j , z0, z00 solve the transformed monotone system, then xi ¼ 12ðxþi � x�i Þ,
xj ¼ 12ðxþj � x�j Þ, z ¼ 1

2dðz0 þ z00Þ solve the original nonmonotone system.

Thus, step 4 of the recovery of a feasible solution to the original nonmonotone problem is easy and maps
the integer values of xþ; x� into integer multiples of 1

2
.

Remark 2.1. The transformation of z could have been set identical to that of x, but the proposed trans-
formation makes the desired network structure more transparent.

Thus we completed the description of the montonizing process, and the recovery of the half integral
solution. The crux of the algorithm is in the process of binarizing, Procedure monotone IP2. This process
consists of transforming the system of constraints to an equivalent system which is binarized and in binary
variables. The solution to an optimization problem on this system of inequalities is shown to be delivered
by a minimum cut problem on an associated graph. If the monotone system is already binarized then, as
shown in Section 4, it is a totally unimodular set of constraints and there are potentially more efficient
approaches for solving the monotone binarized system.

3. Solving a monotone IP2: Binarizing

In this section we show how to solve the monotone IP2 problems optimally using a technique that
generalizes the approach of Hochbaum and Naor (1994). The method of solution is to apply the process of
binarizing thus generating an integer program over totally unimodular constraints, and equivalently con-
structing a graph where the minimum cut provides an optimal solution to the integer program. With the
process of binarizing we prove part 1 of Theorem 1.1 which is now restated for an objective function where
wjð Þ are nonlinear functions.

Theorem 3.1. A monotone IP2 is equivalent to an integer program in OðnUÞ binary variables and OðmUÞ
totally unimodular constraints if eijð Þ are linear, andOðmU 2Þ totally unimodular constraints if eijð Þ are convex.

The process of ‘‘Binarizing’’ is applied to an IP2 and results in an equivalent problem in binary variables
and constraint coefficients that are in f0;�1; 1g. When applied to a monotone IP2 the set of inequalities in
the transformed problem is of the form:

xi � xj 6 0

or

xi � xj 6 zij:

Binarizing converts any monotone IP2 to an instance of the minimum s-excess problem. That problem
was introduced in Hochbaum (1997) in the context of the pseudoflow algorithm for the maximum flow
problem. The problem is defined as follows:

Problem Name: Minimum s-Excess
Instance: Given a directed graph G ¼ ðV ;AÞ, node weights (positive or negative)

wi for all i 2 V , and nonnegative arc weights uij for all ði; jÞ 2 A.
Optimization Problem: Find a subset of nodes S � V such thatP

i2S wi �
P

i2S;j2�SS uij is minimum.

298 D.S. Hochbaum / European Journal of Operational Research 140 (2002) 291–321



Note that the capacities are permitted to be infinite. The s-excess problem is formulated as a binary op-
timization problem:

ðs-excessÞ Min
X
j2V

wjxj þ
X
ði;jÞ2A

uijzij

subject to: xi � xj 6 zij for ði; jÞ 2 A;

xj binary j ¼ 1; . . . ; n;
zij binary ði; jÞ 2 A:

Although the constraints of the type xi � xj 6 0 do not seem to appear in this formulation, these are written
as xi � xj 6 zij where the cost coefficient of the respective variable zij (and the capacity of the corresponding
arc) is infinity. It is shown next that the minimum s-excess set in a graph is the source set of a minimum cut
in an associated graph.

3.1. Solving minimum s-excess problem

The s-excess problem is equivalent to the minimum cut problem. Proving this is an extension of the
proof provided by Picard for the equivalence of the maximum closure problem and minimum cut (Picard,
1976).

Lemma 3.1 (Hochbaum, 1997). Solving the minimum s-excess problem is equivalent to solving the minimum
cut problem on an associated graph.

Proof. Let the s-excess problem be defined on a graph G ¼ ðV ;AÞ. Define a graph Gst ¼ ðV [ fs; tg;AstÞ: The
set of nodes of the graph is the set V appended by two nodes s and t. There is an arc between the source s
and each node of negative weight j with capacity �wj. There is an arc between each node of positive weight i
and the sink carrying the capacity wi.
We claim that S is the source set of a minimum cut in Gst if and only if S is a set of minimum s-excess

capacity in the graph G. Let CðA; �AAÞ be the sum of capacities of arcs with tails in A and heads in �AA.
Noting that the capacities of arcs adjacent to source are the negative of the respective node weights, we

have that the s-excess weight of a set S is the sum of capacities: �Cðfsg; SÞ þ CðS; ftgÞ. We rewrite the
objective function in the minimum s-excess problem:

min
S�V
½�Cðfsg; SÞ þ CðS; �SS [ ftgÞ� ¼ min

S�V
�½Cðfsg; V Þ � Cðfsg; �SSÞ� þ CðS; �SS [ ftgÞ

¼ �Cðfsg; V Þ þmin
S�V
½Cðfsg; �SSÞ þ CðS; �SS [ ftgÞ�:

In the last expression the term �Cðfsg; V Þ is a constant. The expression minimized is precisely the sum of
capacities of arc in the cut ðS [ fsg; �SS [ ftgÞ. Thus the set S minimizing the s-excess is also the source set of
a minimum cut and, vice versa – the source set of a minimum cut also minimizes the s-excess. �

In the construction described henceforth we generate for a monotone IP2 problem a set of inequalities of
the equivalent s-excess problem, and the graph associated with the IP2 problem, G, with weighted nodes
and capacitated arcs.

3.2. The xi-chains

As part of the binarizing process each variable, xj, is replaced by uj � ‘j binary variables,
xj ¼ ‘j þ

Puj
p¼‘jþ1 x

ðpÞ
j . The value of xj is represented by an array of values assigned to the binary
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variables consisting of a sequence of 1s followed by a sequence of 0s, with either sequence possibly
empty. Thus xðpÞj ¼ 1 if and only if xj P p. The term

Pn
j¼1 wjðxjÞ in the objective function is replaced by

the term

min
Xn

j¼1

Xuj
p¼‘þ1

½wjðpÞ � wjðp � 1Þ�xðpÞj :

To enforce the contiguity of the sequences the following inequalities must be satisfied:

xðpÞj 6 xðp�1Þj ; p ¼ ‘j þ 1; . . . ; uj; xð‘jÞj ¼ 1: ð1Þ

With these inequalities xðpÞj ¼ 1 if and only if x
ðkÞ
j ¼ 1 for ‘þ 16 k6 p � 1.

A graph with node weights and arc capacities is constructed to correspond to the binary monotone IP2.
Each binary variable xðkÞj has a node associated with it in the graph G for a total of

Pn
j¼1 ðuj � ‘jÞ nodes.

Node xðkÞj has the weight wjðkÞ � wjðk � 1Þ assigned to it.
The value of a variable is interpreted to be 1 if the corresponding node is in the minimum s-excess set.

Each inequality xðpÞj 6 xðp�1Þj has an infinite capacity arc between the node representing xðpÞj and the node

representing xðp�1Þj . Thus if xðpÞj ¼ 1 and the respective node is in the source set, then xðp�1Þj ¼ 1 or else the
minimum s-excess is infinite.
The set of inequalities (1) corresponds to a construction of infinite capacity arcs going from each node p

to the one of lower value p � 1 (see Fig. 1). We refer to this structure as the xi-chain.
Consider a minimum s-excess set S in the associated graph G ¼ ðV ;AÞ, where V is the set of nodes

corresponding to the range of values of each variable xi; A is a set of arcs consisting of infinite capacity

Fig. 1. The network for xi and xj and the inequality axi � bxj 6 c.
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arcs within each xi-chain, and finite capacity arcs that will be generated for the corresponding constraints.
Let cðp1; p2Þ be the capacity assigned to arc ðp1; p2Þ. We derive a solution corresponding to the cut
by letting a variable xðpÞi ¼ 1 if the node corresponding to that variable is in the s-excess set S, and 0
otherwise:

xðpÞi ¼
1 if node xðpÞi 2 S;

0 if node xðpÞi 2 �SS:

(

3.3. Binarizing axi � bxj 6 c

Consider the monotone inequality axi � bxj 6 c. This inequality enforces for each value pi ¼ ‘i; . . . ; ui the
implication: if xi P pi then xj P jðpiÞ where

jðpiÞ �
api � c

b

l m
:

In other words, the implications

xðpiÞi ¼ 1 ) xðjðpiÞÞj ¼ 1 for all pi 2 f‘i; . . . ; uig

are equivalent to the inequality axi � bxj 6 c. If jðpiÞ > uj then xi cannot be larger than pi. We can thus
update its upper bound to ui  pi � 1.
To satisfy this set of implications the following inequalities are introduced:

xðpiÞi 6 xðjðpiÞÞj ; pi ¼ ‘i; . . . ; ui: ð2Þ

The set of inequalities (2) is equivalent to the inequality axi � bxj 6 c. These inequalities can also be
written as xðpiÞi 6 xðjðpiÞÞj þ zðpi; jðpiÞÞ, where cðpi; jðpiÞÞ ¼ 1 in the formulation, or the corresponding arc in
the graph G has infinite capacity.
We associate with each inequality in (2) an arc in G between the node representing pi in the xi-chain and

the node representing jðpiÞ in the xj-chain. The arc ðpi; jðpiÞÞ carries infinite capacity. A node will be in-
cluded in the source set of a cut if and only if the value of the respective binary variable is 1. Thus the
infinite capacity arc ðp; qÞ implies that if the variable associated with p is of value 1 then the variable as-
sociated with q is also in the source set and thus of value 1. Fig. 1 illustrates the construction where
pj ¼ jðpiÞ.

3.4. Binarizing axi � bxj 6 cij þ zij

Consider a monotone inequality of the type axi � bxj 6 cij þ zij. For notational convenience we let in the
following discussion c ¼ cij and z ¼ zij. Let eijðzÞ be the cost function associated with z, and 06 z6 cij.
The inequality is equivalent to the set of implications:

If xi P p then xj P
ap � c� z

b

l m
:

We denote

jðp; zÞ � ap � c� z
b

l m
:

Several more notational conventions will streamline the exposition: Instead of listing the inequalities we
list the capacities of the arcs in the associated graph G. We let the capacity of arc ðp; qÞ be denoted by
cðp; qÞ. Stating that cðp; qÞ ¼ 1 will be taken to be equivalent to generating an inequality
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xðpÞi 6 xðqÞj :

Stating that cðp; qÞ ¼ K will be taken to be equivalent to generating an inequality

xðpÞi 6 xðqÞj þ zðp; qÞ;

where the cost of the binary variable zðp; qÞ in the objective function is K. Therefore the objective function
term corresponding to the z-variables is

X
ði;jÞ2E1

Xui
pi¼‘i

Xuj
pj¼‘j

cðpi; pjÞzðpi; pjÞ:

The description is restricted to the case where a6 b. The procedure for a > b follows similar principles
and will be omitted. This assumption allows us to conclude that when the value of xi is increased by 1, the
value of jðp; zÞ can increase by one unit at most.

3.5. z is binary

We first describe the procedure for generating inequalities and arcs when z is binary, i.e., cij ¼ 1. The
challenge here is to track whether setting z to 1 does indeed relax the inequality. In general, there should
be an arc ðp; jðp; 0ÞÞ of cost eij ¼ eijð1Þ. We need however to avoid the situation when jðp; 0Þ ¼ jðp � 1; 0Þ
and charge twice the value eij when xi ¼ p and xj ¼ jðp; 0Þ � 1. In this case both xðpÞi and xðp�1Þi are in the

source set of the cut and xðjðp;0ÞÞi is in the sink set. So the charge of eij should apply only once. In the
procedure we apply the charge to the first (lowest value) node of xi that has an arc going into xj. We keep
track of whether there is a capacitated arc going into xðqÞj by maintaining CðxðqÞj Þ which is the total cu-
mulative incapacity into node of the xj chain from a node of the xi chain. The value of CðxðqÞj Þ is initialized
at 0 for q ¼ ‘j; . . . ; uj.

Generate arcs ðaxi � bxj 6 cþ z; 1; eijð ÞÞ
Let p be smallest so that pP ‘i and jðp; 0ÞP ‘j þ 1.
If p > ui, then stop: Output ‘‘constraint is always satisfied’’.
If jðp; 1Þ > uj, then stop: Output ‘‘problem is infeasible’’.
while p6 ui � 1, do
Set cðp; jðp; 1ÞÞ ¼ 1.
If jðp; 0Þ > jðp; 1Þ and Cðjðp; 0ÞÞ ¼ 0 then cðp; jðp; 0ÞÞ ¼ eij (and Cðjðp; 0ÞÞ ¼ eij). Else continue.
p p þ 1.

end

Proof of correctness. Let xi ¼ p and xj ¼ q in some solution.
If q < jðp; 1Þ then the solution is infeasible as it violates the inequality axi � bxj 6 cþ z. The arc

ðp; jðp; 1ÞÞ is then in the cut and it has infinite capacity, as required. Thus such solution has infinite s-excess
value.
If q ¼ jðp; 1Þ < jðp; 0Þ then c < ap þ b6 cþ 1. Therefore the value of z must be equal to 1 with a charge

of eij to the objective function. The only arc in the cut between the xi and the xj chains is from the lowest
node p06 p in the xi-chain with jðp0; 1Þ < jðp0; 0Þ ¼ jðp; 0Þ. This arc is of capacity eij and thusPui

pi¼‘i
Puj

pj¼‘j cðpi; pjÞzðpi; pjÞ ¼ eij.
If q > jðp; 1Þ then since a6 b; jðp; 0Þ ¼ jðp; 1Þ þ 1. Thus, qP jðp; 0Þ and there is no arc in the cut as-

sociated with this inequality. This is consistent with the selection of zij ¼ 0 in the solution. �
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3.6. z is integer

The generation of arcs/inequalities for the case of z integer generalizes the case of z binary.
Let xi ¼ p and define qp to be the smallest value such that jðp; qÞ ¼ jðp; 0Þ � 1. That is,

ap � c� qp
b

l m
¼ ap � c� qp

b
¼ ap � c

b

l m
� 1: ð3Þ

The first equality follows since qp is smallest.
We will introduce arcs adjacent to xi ¼ p sequentially for p ¼ ‘i; . . . ; ui. The nodes in the xj-chain will

have at any point in the process a subset of arcs from nodes p ¼ ‘i; . . . ; p � 1 with certain incapacity (sum of
capacities of incoming arcs) already generated. We denote the total incumbent sum of arc incapacities from
nodes of xi into node p0 of the xj chain by Cðp0Þ. Cðp0Þ is initialized at 0 for p0 ¼ ‘j; . . . ; uj.

Generate arcs ðaxi � bxj 6 cþ z; cij; eijð ÞÞ
Let p be smallest so that pP ‘i and jðp; 0ÞP ‘j þ 1.
If p > ui, then stop: Output ‘‘constraint is always satisfied’’.
If jðp; cijÞ > uj, then stop: ‘‘problem is infeasible’’.
while p6 ui, do
Let qp be smallest so that jðp; qpÞ ¼ jðp; 0Þ � 1.
Set cðp; jðp; 0ÞÞ ¼ eijðqpÞ � Cðjðp; 0ÞÞ;Cðjðp; 0ÞÞ  eijðqpÞ; k ¼ 1:

until jðp; 0Þ � k ¼ maxf‘j; jðp; cijÞg þ 1, do:
Set cðp; jðp; 0Þ � kÞ ¼ eijðkbþ qpÞ � eijððk � 1Þbþ qpÞ � Cðjðp; 0Þ � kÞ,
Cðjðp; 0Þ � kÞ  eijðkbþ qpÞ � eijððk � 1Þbþ qpÞ.
k  k þ 1.

end
Let cðp; jðp; cijÞÞ ¼ 1.
p  p þ 1.
end

Proof of correctness. To prove correctness we need to establish first that every capacity generated is non-
negative. And secondly we need to show that the total sum of capacities in a cut between xi and xj is
precisely eijðaxi � bxj � cÞ. The nonnegativity will be shown to follow since the functions eijð Þ are convex
and monotone nondecreasing.
When done with the assignment of arc capacities adjacent to node xi ¼ p then the updated total sum of

incapacities is

Cðjðp; 0ÞÞ ¼ eijðqpÞ;
Cðjðp; 0Þ � 1Þ ¼ eijðbþ qpÞ � eijðqpÞ;
Cðjðp; 0Þ � 2Þ ¼ eijð2bþ qpÞ � eijðbþ qpÞ;

..

.

Cðp; jðp; 0Þ � kÞ ¼ eijðkbþ qpÞ � eijððk � 1Þbþ qpÞ:

Assume by induction the nonnegativity of the capacities of all arcs adjacent to nodes xi ¼ ‘i; . . . ; p and
prove nonnegativity of arc capacities adjacent to node xi ¼ p þ 1. There are two cases:

jðp; 0Þ ¼ jðp þ 1; 0Þ;
or

jðp; 0Þ < jðp þ 1; 0Þ:

D.S. Hochbaum / European Journal of Operational Research 140 (2002) 291–321 303



In the first case there are arcs of total capacity eijðqpÞ adjacent to jðp; 0Þ when we assign the capacity to
the arc ðp; jðp þ 1; 0Þ. Necessarily qpþ1 > qp (the difference is in fact a units) and since eijð Þ are monotone
nondecreasing, eijðqpÞ6 eijðqpþ1Þ. Therefore eijðqpþ1ÞPCðjðp; 0ÞÞ. From the convexity of eij it follows that
for any k,

Cðp; jðp; 0Þ � kÞ ¼ eijðkbþ qpÞ � eijððk � 1Þbþ qpÞ6 eijðkbþ qpþ1Þ � eijððk � 1Þbþ qpþ1Þ;

and we conclude that all arc capacities are nonnegative.
Consider now the second case where jðp; 0Þ < jðp þ 1; 0Þ. The incumbent capacity Cðjðp þ 1; 0ÞÞ ¼ 0,

and qpþ1 þ b > qp. Thus for all k,

Cðp; jðp; 0Þ � kÞ6 eijððk � 1Þbþ qpÞ � eijððk � 2Þbþ qpÞ6 eijðkbþ qpþ1Þ � eijððk � 1Þbþ qpþ1Þ:
Therefore all arc capacities are nonnegative.
Let xi ¼ p and xj ¼ q in some solution.
If q < jðp; cijÞ then the solution is infeasible as it violates the inequality in its most relaxed form

axi � bxj 6 cþ cij. The arc ðp; jðp; cijÞÞ is then in the cut and it has infinite capacity, as required. Thus such
solution has infinite s-excess value.
If qP jðp; 0Þ then the inequality is satisfied and there is no arc associated with this inequality (and with

zij) in the cut.
So suppose that jðp; 0Þ > qP jðp; cijÞ. In this case the value of zij in an associated optimal assignment is

dap � bq� ce. It will be convenient to assume that c is integer or replace it by bcc so zij ¼ ap � bq� c.

Claim 3.1. zij ¼ qp þ bðjðp; 0Þ � q� 1Þ.

Proof. By definition, from (3), qp ¼ ap � c� bðjðp; 0Þ � 1Þ. Thus,
qp þ bðjðp; 0Þ � q� 1Þ ¼ ap � c� bq: �

Since the total capacity adjacent to nodes xðkÞj , k ¼ qþ 1; . . . ; jðp; 0Þ is Cðp; xðkÞj Þ, the total charge for arcs
in the cut is

Pjðp;0Þ
k¼qþ1 Cðp; x

ðkÞ
j Þ. This sum is a telescopic sequence adding up to eijðqp þ bðjðp; 0Þ � q� 1ÞÞ:

Xjðp;0Þ
xj¼qþ1

Cðp; xjÞ ¼ eijðqpÞ

þeijðbþ qpÞ � eijðqpÞ
þeijð2bþ qpÞ � eijðbþ qpÞ

..

.

þeijððjðp; 0Þ � q� 1Þbþ qpÞ � eijððjðp; 0Þ � q� 2Þbþ qpÞ
¼ eijððjðp; 0Þ � q� 1Þbþ qpÞ:

So the total charge for arcs in the cut is precisely eijðzijÞ as required thus proving the correctness of the
construction.
In general the construction of the graph can generate as many as minfU ; cijg arcs adjacent to each

node, for a total of OðmU 2Þ arcs. However, when the functions eijð Þ are linear, with eijðzÞ ¼ eijz each
node of xðpÞi has either an arc of capacity qpeij or an arc of capacity beij adjacent to it. Since the capacity
beij is the same for any value of p we can only have OðUÞ arcs generated per inequality, for a total of
OðmUÞ.

304 D.S. Hochbaum / European Journal of Operational Research 140 (2002) 291–321



3.6.1. An example
We present an example for the case when aij ¼ bij ¼ 1.
We define recursively the excess unit increments of the functions eij (a discrete equivalent of the second

derivative),

Dijð0Þ ¼ 0;
Dijð1Þ ¼ eijð1Þ � eijð0Þ;
Dijð2Þ ¼ eijð2Þ � eijð1Þ � Dijð1Þ;

..

.

DijðcijÞ ¼ eijðcijÞ � eijðcij � 1Þ � Dijðcij � 1Þ:

In Fig. 2 we present the generated graph for an inequality xi � xj 6 2þ zij where cij ¼ 3. The illustration
shows the arcs associated with the lowest nodes in the xi chain. Note that the arcs for the first node, ‘i,
follow a pattern different from that of the other nodes. That is because the higher valued nodes in the chain
are guaranteed that when they are in the source set, then so are all the nodes under them and thus the arcs
adjacent to a particular valued node in the xj chain are also originating from lower valued nodes. Thus such
arcs contribute only to the incremental cost.
In the example:
cð‘i; ‘i � 2Þ ¼ eijð1Þ � eijð0Þ. If this arc is in the cut then zij P 1.
cð‘i; ‘i � 3Þ ¼ eijð2Þ � eijð1Þ. If this arc is in the cut then zij P 2.
cð‘i; ‘i � 4Þ ¼ eijð3Þ � eijð2Þ. If this arc is in the cut then zij P 3.

Fig. 2. Arcs and their capacities when eijð Þ are convex.
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cð‘i; ‘i � 5Þ ¼ 1. It is infeasible for xj to be 6 ‘i � 5.
cð‘i þ 1; ‘i � 1Þ ¼ Dijð1Þ ¼ eijð1Þ � eijð0Þ. If this arc is in the cut then zij P 1.
cð‘i þ 1; ‘i � 2Þ ¼ Dijð2Þ. If this arc is in the cut then also the arc ð‘i; ‘i � 2Þ and the arc ð‘i þ 1; ‘i � 1Þ are
in the cut and zij P 2. The total capacity of these three arcs is Dijð1Þ þ Dijð2Þ þ eijð1Þ � eijð0Þ ¼
eijð2Þ � eijð1Þ þ eijð1Þ � eijð0Þ ¼ eijð2Þ � eijð0Þ as required.
cð‘i þ 1; ‘i � 3Þ ¼ Dijð3Þ. If this arc is in the cut then zij P 3.
cð‘i þ 1; ‘i � 4Þ ¼ 1. It is infeasible for xj 6 ‘i � 4 if xi P ‘i þ 1.

3.7. A simpler network for binary IP2

In the network we described, the lower bound nodes xð‘iÞi are always in the source set of the cut in Gst. For
IP2 problems involving only binary variables the lower bound nodes can be shrunk with the source node s
thus reducing the size of the network by half and generating some specific structures which we describe and
simplify here.
Some variables in the monotonized and binarized system of a binary IP2 assume values in f�1; 0g, while

others are in f0; 1g. The variables x�i are in f�1; 0g, and variables xþi are in {0,1}.
In the simplified network, each variable is associated with one node only. Consider a cut ðS; �SSÞ in the

network, and interpret the higher value assignment to be in S and the lower in �SS:

x�i ¼
0; x�i 2 S;
�1; x�i 2 �SS;

�

xþi ¼
1; xþi 2 S;
0; xþi 2 �SS:

�

All nodes i with weight wi < 0 are connected to s with an arc of capacity jwij, and all nodes with weight
wi > 0 are connected to t with an arc of capacity wi.
Shrinking the lower bound nodes with the source creates several types of arcs. The associated ‘‘gadgets’’

for five types of inequalities are depicted in Fig. 3. Other inequalities are either straightforward to construct,
always satisfied, unsatisfied, or fix a value of a variable. For example, xþi � x�j 6 2 is always satisfied,
xþi � x�j P 2 fixes uniquely the values of the variables, and xþi � x�j 6 � 1 is never satisfied.

Fig. 3. A network for binary IP2: (a) xþi � x�j 6 1; (b) xþi � x�j 6 0; (c) xþi � x�j 6 1þ z; (d) xþi � x�j 6 z; (e) x�j � xþi 6 � 2þ z;
z 2 f0; 1; 2g.
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Consider for instance the case of the inequality xþi � x�j 6 0 illustrated in Fig. 3(b). The node corre-
sponding to xþi and the sink t are contracted by adding an arc of infinite capacity from that arc to the
sink, and the node corresponding to x�j is similarly contracted with the source, by adding an arc of infinite
capacity from s to the node. The reason is that both xþi and x�j must be 0 in order to satisfy that in-
equality.
A similar rationale applies to the construction corresponding to the other inequalities, where in (c) and

(d) and (e) cðzÞ is the cost of z ¼ 1 in the objective function. Notice that in (d) either one arc with capacity
cðzÞ is in the cut, or the other, but never both. (e) is the only case where both arcs with capacity cðzÞ are in
the cut which happens when z ¼ 2, as required.

4. Alternative methods for solving a binarized IP2

Recall that in a binarized IP2 all the constraint matrix coefficients are in f�1; 0; 1g and z-variables
appear each in at most one constraint. It is possible to solve a binarized IP2, whether monotone or not,
more efficiently than by binarizing and motononizing, and applying a minimum cut procedure. This is
particularly so for large values of U. Solving a problem as binarized IP2 renders the complexity no longer
dependent on U but rather on log U or independent of U (the latter is possible only if the objective is linear
as proved in Hochbaum (1994)). The choice of the method, and the resulting complexity, depends on the
objective function and on the structure of the constraints.

4.1. Solving with linear programming

When the objective function is linear, it is possible to apply linear programming to solve an IP2. We
claim here that the linear programming relaxation of a binarized IP2 has all the basic solutions half integral.
In that sense it delivers a solution of the same type as would be delivered by applying the minimum cut
procedure to the montonized problem on binary variables.
A linear programming basic solution can be expressed as a ratio of integers, where the denominator

of basic solution assumes the value of a determinant of some nonseparable sub-matrix. From the
next lemma we conclude that the basic solution components are all integer multiples of 1

2
. This

implies, for instance, that the construction of the half integer solution from the linear programming
solution by Yu and Cheriyan (1995) was in fact unnecessary. The solution is an integer multiple of
half.
A matrix is nonseparable if there is no partition of the columns and rows to two subsets (or more) C1;C2

and R1;R2 such that all nonzero entries in every row and column appear only in the submatrices defined by
the sets C1 � R1 and C2 � R2. Note that the lemma’s claim does not apply to separable matrices since one
can construct a separable matrix with two 1s per row and an arbitrary number, K, of matrices on its di-
agonal each of determinant 2, thus achieving a matrix with a determinant that is 2K . Since adding an
identity matrix does not affect the value of subdeterminants, the lemma remains valid also for binarized
IP2. The lemma was proved in Hochbaum et al. (1993) as Lemma 6.1.

Lemma 4.1 (Hochbaum et al., 1993). The determinants of all nonseparable submatrices of a binarized IP2’s
linear programming problem have absolute value at most 2.

The complexity of solving the relaxation of a binarized IP2 using linear programming is not very at-
tractive. Although linear programming on binarized constraints is solvable in strongly polynomial time
(Tardos, 1986) the algorithm is not very efficient either in theory or in practice.
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4.2. Solving with minimum cost network flow

Suppose the binarized IP2 considered has a linear objective function. An alternative to solving the bi-
narized IP2 with linear programming is to monotonize the formulation and then solve it in integers using a
minimum cost network flow algorithm. To see that, consider the formulation of a binarized and monot-
onized IP2 on the set of inequalities identified by the pairs of variables in each inequality as E1 [ E2 (with 0
lower bounds, else apply a translation):

ðbinarized IP2Þ Min
Xn

j¼1
wjxj þ

X
eijzij

subject to: xi � xj 6 cij for ði; jÞ 2 E1;

xi � xj 6 cij þ zij for ði; jÞ 2 E2;

06 xj 6 uj; j ¼ 1; . . . ; n;
zij P 0 integer; i ¼ 1; . . . ;m2;
xj integer; j ¼ 1; . . . ; n:

Let yij be the dual variables corresponding to the set of structural constraints, and ai the dual variables for
the upper bound constraints. The dual problem is

ðDualÞ �Min
X

ij2E1[E2

cijyij þ
X

uiai

subject to: �
X
j

yij þ
X
j

yji þ ai 6wi;

yij P 0; ði; jÞ 2 E1;

eij P yij P 0; ði; jÞ 2 E2;

ai P 0; i ¼ 1; . . . ; n:

This (Dual) is a minimum cost flow problem on a certain network. The network has n nodes – one per
constraint – and a dummy node, r, serving as a root. ai is the flow from the root to node i. The inflow to
node i exceeds the outflow by at most wi. This quantity is assigned as capacity to arcs going from node i to
the root. The costs of these arcs are ui. The costs of all other arcs not adjacent to root are cij. Once the
minimum cost network flow problem is solved we generate the values of xi as the ‘‘potential’’ of node i by
solving the shortest path problem along the basic arcs tree.
More specifically, let y� be the optimal flow. The residual graph Gðy�Þ is connected as there must be at

least one arc in the residual graph for each ði; jÞ 2 A.
For each arc ði; jÞ 2 Gðy�Þ such that ði; jÞ 2 A, assign to it the distance cij. Otherwise assign it to the

distance �cij.
Now find the shortest path distances from node 1 to node i in Gðy�Þ, dðiÞ. Set xi ¼ �dðiÞ and for

ði; jÞ 2 E2 set zij ¼ dðiÞ � dðjÞ � cij. This solution is the optimal solution to binarized IP2. The complexity of
this procedure is OðmnÞ using Bellman–Ford algorithm. This complexity is dominated by the run time
required to solve the minimum cost network flow, (Dual), T1ðn;mÞ.

4.3. Solving a binarized monotone IP2 with convex objective function

Specialized algorithms were developed for the convex binarized montone IP2 problem by Ahuja et al. The
algorithm in Ahuja et al. (1999a) applies the binarizing technique described here in combination with scaling
and a so-called proximity theorem. The complexity of that algorithm is logU calls to a minimum cut
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procedure on a graph of size independent of U ; T ðn2; n2mÞ. In Ahuja et al. (1999b) the algorithm is based on
the successive approximations algorithm of Goldberg and Tarjan (1990) with complexity Oðmn log n log nUÞ.
If the constants cij are powers of 2 then the run time of the algorithm in Ahuja et al. (1999a) is improved

to OðlogU 	 T ðn;mÞÞ. When cij are all 0 and eijð Þ are linear functions then the binarized monotone IP2 is
solved in time OðT ðn;mÞÞ (Hochbaum, 2001).

4.4. Additional class of problems

Another type of specialized IP2 formulation which is not binarized, yet can be solved more efficiently
than the general case of IP2, is a monotone formulation involving constraints of the type aixi � xj 6 zij.
These constraints are the dual of generalized circulation and can be solved in polynomial time that does not
depend on U using a combinatorial algorithm that solves generalized circulation (see Goldberg et al., 1991).

5. A 2-approximation algorithm for minimum satisfiability

Theorem 1.1 part 3 that applies to IP2 problems with D ¼ 0 is a special case that always leads to a 2-
approximation algorithm (Hochbaum et al., 1993). The minimum satisfiability problem discussed here and
the scheduling problem reported in Chudak and Hochbaum (1999) both fall in this category.
In the problem of minimum satisfiability or MINSAT, we are given a CNF satisfiability formula. The

aim is to find an assignment satisfying the smallest number of clauses, or the smallest weight collection of
clauses. The minimum satisfiability – MINSAT – problem was introduced by Kohli et al. (1994) and was
further studied by Marathe and Ravi (1996) who discovered a 2-approximation algorithm to the problem.
The minimum satisfiability – MINSAT – is a special case of IP2. To see that, choose a binary variable yj

for each clause Cj and xi for each literal. Let SþðjÞ be the set of variables that appear unnegated and S�ðjÞ
those that are negated in clause Cj. The following formulation of MINSAT is a restricted IP2:

ðMINSATÞ Min
Xn

j¼1
wjyj

subject to: yj P xi for i 2 SþðjÞ for clause Cj;

yj P 1� xi for i 2 S�ðjÞ for clause Cj;

xi; yj binary for all i; j:

Note that the formulation is valid only for wj P 0, as these coefficients force yj to 0 when a clause is not
satisfied. It is hence not possible to use negative coefficients in this formulation to represent the maximum
satisfiability problem.
Observing that a problem can be formulated as an IP2 with D ¼ 0 immediately implies the 2-approxi-

mation algorithm of Hochbaum et al. (1993): For such IP2 that has a feasible solution, a feasible rounding
always exists (Hochbaum et al., 1993, Lemma 5.1). It was also shown in Hochbaum (1997) that the bi-
narized IP2 with D ¼ 0 is equivalent to the vertex cover problem. This implies an approximation preserving
reduction; a proof that all these problems are MAX-SNP-hard, and evidence that obtaining a better than 2-
approximation would be challenging (Hochbaum, 1997, Section 3.8.3).
Notice that a similar formulation can be used to verify the 2-approximability of maximum satisfiability in

disjunctive normal form.
As for the complexity of the approximation algorithm, it requires to solve a minimum cut problem on a

graph with Oðmþ nÞ nodes and OðmnÞ edges (or rather mn can be replaced by the total number of oc-
currences of variables in clauses, or sum of clause sizes,

P
jCjjÞ. Thus the running time is OðT ðm; nmÞÞ.
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Fig. 4 illustrates the two types of inequalities represented in the simplified network for binary IP2
(Section 3.7). The two horizontal arcs satisfy the inequality yj P xi, whereas the two diagonal ones ensure
the feasibility of the inequality yj P 1� xi.

6. A 2-approximation algorithm for feasible cut

The feasible cut problem was introduced by Yu and Cheriyan (1995). In this problem we are given
an undirected graph G ¼ ðV ;EÞ with nonnegative edge weights, cij; k pairs of ‘‘commodities’’ vertices
fs1; t1; . . . ; sk; tkg and a specified node v�. The problem is to find a partition of V ; ðS; �SSÞ, so that v� 2 S
and so that for every commodity pair s‘; t‘ has at most one node in S, and such that the cost of the cut
CðS; �SSÞ ¼

P
i2S;j2�SS cij is minimum. Yu and Cheriyan proved that the problem is NP-hard and gave a

2-approximation algorithm. Their algorithm requires to solve a linear program that, as we show here,
has optimal solution consisting of half integrals. We also prove that it is possible to substitute the
linear programming algorithm by a combinatorial minimum flow algorithm thus reducing the com-
plexity.
Our treatment of the feasible cut problem slightly generalizes the problem. It is applicable to a directed

version of the problem, to a version in which the nodes in the source set can carry any weights, and the
commodity sets are not restricted to be pairs. In this generalized feasible cut problem the input is a directed
graph G ¼ ðV ;AÞ with k commodity sets of nodes T1; . . . ; Tk where jT‘jP 2 for ‘ ¼ 1; . . . ; k.
The generalized feasible cut problem is to find a partition of the set of nodes V in a (directed) edge

weighted graph G ¼ ðV ;AÞ; ðS; �SSÞ, so that v� 2 S and so that every commodity set, T‘, has at most one node
in S, and the cost of the cut CðS; �SSÞ plus the cost of the nodes in the source set is minimum. The undirected
version is formulated as a directed one by replacing each edge fi; jg by a pair of arcs ði; jÞ and ðj; iÞ of equal
cost cij ¼ cji. Let xi ¼ 1 if i 2 S and 0 otherwise:

ðFeas-CutÞ Min
X
ði;jÞ2A

cijzij þ
X
j2V

wjxj

subject to: xi � xj 6 zij; ði; jÞ 2 A;

xp‘ þ xq‘ 6 1 for all pairs p‘; q‘ 2 T‘ for ‘ ¼ 1; . . . ; k;
xv� ¼ 1;
xi; zj binary for all i; j:

To see that the formulation is valid, observe that for an optimal solution x� the set S ¼ fj : x�j ¼ 1g forms
the desired cut. Note that S 6¼ V as required since all vertices in a commodity set but one must assume the x
value 0. The network in which a minimum cut gives the optimal solution is illustrated with a basic gadget in

Fig. 4. MINSAT.
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Fig. 5. This is the simplified network for binary problems as described in Section 3.7, thus a node xþj ðx�j Þ is
in the source set of the minimum cut if and only if its optimal value is 1 (0). In the figure, each inequality in
the first set of inequalities corresponds to the two horizontal arcs, and each inequality in the second set
corresponds to the diagonal arcs.
After deriving the half integral optimal solution x̂x; ẑz we pick a feasible solution to guide the rounding.

This solution guides the rounding in the sense that every fractional valued variable is rounded to the
corresponding integer value in the feasible solution. The guide solution is ~xxv� ¼ 1 and for all
v 2 V n fv�g;~xxv ¼ 0. ~zzij ¼ 1 8ði; jÞ 2 A. With this feasible guide solution the values of ẑz that are 1

2
are all

rounded up to 1 and the values of x̂x that are 1
2
are rounded down to 0. Denote this feasible rounded solution

by x�; z� and the optimal solution value by OPT. This rounded solution is 2-approximate:X
cijz�ij þ

X
wjx�j 6 2 	

X
cijẑzij þ

X
wjx̂xj 6 2 	OPT:

As for the complexity of solving the problem, it is that of finding a minimum cut on a network with
OðnÞ nodes and OðMÞ arcs for M ¼ jAj þ

Pk jT‘j
2

	 

, T ðn;MÞ. If the problem is to choose among all

nodes v� the one for which the value of the feasible cut is minimum, this can be solved in the same
complexity as a single maximum flow problem in OðMn log n2

MÞ using the algorithm of Hao and Orlin
(1994).

7. A 2-approximation algorithm for a complement of maximum clique

The maximum clique problem is a well-known optimization problem that is notoriously hard to ap-
proximate as shown by H�aastad (1996). The problem is to find in a graph the largest set of nodes that forms
a clique – a complete graph.
An equivalent statement of the clique problem is to find the complete subgraph which maximizes the

number (or more generally, sum of weights) of the edges in the subgraph. When the weight of each edge is 1,
then there is a clique of size k if and only if there is a clique on k

2

	 

edges. The inapproximability result for

the node version extends trivially to this edge version as well.
The complement of this edge variant of the maximum clique problem is to find a minimum weight

collection of edges to delete so the remaining subgraph induced on the nonisolated nodes is a
clique.
Let xj be a variable that is 1 if node j is in the clique, and 0 otherwise. Let zij be 1 if edge ði; jÞ 2 E is

deleted. The formulation has two sets of constraints. The first set guarantees that if both endpoints of an

Fig. 5. Feasible cut.
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edge are not in the clique then the edge must be deleted. The second set guarantees that each pair of nodes
that are in the clique must have an edge between them:

ðCliqueÞ Min
X
ði;jÞ2E

cijzij

subject to: 1� xi 6 zij for ði; jÞ 2 E;

1� xj 6 zij for ði; jÞ 2 E;

xi þ xj 6 1 for ði; jÞ 62 E;

xi; zij binary for all i; j:

With this formulation a 2-approximation follows immediately as the formulation has at most two
variables per inequality (or equivalently, D ¼ 0). The gadget and network for solving the monotonized
clique problem are given in detail in Hochbaum (1997). Also several variants of the clique problem and
related variants of the maximum biclique problem are shown in Hochbaum (1997) to have 2-approximation
algorithms using the technique of monotonizing and binarizing.

8. The generalized independent set and generalized vertex cover problems: Forestry and locations

The Generalized Independent Set problem is a generalization of the well known independent set problem.
In the independent set problem we seek a set of nodes of maximum total weight so that no two are adjacent.
In the Generalized Independent Set problem it is permitted to have adjacent nodes in the set, but at a penalty
that may be positive or negative. The independent set problem is a special case of Generalized Independent
Set where the penalties are infinite. This problem was introduced by Hochbaum and Pathria (1997) as a
model of two forest harvesting optimization problems. The first problem considered assigns benefit Hi for
harvesting cell i, and penalties for harvesting adjacent cells, Cij; the second problem considered assigns
benefit Hi for harvesting cell i, a benefit Ui for maintaining old growth in cell i and a benefit Bij for har-
vesting exactly one of two adjacent cells. The objective is to identify the set of cells to harvest in order to
maximize the net benefits.

Problem 1. Select a subset of the vertices S � V that maximizes the difference between the weight of the
vertices in S and the penalty of those edges that have both endpoints in S, that is, the objective is to
maximize the quantity, S � V that maximizes the quantity,X

i2S
Hi �

X
fi;jg2E:i;j2S

Cij:

Problem 2. Select a subset of the vertices S � V that maximizes overall benefit; that is, the objective is to
maximize the quantity,X

v2S
Hv þ

X
v 62S

Uv þ
X

e2ðS;�SSÞ
Be:

Although not immediately apparent, these problems were shown in Hochbaum and Pathria (1997) to be
equivalent to the Generalized Independent Set problem on a graph G ¼ ðV ;EÞ with node weights and edge
weights.
Another special case of Generalized Independent Set problem is the location of postal services problem

(Ball, 1992). Each potential location of the service has a utility value associated with it. The value, however,
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is diminished when several facilities that are close compete for customers. Following the principle of in-
clusion–exclusion, the second-order approximation of that loss is represented in pairwise interaction cost
for every pair of potential facilities.
The postal service problem is defined on a complete graph G ¼ ðV ;EÞ where the pairwise interaction

cost, cij, is assigned to every respective edge ði; jÞ. The formulation of the Generalized Independent Set
problem that models all these problems is

ðGen-Ind-SetÞ Max
X
j2V

wjxj �
X
ði;jÞ2E

cijzij

subject to: xi þ xj � zij 6 1; ði; jÞ 2 E;

xi; zij binary for all i; j:

Since (Gen-Ind-Set) has the 2var structure, half integral solutions are immediately available by solving
the appropriate minimum cut problem. Furthermore, when the underlying graph for Generalized In-
dependent Set is bipartite then the problem was shown to be monotone and solvable in polynomial time
(Hochbaum and Pathria, 1997). (In a bipartite graph it is possible to replace all variables in one side of
the bipartition by their negation variable. This renders the constraints of Generalized Independent Set
monotone.)
The Generalized Vertex Cover problem is a complement of the Generalized Independent Set problem.

Unlike the vertex cover problem, the Generalized Vertex Cover problem is permitted to not cover some
edges with vertices, but there is a nonnegative penalty for the uncovered edges:

ðGen-VCÞ Min
X
j2V

wjxj þ
X
ði;jÞ2E

cijzij

subject to: xi þ xj P 1� zij; ði; jÞ 2 E;

xi; zij binary for all i; j:

The Generalized Vertex Cover is 2-approximable since it retains the same property as vertex cover in that
a fractional half integral solution can always be rounded up while maintaining feasibility, Hochbaum
(1982). On bipartite graphs the Generalized Vertex Cover is solved in polynomial time as a monotone
problem.

9. Easily detectable polynomial time solvability: Cell selection and image segmentation

It is trivial to identify whether an IP2 problem is monotone and thus polynomial time solvable. We
demonstrate this recognition for two examples.
Consider a problem of selecting cells in a region where the selection of each cell has a benefit or cost

associated with it. There is a penalty for having two adjacent cells that have different statuses – namely, one
that is selected and an adjacent one that is not selected. The aim is to minimize the net total cell selection
cost and penalty costs. When the penalty costs are fairly uniform, the solution would tend to be a subregion
with as small a boundary as possible among regions with equivalent net benefit.
We let the cells of the region correspond to the set of vertices of a graph, V, and two vertices i and j are

adjacent, ði; jÞ 2 E, if and only if the corresponding two cells are adjacent. Let the cost of having two
adjacent cells, one selected and one not, be cij. Let wi be the cost/benefit of selecting cell i where a benefit is
interpreted as a negative cost. (The problem is not interesting if all wi are nonnegative and there is no
benefit associated with selecting any cell. The trivial optimum in that case is the empty set.) The problem’s
formulation is a monotone integer program:
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ðCell SelectionÞ Min
X
j2V

wjxj þ
X
ði;jÞ2E

cijz
ð1Þ
ij þ

X
ði;jÞ2E

cijz
ð2Þ
ij

subject to: xi � xj 6 zð1Þij ; ði; jÞ 2 E;

xj � xi 6 zð2Þij ; ði; jÞ 2 E;

xi; z
ð1Þ
ij ; z

ð2Þ
ij binary for all i; j:

The formulation is valid since at most one of the variables zð1Þij ; z
ð2Þ
ij can be equal to 1 in an optimal solution.

Since the formulation is monotone we conclude immediately that the problem is solvable in polynomial
time in integers and that the solution can be derived by applying a minimum cut procedure on an associated
graph.
The minimum cell selection is a special case of a problem called image segmentation where the variables

are integer rather than binary. In the image segmentation problem an image is transmitted and degraded by
noise. The goal is to reset the values of the colors to the pixels so as to minimize the penalty for the de-
viation from the observed colors, and furthermore, so that the discontinuity in terms of separation of colors
between adjacent pixels is as small as possible.
Using the technique established here the image segmentation problem was recognized as polynomial

time solvable (Hochbaum, 2001). Representing the image segmentation problem as a graph problem we let
the pixels be nodes in a graph and the pairwise neighborhood relation be indicated by edges between
neighboring pixels. Each pairwise adjacency relation fi; jg is replaced by a pair of two opposing arcs ði; jÞ
and ðj; iÞ each carrying a capacity representing the penalty function for the case that the color of j is greater
than the color of i and vice versa. The set of directed arcs representing the adjacency (or neighborhood)
relation is denoted by A. We denote the set of neighbors of i, or those nodes that have pairwise relation with
i, by NðiÞ. Thus the problem is defined on a graph G ¼ ðV ;AÞ.
Let each node j have a value gj associated with it – the observed color. The problem is to assign an

integer value xj to each node j so as to minimize the penalty function.
Let the K color shades be a set of ordered valuesL ¼ fq1; q2; . . . ; qKg. Denote the assignment of a color

qp to pixel j by setting the variable xj ¼ p. Each pixel j is permitted to be assigned any color in a specified
range fq‘; . . . ; qujg. For Gð Þ the deviation cost function and F ð Þ the separation cost function the formu-
lation of the image segmentation problem (IS) is

ðISÞ Min
X
j2V

Gjðgj; xjÞ þ
X
ði;jÞ2A

FijðzijÞ

subject to: xi � xj 6 zij for ði; jÞ 2 A;

uj P xj P ‘j; j ¼ 1; . . . ; n;
zij P 0; ði; jÞ 2 A:

In Hochbaum (2001) we devised a particularly efficient algorithm for the (IS) problem with convex
deviation cost and linear separation cost with complexity OðT ðn;mÞÞ. The problem is also polynomial time
solvable when the deviation costs are arbitrary nonlinear functions and the separation costs are convex (see
the main Theorem 1.1 part 1 with U ¼ K).

10. Half integrality of sparsest cut

Shahrokhi and Matula (1990) introduced the sparsest cut problem and proved it to be NP hard. The
problem is defined on an undirected graph with commodity pairs. Each commodity has demand associated
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with it. The objective is to find a cut ðS; �SSÞ minimizing the ratio of the cut weight to the sum of demands of
commodities separated by the cut.
We address here the problem on either undirected or directed graphs. Denote the capacity of a cut ðS; �SSÞ

by CðS; �SSÞ, and the demand of commodity set T‘ by d‘. Let IðSÞ indicate the set of commodities separated by
S, i.e., IðSÞ ¼ f‘ : jS \ T‘j ¼ 1g. The sparsity ratio of the set S; qðSÞ, is the ratio of the cut capacity to the
total demand separated by this cut:

qðSÞ ¼ CðS; �SSÞP
‘2IðSÞ d‘

:

The problem is to find the set S; ;  S  V for which qðSÞ is minimum.
In formulating the (generalized) sparsest cut problem it is necessary to ensure that the set S is not empty.

To that end we ‘‘guess’’ a source node s 2 S and solve the problem once for each guess:

ðSparsest-CutÞ Min

P
ði;jÞ2A cijzijP
j2T wjxj

subject to: xi � xj 6 zij ði; jÞ 2 A;

xp‘ þ xq‘ 6 1 for all p‘; q‘ 2 T‘ and ‘ ¼ 1; . . . ; k;
xs ¼ 1;
xi; zj binary for all i; j:

The set of constraints here is identical to that of the node weighted feasible cut problem where the weight
of the nodes is associated with all the commodity sets the node belongs to. The objective function is a ratio,
but this poses little technical difficulty; there is a well known technique for searching for the minimum ratio
value k� by searching over parameter values of k solving:

Min
X
ði;jÞ2A

cijzij �
X
j2T

kwjxj:

For each value of k the problem is solved in half integers. The value of this minimum is then compared to 0
and k is updated up or down accordingly. For more details on this technique see Chapter 9 Section 13 in
Lawler’s book (1976). Each call for a solution for a certain k is an instance of the commodity weighted
feasible cut problem. That in turn can be solved by a minimum cut algorithm. Gallo et al. (1989) devised an
algorithm that solves parametric maximum flow problem in the complexity of a single maximum flow.
Their algorithm is directly applicable here. Thus solving the problem in half integers is equivalent to solving
one maximum flow (or rather minimum cut) problem.
At the end of the optimization procedure on the monotonized system a half integral super-optimal

solution for the minimum ratio problem has been identified. Note that the rounding done for feasible cut
will not deliver here a 2-approximate solution, as �kwj are negative.

11. Minimum generalized 2 satisfiability

A generalized satisfiability problem is one in which the clauses do not necessarily appear in either con-
junctive normal form (CNF) or disjunctive normal form (DNF). Rather, any boolean function is permitted.
Problems of maximizing or minimizing the weight of satisfied generalized clauses cannot be treated by 2-SAT
expressions in conjunctive or disjunctive normal form. That is because for a generalized clause to be satisfied,
the entire set of clauses representing it in CNF must be satisfied. But problems of maximum or minimum
satisfiability do not condition the satisfiability of one clause on the satisfying of other clauses.
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There are 16 possible boolean functions for each generalized 2-satisfiability clause. These 16 such
generalized clauses we call genclauses. A list of the genclauses based on the variables a and b is given in
Table 1.
Hochbaum and Pathria (2000) discussed approximation algorithms to MAX GEN2SAT and MIN

GEN2SAT where the weight of each genclause is nonnegative. They proved that all MAX GEN2SAT that
contain genclauses of types 0, 1-A and 1-B are approximable within a factor of ða� �Þ for any � > 0,
where a > 0:87856. If the genclauses include also type 2 clauses then the approximation factor is ðb� �Þ
for any � > 0, where b > 0:79607. These results are generated based on the semidefinite programming
technique of Goemans and Williamson for the maximum cut and related problem (Goemans and Wil-
liamson, 1995).
Hochbaum and Pathria (2000) observed that allMAX GEN2SAT andMIN GEN2SAT problems can be

formulated as IP2 in binary variables and thus have a superoptimal half integral solution that can be found
in strongly polynomial time. These formulations are characterized in that each constraint corresponding to
a clause has a z variable associated with it, and the objective is to optimize the weighted sum of the z
variables.
While MAX GEN2SAT problems have good approximation bounds, not every MIN GEN2SAT

problem does. In fact, the problems discussed in the next section are special cases of MIN GEN2SAT and
Oðlog nÞ is the best approximation bound known.
Hochbaum and Pathria (2000) characterized the type of clauses and clause combinations in a MIN

GEN2SAT expression that lead to a problem that is either polynomial, or 2-approximable. In the fol-
lowing summary of results we refer to rounding of the x-variables. The z-variables are always rounded
up.
1. Any mix of monotone constraints retains the polynomial time solvability of the problem without

regard to the objective function coefficients. Thus, any combination of genclauses involving a subset of the
types: fa; �aa; a! b; a > b; a < b; a _ bg is monotone and polynomial time solvable.
For MAX GEN2SAT formulated in the variable y (negation), any mix of the genclauses

fa; �aa; a # b; a! b; a bg is solvable in polynomial time. AnyMAX GEN2SAT problem formulated in the
variables x on any mix of genclauses in fa; �aa; ab; a! b; a bg is solvable in polynomial time.

Table 1

List of boolean functions on two variables (i.e., genclauses)

Type Label Symbolic representation Adopted name(s) Conjunctive normal form Disjunctive normal form

0 1 1 True I ab _ �aab _ a�bb _ �aa�bb
2 0 False ða _ bÞð�aa _ bÞða _ �bbÞð�aa _ �bbÞ ;

1-A 3 b Negation, inversion ða _ �bbÞð�aa _ �bbÞ a�bb _ �aa�bb

4 �aa Negation, inversion ð�aa _ bÞð�aa _ �bbÞ �aab _ �aa�bb
5 a � b Equivalence ð�aa _ bÞða _ �bbÞ ab _ �aa�bb
6 a! b Exclusive-or ða _ bÞð�aa _ �bbÞ �aab _ a�bb
7 a Identity, assertion ða _ bÞða _ �bbÞ ab _ a�bb
8 b Identity, assertion ða _ bÞð�aa _ bÞ ab _ �aab

1-B 9 ajb Nand ð�aa _ �bbÞ �aab _ a�bb _ �aa�bb
10 a b If, implied by ða _ �bbÞ ab _ a�bb _ �aa�bb
11 a! b Only if, implies ð�aa _ bÞ ab _ �aab _ �aa�bb
12 a _ b Or, disjunction ða _ bÞ ab _ �aab _ a�bb

2 13 a # b Nor ð�aa _ bÞða _ �bbÞð�aa _ �bbÞ �aa�bb
14 a > b Inhibition, but-not ða _ bÞða _ �bbÞð�aa _ �bbÞ a�bb
15 a < b Inhibition, but-not ða _ bÞð�aa _ bÞð�aa _ �bbÞ �aab
16 ab And, conjunction ða _ bÞð�aa _ bÞða _ �bbÞ ab
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2. In any combination of genclauses involving a subset of the types: fabg and fa; �aa; a! b; a >
b; a < b; a! b; b! a; a _ b; ajbg, the x-variables in the half integral solution can always be rounded down
while maintaining feasibility and permitting the z-variables to be rounded up. Such genclause mix is thus 2-
approximable.
3. In any combination of genclauses involving a subset of the types: fa # bg and fa; �aa; a! b; a >

b; a < b; a! b; b! a; a _ b; ajbg, the half integral solution can always be rounded up while maintaining
feasibility. Such genclause mix is thus 2-approximable.
4. In any combination of genclauses involving a subset of the types: fa; �aa; a! b; a b; ajbg and

fa! b; a > b; a < b; a _ bg, the x-variables can be rounded up or down to a 2-approximate solution. The
variables in a! b; a > b; a < b must all be rounded consistently. (Namely, it is not permitted to round a
subset of the variables that appear in one of these clauses up while another subset is rounded down.)
Fig. 6 illustrates the classification of genclauses according to the rounding rule for a feasible solution.

This classification leaves out the minimum satisfiability of 2CNF � as the only ‘‘pure clause’’ formulation
that is neither polynomial nor 2-approximable.

Theorem 11.1. Any MIN GEN2SAT expression that does not include a � b and both a # b and ab is 2-ap-
proximable.

This framework can easily address problems of unsatisfiability. The problems in the next section are
presented as unsatisfiability problems. Such problems are reducible to satisfiability problems on other type
of clauses: Each clause is replaced by its complement clause and the resulting problem is solved as MIN
GEN2SAT. For instance, the 2CNF � problem that forms Bipartization is in fact a 2CNF! problem
(placing all variables in positive form). Replacing unsatisfiability of 2CNF! by the complement clauses gives
a 2CNF � expression which is the only boolean function that cannot be 2-approximated with our technique.

12. Half integrality of minimum 2-unsatisfiability, minimum unsatisfiability for CNF � and edge deletion

We show here several IP2 problems that fit in the framework ofMIN GEN2SAT and are in fact the most
difficult instances in this framework.
Given a 2-CNF formula with clauses of the type ðxi _ xjÞ where either literal may appear negated. Each

clause has a weight associated with it. Consider the problem of identifying the smallest weight collection of

Fig. 6. Classification of genclauses for rounding rule and monotonicity.
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clauses to remove so that the remaining formula is satisfiable. The problem is NP-hard as it generalizes e.g.,
the problems describe next, of edge deletion that were proved NP-hard by Klein et al. (1995) and Yan-
nakakis (1981). We formulate the problem with binary variables zij indicating whether clause ðxi _ xjÞ is to
be deleted or not. The variable xj ð�xxjÞ is equal to 1 if the corresponding literal is true (false, resp.). We set
the formulation for each guess of the type xs ¼ 1, with 2n possible guesses for n boolean variables and their
negation. The purpose of the guess is to eliminate trivial solutions that are entirely 1

2
s:

ðMin-unsatÞ Min
X
ði;jÞ2A

cijzij

subject to: xi þ xj P 1� zij for clause ðxi _ xjÞ;
xi þ xj 6 1þ zij for clause ð�xxi _ �xxjÞ;
xi � xj 6 zij for clause ð�xxi _ xjÞ;
xs ¼ 1;
xi; zj binary for all i; j:

In view of the discussion in Section 11 the approximability and complexity of the problem Min-unsat
depend on the types of clauses involved. First the Min-unsat problem is to be cast as minimum satisfiability
MIN GEN2SAT by taking the complements of the clauses: Clause ða _ bÞ is the complement of nor, a # b.
Clauses ða _ �bbÞ and ð�aa _ bÞ are the complement of a > b and a < b. Clause ð�aa _ �bbÞ is the complement of ab.
Therefore, Min-unsat with ‘‘mixed’’ clauses ða _ �bbÞ and ð�aa _ bÞ is a polynomial problem; with positive
clauses – involving variables in positive form ða _ bÞ – the problem is 2-approximable; with clauses con-
taining variables in negative form but without positive clauses, the problem is 2-approximable; finally if
both positive and negative clauses are included then the IP2 formulation gives a half integral solution, but
no 2-approximation.
Yannakakis (1981) established the NP-hardness of several edge deletion problems. One such problem is

to delete a minimum weight collection of edges from a graph so that the remaining graph is bipartite –
‘‘bipartization’’. The following formulation as IP2 provides half integral superoptimal solution in poly-
nomial time. Notice that one node must be on one side of the bipartition, so that there is no need for
repeated guessing.

ðBipartizationÞ Min
X
ði;jÞ2E

cijz6ij þ
X
ði;jÞ2A

cijzP
ij

subject to: xi þ xj 6 1þ z6ij for edge fi; jg 2 E;

xi þ xj P 1� zP
ij for edge fi; jg 2 E;

xs ¼ 1;
xi; zj binary for all i; j:

This formulation is valid since z6ij and z
P
ij cannot both be 1 in an optimal solution. An edge is deleted if

both its endpoints get the value 1, or both get 0. In the remaining graph we have the bipartition with the set
of nodes fj : xj ¼ 1g on one side and fj : xj ¼ 0g on the other. Since the goal is to minimize the weight of
unsatisfied clauses we take again the complement to cast the problem as MIN GEN2SAT. The genclauses
here are exclusive-or clauses the complement of which are the � clauses. These precisely correspond to the
only case of pure genclauses that is not 2-approximable.
Klein et al. (1995) demonstrated how several edge deletion problems can be posed as a 2CNF � with

weighted set of clauses of the form xi � xj where xi; xj are literals. The problem is to find the minimum
weight set of clauses the deletion of which makes the formula satisfiable. The case of bipartization is a
special case where the clauses are of the mixed type xi � �xxj, which makes them exclusive-or clauses (in
positive form) and their complement is � clauses.
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Garg et al. (1996) proposed an Oðlog nÞ approximation algorithm for the minimum unsatisfiability
2CNF � problem. With the following generic formulation for all types of clauses we have an IP2 and hence
a half integral superoptimal solution.

2CNF � Min
X
ði;jÞ2E

cijz6ij þ
X
ði;jÞ2A

cijzP
ij

subject to: xi � xj 6 z6ij for clause xi � xj;

xj � xi6 zP
ij for clause xi � xj;

1� xi � xj 6 z6ij for clause �xxi � xj;

xj � 1þ xi 6 zP
ij for clause �xxi � xj;

xi þ xj 6 z6ij for clause �xxi � �xxj;

� xj þ xi 6 zP
ij for clause �xxi � �xxj;

xs ¼ 1;
xi; zj binary for all i; j:

As above, z6ij and zP
ij cannot both be 1 in an optimal solution. Note that the complement of a � b is

a! b, and the complement of a � �bb is a � b. The first case is polynomial as described in the previous section
and the second one is NP-hard. So 2CNF � problem is polynomial time solvable if it does not include
clauses of the type a � �bb but only a � b or �aa � �bb.
Assuming m clauses and n literals the running time required to find a half integral solution for all the

formulations in this section is T ð2n; 2mÞ.

13. Conclusions

We demonstrate here a unified technique of algebraic manipulation of the constraint matrix of integer
programming formulations for the purpose of obtaining good lower bounds and approximation algo-
rithms. The usefulness of the technique is demonstrated with a wide scope of applications. The success of
this approach implies that it is worthwhile to focus on alternative formulations of problems and other types
of reductions to totally unimodular matrices.
Extensions of the work described can include for instance multi-level reductions of the constraint matrix

into 2var structure. Such approach may result in good constant factor approximations. For instance, if each
reduction level that brings the constraints into 2var structure involves a loss of factor of 2 in the ap-
proximation, then the entire process will result in a factor of 2# levels approximation. This is in fact what is
proposed here for D > 1. Another potential extension is for problems where each z variable appears in up
to k constraints. With the approach described here one can easily get a 2k approximation, but it may be
possible to attain an Oðlog kÞ approximation by using techniques similar to those used by Garg et al. (1996)
for k-multicut, where there are monotone constraints and the z-variables appear each in upto k constraints.
It is intriguing that there are other half integrality results of Garg et al. (1994a) and Garg et al. (1994b)

for multiway directed cuts on edges or nodes (all pairs multicut) and for multicut on trees that we cannot
explain with the framework proposed. These might perhaps be explained by reductions to other types of
totally unimodular matrices. Another possibility is that there exists another 2var formulation that so far we
have failed to identify.
There are other problems for which we know of 2-approximations but not of half integrality. These

include the vertex feedback problem (undirected), the k-center problem and the directed arc feedback set
with an objective to maximize the weight of the remaining arcs in the acyclic graph (see Hochbaum, 1997
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for descriptions of these problems and approximation algorithms). Are half integrality results and reduc-
tions to totally unimodular matrices possible for these problems? At this point the answer to this question
remains open.

A note. This paper is based on the UC Berkeley manuscript ‘‘A framework for half integrality and good
approximations’’ April, 1996. An extended abstract appeared as ‘‘Instant recognition of half integrality and
2-approximation’’, in: Jansen, Rolim (Eds.), Proceedings of APPROX98, Lecture Notes in Computer
Science, vol. 1444, Springer, Berlin, July, 1998, pp. 99–110.
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