
Mathematical Programming
https://doi.org/10.1007/s10107-021-01633-2

FULL LENGTH PAPER

Series A

A unified approach for a 1D generalized total variation
problem

Cheng Lu1 · Dorit S. Hochbaum1

Received: 18 July 2019 / Accepted: 17 February 2021
© The Author(s) 2021

Abstract
We study a 1-dimensional discrete signal denoising problem that consists of mini-
mizing a sum of separable convex fidelity terms and convex regularization terms, the
latter penalize the differences of adjacent signal values. This problem generalizes the
total variation regularization problem. We provide here a unified approach to solve
the problem for general convex fidelity and regularization functions that is based on
the Karush–Kuhn–Tucker optimality conditions. This approach is shown here to lead
to a fast algorithm for the problem with general convex fidelity and regularization
functions, and a faster algorithm if, in addition, the fidelity functions are differentiable
and the regularization functions are strictly convex. Both algorithms achieve the best
theoretical worst case complexity over existing algorithms for the classes of objective
functions studied here. Also in practice, our C++ implementation of the method is
considerably faster than popular C++ nonlinear optimization solvers for the problem.

Mathematics Subject Classification 90-08 · 90-10 · 90C25 · 90C30 · 90C46 · 49M05 ·
65K05

1 Introduction

The problem addressed here is the 1-dimensional discrete signal denoising problem
which is formulated as:

(1D-Denoise) min
x1,...,xn

n∑

i=1

fi (xi) +
n−1∑

i=1

hi (xi − xi+1). (1)

Dorit S. Hochbaum: This author’s research was supported in part by NSF award No. CMMI-1760102.

B Cheng Lu
chenglu@berkeley.edu

Dorit S. Hochbaum
hochbaum@ieor.berkeley.edu

1 Department of Industrial Engineering and Operations Research, University of California, Berkeley,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01633-2&domain=pdf
http://orcid.org/0000-0001-5137-7199
http://orcid.org/0000-0002-2498-0512

C. Lu , D. S. Hochbaum

Here the xi ’s are the denoised values over a 1-dimensional discrete signal. Each fi (xi)
is a convex data fidelity function that penalizes the difference between the estimated
signal value xi and an observed value. Each hi (xi − xi+1) is a convex regularization
function that penalizes the difference between neighboring estimated signal values, xi
and xi+1. To guarantee bounded minimum for the problem, it is assumed that all vari-
able values are within an interval [−U ,U]. Note that boundedness is an unavoidable
requirement for solving general nonlinear optimization problems [12].

We present here a unified approach for solving 1D-Denoise problem (1) for two
broad classes of objective functions. In the first class, the fidelity functions fi (xi)
are convex differentiable and the regularization functions hi (xi − xi+1) are strictly
convex. We name this class as the differentiable-strictly-convex class, or dsc-class for
short. The second class consists of both fidelity and regularization functions general
convex, and it is named here the convex-convex class, or cc-class for short. Note that
the second class is more general and contains the first class. Our unified approach,
which is based on the KKT (Karush–Kuhn–Tucker) optimality conditions, results in
an O(n log2 U

ε
) algorithm for the dsc class, the dsc-algorithm, and an O(n2 log2 U

ε
)

algorithm for the cc class, the cc-algorithm. In the complexity expressions, ε refers to
the solution accuracy.

The state-of-the-art algorithm that solves the 1D-Denoise problem for the two
classes of objective functions considered here, solves a more general problem, the
Markov Random Field (MRF) problem. From a graph perspective, the 1D-Denoise
problem can be viewed as defined on a path graph consisting of n nodes {1, . . . , n}
and n − 1 edges {[i, i + 1]}i=1,...,n−1. The MRF problem generalizes the 1D-Denoise
problem in that it is not restricted to a path graph, but rather an arbitrary graph G =
(V , E) of n nodes in V and m edges in E [1,9,10]. The MRF problem is formulated
as:

(MRF) min
xi ,i∈V

∑

i :i∈V
fi (xi) +

∑

(i, j)∈E
hi, j (xi − x j)

s.t. �i ≤ xi ≤ ui , ∀i ∈ V .

(2)

The fastest algorithm for MRF of general convex fidelity functions fi and convex
regularization functions hi, j has complexity O(nm log n2

m log nU
ε

) (U = maxi {ui −
�i }) [1]. The complexity model used here is the oracle unit cost complexity model
that assumes O(1) time to evaluate the function value on any argument input of
polynomial length. This complexity model has no restriction on the structure of the
convex functions. Since for the 1D-Denoise,m = n−1, applying the algorithmof [1] to
1D-Denoise yields complexity of O(n2 log n log nU

ε
). Other than the O(log U

ε
) factor

which our algorithm adds, it improves the complexity for the dsc-class of objective
functions as compared to the best existing algorithm by a factor of O(n log n), and for
the cc-class of objective functions, our algorithm improves on the complexity of the
best existing algorithm by a O(log n) factor.

The paper is organized as follows. Section 1.1 reviews literature on special cases
of 1D-Denoise and the associated ad-hoc algorithms. Notations and preliminaries are
introduced in Sect. 2. We present an overview of our unified KKT approach in Sect. 3,

123

A unified approach for a 1D generalized total variation…

followed by the discussion of the dsc-algorithm in Sect. 4 and the cc-algorithm in
Sect. 5. In Sect. 6, we present a numerically improved implementation of the KKT
approach that combines the advantages of both the dsc-algorithm and the cc-algorithm.
Numerical experimental comparison results are reported in Sect. 7. Conclusion and
future research directions are provided in Sect. 8.

1.1 Literature review

One of the most studied special cases of the 1D-Denoise problem has �2 fidelity
functions and �1 regularization functions, a.k.a. the total variation (TV) regularization
functions:

(�2 − TV-unweighted) min
x1,...,xn

1

2

n∑

i=1

(xi − ai)
2 + λ

n−1∑

i=1

|xi − xi+1|. (3)

The suffix “-unweighted” refers to the identical coefficient λ of all the regularization
terms. The use of TV-regularized terms have been shown to lead to piecewise constant
recovered signals with sharp jumps/edges. The �2-TV-unweighted model is widely
applied in signal processing, statistics, machine learning, and many fields of science
and engineering [7,17–19].

Rudin et al. in [19] first advocated the use of �1 regularization in image signal
processing, and since then popularized total variation (TV) denoising models. In
statistics contexts �2-TV-unweighted is known as a least squares penalized regression
model with total variation penalties [18]. The use of efficient taut string algorithm for
the problem is well-known in the statistics community [3,6–8,18]. The classic taut
string algorithm solves the �2-TV-unweighted problem in O(n) time.

A number of other algorithms were proposed to solve �2-TV-unweighted in the
signal processing community. Condat in [4] proposed an algorithm with theoretical
complexity of O(n2) which is fast in practice with observed performance of O(n).
Johnson in [14] proposed an efficient dynamic programming algorithmwith complex-
ity O(n). Kolmogorov et al. in [16] proposed a message passing algorithm framework
such that, when applied to the �2-TV-unweighted problem, has complexity O(n). Bar-
bero and Sra in [2] proposed three algorithms to solve the problem. The first one is a
Projected Newton method. It is an iterative algorithm where for this case the authors
reduce the cost of each iteration from a standard O(n3) complexity to O(n) by exploit-
ing the structure of the problem. The second one is a linearized taut string algorithm,
which they showed is equivalent to Condat’s algorithm in [4] and hence has worst case
complexity of O(n2). The third one is a hybrid taut string algorithm that combines the
advantage of the classic taut string algorithm and the proposed linearized taut string
algorithm, with complexity O(nS) for some S ∈ (1, 2).

Some of the aforementioned algorithms can be applied to the weighted variant of
�2-TV-unweighted, namely the �2-TV-weighted problem:

123

C. Lu , D. S. Hochbaum

(�2-TV-weighted) min
x1,...,xn

1

2

n∑

i=1

(xi − ai)
2 +

n−1∑

i=1

ci,i+1|xi − xi+1|. (4)

The difference between the weighted and unweighted problems is that the regularized
coefficients ci,i+1 can be different for each regularization term. The classic taut string
algorithm can be easily adapted for this case while maintaining the O(n) complex-
ity [2,6]. The Projected Newton method and the linearized taut string algorithm are
adapted in [2] to solve this case as well, with no change in the respective complexities.
Kolmogorov et al.’s message passing algorithm in [16] has O(n) complexity for the
weighted case as well.

The use of absolute value (�1) loss functions in data fidelity terms is known to be
more robust to heavy-tailed noises and to the presence of outliers than the quadratic (�2)
loss functions [11,20]. As such, the following �1-TV problem has been investigated
in the literature:

(�1 − TV) min
x1,...,xn

n∑

i=1

ci |xi − ai | +
n−1∑

i=1

ci,i+1|xi − xi+1|. (5)

Storath et al. [20] studied an unweighted version of �1-TV, where ci,i+1 = λ for all i ,
for real-valued and circle-valued data, and provided an O(nK) algorithm for K denot-
ing the number of different values in {ai }i=1,...,n . If the data is quantized to finitely
many levels, the algorithm’s complexity is O(n). In the worst case, this complexity
can be O(n2). Kolmogorov et al. [16] studied a generalized version of �1-TV where
each fidelity function is a convex piecewise linear function with O(1) breakpoints.
They provided two efficient algorithms of complexities O(n log n) and O(n log log n)

respectively. Hochbaum and Lu [11] studied a further generalized version where each
fidelity function is a convex piecewise linear function with an arbitrary number of
breakpoints. They provided an O(q log n) algorithm for q the total number of break-
points of the n convex piecewise linear fidelity functions. Applying Hochbaum and
Lu’s algorithm to �1-TV gives an O(n log n) algorithm since (q = n).

The Tikhonov-regularized terms impose global smoothing over the denoised sig-
nals, rather than preserving sharp jumps/edges using the TV-regularized terms. With
�2 fidelity functions the problem formulation is:

(�2 − Tikhonov) min
x1,...,xn

1

2

n∑

i=1

ci (xi − ai)
2 + 1

2

n−1∑

i=1

ci,i+1(xi − xi+1)
2. (6)

The optimal solution to �2-Tikhonov can be obtained by solving a system of linear
equations. It is easy to verify that this system of equations is a tridiagonal system of
equations (i.e., the matrix A is a tridiagonal matrix for the equations Ax = b). It is
well-known that the Thomas algorithm [5] can solve this special form of system of
linear equations in O(n) time.

123

A unified approach for a 1D generalized total variation…

All the aforementioned special cases can be cast under the umbrella of a more
general �p–�q problem, for any p, q ≥ 1:

(�p − �q) min
x1,...,xn

1

p

n∑

i=1

ci |xi − ai |p + 1

q

n−1∑

i=1

ci,i+1|xi − xi+1|q . (7)

Weinmann et al. [21] studied the unweighted version of �p–�q where all ci,i+1 = λ

for a fixed λ value:

min
x1,...,xn

1

p

n∑

i=1

|xi − ai |p + λ

q

n−1∑

i=1

|xi − xi+1|q . (8)

Weinmann et al. solved problem (8) for manifold-valued data, which is more general
than a real line considered here, with an O(nkT) algorithm, where T is the number
of iterations in order to converge to certain stopping criterion and k is the complexity
of computation at each iteration. For the cases q = 1 (TV) and q = 2 (Tikhonov),
they proved that k = O(1). The convergence of their algorithm is proved in [21] but
there is no bound provided on the value of T . In addition, it was also studied in [21]
the models where the fidelity terms and/or the regularization terms are replaced by the
Huber function [13]:

ρk(x) =
{

1
2 x

2, for |x | < k

k|x | − 1
2k

2, for |x | ≥ k.
(9)

The Huber function is known to be more robust to outliers than the quadratic (�2)
functions [13]. Weinmann et al. showed that the computational complexity of every
iteration of their algorithm for Huber functions is k = O(1). In this paper, we conduct
the experimental study on two problems with Huber objective functions.

2 Notation and preliminaries

In this paper, unless specified otherwise, we do not assume any restriction on the
functions fi and hi except for convexity and adopt the same unit cost complexity
model as in [1] for MRF (2). Therefore, each function can be evaluated O(1) time
for a given input. In addition, our algorithms provide solutions to the ε-accuracy of
the optimal solution, in other words, our solution has the first log 1

ε
digits same as the

optimal solution.
When we consider the case where a function f is differentiable, we assume that

its derivative can be evaluated in O(1) time as well for any input. Otherwise, we can
compute the function’s gradients on the ε solution accuracy granularity, where the the
left and right subgradients of function f on input x is:

f ′
L(x) = (f (x) − f (x − ε))/ε,

f ′
R(x) = (f (x + ε) − f (x))/ε.

(10)

123

C. Lu , D. S. Hochbaum

Thus both the left and right subgradients can be computed inO(1) time. The range from
the left subgradient to the right subgradient of function f at x forms the subdifferential
of f at x , ∂ f (x) = [f ′

L(x), f ′
R(x)].

By the convexity of function f , for any x1 < x2, we have

f ′
L(x1) ≤ f ′

R(x1) ≤ f ′
L(x2) ≤ f ′

R(x2). (11)

A function f (x) is said to be strictly convex if for any x1 < x2 and λ ∈ (0, 1):

f (λx1 + (1 − λ)x2) < λ f (x1) + (1 − λ) f (x2).

Given a strictly convex function f (x), for any x1 < x2, the second inequality of (11)
hold strictly:

f ′
L(x1) ≤ f ′

R(x1) < f ′
L(x2) ≤ f ′

R(x2). (12)

We introduce the following subgradient-to-argument inverse operations. For a
convex function h and a given subgradient value g, we would like to compute
the maximal interval of argument z, [zL , zR], such that for any z ∈ [zL , zR],
g ∈ ∂h(z) = [h′

L(z), h′
R(z)]. The maximality of the interval implies that zL satis-

fies g ∈ ∂h(zL) and ∀z < zL , h′
R(z) < g; similarly, zR satisfies that g ∈ ∂h(zR) and

∀z > zR , h′
L(z) > g. We denote the two inverse operations to compute zL and zR as

zL := (∂h)−1
L (g) and zR := (∂h)−1

R (g) respectively. Our algorithms will use these
two inverse operations.

By the convexity of function h, for any two subgradient values g1 < g2, we have

(∂h)−1
L (g1) ≤ (∂h)−1

R (g1) ≤ (∂h)−1
L (g2) ≤ (∂h)−1

R (g2).

In addition, if function h is strictly convex, as the subgradients are strictly increasing
(from inequalities (12)), we have (∂h)−1

L (g) = (∂h)−1
R (g). In this case (∂h)−1

L (g) =
(∂h)−1

R (g) and we denote this value as (∂h)−1(g).
As for the complexity of the inverse operations, it is possible to find the values of

(∂h)−1
L (g) or (∂h)−1

R (g) for a given g by binary search on an interval of length O(U).
This is because function h is convex, thus finding these values reduces to finding the
zeros ofmonotone subgradient functions. The complexity of computing a subgradient-
to-argument inverse is thus O(log U

ε
) to the ε-accuracy. Note that if h has a special

structure, the complexity of the inverse can be improved to O(1). Some examples are
h being quadratic (�2) or piecewise linear with few pieces, including absolute value
(�1) functions.

2.1 An equivalent formulation of 1D-Denoise

We now present an equivalent formulation of 1D-Denoise (1). Consider each regular-
ization function hi (xi − xi+1). Since each xi is bounded in [−U ,U], it follows that
xi − xi+1 is bounded in the interval [−2U , 2U]. Let ci be the ε-accurate minimizer

123

A unified approach for a 1D generalized total variation…

of the regularization function hi in [−2U , 2U]. This can be done by binary search
over the interval [−2U , 2U], which takes time O(log U

ε
). Then we split function

hi (zi)(zi = xi − xi+1) into two convex functions, hi,i+1(zi,i+1) and hi+1,i (zi+1,i):

hi,i+1(zi,i+1) = hi (zi,i+1 + ci) − hi (ci),

hi+1,i (zi+1,i) = hi (ci − zi+1,i) − hi (ci).

Without loss of generality, we have 0 ∈ ∂hi (ci).1

The split functions hi,i+1 and hi+1,i have the following properties:

Proposition 1 The (strict) convexity of function hi implies the (strict) convexity of
functions hi,i+1 and hi+1,i . Both functions hi,i+1(zi,i+1) and hi+1,i (zi+1,i) are non-
decreasing for zi,i+1, zi+1,i ≥ 0, and h′

i,i+1;R(0), h′
i+1,i;R(0) ≥ 0.

Proof We prove the properties for hi,i+1. The case of hi+1,i can be proved similarly.
If function hi is (strictly) convex, so is function hi (zi,i+1 + ci) − hi (ci), hence by

definition, hi,i+1(zi,i+1) is also (strictly) convex.
By definition, we have h′

i,i+1(zi,i+1) = h′
i (zi,i+1 + ci). Since 0 ∈ ∂hi (ci), by

definition we have h′
i;L(ci) ≤ 0 ≤ h′

i;R(ci). As a result, plugging zi,i+1 = 0 into
h′
i,i+1(zi,i+1), we have h′

i,i+1;R(0) = h′
i;R(ci) ≥ 0. Combining the convexity of

hi,i+1(zi,i+1) and h′
i,i+1;R(0) ≥ 0, we have that for any zi,i+1 > 0, h′

i,i+1;R(zi,i+1) ≥
h′
i,i+1;L(zi,i+1) ≥ h′

i,i+1;R(0) ≥ 0. This implies that hi,i+1(zi,i+1) is nondecreasing
for zi,i+1 ≥ 0. ��

By splitting the regularization functions, we introduce the following equivalent
formulation of 1D-Denoise (1):

(1D-Denoise) min{xi }i=1,...,n{zi,i+1,zi+1,i }i=1,...,n−1

n∑

i=1

fi (xi) +
n−1∑

i=1

hi,i+1(zi,i+1) +
n−1∑

i=1

hi+1,i (zi+1,i)

s.t. xi − xi+1 ≤ zi,i+1 + ci i = 1, . . . , n − 1

xi+1 − xi ≤ zi+1,i − ci i = 1, . . . , n − 1

zi,i+1, zi+1,i ≥ 0 i = 1, . . . , n − 1.

(13)

The formulation (13) and formulation (1) are equivalent:

Lemma 2 Formulations (1) and (13) share the same optimal solution.

Proof Let P({xi }i=1,...,n) be the objective value of 1D-Denoise (1) for any given
values x1, . . . , xn . Let P̃({zi,i+1, zi+1,i }i=1,...,n−1|{xi }i=1,...,n) be the objective value
of problem (13) such that, given the values of {xi }i=1,...,n , the values of the z variables
are selected to minimize the objective function. Note that given xi and xi+1, either

1 This is also true even if ci attains at the boundary, −2U or 2U . If ci = −2U , implying that hi is non-
decreasing in [−2U , 2U], then we can transform hi in the interval (−∞, −2U) to a decreasing function.
This transformation does not change the optimal solution to the original problem while keeping hi convex.
It also guarantees that ci = −2U is a global minimizer so 0 ∈ ∂hi (ci). The case of ci = 2U is similar.

123

C. Lu , D. S. Hochbaum

xi − xi+1 − ci or xi+1 − xi + ci must be non-positive. Without loss of generality,
let’s assume that xi − xi+1 − ci ≥ 0 and thus xi+1 − xi + ci ≤ 0. Due to the
monotonicity of hi,i+1 and hi+1,i on the nonnegative axis (Proposition 1), we have
zi,i+1 = xi − xi+1 − ci and zi+1,i = 0 being the optimal values for this given pair
of xi and xi+1 that minimize the objective. Plugging these two values of zi,i+1 and
zi+1,i into hi,i+1(zi,i+1) and hi+1,i (zi+1,i) respectively, we have hi,i+1(zi,i+1) =
hi,i+1(xi − xi+1 − ci) = hi (xi − xi+1 − ci + ci) − hi (ci) = hi (xi − xi+1) − hi (ci),
and hi+1,i (zi+1,i) = hi+1,i (0) = hi (ci)− hi (ci) = 0. Applying the above analysis to
all pairs of (xi , xi+1), we have:

P̃({zi,i+1, zi+1,i }i=1,...,n−1|{xi }i=1,...,n) =
n∑

i=1

fi (xi) +
n−1∑

i=1

hi (xi − xi+1)

−
n−1∑

i=1

hi (ci)

= P({xi }i=1,...,n) −
n−1∑

i=1

hi (ci).

Since
∑n−1

i=1 hi (ci) is a constant, hence solving min{xi }i=1,...,n P({xi }i=1,...,n)

is equivalent to solving min{xi }i=1,...,n ,{zi,i+1,zi+1,i }i=1,...,n−1 P̃({zi,i+1, zi+1,i }i=1,...,n−1|
{xi }i=1,...,n). Therefore the lemma holds. ��

3 The KKT optimality conditions and overview of our approach

We illustrate the KKT optimality conditions of 1D-Denoise (13). Let the dual vari-
able for each constraint xi − xi+1 ≤ zi,i+1 + ci be λi,i+1; let the dual variable for
each constraint xi+1 − xi ≤ zi+1,i − ci be λi+1,i ; let the dual variable for each con-
straint zi,i+1 ≥ 0 be μi,i+1 and let the dual variable for each constraint zi+1,i ≥ 0
be μi+1,i . The KKT optimality conditions state that,

({x∗
i }i , {z∗i,i+1, z

∗
i+1,i }i

)
is

an optimal solution to 1D-Denoise (13) if and only if there exist subgradients({ f ′
i (x

∗
i)}i , {h′

i,i+1(z
∗
i,i+1), h

′
i+1,i (z

∗
i+1,i)}i

)
, and optimal values of the dual variables({λ∗

i,i+1, λ
∗
i+1,i }i , {μ∗

i,i+1, μ
∗
i+1,i }i

)
such that the following conditions hold:

(Stationarity)

⎧
⎪⎨

⎪⎩

f ′
1(x

∗
1) + λ∗

1,2 − λ∗
2,1 = 0,

f ′
i (x

∗
i) − λ∗

i−1,i + λ∗
i,i+1 + λ∗

i,i−1 − λ∗
i+1,i = 0, i = 2, . . . , n − 1

f ′
n(x

∗
n) − λ∗

n−1,n + λ∗
n,n−1 = 0,

(14)

(Stationarity)

{
h′
i,i+1(z

∗
i,i+1) − λ∗

i,i+1 − μ∗
i,i+1 = 0, i = 1, . . . , n − 1

h′
i+1,i (z

∗
i+1,i) − λ∗

i+1,i − μ∗
i+1,i = 0, i = 1, . . . , n − 1

(15)

(Primal feasibility)

⎧
⎪⎨

⎪⎩

x∗
i − x∗

i+1 ≤ z∗i,i+1 + ci , i = 1, . . . , n − 1

x∗
i+1 − x∗

i ≤ z∗i+1,i − ci , i = 1, . . . , n − 1

z∗i,i+1, z
∗
i+1,i ≥ 0, i = 1, . . . , n − 1

(16)

123

A unified approach for a 1D generalized total variation…

(Dual feasibility)

{
λ∗
i,i+1, λ

∗
i+1,i ≥ 0, i = 1, . . . , n − 1

μ∗
i,i+1, μ

∗
i+1,i ≥ 0, i = 1, . . . , n − 1

(17)

(C-S)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x∗
i − x∗

i+1 − z∗i,i+1 − ci)λ
∗
i,i+1 = 0, i = 1, . . . , n − 1

(x∗
i+1 − x∗

i − z∗i+1,i + ci)λ
∗
i+1,i = 0, i = 1, . . . , n − 1

z∗i,i+1μ
∗
i,i+1 = 0, i = 1, . . . , n − 1

z∗i+1,iμ
∗
i+1,i = 0, i = 1, . . . , n − 1.

(18)

Equations (14) and (15) are stationarity conditions for x and z variables respec-
tively, inequalities (16) and (17) are primal and dual feasibility conditions for the
primal x, z variables and the dual λ,μ variables respectively, and equations (18) are
complementary slackness (C-S) conditions.

Our approach directly solves the above KKT optimality conditions. We derive
two key results from the KKT conditions. The first is a propagation lemma. For the
differentiable-strictly-convex class, we show that, for any value of x1, one can fol-
low the KKT conditions to uniquely determine the values of x2, . . . , xn . The only
leftover condition in the list of KKT conditions for which the generated sequence
(x1, x2, . . . , xn) may not satisfy, i.e., prevents the generated sequence from being
optimal, is an equation that requires

∑n
i=1 f ′

i (xi) equal to 0 (achieved by summing up
the equations in (14)). If not, then thanks to the convexity of fi and hi,i+1, we next
have a monotonicity lemma that shows if

∑n
i=1 f ′

i (xi) > 0, we should search for a
smaller x1; otherwise we should search for a larger x1. Combining both the propaga-
tion lemma and the monotonicity lemma naturally yields a binary search algorithm
to the optimal x1, which further leads to optimal x2 to xn based on the propagation
result. This is the dsc-algorithm we shall present next. For the convex-convex class,
the propagation result is extended from a unique value to a unique range, i.e., for any
value of x1, one can follow the KKT conditions to uniquely determine the ranges of
x2, . . . , xn . Those ranges finally determine a lower bound and an upper bound for
the sum

∑n
i=1 f ′

i (xi). If value 0 is within the bounds, then x1 is the optimal value.
Otherwise, we have an extended monotonicity result showing that if the lower bound
is above 0, then we should search for a smaller x1, otherwise (the upper bound is
below 0), we should search for a larger x1. By the dichotomy, the optimal value of
x1 is found. This process is then repeated from x2 to xn to find the respective optimal
values. This is the cc-algorithm we shall present in Sect. 5.

4 KKT approach for differentiable-strictly-convex class: dsc-algorithm

With convex differentiable fidelity functions and strictly convex regularization func-
tions, we show that if we fix the value of x1, then all the values of x2 to xn can be
uniquely determined by theKKT optimality conditions. This is proved in the following
propagation lemma:

Lemma 3 (Propagation Lemma)Given any value of x1, the KKT optimality conditions
(14), (15), (16), (17) and (18) uniquely determine the other values of x2, . . . , xn.

123

C. Lu , D. S. Hochbaum

Proof We prove the lemma by induction on i from 1 to n. The case of i = 1 is
trivial. Suppose the values of x1, . . . , xi are uniquely determined by x1 for some i
(1 ≤ i ≤ n − 1), we show that the value of xi+1 is also uniquely determined.

Adding up the equations of j = 1, . . . , i in the stationarity conditions (14), we
have

i∑

j=1

f ′
j (x j) = −λi,i+1 + λi+1,i . (19)

There are 5 different cases about Eq. (19), depending on the value of
∑i

j=1 f ′
j (x j):

1.
∑i

j=1 f ′
j (x j) > h′

i+1,i;R(0) ≥ 0:
By the dual feasibility conditions (17), we have λi,i+1, λi+1,i ≥ 0 . Hence λi+1,i ≥∑i

j=1 f ′
j (x j) > 0. If λi+1,i >

∑i
j=1 f ′

j (x j), then λi,i+1 > 0 as well. Then by
the complementary slackness conditions (18), we have xi − xi+1 − zi,i+1 − ci =
0 and xi+1 − xi − zi+1,i + ci = 0. These two equations imply that zi,i+1 +
zi+1,i = 0. On the other hand, by the primal feasibility conditions (16)), we have
zi,i+1, zi+1,i ≥ 0. As a result, it must be zi,i+1 = zi+1,i = 0. Then we plug
zi+1,i = 0 into the stationarity condition on zi+1,i in (15), we have that there
exists a subgradient h′

i+1,i (0) such that h′
i+1,i (0) = λi+1,i + μi+1,i ≥ λi+1,i >

∑i
j=1 f ′

j (x j) > h′
i+1,i;R(0) (μi+1,i ≥ 0 is due to the dual feasibility conditions

(17)), which is a contradiction. Therefore we have λi+1,i = ∑i
j=1 f ′

j (x j) and
λi,i+1 = 0. Then by the stationarity condition on zi+1,i in (15), we have that there
exists a subgradient h′

i+1,i (zi+1,i) such that h′
i+1,i (zi+1,i) = λi+1,i + μi+1,i ≥

λi+1,i = ∑i
j=1 f ′

j (x j) > h′
i+1,i;R(0). As a result, we have zi+1,i > 0, and this

implies thatμi+1,i = 0 by the complementary slackness conditions (18).And since
hi+1,i (zi+1,i) is a strictly convex function, zi+1,i is thus uniquely determined by

zi+1,i = (∂hi+1,i)
−1(λi+1,i) = (∂hi+1,i)

−1

⎛

⎝
i∑

j=1

f ′
j (x j)

⎞

⎠ .

Since λi+1,i > 0, by the complementary slackness conditions (18), we have xi+1
is uniquely determined by the equation xi+1 = xi + zi+1,i − ci .

2. 0 <
∑i

j=1 f ′
j (x j) ≤ h′

i+1,i;R(0):
This case exists only if h′

i+1,i;R(0) > 0. By the dual feasibility conditions (17),

we still have λi+1,i , λi,i+1 ≥ 0, and thus λi+1,i ≥ ∑i
j=1 f ′

j (x j). If λi+1,i >

h′
i+1,i;R(0), we can derive the same contradiction as Case 1. As a result, it must

be 0 <
∑i

j=1 f ′
j (x j) ≤ λi+1,i ≤ h′

i+1,i;R(0). Then we consider the stationarity
conditions (15) on zi+1,i : h′

i+1,i (zi+1,i) = λi+1,i + μi+1,i . If μi+1,i > 0, then by
the complementary slackness conditions (18), we have zi+1,i = 0. If μi+1,i = 0,
then h′

i+1,i (zi+1,i) = λi+1,i ≤ h′
i+1,i;R(0), which still implies that zi+1,i = 0

by the strict convexity of hi+1,i . In either case, by the complementary slackness

123

A unified approach for a 1D generalized total variation…

conditions (18) with λi+1,i > 0, we have xi+1 is uniquely determined by the
equation xi+1 = xi + zi+1,i − ci = xi − ci .

3.
∑i

j=1 f ′
j (x j) = 0:

In this case, we have λi,i+1 = λi+1,i . If both λi,i+1 and λi+1,i are positive, then
by the complementary slackness conditions (18) on λi,i+1 and λi+1,i , and the pri-
mal feasibility conditions (16) on zi,i+1 and zi+1,i , we have zi,i+1 = zi+1,i = 0.
As a result, xi+1 = xi − ci . If λi,i+1 = λi+1,i = 0, we consider the station-
arity conditions (15) on both zi,i+1 and zi+1,i . For zi,i+1, we have that there
exists a subgradient h′

i,i+1(zi,i+1) such that h′
i,i+1(zi,i+1) = μi,i+1 ≥ 0. If

μi,i+1 ≤ h′
i+1,i;R(0), by the strict convexity of hi,i+1, we have zi,i+1 = 0; other-

wise μi,i+1 > h′
i+1,i;R(0), then the complementary slackness condition (18) also

implies that zi,i+1 = 0. Therefore we always have zi,i+1 = 0. The same analysis
shows that zi+1,i = 0. Then by the primal feasibility conditions (16) on xi and
xi+1, we have xi+1 = xi − ci being uniquely determined.

4. −h′
i,i+1;R(0) ≤ ∑i

j=1 f ′
j (x j) < 0:

This case exists only if h′
i,i+1;R(0) > 0, it is symmetric to case 2. By the dual

feasibility conditions (17), we have λi+1,i ≥ 0 and λi,i+1 ≥ −∑i
j=1 f ′

j (x j) > 0.
If λi,i+1 > h′

i,i+1;R(0), then λi+1,i > 0. Same as Case 1, it implies that zi,i+1 =
zi+1,i = 0.However, this violates the stationarity conditions (15) on zi,i+1 because
h′
i,i+1(0) = λi,i+1 + μi,i+1 ≥ λi,i+1 > h′

i,i+1;R(0). Therefore we have 0 <

λi,i+1 ≤ h′
i,i+1;R(0). Then we consider the stationarity conditions (15) on zi,i+1:

h′
i,i+1(zi,i+1) = λi,i+1 + μi,i+1. If μi,i+1 > 0, then by the complementary

slackness conditions (18), we have zi,i+1 = 0. Ifμi,i+1 = 0, then h′
i,i+1(zi,i+1) =

λi,i+1 ≤ h′
i,i+1;R(0), which still implies that zi,i+1 = 0 by the strict convexity

of hi,i+1. In either case, by the complementary slackness conditions (18) with
λi,i+1 > 0, we have xi+1 is uniquely determined by the equation xi+1 = xi −
zi,i+1 − ci = xi − ci .

5.
∑i

j=1 f ′
j (x j) < −h′

i,i+1;R(0) ≤ 0:
This case is symmetric to Case 1. Following the same reasoning in Case 1, we
can show that λi,i+1 = −∑i

j=1 f ′
j (x j) > h′

i,i+1;R(0) ≥ 0 and λi+1,i = 0. As
a result, we have zi+1,i > 0, thus μi,i+1 = 0 by the complementary slackness
conditions (18). And since hi,i+1(zi,i+1) is a strictly convex function, zi,i+1 is
uniquely determined by

zi,i+1 = (∂hi,i+1)
−1(λi,i+1) = (∂hi,i+1)

−1

⎛

⎝−
i∑

j=1

f ′
j (x j)

⎞

⎠ .

Since λi,i+1 > 0, by the complementary slackness conditions (18), we have xi+1
is uniquely determined by the equation xi+1 = xi − zi,i+1 − ci .

This completes the proof for the case of i + 1. ��

123

C. Lu , D. S. Hochbaum

Lemma 3 implies that, given a value of x1, the values of x2 to xn are uniquely
determined by the following iterative equations:

xi+1 = xi + zi − ci , i = 1, . . . , n − 1 (20)

where

zi =

⎧
⎪⎪⎨

⎪⎪⎩

(∂hi+1,i)
−1(

∑i
j=1 f ′

j (x j)), if
∑i

j=1 f ′
j (x j) > h′

i+1,i;R(0),

0, if − h′
i,i+1;R(0) ≤ ∑i

j=1 f ′
j (x j) ≤ h′

i+1,i;R(0),

−(∂hi,i+1)
−1(− ∑i

j=1 f ′
j (x j)), if

∑i
j=1 f ′

j (x j) < −h′
i,i+1;R(0).

(21)

Based on the convexity of functions fi (xi), hi,i+1(zi,i+1), and hi+1,i (zi+1,i), we
have the following monotonicity property for any two sequences of x1, . . . , xn gener-
ated by Eqs. (20) and (21):

Corollary 4 (Monotonicity property) Let x (1)
1 < x (2)

1 be any two given values of vari-

able x1. Let (x
(1)
1 , x (1)

2 , . . . , x (1)
n) and (x (2)

1 , x (2)
2 , . . . , x (2)

n) be the respective sequence
of x values determined by the value of x1 and Eqs. (20) and (21). Then we have
x (1)
i < x (2)

i for all i = 1, . . . , n.

Proof The proof is by induction on i (i = 1, . . . , n). For i = 1, the values of x (1)
1 and

x (2)
1 are given and satisfy x (1)

1 < x (2)
1 . Suppose x (1)

j < x (2)
j for all j = 1, . . . , i for

some i (1 ≤ i ≤ n − 1), we show that x (1)
i+1 < x (2)

i+1.
Due to the convexity of hi,i+1 and hi+1,i , Eq. (21) implies that zi is a nondecreasing

function of
∑i

j=1 f ′
j (x j). On the other hand, since all f j (j = 1, . . . , i) functions are

convex, by the induction hypothesis, we have f ′
j (x

(1)
j) ≤ f ′

j (x
(2)
j) for j = 1, . . . , i .

Hence
∑i

j=1 f ′
j (x

(1)
j) ≤ ∑i

j=1 f ′
j (x

(2)
j). As a result, we have z(1)i ≤ z(2)i . Since we

have x (1)
i < x (2)

i by the induction hypothesis, we have x (1)
i+1 = x (1)

i + z(1)i − ci <

x (2)
i + z(2)i − ci = x (2)

i+1. ��

The only equation in the KKT optimality conditions that a given sequence of
x1, . . . , xn determined by Eqs. (20) and (21) may violate is the last stationarity con-
dition (14) for xn . This is because xn , λn−1,n and λn,n−1 are determined in the step
of computing xn from xn−1, based on the equation

∑n−1
j=1 f ′

j (x j) = λn,n−1 − λn−1,n ,
however, the generated values of xn , λn−1,n and λn,n−1 do not necessarily satisfy the
last stationarity condition for xn , f ′

n(xn) − λn−1,n + λn,n−1 = 0. On the other hand,
we observe that if we sum up all the stationarity conditions (14) for the x variables,
we have:

n∑

i=1

f ′
i (x

∗
i) = 0. (22)

123

A unified approach for a 1D generalized total variation…

The equation for xn in the stationarity conditions (14) can be equivalently replaced by
Eq. (22). Hence a sequence of x1, . . . , xn determined by Eqs. (20) and (21) satisfy the
KKT optimality conditions if and only if Eq. (22) also holds.

The above analysis implies a binary search algorithm to solve the KKT optimality
conditions. In every iteration, we try a value of x1, and compute the values of x2 to xn
based on Eqs. (20) and (21). Then we check whether Eq. (22) holds for the generated
sequence of x1, . . . , xn . If yes, then the generated sequence of x1, . . . , xn satisfies the
KKToptimality conditions, thus it is an optimal solution to 1D-Denoise.Otherwise,we
determine the next value of x1 to try based on the sign of

∑n
i=1 f ′

i (xi) of the currently
generated sequence of x1, . . . , xn : If

∑n
i=1 f ′

i (xi) > 0, we try a smaller value of x1; If∑n
i=1 f ′

i (xi) < 0, we try a larger value of x1. The binary search efficiently determines
the optimal value of x1, so are the optimal values of x2 to xn by Eqs. (20) and (21).
The complete dsc-algorithm is presented in Box 1.

dsc-algorithm for 1D-Denoise of convex differentiable fidelity functions and
strictly convex regularization functions:
Step 0: Solve ci := argmin−2U≤zi≤2Uhi (zi) for i = 1, . . . , n − 1. Initialize the
lower and upper bounds of the search region for x1 as l := −U and u := U
respectively.
Step 1: Set x1 := l+u

2 . Compute the values of x2, . . . , xn based on iterative
equations (20) and (21):

xi+1 := xi + zi − ci , i = 1, . . . , n − 1

where

zi :=

⎧
⎪⎨

⎪⎩

(∂hi+1,i)
−1(

∑i
j=1 f ′

j (x j)), if
∑i

j=1 f ′
j (x j) > h′

i+1,i;R(0),

0, if − h′
i,i+1;R(0) ≤ ∑i

j=1 f ′
j (x j) ≤ h′

i+1,i;R(0),

−(∂hi,i+1)
−1(−∑i

j=1 f ′
j (x j)), if

∑i
j=1 f ′

j (x j) < −h′
i,i+1;R(0).

Step 2: If u − l < ε or
∑n

i=1 f ′
i (xi) = 0, return (x1, x2, . . . , xn) and stop.

Step 3: If
∑n

i=1 f ′
i (xi) < 0, set l := x1; otherwise set u := x1. Go to Step 1.

AlgoBox 1: dsc-algorithm for 1D-Denoise of convex differentiable fidelity functions
and strictly convex regularization functions.

The number of different x1 values we need to check in the algorithm is O(log U
ε
).

For each x1 valuefixed, the complexity to compute the values of x2, . . . , xn byEqs. (20)
and (21) is O(n log U

ε
), where the O(log U

ε
) term corresponds to the complexity of

computing subgradient-to-argument inverse of hi+1,i or hi,i+1 functions to compute
zi . Hence the complexity of the Step 1 to Step 3 is O(n log2 U

ε
). At Step 0, it takes

O(n log U
ε
) time to compute the ε-accurate ci values for all regularization functions

{hi (zi)}i=1,...,n−1. Thus we have:

Theorem 5 The 1D-Denoise problem of convex differentiable fidelity functions and
strictly convex regularization functions is solved in O(n log2 U

ε
) time.

123

C. Lu , D. S. Hochbaum

Note that if the regularization functions hi are quadratic (�2), then the complexity
of subgradient-to-argument inverse is O(1), thus the dsc-algorithm can be sped-up to
O(n log U

ε
) complexity.

Remark 6 One may ask if transforming the unconstrained optimization form of 1D-
Denoise (1) to a more complicated constrained optimization form (13) is necessary.
Actually, the KKT conditions, as shown in the following, with respect to the original
formulation (1) are much simpler:

⎧
⎪⎨

⎪⎩

0 ∈ f ′
1(x1) + ∂h1(x1 − x2),

0 ∈ f ′
i (xi) − ∂hi−1(xi−1 − xi) + ∂hi (xi − xi+1), i = 2, . . . , n − 1

0 ∈ f ′
n(xn) − ∂hn−1(xn−1 − xn).

However, we argue that the above simpler form of KKT conditions are not sufficient
to provide a rigorous proof to the unique value propagation result (Lemma 3) for
the differentiable-strictly-convex class. For a fixed value of x1, since h1 is strictly
convex, we can change the 0-inclusion formula 0 ∈ f ′

1(x1) + ∂h1(x1 − x2) to 0-
equation 0 = f ′

1(x1) + ∂h1(x1 − x2), and thus uniquely determine the value of x2 as
x2 = x1 − (∂h1)−1(− f ′

1(x1)). However, even x1 and x2 are fixed, the subdifferential
of h1 at x1 − x2, ∂h1(x1 − x2), may be a set containing more than one subgradient.
As a result, the value of x3 can not be uniquely determined by the 0-inclusion formula
0 ∈ f ′

2(x2) − ∂h1(x1 − x2) + ∂h2(x2 − x3), nor does it help even if we add the two
0-inclusion formulas regarding f ′

1(x1) and f ′
2(x2) because the subdifferential of h1 at

x1 − x2, ∂h1(x1 − x2), may not be able to cancel each other in the two formulas.
For the general convex-convex class, however, as we shall show in the next section,

we can follow the simplified KKT conditions to present our algorithm in a concise
way.

5 KKT approach for convex-convex class: cc-algorithm

Weextend the ideas developed from the dsc-algorithm to solve 1D-Denoise of arbitrary
convex fidelity and regularization functions, leading to the cc-algorithm.

The impact of removing the differentiability and strict convexity assumptions
are two-fold: the non-differentiability of fi (xi) implies that a given xi value cor-
responds to a non-singleton subdifferential ∂ fi (xi) = [f ′

i;L(xi), f ′
i;R(xi)], instead

of a unique derivative f ′(xi) in the differentiable case; the non-strict convex-
ity of hi,i+1 (and hi+1,i) implies that a subgradient value g can be inversely
mapped to a non-singleton interval of arguments [(∂hi,i+1)

−1
L (g), (∂hi,i+1)

−1
R (g)]

(and [(∂hi+1,i)
−1
L (g), (∂hi+1,i)

−1
R (g)]), instead of a unique z argument (∂hi,i+1)

−1(g)
(and (∂hi+1,i)

−1(g)) in the strictly convex case. Both observations imply that, based
on the KKT optimality conditions, a given value of x1 does not uniquely determine
the other variables x2, . . . , xn to values, but to ranges.

For this general convex-convex class, instead of working on the KKT conditions of
the reformulation (13), we directly solve the KKT conditions of the original uncon-

123

A unified approach for a 1D generalized total variation…

strained formulation (1) of the 1D-Denoise problem, shown as follows:

⎧
⎪⎨

⎪⎩

0 ∈ f ′
1(x1) + ∂h1(x1 − x2),

0 ∈ f ′
i (xi) − ∂hi−1(xi−1 − xi) + ∂hi (xi − xi+1), i = 2, . . . , n − 1

0 ∈ f ′
n(xn) − ∂hn−1(xn−1 − xn).

(23)

We first have the following range propagation result which can be viewed as an
extension of the propagation lemma in the dsc-algorithm.

Lemma 7 (Extended Propagation Lemma) Given any value of x1, the KKT optimality
conditions (23) uniquely determine the ranges of other variables x2, . . . , xn. Specifi-
cally, let [lkkt,i , ukkt,i] be the range of variable xi , we have:

lkkt,1 = ukkt,1 = x1,{
lkkt,i+1 = lkkt,i − (∂hi)

−1
R (−∑i

j=1 f ′
j;L(lkkt, j)),

ukkt,i+1 = ukkt,i − (∂hi)
−1
L (−∑i

j=1 f ′
j;R(ukkt, j)),

i = 1, . . . , n − 1.
(24)

Proof We proof the lemma by induction on i . Together with proving Eq. (24), we
prove the following series of inequalities:

∂hi (xi − xi+1) ∈
⎡

⎣−
i∑

j=1

f ′
j;R(ukkt, j),−

i∑

j=1

f ′
j;L(lkkt, j)

⎤

⎦ , i = 1, . . . , n − 1.

(25)

Let’s first prove Eq. (24) and inequality (25) hold for i = 1. In order to make the
first 0-inclusion formula, 0 ∈ f ′

1(x1)+∂h1(x1− x2), in the KKT conditions (23) hold,
we have:

∂h1(x1 − x2) ∈ [− f ′
1;R(x1),− f ′

1;L(x1)] ⊆ [− f ′
1;R(ukkt,1),−f ′

1;L(lkkt,1)].

Hence inequality (25) holds for i = 1. Further, due to the convexity of h1, we have

x2 ∈
[
x1 − (∂h1)

−1
R

(
− f ′

1;L (lkkt,1)
)

, x1 − (∂h1)
−1
L

(
− f ′

1;R(ukkt,1)
)]

⊆
[
lkkt,1 − (∂h1)

−1
R

(
− f ′

1;L (lkkt,1)
)

, ukkt,1 − (∂h1)
−1
L

(
− f ′

1;R(ukkt,1)
)]

.

Therefore Eq. (24) holds for i = 1.
The induction from i − 1 to i is straightforward by leveraging the i th 0-inclusion

formula, 0 ∈ f ′
i (xi) − ∂hi−1(xi−1 − xi) + ∂hi (xi − xi+1), in the KKT conditions

(23). By the induction hypothesis on inequality (25) on i − 1, we have:

∂hi−1(xi−1 − xi) ∈
⎡

⎣−
i−1∑

j=1

f ′
j;R(ukkt, j),−

i−1∑

j=1

f ′
j;L(lkkt, j)

⎤

⎦ .

123

C. Lu , D. S. Hochbaum

As a result, according to the i th 0-inclusion formula, we have

∂hi (xi − xi+1) ∈ [
∂hi−1(xi−1 − xi) − f ′

i;R(ukkt,i), ∂hi−1(xi−1 − xi) − f ′
i;L(lkkt,i)

]

⊆
⎡

⎣−
i∑

j=1

f ′
j;R(ukkt, j),−

i∑

j=1

f ′
j;L(lkkt, j)

⎤

⎦ .

Hence inequality (25) holds for i . Further, due to the convexity of hi , we have

xi+1 ∈
⎡

⎣xi − (∂hi)
−1
R

⎛

⎝−
i∑

j=1

f ′
j;L (lkkt, j)

⎞

⎠ , xi − (∂hi)
−1
L

⎛

⎝−
i∑

j=1

f ′
j;R(ukkt, j)

⎞

⎠

⎤

⎦

⊆
⎡

⎣lkkt,i − (∂hi)
−1
R

⎛

⎝−
i∑

j=1

f ′
j;L (lkkt, j)

⎞

⎠ , ukkt,i −(∂hi)
−1
L

⎛

⎝−
i∑

j=1

f ′
j;R(ukkt, j)

⎞

⎠

⎤

⎦ .

Therefore Eq. (24) holds for i as well. ��

Similar to the analysis of the dsc-algorithm, the last 0-inclusion formula yet to
satisfy is the nth one: 0 ∈ f ′

n(xn) − ∂hn−1(xn−1 − xn). By the proof in Lemma 7, we
have inequality (25) holds for n − 1:

∂hn−1(xn−1 − xn) ∈
⎡

⎣−
n−1∑

j=1

f ′
j;R(ukkt, j),−

n−1∑

j=1

f ′
j;L(lkkt, j)

⎤

⎦ .

Hence

f ′
n(xn) − ∂hn−1(xn−1 − xn) ∈

⎡

⎣ f ′
n(xn) +

n−1∑

j=1

f ′
j;L (lkkt, j), f ′

n(xn) +
n−1∑

j=1

f ′
j;R(ukkt, j)

⎤

⎦

⊆
⎡

⎣
n∑

j=1

f ′
j;L (lkkt, j),

n∑

j=1

f ′
j;R(ukkt, j)

⎤

⎦ .

Therefore, to checkwhether the last 0-inclusion formula holds, it is equivalent to check
whether

0 ∈
⎡

⎣
n∑

j=1

f ′
j;L(lkkt, j),

n∑

j=1

f ′
j;R(ukkt, j)

⎤

⎦ . (26)

If inequality (26) holds, then we conclude that the given value of x1 is an opti-
mal value of x1. Otherwise, similar to Corollary 4 for the dsc-algorithm, thanks to
convexity, we have the following extended monotonicity property.

123

A unified approach for a 1D generalized total variation…

Corollary 8 (ExtendedMonotonicity Property)Let x (1)
1 < x (2)

1 be any two given values
of variable x1. Let

(
[l(1)kkt,1, u

(1)
kkt,1], [l(1)kkt,2, u

(1)
kkt,2], . . . , [l(1)kkt,n, u

(1)
kkt,n]

)
,

(
[l(2)kkt,1, u

(2)
kkt,1], [l(2)kkt,2, u

(2)
kkt,2], . . . , [l(2)kkt,n, u

(2)
kkt,n]

)
,

be the respective sequence of ranges of xi values determined by x
(1)
1 and x (2)

1 according
to Eq. (24). Then we have, for all i = 1, . . . , n:

l(1)kkt,i < l(2)kkt,i . (27)

u(1)
kkt,i < u(2)

kkt,i , (28)

Proof The proof is by a straightforward induction on i . We prove for inequalities (27).
Inequalities (28) are proved in a similar way.

The inequality is true for i = 1 because l(1)kkt,1 = x (1)
1 < x (2)

1 = l(2)kkt,1. Suppose the
result is true for all j = 1, . . . , i for some i (1 ≤ i ≤ n − 1). We prove that it is also
true for i +1. By the induction hypothesis and the convexity of functions f j , we have

i∑

j=1

f ′
j;L(l(1)kkt, j) ≤

i∑

j=1

f ′
j;L(l(2)kkt, j).

Then by the convexity of function hi , we have

−(∂hi)
−1
R

⎛

⎝−
i∑

j=1

f ′
j;L(l(1)kkt, j)

⎞

⎠ ≤ −(∂hi)
−1
R

⎛

⎝−
i∑

j=1

f ′
j;L(l(2)kkt, j)

⎞

⎠ .

Therefore,

l(1)kkt,i+1 = l(1)kkt,i − (∂hi)
−1
R

⎛

⎝−
i∑

j=1

f ′
j;L(l(1)kkt, j)

⎞

⎠

< l(2)kkt,i − (∂hi)
−1
R

⎛

⎝−
i∑

j=1

f ′
j;L(l(2)kkt, j)

⎞

⎠ = l(2)kkt,i+1.

��
Combining Lemma 7 and Corollary 8 gives a binary search algorithm to find an

optimal value of x1. In every step, we try a value of x1 and compute the endpoints of
the ranges [lkkt,i , ukkt,i] for i = 1, . . . , n based on Eq. (24). Then we compute the
two quantities

∑n
i=1 f ′

i;L(lkkt,i) and
∑n

i=1 f ′
i;R(ukkt,i). If

∑n
i=1 f ′

i;L(lkkt,i) ≤ 0 ≤∑n
i=1 f ′

i;R(ukkt,i), then the current value of x1 is optimal to 1D-Denoise. Otherwise,

123

C. Lu , D. S. Hochbaum

if
∑n

i=1 f ′
i;R(ukkt,i) < 0, we check a larger value of x1, or if

∑n
i=1 f ′

i;L(lkkt,i) > 0,
we check a smaller value of x1. The binary search efficiently determines an optimal
value of x1, in time complexity of O(n log2 U

ε
), where one O(log U

ε
) term indicates

the number of iterations in the binary search, and the other O(log U
ε
) term indicates the

complexity of subgradient-to-argument inverse on regularization functions. After x∗
1

is found, we plug it into 1D-Denoise (1) to reduce the problem from n variables to n−1
variables of the same form. In the reduced 1D-Denoise problem, f1(x∗

1) is removed
since it is a constant, and the deviation function of x2 becomes f2(x2) + h1(x∗

1 − x2).
Thus we can repeat the above process to find an optimal solution of x2, x∗

2 . As a result,
it requires n iterations to solve an optimal solution (x∗

1 , . . . , x
∗
n) for 1D-Denoise. In

the i th iteration, x∗
i is solved and the problem 1D-Denoise (1) is reduced to a smaller

problem, of the same form, with one less variable.
We first present a subroutine in Box 2 that solves an optimal value of xi on the

reduced 1D-Denoise problemof n−i+1 variables, xi , xi+1, . . . , xn , with fidelity func-
tions fi (xi), . . . , fn(xn), and regularization functions hi (xi −xi+1), . . . , hn−1(xn−1−
xn). The values of x1, . . . , xi−1 are assumed fixed.

x∗
i := SOLVE_REDUCED_1D-Denoise({ fi , . . . , fn}, {hi , . . . , hn−1})
Step 0: If i = n, solve x∗

n := argminxn :−U≤xn≤U fn(xn) to ε-accuracy by binary
search and return. Otherwise initialize the lower and upper bounds of the search
region for xi as l := −U and u := U respectively.
Step 1: Set xi := l+u

2 . Set lkkt,i := ukkt,i := xi . Compute the intervals
[lkkt, j+1, ukkt, j+1] for j = i, . . . , n − 1 based on the following equations:

{
lkkt, j+1 := lkkt, j + z j;L ,

ukkt, j+1 := ukkt, j + z j;R,
j = i, . . . , n − 1

where
⎧
⎨

⎩
z j;L := −(∂h j)

−1
R

(
−∑ j

p=i f ′
p;L(lkkt,p)

)
,

z j;R := −(∂h j)
−1
L

(
−∑ j

p=i f ′
p;R(ukkt,p)

)
.

(29)

Step 2: If u − l < ε or
∑n

j=i f ′
j;L(lkkt, j) ≤ 0 ≤ ∑n

j=i f ′
j;R(ukkt, j), return

x∗
i := xi and stop.
Step 3: If

∑n
j=i f ′

j;R(ukkt, j) < 0, set l := xi ; otherwise set u := xi . Go to Step
1.

AlgoBox 2: Subroutine to solve a reduced 1D-Denoise problem of variables
xi , xi+1, . . . , xn .

With the above subroutine, the complete cc-algorithm is in Box 3.

123

A unified approach for a 1D generalized total variation…

cc-algorithm for 1D-Denoise of arbitrary convex fidelity and regularization
functions:
Step 0: Set i := 1.
Step 1: x∗

i := SOLVE_REDUCED_1D-Denoise({ fi , fi+1, . . . , fn},
{hi , hi+1, . . . , hn−1}).
Step 2: Set fi+1(xi+1) := fi+1(xi+1) + hi (x∗

i − xi+1), i := i + 1.
Step 3: If i ≤ n, go to Step 1. Otherwise, return (x∗

1 , x
∗
2 , . . . , x

∗
n) and stop.

AlgoBox 3: cc-algorithm for 1D-Denoise of arbitrary convex fidelity and regulariza-
tion functions.

The complexity of subroutine SOLVE_REDUCED_1D-Denoise is O(n log2 U
ε
),

hence the total complexity of the cc-algorithm is O(n2 log2 U
ε
). Therefore,

Theorem 9 The 1D-Denoise problem of arbitrary convex fidelity and regularization
functions is solved in O(n2 log2 U

ε
) time.

Note that if the regularization functions hi are quadratic (�2) or piecewise linearwith
fewpieces, including absolute value (�1) functions, then the complexity of subgradient-
to-argument inverse is O(1). As a result, the cc-algorithm can save an O(log U

ε
) factor,

with complexity speed-up to O(n2 log U
ε
).

6 A numerically improved implementation

In this section, we will present a numerically improved implementation of the
KKT approach that combines the advantages of both the dsc-algorithm and the cc-
algorithm. In addition, for special cases of �2-TV-unweighted, �2-TV-weighted and
1D-Laplacian, we specialize the numerically improved implementation to make it
empirically faster.

While the dsc-algorithm is of attractive complexity O(n log2 U
ε
), in practice it

suffers from numerical instability. This is because the algorithm sums the derivatives
of f ′

1(x1) to f ′
n(xn), where the numerical errors resulting from the calculation of each

derivative accumulate. In contrast, the cc-algorithm, of complexity O(n2 log2 U
ε
),

does not suffer from numerical instability because it repeats the binary search for
every variable xi , at the expense of an additional O(n) complexity factor.

On the other hand, however, in the cc-algorithm, at every propagation, two
sequences of quantities, (lkkt, j) j and (ukkt, j) j are computed, which incurs two times
the computation over the propagation in the dsc-algorithm.

As a result, we propose a numerical implementation that combines the advantages
of both the dsc-algorithm and the cc-algorithm: We repeat the binary search for every
variable xi , while in every propagation, we only compute one sequence of quantities
– for the convex-convex class, we only compute the upper bounds (ukkt, j) j (one may
as well compute only the lower bounds (lkkt, j) j). This implies the following changes
to SOLVE_REDUCED_1D_Denoise in Box 2: In Step 1, the computations on (z j;L) j
and (lkkt, j) j are saved; In Step 2, the stopping criterion is left with only u− l < ε. It’s

123

C. Lu , D. S. Hochbaum

easy to verify that these changes do not affect the correctness of the subroutine. The
trade-off is that we save the computation in Step 1, while pay for the potential cost
of more iterations because we remove one stopping criterion in Step 2. There is one
more earning with these changes, though, that is we have one succinct code to cover
both the differentiable-strictly-convex class and the general convex-convex class.

Besides, to eliminate redundant computation, we conduct a “bound check” as fol-
lows: A lower bound and an upper bound of the optimal solution of each variable xi are
maintained. The lower bounds are all initialized to −U , and the upper bounds are all
initialized to U , for all variables xi . The bounds are dynamically updated through the
propagation computations. And during each propagation, we check if each propagated
value xi violates its latest bounds – if violation happens, the current propagation stops
(saving the remaining propagation computation on variables after xi) and the bounds
of some variables are updated. Meanwhile, the type of violation guides the next trial
value to propagate.

The pseudo-code of the numerically improved implementation, named as the KKT-
algorithm, is presented in Box 4.

KKT-algorithm for 1D-Denoise problem:
input: { fi }i=1,...,n , {hi }i=1,...,n−1, U , ε.
output: {x∗

i }i=1,...,n , optimal solution to 1D-Denoise.
begin

Initialize lower bound li := −U and upper bound ui := U of xi for
i = 1, . . . , n.

for i := 1,…,n:
{Solve x∗

i }
Set fi (xi) := fi (xi) + hi−1(x∗

i−1 − xi) if i > 1;
xi := (li + ui)/2;
state := propagate({ f j } j=i,...,n, {h j } j=i,...,n−1, xi , {l j , u j } j=i,...,n);
while (ui − li ≥ ε) do:

if state = 0 then
{
∑n

j=i f ′
j (x j) = 0, optimal xi found}

break;
else if state < 0 then

{Try larger xi}
li := xi ;

else {state > 0, try smaller xi}
ui := xi ;

end if
xi := (li + ui)/2;
state :=propagate({ f j } j=i,...,n, {h j } j=i,...,n−1, xi , {l j , u j } j=i,...,n);

end while
x∗
i := xi ;

end for
return {x∗

i }i=1,...,n ;
end

123

A unified approach for a 1D generalized total variation…

AlgoBox 4: KKT-algorithm for 1D-Denoise problem. This numerical implementation
applies to both the differentiable-strictly-convex class and the general convex-convex
class. The pseudo-code of the subroutine propagate is shown in Box 5.

state := propagate({ f j } j=i,...,n, {h j } j=i,...,n−1, xi , {l j , u j } j=i,...,n)

begin
Compute f ′ := f ′

i,R(xi);
for j := i, . . . , n − 1:

Compute z j;R from f ′ according to equation (29);
x j+1 := x j + z j;R ;
if x j+1 < l j+1 then

{Violate lower bound}
{Update lower bounds of xi to x j}
l p := xp, for p ∈ [i, j];
return −1;

end if
if x j+1 > u j+1 then

{Violate upper bound}
{Update upper bounds of xi to x j}
u p := xp, for p ∈ [i, j];
return 1;

end if
Compute f ′

j+1;R(x j+1);
f ′ := f ′ + f ′

j+1;R(x j+1);
end for
if f ′ = 0 then

return 0;
else if f ′ < 0 then

{Update lower bounds of xi to xn}
l p := xp, for p ∈ [i, n];
return −1;

else { f ′ > 0}
{Update upper bounds of xi to xn}
u p := xp, for p ∈ [i, n];
return 1;

end if
end

AlgoBox 5: Pseudo-code of subroutine propagate for the KKT-algorithm displayed
in Box 4. The subroutine returns a state indicating the direction to try next xi value.
Values of the bounds, {l j , u j } j=i,...,n , will be updated.

123

C. Lu , D. S. Hochbaum

7 Experimental study

We implement in C++ the KKT-algorithm in Box 4 and compare our implementation
with existing solvers for the special cases of 1D-Denoise problem (1) discussed in
Sect. 1.1. For �2-TV-unweighted problem (3), �2-TV-weighted problem (4), �1-TV
problem (5) and �2-Tikhonov problem (6), we compared our implementation with
efficient specialized C++ solvers [2,4,5,14,16] and the experimental results showed
that our algorithm is not advantageous. For �p–�q problem (7) and problems with
Huber objective functions (9), the work of [21] does not provide C++ implementation
of their algorithm, nor arewe aware of other publicly available specialized C++ solvers
for these classes of problems.As a result, we compare our implementationwith popular
C++ nonlinear optimization solver softwares in solving the �p–�q problem (7) and
two problems with Huber objective functions. Those solvers solve the three problems
using first-order methods, where we feed in objective values and gradient values of the
problems to the solvers. We find out that our solver is much faster than the nonlinear
optimization solvers in solving the three problems.

The two problems with Huber objective functions we compare in the experiment
are:

(Huber-TV) min
x1,...,xn

n∑

i=1

ciρki (xi − ai) +
n−1∑

i=1

ci,i+1|xi − xi+1|. (30)

(�2-Huber) min
x1,...,xn

1

2

n∑

i=1

ci (xi − ai)
2 +

n−1∑

i=1

ci,i+1ρki,i+1(xi − xi+1). (31)

Huber-TV problem (30) has Huber functions in the fidelity terms and �2-Huber prob-
lem (31) has Huber functions in the regularization terms.

We compare the KKT-algorithm with the following three popular C++ nonlinear
optimization solvers:

1. Ceres solver2: This solver is provided by Google and has been used in production
at Google since 2010. It is a popular optimization solver for robotics and other
areas in industry. It provides API for modeling and solving general unconstrained
minimization problems, which suits for our cases here.

2. NLopt solver3: This solver is an open source library for nonlinear optimization
that provides many different algorithms and low-level code optimization.

3. dlib solver4: This solver is an open source library for machine learning algorithms
and tools. It contains general purpose unconstrained nonlinear optimization algo-
rithms that are suitable for our cases here.

The three solvers provide different first-order algorithms to solve unconstrained non-
linear optimization problems, which require the objective value and gradient value
of a problem to be fed in. For each of the three solvers, we ran multiple different

2 https://ceres-solver.googlesource.com/ceres-solver.
3 https://github.com/stevengj/nlopt.
4 https://github.com/davisking/dlib.

123

https://ceres-solver.googlesource.com/ceres-solver
https://github.com/stevengj/nlopt
https://github.com/davisking/dlib

A unified approach for a 1D generalized total variation…

first-order methods they provide and recorded each method’s running time and out-
put objective value upon the method stops. These records provide a range of running
times and objective values for each solver.We compare the running times and objective
values output from the KKT-algorithm with those ranges of each solver respectively.
For objective value comparison, rather than reporting the raw objective values, we
report the relative objective value gap, which uses the objective value of the compared
solver minus the objective value of the KKT-algorithm, then divided by the objective
value of the KKT-algorithm. For the three problems considered here, as the objective
values are always positive, hence a positive relative objective value gap implies that
the KKT-algorithm gives a better solution upon stopping, while a negative relative
objective value gap implies that, upon the algorithms stop, the nonlinear optimization
solver that we compare to gives a better solution.

In nonlinear optimization, stopping criteria need to be specified for each numerical
algorithm, including ours. The stopping criteria of the KKT-algorithm and the three
solvers are set as follows:

1. KKT-algorithm: The stopping criterion is that the gap between the lower bound �i
and ui for each variable xi is less than ε = 10−6 (See the algorithm pseudo-code
in Box 4).

2. Ceres solver: The stopping criteria are that either (i) the maximum difference
between two consecutive solution vectors is less than 10−6, or (ii) a running time
limit of 5 minutes, whichever reaches first.

3. NLopt solver: Same as Ceres solver.
4. dlib solver: dlib solver does not provide the above two stopping criteria. Instead, it

provides the objective value change stopping criterion: we set that if in successive
iterations, the objective value change is less than 10−2, the algorithm stops and
output results.

In all the three problems studied, each value of ci and ci,i+1 is sampled uniformly
from (0, 1), each value of ai is sampled uniformly from (−1, 1). For Huber-TV prob-
lem (30), each ki value is determined as ki = bi |ai |, where coefficient bi is sampled
uniformly from (0.5, 1.0). Similarly, for �2-Huber problem (31), each ki,i+1 value is
determined as ki,i+1 = bi,i+1|ai−ai+1|, where coefficient bi,i+1 is sampled uniformly
from (0.5, 1.0) as well.

We run the experiment on a MacBook Pro laptop with Intel Core i7 2.2 GHz
processor. For each of the three problems, we run the KKT-algorithm and the three
solvers with the number of variables, n, increasing from 102 to 107 by a factor of 10.
For each n, we randomly generate 5 problem instances following the above parameter
generation scheme, and record the running times and output objective values upon
stopping, for the KKT-algorithm and the three solvers respectively. We find out that in
each run, the KKT-algorithm always gives a smaller objective value in a much shorter
time, over all comparedmethods provided by the three solvers. In the following tables,
we report averaged results, including averaged running time of the KKT-algorithm,
averaged range of running times of the three solvers, and averaged range of relative
objective value gaps of the three solvers to the KKT-algorithm. We note that, for all
the problems tested, for the three solvers, the algorithm achieving the shortest running
time and the algorithm achieving the best objective value are often not the same.

123

C. Lu , D. S. Hochbaum

Table 1 Average running time (in cpu seconds) of the KKT-algorithm and the three nonlinear optimization
solvers for �p–�q problem (7) of increasing number of variables, n

�p–�q (p = q = 4) 102 103 104 105 106 107

KKT 0 0.0022 0.029 0.27 2.56 25.60

Ceres

Min 0 0.0072 0.094 1.13 14.25 196.87

Max 0.0012 0.020 0.20 2.43 21.56 301.91

NLopt

Min 0.0014 0.033 0.47 5.83 64.31 300.40

Max 0.0064 0.35 4.42 17.76 164.31 301.74

dlib

Min 0 0.0020 0.041 0.70 12.60 221.12

Max 0 0.0094 0.19 3.31 64.83 1235.58

For the three solvers, the averaged minimum and maximum running times over each solver’s different
algorithms are reported. All nonzero numbers are rounded to two significant digits after the decimal points

Table 2 Average minimum and maximum relative objective value gaps from the three nonlinear optimiza-
tion solvers to the KKT-algorithm for �p–�q problem (7) of increasing number of variables, n

�p–�q (p = q = 4) 102 (%) 103 (%) 104 (%) 105 (%) 106 (%) 107 (%)

KKT – – – – – –

Ceres

Min 2.88 0.32 0.0013 0.0023 0.0016 0.00082

Max 2.88 0.32 0.0067 0.0090 0.012 0.0097

NLopt

Min 2.88 0.32 0.00064 0.0016 0.00081 0.0000060

Max 2.88 0.32 0.00064 0.0016 0.00081 0.000064

dlib

Min 5.11 0.82 0.082 0.014 0.0027 0.00029

Max 5.71 0.90 0.12 0.018 0.0030 0.00038

All numbers are rounded to two significant digits after the decimal points. We use “–” in the second row
of the table to denote that the relative objective value gaps are computed against the objective values of the
KKT-algorithm

The experimental results for solving the �p–�q problem (7) with different solvers
are shown in Table 1 for running times and Table 2 for objective value comparison.

For the �p–�q problem, one can see that all solvers have similar running times for
n = 102. For n increasing from 103 to 107, the KKT-algorithm is from 3 to 7 times
faster than Ceres and from 10 to 25 times faster than NLopt. For dlib, except for the
case of n = 103, the KKT-algorithm is from 1.4 to 8 times faster. The gaps between
objective values are not significant.

The experimental results for solving the Huber-TV problem (30) with different
solvers are shown in Table 3 for running times and Table 4 for objective value com-
parison.

123

A unified approach for a 1D generalized total variation…

Table 3 Average running time (in cpu seconds) of the KKT-algorithm and the three nonlinear optimization
solvers for Huber-TV problem (30) of increasing number of variables, n

Huber-TV 102 103 104 105 106 107

KKT 0 0 0.0040 0.050 0.48 4.78

Ceres

Min 0 0.0024 0.032 0.38 5.05 56.23

Max 0.0066 0.219 3.71 28.75 300.18 302.04

NLopt

Min 0.0012 0.018 0.074 0.71 6.45 60.71

Max 0.68 60.70 180.74 234.20 296.67 301.32

dlib

Min 0 0.012 0.56 8.23 116.06 1551.07

Max 0.0064 0.036 0.65 10.66 218.69 3830.23

For the three solvers, the averaged minimum and maximum running times over each solver’s different
algorithms are reported. All nonzero numbers are rounded to two significant digits after the decimal points

Table 4 Average minimum and maximum relative objective value gaps from the three nonlinear opti-
mization solvers to the KKT-algorithm for Huber-TV problem (30) of increasing number of variables, n

Huber-TV 102 (%) 103 (%) 104 (%) 105 (%) 106 (%) 107 (%)

KKT – – – – – –

Ceres

Min 5.73 2.11 1.17 2.43 2.09 9.40

Max 54.21 39.51 39.08 38.84 38.98 38.98

NLopt

Min 3.03 0.57 0.27 0.78 3.76 11.77

Max 32.60 35.12 44.06 44.15 44.47 44.43

dlib

Min 27.42 11.13 2.10 1.68 1.59 1.55

Max 36.26 23.97 23.53 23.76 23.92 23.91

All numbers are rounded to two significant digits after the decimal points. We use “–” in the second row
of the table to denote that the relative objective value gaps are computed against the objective values of the
KKT-algorithm

For the Huber-TV problem (30), the four solvers all have negligible running times
for n = 102. For n = 103, the running time of the KKT-algorithm and the minimum
running time of Ceres remain negligible, but theminimum running times of NLopt and
dlib are several times slower thanCeres. From n = 104 to n = 107, theKKT-algorithm
is from 8 to 10 times faster than Ceres, from 12 to 18 times faster than NLopt, and from
160 to 324 times faster than dlib. The relative objective value gaps are overall much
more significant for the Huber-TV problem than for the �p–�q problem. One reason
might be that the TV regularization terms are not strictly convex and not differentiable
at the point 0. Ceres and NLopt both have the largest relative objective value gaps at

123

C. Lu , D. S. Hochbaum

Table 5 Average running time (in cpu seconds) of the KKT-algorithm and the three nonlinear optimization
solvers for �2-Huber problem (31) of increasing number of variables, n

�2-Huber 102 103 104 105 106 107

KKT 0 0.0012 0.010 0.11 1.01 10.12

Ceres

Min 0 0.0020 0.025 0.30 4.20 50.18

Max 0 0.0056 0.037 0.397 5.32 60.79

NLopt

Min 0.00040 0.0094 0.19 1.75 24.59 300.38

Max 0.0052 0.032 0.43 6.25 76.17 301.37

dlib

Min 0 0 0.013 0.23 3.57 58.29

Max 0 0.0038 0.068 0.84 12.48 175.75

For the three solvers, the averaged minimum and maximum running times over each solver’s different
algorithms are reported. All nonzero numbers are rounded to two effective digits after the decimal points

Table 6 Average minimum and maximum relative objective value gaps from the three nonlinear optimiza-
tion solvers to the KKT-algorithm for �2-Huber problem (31) of increasing number of variables, n

�2-Huber 102 (%) 103 (%) 104 (%) 105 (%) 106 (%) 107 (%)

KKT – – – – – –

Ceres

Min 1.98 0.047 0.00076 0.00084 0.00043 0.00035

Max 1.98 0.049 0.0016 0.0023 0.0022 0.0017

NLopt

Min 1.98 0.047 0.00051 0.00050 0.000071 0.0000059

Max 1.98 0.047 0.00051 0.00050 0.000071 0.0000074

dlib

Min 2.10 0.072 0.0045 0.0012 0.00018 0.000022

Max 2.20 0.097 0.0082 0.0012 0.00019 0.000024

All numbers are rounded to two effective digits after the decimal points. We use “–” in the second row of
the table to denote that the relative objective value gaps are computed against the objective values of the
KKT-algorithm

the case n = 107, while dlib has good relative objective value gap for this large-scale
case. However, dlib has the largest relative objective value gap for the small-scale case
of n = 102.

The experimental results for solving the �2-Huber problem (31) with different
solvers are shown in Table 5 for running times and Table 6 for objective value com-
parison.

For the �2-Huber problem (31), the four solvers all have negligible running times
for n = 102 and n = 103. From n = 104 to n = 107, the KKT-algorithm is from 2.5
to 5 times faster than Ceres, from 16 to 30 times faster than NLopt, and from 1.3 to

123

A unified approach for a 1D generalized total variation…

5.7 times faster than dlib. Similar for the �p–�q problem, the gaps between objective
values are negligible.

8 Conclusion and future directions

In this paper we present two efficient algorithms to solve the 1D-Denoise problem (1)
for different classes of objective functions. Both algorithms follow a unified approach
that directly solves the KKT optimality conditions of the 1D-Denoise problem. For
convex differentiable fidelity functions and strictly convex regularization functions,
our dsc-algorithm has O(n log2 U

ε
) time complexity; for arbitrary convex fidelity and

regularization functions, our cc-algorithm has O(n2 log2 U
ε
) time complexity. The

numerically improved algorithm, KKT-algorithm, that combines the advantages of
both the dsc-algorithm and the cc-algorithm, is presented and implemented in C++.
For complicated objective functions, such as higher order �p functions of p > 2
and Huber functions, the KKT-algorithm has much better performance over existing
popular nonlinear optimization solvers.

There are many directions that could potentially make use of the results or push
further research based on the ideas presented here. The 1D-Denoise problem consid-
ered here only penalizes the first order differences, xi − xi+1. It would be interesting
to study if a similar technique can be applied to solve problems that penalize higher
order differences, such as second order difference xi−1 − 2xi + xi+1, which appears
in some trend filtering applications [15]. On the other hand, it would be interesting
to study if we can use the algorithms here as subroutines to solve higher dimensional
denoising problems, such as 2D denoising problems in imaging [2,16,21]. From a
graph-theoretic perspective, the 1D-Denoise problem is defined on a path graph. It
would be interesting to study whether we can adopt the algorithms here to provide a
faster algorithm to solve problems defined on more general graphs, such as the MRF
problem (2). Inspired by Weinmann et al.’s work in [21] on manifold-valued data, we
are very interested in investigating whether our methods can be generalized from the
Euclidean space to manifolds as well.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ahuja, R.K., Hochbaum, D.S., Orlin, J.B.: Solving the convex cost integer dual network flow problem.
Manag. Sci. 49(7), 950–964 (2003)

123

http://creativecommons.org/licenses/by/4.0/

C. Lu , D. S. Hochbaum

2. Barbero, Á., Sra, S.: Modular proximal optimization for multidimensional total-variation regulariza-
tion. J. Mach. Learn. Res. 19(1), 2232–2313 (2018)

3. Barlow, R.E., Bartholomew, D.J., Bremner, J.M., Brunk, H.D.: Statistical Inference Under Order
Restrictions: The Theory and Application of Isotonic Regression. Wiley, New York (1972)

4. Condat, L.: A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20(11),
1054–1057 (2013)

5. Conte, S.D., de Boor, C.: Elementary Numerical Analysis. McGraw-Hill, New York (1972)
6. Davies, P.L., Kovac, A.: Local extremes, runs, strings and multiresolution. Ann. Stat. 29(1), 1–65

(2001)
7. Dümbgen, L., Kovac, A.: Extensions of smoothing via taut strings. Electron. J. Stat. 3, 41–75 (2009)
8. Grasmair, M.: The equivalence of the taut string algorithm and BV-regularization. J. Math. Imag. Vis.

27(1), 59–66 (2007)
9. Hochbaum, D.S.: An efficient algorithm for image segmentation, Markov random fields and related

problems. J. ACM 48(4), 686–701 (2001)
10. Hochbaum, D.S.: Multi-label Markov random fields as an efficient and effective tool for image seg-

mentation, total variations and regularization. Numer. Math. Theory Methods Appl. 6(1), 169–198
(2013)

11. Hochbaum, D.S., Lu, C.: A faster algorithm solving a generalization of isotonic median regression and
a class of fused lasso problems. SIAM J. Optim. 27(4), 2563–2596 (2017)

12. Hochbaum, D.S., Shanthikumar, J.G.: Nonlinear separable optimization is not much harder than linear
optimization. J. ACM 37(4), 843–862 (1990)

13. Huber, P.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)
14. Johnson,N.A.:Adynamic programming algorithm for the fused lasso and L0-segmentation. J. Comput.

Graph. Stat. 22(2), 246–260 (2013)
15. Kim, S.-J., Koh, K., Boyd, S., Gorinevsky, D.: �1 trend filtering. SIAM Rev. 51(2), 339–360 (2009)
16. Kolmogorov, V., Pock, T., Rolinek, M.: Total variation on a tree. SIAM J. Imag. Sci. 9(2), 605–636

(2016)
17. Little, M.A., Jones, N.S.: Generalized methods and solvers for noise removal from piecewise constant

signals I Background theory. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2135), 3088–3114 (2011)
18. Mammen, E., van de Geer, S.: Locally adaptive regression splines. Ann. Stat. 25(1), 387–413 (1997)
19. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica

D 60(1–4), 259–268 (1992)
20. Storath, M., Weinmann, A., Unser, M.: Exact algorithms for L1-TV regularization of real-valued or

circle-valued signals. SIAM J. Sci. Comput. 38(1), A614–A630 (2016)
21. Weinmann, A., Demaret, L., Storath,M.: Total variation regularization formanifold-valued data. SIAM

J. Imag. Sci. 7(4), 2226–2257 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A unified approach for a 1D generalized total variation problem
	Abstract
	1 Introduction
	1.1 Literature review

	2 Notation and preliminaries
	2.1 An equivalent formulation of 1D-Denoise

	3 The KKT optimality conditions and overview of our approach
	4 KKT approach for differentiable-strictly-convex class: dsc-algorithm
	5 KKT approach for convex-convex class: cc-algorithm
	6 A numerically improved implementation
	7 Experimental study
	8 Conclusion and future directions
	References

