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We consider here the integer minimum cost network flow when some of the supplies are fractional. 
In the presence of fractional supplies it is impossible to satisfy the flow balance constraints, creating 
an imbalance. We present here a polynomial time algorithm for minimizing the total cost of flow and 
imbalance penalty. We also show that in the presence of a constraint that bounds the imbalance the 
problem is NP-hard, but efficiently solvable for a fixed number of fractional supplies.
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1. Introduction

We consider here a problem of integer minimum cost network 
flow when some of the supplies and demands are fractional. In 
the presence of fractional supplies it is impossible to satisfy the 
flow balance constraints at the nodes of the graph. The extent to 
which the supplies or demands are violated is called the imbal-
ance. The goal is to minimize the cost of the flow while minimizing 
the imbalance as well. The application motivating our study of this 
problem is the minimization of proportional imbalance of covari-
ates (see e.g. [12,7]). In [7] it is shown that this covariates problem, 
for two covariates, is solved in polynomial time as a feasible inte-
ger flow on a certain network that minimizes the total imbalance 
at the supplies and demands nodes. The proportional imbalance 
problem has the supplies and demands assuming, in general, non-
integral values. Therefore at such non-integral supply nodes the 
flow balance constraints must be violated and create imbalance.

Here we introduce a general problem of a minimum cost inte-
ger flow problem where there is a penalty to the imbalance. The 
goal is to minimize the sum of the total flow costs and the im-
balance penalty. This problem is particularly challenging when the 
supplies and demands may assume non-integral values, yet the 
flows are required to be integers. A further generalization of the 
problem includes a different imbalance penalty for each node. We 
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call this generalized problem the fractional supplies min cost network 
flow problem (FS-MCNF).

The FS-MCNF problem we address can be viewed within the 
framework of “optimally” restoring feasibility. Given a constrained 
optimization problem, questions on modifying constraints or iden-
tifying minimal subset of constraints the removal of which will 
restore feasibility, have been studied extensively, see e.g. [2–4,10]. 
The constraints’ modification models typically address linear pro-
gramming problems for which changes in the right hand sides 
will restore feasibility. One objective function studied is to min-
imize the sum of the changes to the right hand sides, [2,10]. In 
[2] changes to the constraints’ coefficients and additional objective 
functions, such as minimizing the maximum change or deviation 
are also considered. The identification of subsets of constraints to 
remove so that the resulting problem would be feasible, are ad-
dressed in [3,4]. This latter type of problem is considered, not 
only for linear programming, but also for integer programming 
and nonlinear programming. This type of problem however is gen-
erally NP-hard, and is usually solved with heuristic techniques. 
The problem we address here is an integer programming problem 
for which the set of infeasibility-causing constraints is trivial to 
identify: these are the constraints for supply/demand nodes with 
fractional (non-integer) supplies. The method of “restoring feasibil-
ity” is indeed changes to the right hand sides, with an objective 
function that is the original objective plus a weighted sum of the 
modifications (which in our context are “imbalances”). To the best 
of our knowledge, such questions for integer programming with 
fractional right hand sides are addressed here for the first time.
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Our main contribution here is to show that FS-MCNF is solv-
able in polynomial time, whereas the problem variant which seeks 
to minimize the cost of the flow subject to bounded imbalance (or 
bounded imbalance penalty), BI-MCNF, is shown here to be NP-
hard, even if all the penalties are equal to 1. Furthermore, for the 
case when the number of fractional supply nodes is constant we 
devise here a polynomial time algorithm.

To formalize the description of the problems addressed here 
we recall the definition of the minimum cost network flow problem
(MCNF) (see e.g. [1,9]). The input to MCNF is a graph G = (V , A)

with a set of nodes V and a set of arcs A, where each arc (i, j) ∈ A
is associated with a cost ci j , capacity upper bound uij , and capacity 
lower bound li j . Each node i ∈ V has supply b(i) which is inter-
preted as demand if negative, and can be 0. Let xij be the amount 
of flow on arc (i, j) ∈ A. The flow vector x is said to be feasible if 
it satisfies:
(1) Flow balance constraints: For every node k ∈ V , O ut f low(k) −
Inf low(k) = b(k).
(2) Capacity constraints: For each arc (i, j) ∈ A, li j ≤ xij ≤ uij .

The linear programming formulation of the problem is:

(MCNF) min
∑

(i, j)∈A ci jxi j

subject to
∑

(k, j)∈A xkj − ∑
(i,k)∈A xik = b(k), ∀k ∈ V

li j ≤ xij ≤ uij, ∀(i, j) ∈ A.

It is well known that the constraint matrix of MCNF is totally 
unimodular. This means that for integer supplies and integer ca-
pacity bounds, all the basic solutions are integral. The problem 
investigated here has fractional (non-integral) supplies b(i), but 
still requires integer flows. For a node k with non-integer supply 
b(k) it is therefore impossible to meet the respective flow balance 
constraint, since both outflow and inflow are integral and there-
fore the difference O ut f low(k) − Inf low(k) must be integral as 
well. For a flow that satisfies the capacity constraints but does 
not satisfy the flow balance constraints we refer to the quantity 
O ut f low(k) − Inf low(k) − b(k) as the discrepancy at node k. The 
discrepancy can be positive or negative and is referred to as ex-
cess and deficit respectively. The absolute value of the discrepancy 
is called the imbalance at node k. The total imbalance is the sum 
of the imbalances at all nodes. Note that imbalances may be forced 
due to the lack of flow that satisfies the capacity constraints, even 
if supplies are integers.

One problem introduced here, the minimum imbalance MCNF, 
is to find an integer flow that satisfies the capacity constraints and 
minimizes the objective function of MCNF plus the sum of penal-
ties assigned to the imbalances at the nodes. Note that we may 
allow for imbalances also at 0-supply nodes and can also allow 
positive imbalances restricted to only a subset of the nodes. When 
supplies (demands) are fractional, non-integral, there will neces-
sarily be positive imbalances at those nodes. The FS-MCNF problem 
is to minimize the cost of the integer flows plus the weighted im-
balance penalty.

A problem that arises in the study of covariates is the covariates 
minimum imbalance problem, known also as Balance Optimization 
Subset Selection, (BOSS). The problem of BOSS, for two covari-
ates, was shown to be solved as a certain network flow problem 
[11,6,7]. We note that the BOSS problem for 3 or more covariates 
is NP-hard (proved in [11,6,7]) and has a straightforward algorithm 
for a single covariate. In this two covariates imbalance problem the 
supplies are integral and the imbalances are forced due to capacity 
bounds that do not allow a feasible flow solution. In the minimum 
proportional covariates imbalance problem, in addition to the ca-
pacities that may not allow a feasible solution, also the supplies 
are non integral. This proportional covariates imbalance problem, 
was shown to be polynomial time solvable, [7], via a construction 
of a specific network with zero costs for the flow and the only 
560
objective is to minimize the unweighted sum of the imbalances 
at individual nodes. This is a special unweighted case of FS-MCNF

that applies only to a specific (bipartite) network where there are 
no costs for the flow.

Note that in case some of the supplies/demands are fractional, 
then the integer program of finding a minimum cost integer flow 
that satisfies all constraints is infeasible. In this case our two prob-
lems could be considered as finding a modified right hand side 
(referred to as the perturbed right hand side) so that the resulting 
integer program would be feasible. Here we find such perturbed 
right hand side so that the sum of the cost of the flow and the 
weighted penalty of the perturbations will be minimized (a spe-
cial case of FS-MCNF) or find such a perturbed right hand side 
with bounded �1 norm of the perturbation so that the cost of the 
optimal integer flow will be minimized (a special case of BI-MCNF).

Paper overview. In subsection 1.1 we present the covariates pro-
portional imbalance problem that motivated this study. Section 2
provides an integer programming formulation for FS-MCNF, and a 
network flow formulation where a minimum cost (integer) flow 
provides an optimal solution to the problem. Section 3 provides 
the proof that the minimum cost network flow, in the presence 
of non-integer supplies, subject to bounded total imbalance, is NP-
hard. Subsection 3.2 describes a polynomial time algorithm solving 
(BI-MCNF) for a constant number of penalized fractional supplies, 
first for the case where all supplies are integers and then for the 
case where the number of fractional supplies is a constant.

Notation. For every node i, we let �b(i)� be the floor of b(i) and 
{b(i)} = b(i) − �b(i)� be the fractional part of b(i).

1.1. The covariates proportional imbalance problem

Since the covariates proportional imbalance problem is the ma-
jor motivation for studying FS-MCNF, we provide next some back-
ground on this problem. In observational studies, unlike random-
ized experimental studies, the researcher does not have the ability 
to determine treatment assignment and instead is only able to ob-
serve some units that were treated and some that were not. The 
observed treated and untreated units are called the treatment sam-
ple and control sample, respectively. In most applications, the treat-
ment sample is smaller than the control sample. Estimating the 
treatment effect in an observational study is generally more diffi-
cult than in an experimental study, where the treatment sample 
and control sample are both drawn, randomly, from some popula-
tion. A fundamental problem related to the choice of control sam-
ples that are comparable in terms of covariates to the treatment 
sample is called the minimum imbalance problem (min-imbalance).

The covariates are the features of the units that take on several 
labels for each covariate. The class of units with the same label 
for a given covariate is called the level. To formalize the problem 
let P be the number of covariates to be balanced. For the min-
imbalance the goal is to find a selection of n control samples that 
matches as closely as possible the sizes of the levels in the treat-
ment sample. To introduce the min-imbalance problem, consider 
first the case of a single covariate, P = 1, that partitions the treat-
ment and control samples into, say, k levels each. Let the sizes of 
the treatment and control samples be n and n′ , respectively, and 
let the sizes of the levels in the treatment sample be �1, . . . , �k
and the sizes of the levels in the control sample be �′

1, . . . , �′
k . The 

min-imbalance problem is to select a subset of the control sample, 
called the selection and denoted by S , such that the proportions of 
units at each level in the treatment sample and the selection are 
as close as possible. When the size of the selection, |S|, is required 
to be the same as the size of the treatment sample n (assuming 
that n ≤ n′), the objective in the min-imbalance problem is given 
in terms of the numbers of units at each level instead of the pro-
portion.
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The solution to the single covariate min-imbalance problem 
with a selection of size n is trivial: for any level i, if �i ≤ �′

i , then 
the optimal selection takes any �i control units from level i; oth-
erwise, the optimal selection takes all �′

i control units from level 
i. After this, take enough remaining control units from any level 
to reach a selection size of n. Let �′′

i denote the number of con-
trol units in the selection at level i. Then the value of the objective 
function corresponding to this selection is 

∑k
i=1

∣∣�i − �′′
i

∣∣, which is 
the optimal value for the single covariate min-imbalance problem.

For the case of multiple covariates, covariate p partitions both 
treatment and control samples into kp levels each. Denote the 
sizes of the levels in the treatment sample under covariate p by 
�p,1, �p,2, . . . , �p,kp , and let the partition of the control sample un-
der covariate p be L′

p,1, L
′
p,2, . . . , L

′
p,kp

of sizes �′
p,1, �

′
p,2, . . . , �

′
p,kp

. 
The min-imbalance problem is to find a selection S of size n, which 
is a subset of the control sample, that minimizes the imbalance:

min
P∑

p=1

kp∑
i=1

∣∣∣∣∣∣S ∩ L′
p,i

∣∣∣ − �p,i

∣∣∣ s.t. |S| = n.

When the selection is required to have size q for q ≤ n′ and q 
=
n, the proportional imbalance problem is defined. Here the min-
imbalance objective looks at the difference in proportion of units 
selected at each level of each covariate, and the min-proportional 
imbalance problem is,

min
P∑

p=1

kp∑
i=1

∣∣∣∣∣
|S ∩ L′

p,i |
q

− �p,i

n

∣∣∣∣∣ s.t. |S| = q.

In [7] it was shown that for two covariates the min-imbalance 
and the min-proportional imbalance problems are solved in poly-
nomial time. Both problems for three or more covariates are shown 
to be NP-hard. The min-proportional imbalance problem is for-
mulated as a specific minimum cost network flow problem with 
fractional supplies. This network flow problem is a special case of 
seeking integer flows so as to minimize the total imbalance for a 
vector of supplies defined based on the requested proportions.

2. Solving fractional supplies MCNF in polynomial time

In this section, we show how to transform FS-MCNF into an 
integer MCNF problem, and how to derive an optimal solution for
FS-MCNF from the corresponding integer MCNF optimal solution 
in polynomial time.

We first present the mixed-integer programming formulation 
for FS-MCNF.

Let G = (V , A) be a directed network with a cost ci j and ca-
pacity bounds uij and li j associated with every arc (i, j) ∈ A. Each 
node i ∈ V is associated with a number b(i) which indicates its 
supply or demand, and a non-negative number wi which indicates 
the penalty for unit of imbalance of node i. We define the decision 
variables as follows:

xij : the amount of flow on arc (i, j), for (i, j) ∈ A;
di : the deficit on node i, for i ∈ V ;
ei : the excess on node i, for i ∈ V .

Using these decision variables, we present a mixed-integer pro-
gramming formulation for FS-MCNF:

min
∑

(i, j)∈A

ci jxi j +
∑
i∈V

wi · (di + ei) (2.1a)

s.t.
∑

j:(i, j)∈A

xi j −
∑

k:(k,i)∈A

xki + di − ei = b(i) ∀i ∈ V

(2.1b)
561
di, ei ≥ 0 ∀i ∈ V

(2.1c)

li j ≤ xij ≤ uij ∀(i, j) ∈ A

(2.1d)

xij integer ∀(i, j) ∈ A.

(2.1e)

Next, we present an equivalent integer programming formula-
tion of the mixed-integer program (2.1). In order to present our 
equivalent integer programming formulation, we introduce another 
set of decision variables. For each i ∈ V we use an additional de-
cision variable zi , which is an indicator variable. Furthermore, in-
stead of di we will have the decision variable d′

i that is the deficit 
of node i beyond �b(i)� + 1, and instead of ei we will use the de-
cision variable e′

i denoting the excess of node i beyond �b(i)�.
For every node i we introduce a cost coefficient w ′

i that will be 
the coefficient of zi in the objective function of the integer pro-
gram below and we set w ′

i = wi · (2{b(i)} − 1) and zi = 1 would 
mean that node i has a positive deficit. Observe that for all i, we 
have |w ′

i | ≤ wi .
Using these decision variables and constants, we consider the 

following integer programming formulation.

min
∑

(i, j)∈A

ci jxi j +
∑
i∈V

wi · (d′
i + e′

i

) +
∑
i∈V

w ′
i · zi (2.2a)

s.t.
∑

j:(i, j)∈A

xi j −
∑

k:(k,i)∈A

xki + d′
i + zi − e′

i = �b(i)� + 1 ∀i ∈ V

(2.2b)

d′
i, e′

i ≥ 0 ∀i ∈ V

(2.2c)

0 ≤ zi ≤ 1 ∀i ∈ V

(2.2d)

li j ≤ xij ≤ uij ∀(i, j) ∈ A

(2.2e)

xij,d′
i, e′

i, zi integer ∀(i, j) ∈ A and ∀i ∈ V .

(2.2f)

In order to prove that (2.2) is equivalent to (2.1), we denote the 
constant term

C =
∑
i∈V

wi · (1 − {b(i)}).

We will show that if there is an optimal solution for (2.2) of cost 
F , then we can construct a solution to (2.1) of cost C + F in poly-
nomial time, and furthermore if we are given an optimal solution 
for (2.1) of cost F ′ , then we can construct a feasible solution for 
(2.2) of cost F ′ − C . This will show that it suffices to find an opti-
mal solution for (2.2).

Lemma 2.1. Given an optimal solution for (2.2) of cost F , we can con-
struct in polynomial time a solution to (2.1) of cost C + F in polynomial 
time. Our construction is invertible, so if there is a solution of cost C + F
to (2.1), then there is a solution of cost F to (2.2).

Proof. Let (x, d′, e′, z) be the given optimal solution for (2.2), we 
let the same x define the flow variables for our solution of (2.1). 
The other variables are defined so that constraints (2.1b) are satis-
fied and the assertion that for all i if di > 0 then ei = 0. Observe 
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i j

v

(�b(i)� + 1) (�b( j)� + 1)

G

(−∑
i∈V (�b(i)� + 1)

)

(ci j, uij, li j)

(wi,∞,0) (w j,∞,0)

(wi,∞,0)

(w ′
i,1,0)

(w j,∞)

(w ′
j,1,0)

Fig. 1. The schematic transformed standard MCNF network in which supplies are integral and an optimal flow solution is optimal for FS-MCNF.
that there is a unique vector of (d, e) values that satisfies these 
conditions. When we move from (2.2) to (2.1) the right hand side 
of the constraints (2.2b) decreases by 1 − {b(i)}. We will provide 
assignment of values to the decision variables ei , di defined below 
so that the left hand side of these constraints will be decreased by 
the same amount.

If e′
i = 0 and zi = 1, then we let ei = 0 and di = d′

i + {b(i)}. 
This assignment of variables decreases the left hand side of the 
constraint corresponding to i in (2.2b) from its value in (2.2) by 
1 − {b(i)} as required. In the other direction if ei = 0, then we 
let zi = 1, e′

i = 0, and d′
i = di − {b(i)}. Since the flow variables are 

integral and using ei = 0 we conclude that di ≥ {b(i)} so d′
i ≥ 0, 

and using the same arguments as for the other direction we get 
that the constraint corresponding to i in (2.1b) in (2.1) is satisfied 
if it used to hold in (2.2).

Furthermore, if e′
i = zi = 0 then without loss of generality d′

i = 0
as otherwise we could decrease d′

i while increasing zi without 
increasing the objective function value using w ′

i ≤ wi . We let 
ei = 1 − {b(i)} and di = 0 so in particular ei = e′

i + 1 − {b(i)}. 
This assignment of variables decreases the left hand side of the 
constraint corresponding to i in (2.2b) from its value in (2.2) by 
1 − {b(i)} as required.

In the last remaining case assume that e′
i ≥ 1 so we conclude 

that zi = 0 since w ′
i ≥ −wi . We let ei = e′

i + 1 − {b(i)} and di = 0. 
This assignment of variables decreases the left hand side of the 
constraint corresponding to i in (2.2b) from its value in (2.2) by 
1 − {b(i)} as required. In the other direction if ei > 0 (so without 
loss of generality di = 0) and we can assume that ei ≥ 1 − {b(i)}
using the integrality of the flow variables. Then we let zi = 0, e′

i =
ei − 1 + {b(i)}, and d′

i = 0 and using the same arguments we get 
that the constraint corresponding to i in (2.1b) in (2.1) is satisfied 
if it used to hold in (2.2).

It remains to consider the costs of the two solutions. The flow 
x has the same cost 

∑
(i, j)∈A ci j xi j in both problems. We will 

compare the imbalance cost. It suffices to show that the imbal-
ance cost associated with node i in (2.1) that is wi · (di + ei) is ob-
tained from the imbalance cost associated with i in (2.2) that is 
wi · (d′

i + e′
i

) + w ′
i · zi by adding the term wi · (1 − {b(i)})

First assume that zi = 1. Then, without loss of generality using 
|w ′

i | ≤ wi , we assume that e′
i = 0 as otherwise the cost of the so-

lution to (2.2) could be decreased by decreasing zi and e′ by 1. 
i
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Then the imbalance cost associated with node i in (x, d′, e′, z) is 
d′

i · wi + w ′
i . By adding wi · (1 − {b(i)}) and using the definition of 

w ′
i = wi · (2{b(i)} − 1) we get that the total imbalance cost of i is 

(d′
i + {b(i)}) · wi = di · wi as required.

Next, consider the case where zi = 0. Then d′
i = 0 as otherwise 

we could decrease d′
i by 1 and increase zi to 1 without increasing 

the cost of the solution. Then the imbalance cost associated with 
node i in (x, d′, e′, z) is e′

i · wi . By adding wi · (1 − {b(i)}), we get 
that the total imbalance cost of i is (e′

i + 1 −{b(i)}) · wi = ei · wi as 
required. �

We conclude that in order to solve our mixed-integer pro-
gram (2.1) it suffices to solve the integer program (2.2). It could 
be observed that the last integer program is a standard formu-
lation of the min cost network flow problem obtained from the 
input network G by adding one additional node v and adding 
three arcs incident to each node i ∈ V . The first such arc is (v, i)
of infinite capacity and cost per unit of flow wi , the flow along 
this arc corresponds to the value of e′

i . The second such arc is 
(i, v) of infinite capacity and cost per unit of flow of wi , the 
flow along this arc corresponds to the value of d′

i . The last such 
arc is a unit capacity arc of cost w ′

i that is the arc (i, v). Each 
of these 3|V | additional arcs has a lower bound of zero on the 
flow along the arc. In the resulting instance, the new node v
has supply of − 

∑
i∈V (�b(i)� + 1) and node i ∈ V has supply of 

�b(i)� + 1. Fig. 1 is a schematic illustration of how to convert an 
FS-MCNF network G into a standard MCNF network which has 
O (|V |) nodes and O (|A|) arcs. An efficient strongly polynomial 
algorithm for a MCNF on n nodes and m arcs has complexity of 
O (m log n(m +n log n)), see Orlin [9]. Thus, we have established the 
following theorem.

Theorem 2.2. Problem FS-MCNF is solved in polynomial time.

3. Bounded imbalance MCNF

Here, instead of penalizing for imbalance of some nodes as 
we did in the last section, we consider the optimization problem 
resulting from upper bounding the total imbalance of all nodes. 
Namely we will consider the following mixed-integer program.
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min
∑

(i, j)∈A

ci jxi j (3.1a)

s.t.
∑

j:(i, j)∈A

xi j −
∑

k:(k,i)∈A

xki + di − ei = b(i) ∀i ∈ V

(3.1b)∑
i∈V

(di + ei) ≤ B (3.1c)

di, ei ≥ 0 ∀i ∈ V

(3.1d)

0 ≤ xij ≤ uij ∀(i, j) ∈ A

(3.1e)

xij integer ∀(i, j) ∈ A.

(3.1f)

The constraint (3.1c) serves as a complicating constraint and 
it is introduced in this formulation where B is the upper bound 
on the total imbalance of the nodes. Observe that if B = 0, the 
problem is the standard MCNF problem as for all i di = ei = 0 so 
no node has a positive imbalance. We first show that this problem, 
denoted as BI-MCNF is NP-hard. Then we consider special cases 
of this problem that turn out to be polynomial time solvable: in 
the first case all supplies are integer, and in the second one the 
number of non-integral supplies is a constant.

3.1. BI-MCNF is NP-hard

We consider the following NP-hard variant of the subset-sum 
problem [5,8], where the input consists of non-negative integers 
a1, a2, ..., an , a positive target value T (integer) and number k. 
The goal is to check if there exists a subset S of the index set 
{1, 2, ..., n} consisting of exactly k indexes such that 

∑
i∈S ai = T . 

The fact that this is an NP-hard problem is folklore, and a straight-
forward reduction from the subset-sum problem is the following 
one. Given an instance for the subset-sum problem consisting of n
non-negative integers and a target value T , we add n times 0 to 
the list of integers so it now consists of 2n integers and use the 
same target value T , let k = n and conclude that the resulting in-
stance of our variant is a YES instance if and only if the original 
subset-sum instance is a YES instance.

Theorem 3.1. BI-MCNF is NP-hard.

Proof. We present a polynomial reduction from the last variant of 
the subset-sum problem that we denote as P . Consider an input to 
P consisting of non-negative integers a1, a2, ..., an , a positive tar-
get value T (integer) and number k. First, if there is an index i for 
which ai > T , then we can delete it from the instance of P without 
changing the problem as such index cannot belong to a feasible so-
lution of the problem. Thus, without loss of generality we assume 
that the instance satisfies 0 ≤ ai ≤ T for all i. We construct a star 
graph with n leaves (and one root node r) where all arcs are ori-
ented from the root node to the leaves of the star. The capacity of 
every arc is 1, and the supply of the root node is k. The cost of 
the arc from the root to the i-th leaf is −ai . In the decision variant 
of problem BI-MCNF the question would be if there is a solution 
to the problem of cost at most −T . It suffices to show that the 
decision variant of BI-MCNF is NP-complete.

We still need to define the demand of the leaves of the star 
and the budget on the total imbalance. We have the association 
that the i-th leaf is associated with the i-th integer ai in the input 
to P . Our goal is to define a demand b(i) for the i-th leaf satisfy-
ing that if we increase the value of the flow entering the i-th leaf 
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(k) (
−b(i) = − 1− ai

4T
2

)
(−ai,1,0)

Fig. 2. The network of an equivalent BI-MCNF instance of the subset-sum problem.

from 0 to 1 then the imbalance of the i-th leaf is increased by ai
4T . 

So let b(i) = 1− ai
4T

2 , and define the budget of the total imbalance as 
1
4 + ∑

i b(i). This completes the description of the polynomial re-
duction and note that we indeed compute the instance of BI-MCNF

in linear time (Fig. 2).
First, every leaf i has an imbalance of at least b(i) in every 

feasible (integer) solution as 0 ≤ b(i) ≤ 1
2 . Thus, if there is a fea-

sible solution to our instance of BI-MCNF then the root node has 
a zero imbalance so exactly k units of flow leave the root node. 
Consider a feasible solution for the decision variant of BI-MCNF of 
cost at most −T , then it corresponds to k units of flow leaving the 
root node, that use a collection of exactly k arcs leaving the root 
and reaching k leaves. These k leaves are associated with k inte-
gers in the input of P . The set of the k leaves is denoted as S . 
By the bound on the total imbalance we have that 

∑
i∈S

ai
4T ≤ 1

4
so 

∑
i∈S ai ≤ T . By the upper bound on the cost of the solution 

we have that 
∑

i∈S(−ai) ≤ −T so 
∑

i∈S ai ≥ T . We conclude that 
indeed S is a feasible solution to problem P .

In the other direction assume that problem P has a feasible 
solution S . Then, we define an integer flow where the flow along 
the arc from the root node to the i-th leaf is 1 if i ∈ S and it is 
zero otherwise. Then, since |S| = k there are exactly k units of flow 
leaving the root so the root node has no imbalance. The leaf node 
i has imbalance b(i) if i /∈ S and imbalance 1 − b(i) if i ∈ S . Thus, 
the total imbalance is 

∑
i∈S (1 − b(i)) + ∑

i /∈S b(i) = ∑
i∈V b(i) +∑

i∈S
ai
4T = 1

4 + ∑
i b(i). Its cost is 

∑
i∈S (−ai) = −T , so indeed this 

is a YES instance for the decision variant of BI-MCNF. �
3.2. Polynomial solvable cases of BI-MCNF

Our goal is to show that if there are only κ fractional values 
in the vector of node supplies (and the other |V | − κ values of 
node supplies are integer), then there exists an algorithm with 
time complexity 2κ · T where the value of T is upper bounded 
by a polynomial in |V | and |E|. In order to establish this result we 
will establish the existence of such algorithm for the case κ = 0, 
and then show how to use this algorithm together with a guessing 
step in order to establish the algorithm for general κ .

3.2.1. The case κ = 0
When κ = 0, which means b(i) is integer for all i ∈ V , the BI-

MCNF problem is in fact a standard MCNF problem. Observe that 
by summing up both hand sides of constraints (3.1b) over i ∈ V , 
we get 

∑
i∈V di − ∑

i∈V ei = ∑
i∈V b(i). Without loss of general-

ity, we can assume that 
∑

i∈V b(i) = 0, in which case 
∑

i∈V di =∑
i∈V ei . Therefore, bounding the total imbalance 

∑
i∈V (di + ei) by 

B is equivalent to bounding the total deficit or total excess by 
�B/2�. So the integral BI-MCNF problem on network G = (V , A)

is equivalent to the standard MCNF problem on network G ′ =
(V ∪ {s, t}, A′ ∪ {(t, s)}) shown in Fig. 3 where A′ results from A
by adding two arcs (s, i) and (i, t) of zero cost and infinite ca-
pacity for every node i ∈ V . For each i ∈ V , arc (s, i) represents 
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i j

s t

(b(i)) (b( j))

G

(0) (0)

(ci j, uij, li j)

(0,∞,0)

(0,∞,0)(0,∞,0)

(0,∞,0)

(0, �B/2�,0)

Fig. 3. The schematic transformed standard MCNF network for which an optimal flow solution is optimal for integral BI-MCNF.
variable di for each i and arc (i, t) represents variable ei . Flow on 
arc (t, s) equals the total deficit and the total excess, so the upper 
bound capacity of this arc is �B/2�. Therefore, by using standard 
algorithms for the minimum cost network flow problem we can 
solve the integral BI-MCNF problem in polynomial time.

3.2.2. Reducing the general case to the case of κ = 0 via guessing
Next, we consider a general instance. We fix an optimal solu-

tion opt. For each node i ∈ V such that b(i) is fractional (i.e., not 
integral) we guess if opt has a strictly positive di or strictly pos-
itive ei . In the first case we modify the demand of i to be �b(i)�
and decrease the value of B by 1 − {b(i)} and in the second case 
we modify the demand of i to be �b(i)� and decrease the value of 
B by {b(i)}. We apply this guessing for all i without the knowledge 
of opt by trying all 2κ possibilities, for each of those possibilities 
we apply the algorithm we have established for the case where all 
supplies are integers, and among the feasible instances we have 
created, we pick the solution whose cost is minimized. The re-
sulting time complexity is 2κ times the time complexity of the 
algorithm for the special case where all supplies are integers.

The claim that this algorithm returns the optimal solution for
BI-MCNF follows by the following observation. First, for every it-
eration of the exhaustive search resulting in a feasible solution 
for the resulting instance of BI-MCNF the same assignment to the 
flow variables corresponds to a feasible solution for the original in-
stance (with the same cost) by increasing the value of di (or ei) by 
1 − {b(i)} (or {b(i)}, respectively) for nodes with fractional value 
b(i) whose supply was increased (decreased, respectively) with re-
spect to its value in the original instance.

Second, for the iteration in which we used the new supplies 
according to opt the flow variables of opt results in a feasible so-
lution to the new instance of the same cost. Thus, the optimality 
of our algorithm follows and we conclude the following result.

Theorem 3.2. There exists an algorithm for BI-MCNF with time com-
plexity O (2κ · T (|V |, |E|)) where κ is the number of nodes in the in-

stance with non-integral supply, and T (|V |, |E|) is the time complexity 
for solving the case where the input with |V | nodes and |E| edges satis-
fies that all supplies are integral.
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