
Mathematical Programming 69 (1995) 269-309

About strongly polynomial time algorithms
for quadratic optimization

over submodular constraints ~

Dorit S. Hochbaum a,b,*, Sung-Pil Hong b
a School ofBusinessAdministration, University ofCalifornia, Berkeley, CA, USA

b Department ofIEOR, University ofCalifornia, Berkeley, CA 94720, USA

Received 17 February 1993; revised manuscript received 18 July 1994

Abstract

We present new strongly polynomial algorithms for special cases of convex separable
quadratic minimization over submodular constraints. The main results are: an O(NM log (N2 /M))
algorithm for the problem Network defined on a network on M arcs and N nodes; an O(n log n)
algorithm for the tree problem on n variables; an O(n log n) algorithm for the Nested problem,
and a linear time algorithm for the Generalized Upper Bound problem. These algorithms are the
best known so rar for these problems. The status of the general problem and open questions are
presented as weil.

Keywords: Quadratic programming; Submodular constraints; Kuhn-Tucker conditions; Lexicographically
optimal flow; Parametric maximum flow

1. Introduction

In this paper we investigate strongly polynomial algorithms for convex quadratic

optimization problems. The motivation for such study is the fact that a number of classes

of Linear Programming are solvable in strongly polynomial time, whereas the corre-

sponding quadratic optimization problems are not known to be solvable in strongly

polynomial time. In particular, Tardos proved in [24] that " combina to r i a l " Linear

Programming problems are solvable in strongly polynomial time. (Combinatorial linear

* This research has been supported in part by ONR grant N00014-91-J-1241.
* Corresponding author.

0025-5610 © 1995 - The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-5610(94)00055-7

270 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

programs are those with 0-1 coefficients in the constraint matrix.) Separable convex
quadratic optimization problems over "combinatorial" constraints are not known to
possess strongly polynomial algorithms.

Solvability in strongly polynomial time for a linear or quadratic programming
problem on n variables and m constraints means that there exists an algorithm that
solves the problem in a number of steps that is bounded by a polynomial function of n
and m only. The general optimization problem over submodular constraints can however
be described without an explicit description of the constraints. Such is the case when
there is a constraint for each subset of the universal set of n variables. The input then
describes the rank function defined on all possible subsets of the universal set. In this
case, for an algorithm to be strongly polynomial, its running time depends on n alone,
and the length of the description of the rank function.

Although combinatorial Linear Programming problems are solvable in strongly
polynomial time, this feature is not shared with nonlinear problems. In [17], it was
shown that nonquadratic concave separable optimization problems are not solvable in
strongly polynomial time in a computation model that includes the arithmetic operations,
comparisons and the floor operation. This lower bound was illustrated for the simple

resource allocation problem max{~~= 1 f j (x i)]~nj= a xj ~< B, x >/0, x integer}, and for its
continuous version. The simple resource allocation problem is the simplest form of
nonlinear optimization over submodular constrains. This negative result applies only for
nonquadratic objective functions, so the issue of the strong polynomiality of quadratic
optimization problems over linear constraints is still open.

While for a general optimization problem there is a clear distinction in complexity
between optimizing over integers or over continuous variables, this is not the case for
optimization over submodular constraints. It is proved in [17] that there is a "proximi ty"

theorem between an optimal integer and optimal continuous solution to the problem
where any optimal continuous solution rounded down bounds from below an integer
optimal solution. This allows in particular to solve the integer problem by solving first
the continuous problem and then apply what amounts to at most n steps to reach an
optimal integer solution. This strategy is adopted throughout this paper in order to derive
continuous and integer solutions to the quadratic optimizätion problem over submodular
constraints.

Known cases where convex quadratic optimization in integers (or continuous vari-
ables) over linear constraints can be solved in strongly polynomial time include: a
nonseparable quadratic transportation problem [19]; an unconstrained nonseparable
quadratic optimization in the context of electrical distribution system [1]; a nonseparable
problem in the context of toxic waste disposal [15]; a quadratic continuous Knapsack
problem [4]; a problem where the constraints consist of two equations and lower and
upper bounds [2]; a transportation problem with fixed number of sources (of sinks) [6];
an improvement in complexity to the transportation problem with fixed number of
sources and extending the strong polynomiality to a quadratic problem over a fixed
number of equations [21]; a quadratic series-parallel network with a single source and
sink [23].

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 271

Our aim in this paper is to establish the most efficient strongly polynomial algorithms
known for several quadratic problems over submodular constraints. The general quadratic
problem over submodular constraints is defined with respect to some submodular rank
function r : A ~ R defined on a distributive lattice A of E = { 1 , . . , n} (a set of subsets
of E which contains ¢, E and is closed on the set intersection and union), i.e. r(~) = 0

and for all A,B ~ A,

r(A) + r(B) >~ r(A UB) + r(A AB) .

(For a detailed description of submodular functions see e.g. [22].) The submodular
polyhedron defined by the submodular function r is the set {xlEj~ Ax t <~ r(A), A ~ A}.

We call the system of inequalities {F~j~Axj<r(A)IA~A}, submodular con-
straints. The problem of quadratic integer optimization over submodular constraints is

then,

min 1 2 E ajxj + ~bj~j
j ~ E

~_,x j<r(A) , A ~ A
jEA

xj >~ 0 and integer, j ~ E.

For b a nonnegative vector, the objective function is convex. This is a special case of the
convex nonlinear problem over submodular constraints, the general resource allocation
problem or (GAP):

(GAP) max ~ ~.(xj)
j~E

~_,xj<~r(A), A ~ A
j~A

xj >~ 0 and integer, j ~ E.

The problem (GAP) was proved polynomial by Groenevelt [16], using the ellipsoid
algorithm, and by Hochbaum [17] nsing a proximity and scaling based algorithm. Since
the number of constraints in the problem could be exponential in [E I, the running time
is expressed in terms of the number of calls to an oracle that determines whether a
solution is a member of the submodular polyhedron, or equivalently, feasible for the

submodular constraints. Let F denote the number of steps that an oracle requires to
determine whether incrementing a given feasible solution vector in one of its compo-
nents by one unit results in a feasible solution vector. The running time given in [17] is
O(n(log n + F)log2(r(E)/n))), and for the confinuous case an e-accurate solufion
(within « in the solntion space) is produced in O(n(log n + F) log2(r(E)/en)) steps.
(There is no statement of running time in [16].) Note that this running time is

polynomial, but not strongly polynomial as it depends on the value of the right-hand
side, r(E). These algorithms apply particularly to the problem of quadratic optimization

over submodular constraints.

272 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

The problem (GAP) has been studied extensively in the literature. A book by Ibaraki
and Katoh [20] presents an excellent state-of-the-art survey on this problem and its
special cases. Here we focus on the instances of the problem where the objective
function is quadratic. We present here strongly polynomial algorithms for all cases of
(GAP) studied in the literature. These problems, in addition to the simple resource
allocation problem, (SRA), are the generalized upper bound resource allocation prob-
lem, (GUß), the nested resource allocation problem, (Nested), the tree resource
allocation problem, (Tree), and the network resource allocation problem, (Network).
The definitions and formulations of these problems are given in Section 2.

Prior work on strongly polynomial algorithms for the problems discussed here
includes two algorithms. In [9], Fujishige devised an algorithm for the lexicographically
optimum flow problem from which it is possible to derive an O(N2M log(N2/M)) time
algorithm for (Network) when the underlying network has M arcs and N nodes, and
hence for all other problems described here. This algorithm, when applied to (Tree),
runs in O(n 2) time. Another algorithm by Tamir [23], solves the minimum convex
separable quadratic cost flow problem on series-parallel network for which (Tree) is a
special case. Applied to the problem (Tree), this algorithm has complexity O(n2).

The main results here are an O(NM log(N2/M)) algorithm for (Network), an
O(n log n) algorithm for (Tree) on n variables, an O(n) algorithm for (Nested) when
given a sorted array of the coefficients, a j, and a linear time algorithm for (GUß). These
results constitute therefore a significant improvement on the complexity of currently
available algorithms. Such efficient algorithms also lend additional support to the
conjecture that the problem of quadratic cost network flow is solvable in strongly
polynomial time.

The paper is organized as follows. Section 2 defines the classes of problems
addressed and gives their formulations. In Section 3 we give the algorithm for the
quadratic simple resource allocation problem that is used as building blocks for the
nested and tree algorithms. Section 3 also describes the linear time algorithm used for
the generalized upper bounds problem. Section 4 contains the algorithm for (Nested),
and Section 5 contains the algorithm for (Tree). Section 6 describes the algorithm used
for the (Network) case, and our implementation of a parametric flow algorithm.

2. Formulations and preliminaries

2.1. Formulations

Important special cases of optimization over submodular constraints that have been
studied in the literature are formulated here with a quadratic objective function. The
formulations given here include a constraint for the rank of the entire set as an inequality
constraint. However, all the algorithms given in this paper can be easily modified to

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 273

solve the corresponding problem given with this constraint as an equality. The problems
are also slightly generalized by allowing upper bound constraints on the variables.

We assume throughout that the objective functions are strictly convex, that is, the
vector b is positive. This assumption is made for the sake of convenience of the
presentation. All algorithms described apply also when some of the functions are linear
with an obvious modification. For the network problem, where the modification is less
obvious, there is a discussion on the method of modifying the algorithm. We choose not
to treat the non-strictly-convex cases explicitly, in order not to obscure the main
algorithmic issues involved.

(1) The simple resource allocation problem:

(SRA) min I 2 ~ ajxj + 7bjxj
j = l

B xj<~ß
j = l

0 ~ xj ~< uj integers, j = 1 , . . , n .

The problem (SRA) may be viewed as a minimum cost flow problem with a source
that has supply of B units. Each variable represents the amount of flow along each arc
going from a node to a sink t. There are no costs or capacities associated with the arcs
going into the nodes other than the sink, but there are capacity upper bounds uj
associated with the arc going from node j to the sink and also quadratic cost functions

1 2 ajxj + -~bjxj. Since the "supply" in the formulation above is up to B, this can be
incorporated by adding an arc with zero cost (and infinite capacity) from source to t.
Such arc is omitted from the network described in Fig. l(a). Note that (SRA) could also
be considered as a quadratic transportation problem with a single supplier and n
customers. This observation underlied the technique used in [6] for solving quadratic
transportation problems.

(2) The generalized upper bound resource aUocation problem:

(GUB) min 1 2 B ajxj + 2bjxj
j = l

B xj ~<B
j= l

E x j ~ p i , i = l , . . . , m
j~S i

0~<xj~<ujintegers, j = l ,n.

where {S 1, S 2 Sm} is a partition of E = {1 , n}, i.e. disjoint sets the union of
which is E. A depiction of this problem as a minimum cost flow problem is given in
Fig. l(b).

274 D.S. Hochbaum, S.-P. Hong /Mathematical Programming 69 (1995) 269-309

~ ~ \ v C
v ~ x "c

\ \ x - - - ~ " ,.,~ g
• . - / / ~ " / ([/ I ° o. \ .~

• , ,~o ~ ; 4 ~ -~ / ~ - _ ' ~

2-
v / / +

/ ~

/ /
/ / e , l

J~

o\ ~

g

\

\ . ,

. , ,., x =

\ \ oa
" \ c

\ \x +

-2,,,~=

e ------2
g

/ ii +
/ / x'-

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 275

(3) The nested resource allocation problem:

(Nested) min 1 2 B ajxj + ~ójxj
j = l

B xj<~B
.i=1

~ xj<~p~, i = l , . . . , m
j~Si

0~<xj~<uj in tegers , j = l , . . . , n .

where S m c S m_ 1 c • • • c S 1 c E. Notice that Pm ~ Pro- 1 ~< " " " ~< Pl , otherwise, if
Pi > Pi+ 1, then the /th constraint is redundant and can be omitted.

It is more convenient to analyze (Nested) with a constraint corresponding to each
variable, that is, it is always possible to reduce (Nested) to the following special case

with set S i = {i, i + 1 n}. Here Pl = B.

min ~~xj + lbjx~
j = l

BXj<~Pi , i = l , . . . , n
j=i

O~<xj~<ujintegers , j = l , . . . , n .

If a set {x i x n} does not appear among the sets Sj, then set its right-hand side Pi
to be equal to that of the smallest set among the Sj's containing {x i , . . . , Xn}.

The problem (Nested) is described in Fig. l(c).

(4) The tree resource allocation problem:

(Tree) min 1 2 B ajxj + ~bjxj
j = l

B xj ~ B
j = l

E Xj<~Pi, i = l , . . . , m
j~S i

O <~ xj <~ uj integers, j = l , . . . , n .

The sets S i are derived by some hierarchical decomposition of E into disjoint subsets
and the repeated decomposition of each of the subsets. Each set thus generated is among
the sets Si, i = 1 , . . , m. Describing each set as a node and the decomposition as edges
from the parent set to its subsets, one gets a tree on m nodes which is a branching, i.e.
the indegree of each node except the root corresponding to the set E is one.

It is convenient to extend the tree of sets by adding all singleton sets as leaves. Note

276 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

that the problem could be viewed as flow problem from the root to the leaves where the
objective function minimizes the quadratic cost of the flow to the leaves only. All other
flows have cost of zero, and only the capacitated nodes and the flow balance constraints
determine the feasibility. The network describing the flow problem corresponding to the
tree allocation problem is given in Fig. l(d).

(5) The network resource allocation problem is defined with respect to any network
(or graph), with a single source and a set of sinks.

Given a directed graph (network) G = (V, A) with node set V and arc set A. Let
s E V be the source and T ___ V be the set of sinks. The supply of the source is B > 0,
and the capacity of arc (i, j) is Cij. Denote the flow vector by f = {f/j [(i, j) GA}

1 2 (Network) min ~ akx k + 2bkxk
tk~ T

E fij-- E fji =0' i ~ V - - T - - { s }
(i,j)EA (j,i)~A

E Lj<8
(s,j)~A

E ~,~- E Lj=x~,
(j,tk)~A (tk,j)~A

0~<f/ j~<cq, (i , j) GA

O <~ x~ < u k, tk ~ T.

t h ~ T

Given a feasible flow f in G, each variable x k represents the net value of the flow
arriving at the sink t k. We call x the out-flow vector of the flow f. The (quadratic)
network resource allocation problem (Network) is not the same problem as the
minimum quadratic cost flow problem. In the latter problem there is an underlying graph
and a quadratic cost associated with the flow along each arc. In this problem the
quadratic costs are associated only with the flow x k arriving at each sink te. An
alternative representation is to augment G with a dummy sink t, and connect each sink

t h to t with a directed arc (th, t) of capacity u k. The costs are then only associated with
the arcs (th, t). All other arcs have 0 cost associated with them. This graph is described
in Fig. l(e).

The relations between these problems are depicted in Fig. 2 where A ~ B if problem

A is a special case of problem B.

2.2. Deriving integer from continuous solutions

Vectors in this paper are denoted by boldface letters. The vector e denotes the
n-vector (1 1).

A theorem in [17] states a proximity between an optimal (integer) solution to (GAP)
and a scaled solution. A corollary of this theorem is a proximity result on the distance
between an optimal integer and optimal continuous solutions to (GAP). Such result is

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 277

. (S R A) _ _

(G U B) ~ ""~~(Nested)

" ' . ~ (Tree) ~ /

1
(Network)

1
(a A e)

Fig. 2.

not useful in finding optimal integer solutions to the problem unless the continuous
problem is particularly easy to solve. The statement of this corollary [17, Corollary 4.4]

is:

Corollary 2.1. For an integer optimal solution to (GAP), z *, there is a continuous

optimal solution to (GAP), x *, such that z * - e < x * < z * + ne, and vice versa; i.e.

for a continuous optimal solution to (GAP), x *, there is an integer optimal solution to

(GAP), z* , such that z * - e < x* < z* + ne.

In particular, Hz* - x *][~ < n. This is a tighter proximity theorem than the one
existing in the literature for constrained linear [5], quadratic [14] and nonlinear [16]
optimization problems, all of which have []z * - x * [la < nA, where A is the largest
subdeterminant of the constraint matrix. This result could be viewed as effectively
considering the largest subdeterminant of a set of submodular constraints to be 1,
although such subdeterminant is in general exponentially large.

The proximity theorem is used to produce more efficiently integer solutions to the
quadratic cases of (GAP), where the continuous solution is relatively easy to derive
from Kuhn-Tucker conditions (all of which are linear for quadratic objective function):

First a continuous solution is obtained, x *. The vector ~ = [x * + e] is then an upper
bound on an integer optimal solution and the sum of its components is at most

r (E) + n. Hence it suffices to remove the, up to n, units of ~ that contribute least to the
objective function. This is done by considering the incremental contribution of each last

unit of each component and removing the one that reduces the objective function by the
least amount. This is continued until the constraints including ~~= 1 xj ~< B a r e satisfied.
The validity of such a greedy approach is documented in [20] and in [17].

Although it appears that a direct implementation of the procedure above requires
O(n 2) time even for (SRA), this is not the case. The problem of obtaining an optimal
integer solution from '~ is also an allocation problem in integers, but with right-hand

278 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

sides that are O(n). Such allocation problems, if they have same constraints as the
problems in Subsection 2.1, with any convex separable objective function, are solvable
with the following running times:

(SRA) in O(n), [8],
(GUß) in O(n), [17],
(Nested) in O(n log n) [17],
(Tree) in O(n log n) [17],
(Network) and any submodular constraints, in O(nF) where F is the number of steps

required to check whether an increment of one unit (of flow, in (Network)) is feasible.
These running times are added to the complexity of the continuous problem in order

to determine the complexity of the integer problem. Yet, in all cases these running times
are dominated by those required to solve the continuous problem. Thus in the subse-
quent part of this paper, we consider only the continuous versions of the problems
defined in the previous subsection.

3. A linear time algorithm for (SRA) and (GUß)

Brucker [4], was the first to devise a linear time algorithm for the continuous convex
quadratic Knapsack problem. This problem is more general than (SRA) in that its
constraint may have nonnegative coefficients to the variables where in (SRA) all these
coefficients are 1. The algorithm presented here is also directly applicable to the
Knapsack version of the problem with a minor adjustment. The presentation here
follows the algorithm given in [6] with some appropriate modifications.

At the optimum of (SRA) the derivative with respect to each variable has to be
nonpositive. (Otherwise, a variable with positive derivative value at the optimum can be
decreased by e > 0 while only improving (reducing) the objective function and without
violating any constraint.) In other words, xj <~ max{0, - a J b j } . Hence we can update
uj ~ min{uj, max{0, - a Jb j}} for each j and then B ~ min{B, E~= luj} without affect-
ing the optimality. Also, notice that with this preprocessing, taking O(n) time, at any
optimal solution, F~7= l Xi <~ B is binding. Otherwise there should be a variable with
value less than the (updated) upper bound and hence with a negative derivative. Then we
can increase the value of the variable by a small amount to reduce the objective value
while maintaining the feasibility, contradicting to the optimality assumption. Thus by a
linear time preprocessing, (SRA) is reducible to the same problem with equality
constraint:

1 2 (SRA) min Æ ajxj + 7bjxj
j=l

~ x j = B
j=l

O<~xj<~uj, j = l , . . . , n ,

where B is positive, B ~< E7 = 1% and each bj is positive.

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 279

0 l X*3 X*2 X*l (=U l k__

a 1 + b 1 u1

a 3

Fig. 3.

The convexity of the objective function guarantees that a solution satisfying the
Kuhn-Tucker conditions is also optimal. In particular, we seek a nonnegative solution
x * and a value 6 * such that

xj = B and u j > x j > 0 ~ ay + b i x j = 6 " .
j = l

The situation is illustrated by Fig. 3.
The value set for 6 determines associated values for xj. For any value 8, the

associated solution x(6) is

/ O

x j (6) = (3 - a j) / b j

I, uj

if 8 ~< a j,

if aj < ¢~ <~ aj + bj U j ,

if aj + bjuj < 3.

(3.1)

Let / ~ (8) = F.,~=lxj(6). Then finding the optimal solution to (SRA) is equivalent to
~< n finding a value 8 * such that /}(6 *) = B. (Since 0 < B ~ ~j= luj, it follows that there is

a finite optimal 6 * for every instance of (SRA).)
Notice that /}(8) is a monotone increasing, piecewise linear function of 8, having

breakpoints at the values ai, and aj + bjuj for j = 1 n. So if /~(8) < B , then we
could conclude that 6 * is greater than 6 and similarly, i f / ~ (6) > B, then 6 * is less
than 6. Thus the monotonicity o f / 3 (6) allows for a binary search for the optimal value,
6 * satisfying /~(8) = B.

The algorithm we propose for finding 3 *, chooses "guesses" (from among the
breakpoint values, aj and aj + b j u) until it finds two consecutive breakpoints which
contain 6 * in the interval between them. In this range, /}(8) is a linear function. The
problem is then solved by finding the particular value of 6 for which /} (8) = B (i.e., by
solving the linear equation in one variable).

280 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

From (3.1), we have,

/ ~ (6) = 6 E 1 E ~ + E u j , (3.2)
j ~ u bj j ~ u oj j c v

where U = {j I aj < 6 ~ aj + bjuy} and V = {j[aj + bjuj < 6}.
So at each iteration, we need to determine the index sets and the corresponding sums.

To result in a better complexity, the algorithm avoids computing the index sets and the
sums at every iteration from scratch. For this purpose, it maintains the parameters P, Q
and R which retain partial sums from the previous iteration.

Procedure SRA

Step 0: {initialization} S ~ { a 1 , a~; a 1 + b l U l , . . , a,, + bnun}.
I, J ~ {1 n}, P ":--~,~=laj/bj, Q <---2~7=11/b r

Step 1: {selecting median of breakpoints}
Set 6 to be the median value from the set S.
{computing coefficients of/~(i~)}
L(~)<---{j ~ I [~<~ aj}, R (~) ~ {j E J l a j + bjuj < ~},
M (8) ~ L (~) U R(~)
t3 ~ P - Ei E M(g)ai/bi, Ô ~ Q - Ei ~ M(g)l/bj, 1~ ~ Ej ~ R(g)uj.

Step 2: {computing-~(g)) ~ ,z gO _ ~ + ~.
I f /~ ~- B then STOP, 6 * ~ 6.
I f / ~ > B then 6* < 6 .
I f / ~ < B then 6" > 6 .

Step 3: {update index sets, breakpoints and partial sums}
If 6" < 6 then

I ~ I - L (6) , J ~ R(6) , S ~ {ay[j ~I} t .3{ay + byu~b j ~ J } .

If 8 = a,ù for some m, then P ~ P - am/b m, Q ",- Q - 1 / b m.
Else {6* > 6},

I ~ L(6), J ",- J - R(~) , S ~- {aj[j ~ I1 t3 {aj + bjujl j ~ J}.
Step 4: {repeating until final interval is found}

If [S[>i 2, go to Step 1.
Else, 6* ~ (B +/~ - / ?) / Q .

The algorithm outputs a value 6 *. Then the optimal solution is x(6 *) which can be
determined in linear time using (3.1).

Theorem 3.1. Procedure S R A finds 8 * and x* in O(n) time.

Proof. To prove the validity of Procedure SRA, we need to show the correctness of /~
in Step 2, which is the value of /~(6) for 6 = 6.

Consider Q in Step 1, which is the slope of the piecewise linear curve, /~(6), at
6 = 6. To compute Q, we first calculate Q which represent the maximum possible value

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995)269-309 281

of the slope o f /~ (6) when 6 takes value among the breakpoints of S. Thus, initially Q
is ET= il~bi. From (3.2) and the definitions of L(6) and R(6), it follows that M(6) is
the set of indices j such that 1~bi needs to be subtracted from Q to obtain the correct
slope o f / 3 (8) for 8 = 6. Therefore, Q should be

1 1 1 1 z - = ~ - - z - = Q - ~ - (33)

Hence the coefficient Q calculated in Step 1 is correct for the first iteration.
If 6 * < ~, then the next guess is the median of the lower half of the current

breakpoints, that is, those breakpoints less than 6. So in Step 3, the upper half of the
current breakpoints (including the current guess ä) is deleted from the set S and in Step
3 S is updated accordingly. In this case Q, the maximum possible slope o f / ~ (a) over
the updated S, is ô - aj /b mi f g = a m for some m, or O, otherwise. Furthermore, from
the updated set I and J in Step 3 it follows again that M(/~) is the set of indices j such
that 1~bi needs to be subtracted from (the updated) Q to obtain the correct slope of
/~(6) for 6 = 6 in the next iteration. Thus the correctness of Q obtained in Step 1
follows by induction on the numbers of iteration.

On the other hand, if 6 * > 6, then the next guess is the median of the upper half of
the current breakpoints. So, in this case, we use the same Q in the next iteration. Similar
inductive arguments for/~ and /~ show the correctness of the computation o f / ~ (6) in
Step 2.

When S contains only one element, say aj (or, aj + bjuj), then we can conclude that
6 * is between 6 and aj (or, aj + bjuj,^respectively). Furthermore, since /~ is a linear
function of 6 in this range, (i.e. B = Q 6 - / 3 +/~), 6 * and x * are determined as in
Step 4.

The O(n) complexity of the algorithm follows from the fact that each of Step 1, 2 and
3 can be pefformed in a number of arithmetic operations that is linear in the cardinality
of the set S, including the selection of the median value [3]. Since the number of
elements in the set is initially 2n and is cut in half after each pass, the total work is
linear in (2n + n + n / 2 + n / 4 + • • •) = 4n, so the complexity of the algorithm is
O(n). []

The problem (GUß) is easier to handle once we observe that it is polynomially
equivalent to a number of simple resource allocation problems. Consider the set S i, the
constraint Ej E si xj ~< p» and the following simple resource allocation problem restricted

to Si:
1 2 (SRAi) min Y'~ ajxj + ~bjxj

jESi

E Xj ~ Pi
jES i

O<~xj, j ~ S i.

Lemma 3.2 (Hochbaum [17]). Let the solution to (SRA i) be {x~i)}j ~ s~. Then there exists
an optimal solution to (GUß), x *, satisfying x 7 <~ x~ i) for all j ~ S i.

282 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

Remark. In [17], the lemma is proved for the discrete version of the problem. It is easy
to see the proof is modified for the continuous version of the problem. This lemma is
generalized and proved for the (continuous) (Tree) problem in Corollary 5.2.

Lemma 3.2 implies that once an optimal solution, {x~i)}j~si has been obtained for
(SRA i) for every i = 1 , . . . , m, an optimal solution of (GUB) can be found by solving
the following problem, (UB), which is also an (SRA).

n
1 2 (UB) min 2., ajxj + ~bjxj

j=a

~ x j = B
j=l

0 <~ xj <<. min{uj,x~i)}, j = 1 n.

It is therefore sufficient to solve each of the (SRA i) problems, in order to derive the
upper bounds. Then to solve the problem (UB). The running time of such procedure is
O (n l) q- O (n 2) + • • • q- O(n m) = O (n) , followed by the linear time required to solve the
resulting (UB) (which is an (SRA)).

4. An O(n log n) algorithm for (Nested)

The algorithm proposed here solves the problems (Nestedn), (Nes ted ,_1) , . . . ,
(Nested1), where (Nested i) is the problem,

,,e,,
1 2 (Nestedi) , min 2., ajxj + ~byxy

j=i

~ x j < ~ p k , k = i n

O<~xy<~uj, j = i n.

Let an optimal solution to (Nested i) be x (i). Several properties of (Nested i) are
essential in order to establish the correctness of the algorithm. The next lemma states
that for the problem (Nestedi), the constraint y'n .x(i) - - j = ~ - j <~Pi may be assumed to be
satisfied with equality. The proof is given for the analogous lemma, Lemma 5.3 for the
tree resource allocation problem, (Tree), which generalizes (Nested).

Lemma 4.1. In (Nestedi) , by updating uj ~ min(uy, max(- a j / b y , 0}) for j = n, n -
1 1 and pj ~ min{py, Py+I + uj} for j = n - 1, n - 2 , . . . , 1, we may assume that
the constraint S,~= i x~ i) <~ Pi is satisfied with equality.

The following lemma contains the key idea of the algorithm. The proof is postponed
to Section 5 where it appears as Corollary 5.2.

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

Lemma 4.2. x~i) <~ ~ (i+O.vj , for j = i + l, . . . , n.

283

This lemma implies that the value of the optimal solution for (Nestedi+ 1) is an upper
bound on the value of the variables, xi+ 1, xi+ 2 , . . , xn in (Nestedi). The upper bounds
at each (Nested i) problem solved, uj can then be updated to u~ i) --- min{uj, x~ i+ 1)}, for
j--- i + 1 , . . , n. Since {x~ i÷1)} satisfy constraints i + 1 , n, these constraints no
longer need to be explicitly incorporated. Hence (Nested~) is equivalent to the problem

(Nested i) min 1 2 B ajxj + 7bjxj
j= i

n

E Xj = Pi
]=i

O<~xi~u ~

0 ~ xj «. min{u,,x} i+ 1)}, j = i + l , . . . , n .

This latter formulation of the problem is an (SRA). The algorithm solves recursively
the problems (Nested~) for i = n 1 where at each call the optimal solution derived
from the previous call is used as upper bounds to the variables in the current call. The
optimal solution of (Nested~+ 1) is then used to derive an optimal solution to (Nested i)
in constant amortized running time.

The problem (Nested~) is an (SRA). This suggests immediately an algorithm that
requires linear time with each call using Procedure SRA. Such algorithm would result in
complexity of O(n2). In order to get a more efficient approach, we maintain all
information obtained in previous iterations on the status of the breakpoints previously
considered. These breakpoints are also maintained in a sorted array. The need to
maintain a sorted array adds an additive
preprocessing step. The algorithm runs
coefficients {a l , . . . , a n} is available with

factor of O(n log n) to the running time at a
in linear time when the sorted sequence of
the input.

The algorithm produces a Lagrange multipliers 8 for each (SRA), (Nested i) for
i = n ,1. Let the Lagrange multiplier for (Nested i) be 8/. Unlike Procedure SRA
which finds 6 by binary search, testing /3(8) on the median of the current (unsorted)
breakpoints, the algorithm finds 8 by "linear search", testing /~(8) on consecutive
elements of the current breakpoints given in sorted array. That is, starting with an initial
guess, it continues to test the immediate successor (or predecessor) of the current guess
until it finds the final interval.

The initial guess for 8 i is 8i+ 1. All variables xj for j = i + 1 , n are fixed for any
8 >t 8i+ 1 in testing since, by Lemma 4.2, the optimal solution of (Nested i) is bounded
by the optimal solution of (Nestedi+~). So if 8 i> 8i+» then there are only O(1)
arithmetic calculations required to find 6i as there are at most two breakpoints to be
tested; namely, ai and a~ + bit t i. 8 i is then added to the top of the sorted sequence of
breakpoints for the testing to solve (Nestedi_l). The crucial property is that when

284 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

0 ~)(6(4) X5(4) X4(4) (=U4)
ID,

a 3 + b 3 u 3

a 5 ,

a 3

a 4 ,

%

Fig. 4. Solving (Nested 3) given the solution of (Nested 4) where n = 6.

6i < 6i+ 1 then all breakpoints tested with value v such that 6 i < v need no longer be

considered when we solve (Nestedi_l). For, by Lemma 4.2 again, all variables

x i , . . . , x , are fixed for 6>~ 6i when we test B (6) to solve (Nested{_1). Thus those

breakpoints are deleted from the sorted sequence. The breakpoint arrangement at a

typical iteration is depicted in Fig. 4. The thick solid line represents the piecewise linear

curve corresponding to the additional variable x 3 of (Nested3). (Compare this figure to

Fig. 3.)

In the algorithm there is some information stored at each 6 breakpoint. U(6) is the

sum of all variables whose upper bounds are attained at a breakpoint lower than 6.

P (6) and Q (6) are sums of a J b / a n d 1 / b i respectively over variables j that get fixed

at the breakpoint 6. For (Nested~) these are all the variables with index in the set

{ i , . . . , n} that are not summed up in U(6). For each variable in this sum its upper bound

at the termination of this iteration is 6 / b i - aJb j .
The description of Algorithm Nested is followed by the description of Procedure

Nested(i) called for in Step 2 of the algorithm.

Algorithm Nested

Step 0: {Preprocess}

For j = n, n - 1 1, uj ~ min{uj, m a x { - a J b j , 0}}.

For j = n - 1, n - 2 1, pj ~ min{pj, Pi+ 1 + uj}.
Sort {a 1 a , ; a 1 + blU 1 , a n + bnu n} in decreasing order.

Step 1: Solve (Nested n) by solving for 6, (8 - a ,) / b , = p , ; 6, ~ 8.

P(6 ,) ~ an/b, , O(6 n) .-- 1 /b , , f (6 ,) ~ 0; S ~ {a,}, r ~- {8,}.
Step 2: For i = n - 1 1, call Procedure Nested(i).

Step 3: {calculating optimal solutions using the Lagrange multipliers}

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 285

Let the set of the Lagrange multipliers, T, be {8il , 8i2 , 8iq}; iq+ 1 ~--n + 1.
F o r p = q , q - - 1 1, do

xj = max{ 8ip/by - ay/bj, 0} for j = i p , . . . , ip+l - 1.

Procedure Nested(i)

Input:

Step O:
Step 1:

Step 2:

Step 3:

Step 3(a):

Step 3(b):

Step 3(c):

Two sorted sequences S and T.
For each 6y, the values of P(6j), Q(~j) and U(Sy).

{trivial case} If a i > 0; stop, 8 i = 8i+ 1.
{Check if 8 i is larger or smaller than 8i+ 1}

If Pi+l q- min{(S/+l - a g) / b i , ui} <Pi, then 8 i > 8/+1; go to Step 2.
If Pi+l + min{(8i+l - ag)/bi, ui} ~-Pi, then 8 i = 8i+1; substitute the
breakpoint label 8g by 8i+1;

P(8 i) '~-'- P (8 i + 1) + ag/b i, Q(Si) ~-- Q(8i+ 1) + l / b i , U(8 i) ~-- U(S/+ 1);
stop.

If Pi+l "-}- min{(8i+l - ag)/bi, ui} >Pg, then 8 i < 8i+ 1; remove 8i+ 1 from
the top of T;

P ~ P (8 i + l) , Q ~ Q(Si+l); U ~ U(Si+l); go to Step 3.

{8 i > 8i+ 1}
Solve for 6, (8 - ai) /b i =Pi --Pi+l"

8 i ~ 8, P (8 i) ~ ai/b » Q(8) ~ 1~bi, U(8/) ~Pi+~.
Add a~ to the sorted sequence S; add 6 i to the top of T; stop.

{8 i < 6i+ 1}
I f a i + biu i < 8 i + 1 then add a i and a i + biu i to the sorted sequence S;

U ~ U(6i+ l) + u i.
Else, a d d a i to S; P ~ P(8i+ 1) + ai /bi , Q ~ Q(6i+ 1) + 1 / b i.
Let the largest breakpoint lower than 6g+ 1 be v.
If v an aFbreakpoint then go to Step 3(a).
If v an (ay + bjuy)-breakpoint then go to Step 3(b).
If v a 6~-breakpoint then go to Step 3(c).
Let the breakpoint be a k, set 6' = a«.
If 8 ' Q - P + U < p i then 8 i> 8'; go to Step 4.
If 6 'Q - P + U >pi then 6 i < 6'; remove a k from top of S;

P *-- P - a k / b » Q ~ Q - 1/b~; go to Step 3.

If 6 ' Q - P + U = p i , then 6 i= 6'; stop.
Let the breakpoint be a« + bku k, set 6' = a k + bku k.

If 6 ' Q - P + U < p i then 6 i> 8'; go to Step 4.
If 6 ' Q - P + U > P i then 6g< 8'; remove a k + b ~ u k from top of S;

U ~ U - u«; go to Step 3.
If 6 ' Q - P + U = p » then 8 i = 6'; stop.
Let the largest breakpoint be 6k; set a' = 8«.

If 8 ' Q - P + P k <Pi then 8 i > 6'; go to Step 4.

286 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

Step 4:

If 6 'Q - P + pk > Pi then 6 /< 6';
P ~ P + P(6 ') , Q ~ Q + Q(6') , U ~ U - (6 ' Q (6 ') - P(6 ')) ;

remove 6 k from top of the sequence T; go to Step 3.

If 6 ' Q - P + P k =Pi then 6i = 6'; stop.
{6/> 8'} Solve for 8, 6 Q - P + U = p / .

Set 6 /= 8, P (6/) = P , Q(6 i) = Q, U(6 i) = U; stop.

L e m m a 4.3. Algor i thm Nested is correct. With a given sorted sequence o f

{a 1 an; a 1 + b l U l , . . . , a n + bnun}, its complexity is O(n).

Proofi The dominant operation in the algorithm is adding element a i and biu / to the
sorted sequence S in Step 3. Using a straightforward approach of binary search, this
takes O(log n) comparisons. We adopt here the UNION-FIND algorithm of Gabow and
Tarjan [11]. Each subsequence is viewed as a collection of intervals that contains NO
elements of a/ or a i q- biui, with endpoints at elements of the subsequence. Alterna-

tively, the sorted sequence on { a l , . . . , an; a z + b l u 1 , a,, + bnu n} may be viewed as
an ordered vector. A subsequence is a 0 -1 vector of length n with 1 in position j if the
jth element is included in the subsequence and 0 otherwise. The aim is to maintain this
0 -1 vector with pointers from each entry containing a 1, to the next such entry. The set
of 0 's separating each pair of l ' s is an interval (that could be empty).

In order to position correctly an added item, we need to find an endpoint to the head
(and tail) of the interval of elements to which it belongs. Since we have a given linear
ordering of intervals the UNION-FIND algorithm applies. The other operation is SPLIT
rather than UNION. Here when an element is added, an interval is split into two subsets.

Still, an analogous algorithm to UNION can execute a sequence of p SPLIT-FIND
operations on 2n elements in O(2n + p) steps. In our case p --- 2n, so the running time
is linear.

Step 1 of the algorithm involves only a constant number of operations. If the outcome
is to go to Step 2, 6 is above all other breakpoints, then there is only O(1) work. If
however the outcome is that 6 is below some of the breakpoints we may need to inspect
several breakpoints, say q, prior to Step 4. In this case the amount of work in Step 3 is
O(q) except the adding operations.

The key observation is that, in the linear search for the Lagrange multiplier 6/ on the

current sorted list S of breakpoints, once a breakpoint turns out to be larger than 6 i then
the breakpoint is permanently deleted from the sequence and hence is not further

considered in search for 6 i_ 1 81. This is, as mentioned earlier, because whenever 6
is under certain breakpoints, the values of the variables at 6 are upper bounds on the
values of any optimal solution (Lemma 4.2). There is therefore no need to further
consider any breakpoint above 6.

To summarize, if the search for 6 goes up, as in Step 2 or 4, we add at most one
breakpoint to the sequence, whereas if it goes down q breakpoints, then q - 1

breakpoints get deleted. Each call to Procedure Nested(i) creates at most three break-

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 287

points, ak-type, (ak+bkuk)-type, and •i" Let call i involve the inspection of qi
breakpoints. Then ~2~= lq~ = 3n + E ni= 11. Hence, the total number of operations is O(n).

[]

5. Two strongly polynomial algorithms for (Tree)

In this section, we develop two strongly polynomial algorithms for the tree resource
allocation problem which are more efficient than existing algorithms. The complexity of
the first algorithm is O(dn), where n is the number of variables and d is the depth of the
underlying tree (see Fig. 1). If the tree is balanced, that is, d = O(log n), then the total
complexity is O(n log n). The second algorithm runs in time O(n log n) and hence
dominates the first. The second algorithm makes use of Algorithm Nested. The reason
for presenting also the first algorithm is that it is simpler in structure and follows
immediately from the properties of the solution on subtrees.

Two previously known strongly polynomial time algorithms are available for the
problem (Tree). One is Tamir's algorithm [23] which minimizes the separable convex
quadratic objective function on the feasible flows of a series-parallel network with single
source and single sink. The algorithm complexity is O(I A [• [V I + I A [log] A [) for
the general problems where, I A [is the number of arcs and I V I is the number of nodes
of the series-parallel network. For (Tree) it runs in O(n 2) time (where n is the number
of variables). The other algorithm follows from a result of Fujishige [9]. Fujishige
devised an algorithm for the network resource allocation problem. The running time of
this algorithm is dominated by the time required to solve at most 2 [V [- 1 maximum
flow problems on the underlying network. The maximum flow problem on a tree is
solvable in linear time. Hence Fujishige's algorithm, when applied to (Tree), also runs
in O(n z) time.

Our algorithms rely on the recursive optimality structure of (Tree): the optimal
solutions on subtrees are valid upper bounds of the optimal solution of the original
problem. This property is established in Subsection 5.1. Subsections 5.2 and 5.3 include
the description of the algorithms.

5.1. Optimality properties of (Tree)

Consider the tree resource allocation problem, (Tree), defined in Subsection 2.1. For
notational convenience, we denote S O = E (= {1, 2 n}), M = {0, 1 , m} and
Po = B. Throughout this subsection, we assume that if S i ~ S i 4= ~J and i < i' then
S i D Si,. Allowing Si's to be singleton sets, the problem can be rewritten as:

1 2 (Tree) min ~,, ajxj + ~bix j
jES o

xj <~ p~, i ~ M
j ~ S i

xj>~0, j~So.

288 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

Let A i be the Lagrange multiplier of the constraint on the index set Si, ~-aj ~ siXj ~ Pi
and let ~j = Ei~/(j)A» where I (j) - {i ~ M I j ~ Si}. The Kuhn-Tucker optimality
conditions for this case, referred to hereafter as (KT), are:

(KT)

(i) A i < 0 ~ ~ x j=Pi , i ~ M
jES i

(ii) x j > 0 ~ a j + b j x j - « j = O , j ~ S o

(iii) a j + b j x j - % > ~ O , j ~ S o

(iv) Ai~<0, i ~ M

(V) E Xj<~Pi, i ~ M
j~Si

(vi) xj>~0, j ~ S 0.

Let (Tree i) be the tree resource allocation problem defined on a subtree rooted at
node i of the underlying tree. For instance, (Tree o) is the problem (Tree). Ler C i be the
set of children of node i in the underlying tree. In particular, C o is the set of children of
the root node 0 and C o = {1, 2 , . . , l}. Then (Treek), k = 1 , . . , l, are resource allocation
tree problems defined on the subtrees rooted at each child of the root node 0, and S k is
the index set of variables in (Tree«), (i.e., the leaves of Treek). Let M« be the set of
nodes in (Treek). Then M k are rnutually disjoint and M - {0} = M 1 t5 M 2 U . • • U M 1.
Each problem (Tree k) can be written as:

(Treek) min 1 2 E ùjxj + ~bjxj
j~Sk

~ x j ~ P i , i ~ M k
jES i

xj>lO, j ~ S « .

For k = 1, 2 , l, let {~j I j ~ Sk} and {Äi[i ~ Me} be the optimal solution and the
set of optimal multipliers of (Tree k) respectively.

From (KT) applied to (Treek) , for every j ~ Sk, we have

(5.1)

where, ~ = Ei~ lk(j)Ä i and lk(j) = {i ~ M~ I j ~ Si}.
When Ej ~ So xj ~< Po, then {2il j ~ S o} is an optimal solution of the original problem

(Tree). This follows since {Nj l j ~ So} satisfies (K T) with multipliers A o = 0 and

Ai = Äi for i ~ M - {0}.
On the other hand, when]~j ~ so xj > Po, then the solution { x j(15) [j ~ So} , defined in

terms of the nonpositive parameter 6 as follows, is feasible as stated in Lemma 5.1, and
satisfies (KT):

D.S. Hochbaum, S.-P. Hong / MathematicaI Programming 69 (1995) 269-309 289

If ~ j = 0 or equivalently ~~< aj (see (5.1)) then let x j (6) = O for all 6-..<0.
Otherwise, define

{i
: i f 6 > / ~ ,

x j (6) = j - (Œ j - 6) / b j if «j > 6 > aj,

if aj ~> 8.

By (5.1), if ~ > 6 > ay in the above definition then

x1(6) = 7c1- (Œj- 6)/bj = (aj- 6)/bj. (5.2)

L e m m a 5.1. For any fixed 6<~0, the solution {x j (6) l j e E } satisfies (KT) except
possibly the constraint S,j e So xj <~ Po.

Proof. First let A o = 6. For i ~ M - { 0 } , define parametrized multipliers Ai(6) in the

following manner: Suppose that xj is a variable of (Tree k) and Ic(j) = {i ~ M k I j ~ Si}
= {ip i: i t} with i 1 < i 2 < • • • < i t.

If 6 < ~ , then we let A/(6) = 0 for all i ~I«(j) . If 6 ~> ~ , then find the minimum r

such that All + "Äi2 + • " " "]-•ir ~ 8, and for each s = 1 t set

/ O if s < r ,

Ais(6)= -l~il--[-Äia+ " ' " "~-Äir-- 6 i f s = r ,

~Ai, if s > r.

First we need to verify that {Ai(6) [i ~ Me} are well-defined, i.e. if s ~ Ic(j) N Ik(j ')
with j ~ j ' then As(6) is uniquely determined. It was assumed that the sets S i are
indexed in such a way that i < i' and S i N S i, 4= ¢ only if S i 2 Si,. So if s ~ I (j) A I (j ')
then {i <~ s [i ~ M k} (~ Ik(j) = {i <~ s l i ~ M k} A l e (f) ; hence the definition above
uniquely determines A/ (6) for all s ~ M k.

Next we verify (KT). Since 0 --.< x j (6) ~ ~ j for each j ~ S o and Äi ~ Ai(6) ~< 0 for
each i ~ M - {0}, these satisfy (iii), (iv) and (v) of (KT) except possibly the constraint

Ei ~ So xi ~< Po- Thus it remains to verify the complementary slackness conditions (i) and
(ii),

(i) Ai(6) < 0 ~ Ei~s jX i (6) =Pi for each i ~ M - {0},
(ii) x i (6) > 0 ~ ~«ie 1(1)1~i (6) "~- 1~o = ai + bix:(6) for each j ~ E.
To prove (i), assume for some i' ~ M - { 0 } we have E j c s X j (6) < P i " Either

~«j~s:~¢j <Pi' o r ~ß_,j~sXj =Pi" In the former case, the optimality of ~1 in the
subproblem implies A i, = 0. But, 0/> Ai(6) >~ Äi for all i, hence Ai,(6) = 0 as required.

In the latter case, since 0 ~< x j(6)<~ Ycj for all j, the assumption implies that there
exists j' ~ S i, such that 0 <,.x1,(6) <~1 , So by the definition of x / (6) , ~., > 8. Then
A i (6) = 0 for all i ~ I (j ') by definition. Since i' ~ I (j ') , Ai,(6) = O.

To prove (ii), assume x1 , (6)> 0. Either 0 < x / (6) < ~ j , or, 0 < x 1 , (6) = ~ 1 , In the
former case, it follows from the definition of x / (6) that ai, < 6 < ~ , Therefore, by
definition of the parametric multipliers, Ai (6)= 0 for all i ~ I (j ') and hence 8 =
~_,i~l(j,)Ai(6) + 6. We set A 0 = 8. So it follows that 8 = ~ ie l (j ,)A i (6) + A 0. Combin-

290 D.S. Hochbaum, S.-P. Hong / Mathematical Programm ing 69 (1995) 269-309

ing this with (5.2) which implies 8 = ay, + bj, xj,(8), we get Ei~ I(j')l~i (8) "~ 1~ 0 = aj, +
bi, x j,(8), as required.

In the latter case, when 0 < xj,(6) = ~j,, 8/> ~., by the definition of x/(8). From the

definition of Ag(8), we have ~j, = Ei ~ i(j'~ Ai(8) + 8 = Ei ~ i(j') Ai(8) + A 0. Combining
this with (5.1), which is equivalent to ~, = a / + b/Yc/=aj,+b/xj,(8), implies the
statement of the lemma. []

In the above proof, x j (8) = ~j when 8 = 0. As 8 gets smaller below zero, x j (8)
decreases piecewise linearly; x j (6) is either 0 or a piecewise linear function with two
breakpoints aj and ~ which is constant outside the interval determined by the two
points. Hence, Ej ~ so Xj(8) is a monotone increasing piecewise linear function when
6 ~< 0. Thus, by Lemma 5.1, the optimal solution of the problem (Tree) is either equal to

{xj(0)[j ~ S O } in the case ~j~So~j <Po, or {xj(8*)[j ~ S O } for 8 " < 0 such that
Ej~soXy(8 *)=Po . So the optimal solution { x / I j ~ S 0} of the original problem is
bounded by the optimal solution {~j [j ~ S 0} of the subproblems, i.e. x / ~< ~j. for each

j ~ S o.
For any nonnegative vector x = {xy I j ~ Sk} such that xj ~< ~j, j ~ S» x is a feasible

solution of the subproblem (Tree k) for k = 1 l. So we have the following corollary.

Corollary 5.2. The optimal solution {Ycj [j ~ S~} of the subproblem (Tree k) provides
valid upper bounds on the optimal solution of the problem (Tree). That is, we can
replace the constraints in the subproblem (Tree k) by the upper bound constraints

xj <~ Ycy for all j ~ Sk,

without changing the optimal solution of the problem (Tree).

Corollary 5.2 is the key idea of the algorithms described in the following subsections.
The next lemma establishes another useful feature that for each i ~ M the optimal
solution of (Tree i) satisfies the constraint ~,y ~ s,x~ < el with equality.

Lemma 5.3. If the values of uj and Pj are updated from the leaf nodes to the root:

u j~min{uj , max{-aJby, O}} and p i ~ m i n (p i , ~ pk I
k G C i I

(where C i is the set of children of node i in the underlying tree), then the optimal
solution of (Treei) satisfies the constraint on Si, ~ js s Xj <~Pi, with equality for every
i ~ M .

Proof. The optimal value of each variable xj is in the range where the derivative of the
corresponding function is nonpositive. So it may be assumed that uj ~< max{- bffaj, 0},
otherwise we can set uj ~ max{-bJaj , 0} for each j ~ S O without changing the

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 291

optimal solution. Also we may assume that Pi <~ S,«~c, Pk for every i; otherwise the
constraint on S i would be redundant. The condition is satisfied for each node of (Tree)
by setting pj ~ min{p» ~k ~ c,Pk}, in O(n) time.

It is left to show that ~,j ~ s, xj <~ Pi is satisfied as equality in the optimal solution of
(Tree i) for all i. Suppose not, then let {Ycj I j ~ Si} be the optimal solution of (Tree i) for

some i ~ M with Ej ~ s, 2j < Pi. Since Pi <~]~k c c, Pk, there is k ~ C i such that ~y ~ s«2j
< Pk- Repeating this, we find a path from node i to a leaf node representing an upper
bound constraint problem xy ~< uj. In this path, the constraint corresponding to each

hode has positive slack with respect to the optimal solution {2y] j ~ Si}. Thus we can
increase ~j by the smallest slack of the constraints in the path and strictly improve the

objective value of (Treei). This contradicts the optimality of {2j I j ~ Si}. []

5.2. An O(dn) algorithm

Consider the problem (Tree) defined on a tree of depth d. When all pi's are set as in
Lemma 5.3, the optimal solution of (Tree i) satisfies the constraint on Si with equality.
The subproblems defined on the subtrees rooted at the nodes of depth d - 1 are (SRA)s
or single variable problems with upper bounds (see Fig. 2). Call these (SRA)s the

(SRA)s at level d of the problem (Tree). Let the (SRA)s at level d be (Treei) (Treeip)
and the optimal solutions respectively {2j I j ~ Si k} for k = 1 , p. By repeated appli-
cations of Corollary 5.2, for each k = 1 , . . , p the optimal solution {2 j[j ~ Si) of
(Treei~) provides valid upper bounds on the optimal value of {xj [j ~ Si) in (Tree). So
we can replace the constraints of (Treeik) by upper bound constraints {xj <~ 2j I j E Si~}.
Thus after solving the (SRA)s at level d, we get an equivalent tree resource allocation
problem of reduced depth, d - 1. This procedure is repeated until we get the tree
resource allocation problem of depth 1, which is an (SRA). Then the optimal solution to
this (SRA) is the optimal solution to (Tree). The algorithm is formally presented as

follows:

Procedure Depth

Step 0(a): {preprocess} From the leaf nodes to the root set uj ~ min{u j, m a x { - a J

bi, 0}} and Pi ~ min{p/, ~ksc~Pk}"
Step 0(b): If (Tree) is a problem with single variable xj (with d = 0) then stop. The

optimal solution is xj = uj. Otherwise 1 <-- d.

Step 1: Let the (S/~4)s at level I be (Treei l) , . . , (Treei) . For k = 1 , p, solve
(Treeik) by Procedure SRA and let the solution be {Ycj I j ~ Si).

Step 2: If l = 1 then output the solution as the optimal solution; stop. Otherwise,
continue.

Step 3: For k = 1 , . . , p, update the upper bounds uy <-- 2y for all j ~ Sik and delete
the constraints of (Treeik) from (Tree).

Step 4: Set 1 <-- I - 1. Go to Step 1.

292 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

For each l = 1 , d, the running time is dominated by the calls to Procedure SRA
for solving the (SRA)s at level l. Since the total number of variables in the (SRA)s at
any level l is bounded by n, this can be done in O(n) time. Hence, the total complexity
of Procedure Depth is O(dn).

5.3. An O(n log n) algorithm

When Procedure Depth is applied to a (Tree) problem such as (Nested), then the
running time is O(n2). Yet (Nested) can be solved in O(n log n) time. The second
algorithm makes use of Algorithm Nested. The array {al , . . . , a n} is initially sorted once.
This sorted vector is then used in the linear time calls to Algorithm Nested.

The idea of the algorithm is inspired by the one used by Dyer and Frieze [7] for the
convex tree allocation problem. That algorithm first finds a " long" path in the tree.
Then it recursively finds optimal solutions on the subtrees rooted at nodes which are not
on the path but have patents on the path. By Corollary 5.2, these optimal solutions
provide valid upper bounds on the variables and thus reduce the tree resource allocation
problem into an equivalent nested resource allocation problem. Finally the algorithm
solves the nested resource allocation problem using the linear time algorithm (the sorting
is given), Algorithm Nested.

In order to find a " long" path, for each hode i of the tree we evaluate the number of
nodes in the subtree rooted at node i, n i. This can be done in O(n) time by a simple
dynamic programming procedure. Starting at the root of the tree as the initial node, the

1 algorithm finds recursively a child node k of the current node i with n« > 7n i. This is
repeated until the current node is a leaf node. It is shown that the path obtained by this
procedure is sufficiently " long" .

Procedure Tree ((T r e e))

Input: A tree resource allocation problem, (Tree).
Output: The optimal solution of (Tree).

Step 0(a): {preprocess} Sort { a 1 a n} in increasing order.
Step 0(b): {preprocess} From the leaf nodes to the top node, set uj ~-min{u j, max

{ - aJby, 0}} and Pi ~ min{p/, Ek ~ ciPk}.
Step 0(c): If the problem has single variable xy, terminate with the optimal solution

xy = uj. Otherwise, let i ~ the root of tree.
1 Step 1: If i has a child k with n k > ~n i then i <-k and repeat Step 1. Otherwise

continue to Step 2.
Step 2: Let P(i) be the path from the root to i. Define K = {k q~P(i)[k has the

parent in P(i)}.
Step 3: For k ~ K , call Procedure Tree ((Tree k)) and let {~ j [j ~ S e} be the

optimal solution.
For k ~ K, set uy <-- ~j for all j ~ Sk.

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 2 9 3

Step 4: Let (Nested) be the nested problem defined by the constraints corresponding
to the nodes in P(i) and the updated upper bounds in Step 3.
Solve (Nested) by Algorithm Nested.

Theorem 5.4. Procedure Tree is correct and solves the problem in O(n log n) steps.

Proof. Step 1 finds the " long" path in tree in O(n) time. Step 2 identifies the roots of
subproblems appended in the path, which also can be done in O(n) time. Step 3 solves
the subproblems by recursive calls to Procedure Tree. Denote by C(n) the complexity
of Procedure Tree applied to the problem with n variables, then the total running time is
Ek ~ KC(nk) time. O(n) time is required to update all upper bounds in Step 3. After Step
3, we obtain a nested resource allocation problem on n variables. Finally, Algorithm
Nested solves this nested problem in O(n) time using the presorted data.

The validity of the algorithm follows from Corollary 5.2 which ensures the equiva-
lence of the original tree resource allocation problem and the nested resource allocation
problem obtained in Step 3. Since every step except the recursive calls can be done in
linear time, the total complexity is given by,

C(n) <<. ~_~ C(nk) +an, (5.3)
k~K

for some constant A. Assume inductively that C(m) <~ Dm log m for all m < n for
some constant D. From (5.3),

1 1 C(n) <~ ~_ù Dn k log n k + A n ~ D log Tn ~_~ n k + A n = D n log Tn+An.
k~K k~K

Taking D >_-A/log 2, we get C(n) ~Dn log n. By induction the stated complexity
follows. []

6. A strongly polynomiai algorithm for (Network)

Fujishige [9] showed how to solve for a lexicographically optimal base of a
polymatroid using n calls to an oracle identifying a maximal independent vector of a
polymatroid. Fujishige notes explicitly, that this algorithm is applicable for solving the
problem (Network) with strictly convex and homogeneous (that is, without the linear
terms - a« = 0 for all k) cost function. As is easily established, the same algorithm
applies with a minor modification also to the nonhomogeneous case, including linear
terms, for a strictly convex cost function. Such algorithm requires in this case n calls to
a procedure solving the maximum flow problem.

Gallo, Grigoriadis and Tarjan [12], in their significant work on parametric maximum
flow problem, noted that their algorithm is applicable to the lexicographically optimal
flow problem, and the problem is solvable in the running time of a single application of
the preflow algorithm of Goldberg and Tarjan [13]. The lexicographically optimal flow
also provides an immediate solution to (Network) if the cost function is strictly convex

294 D.S. Hochbaum, S.-P. Hong /Mathematical Programming 69 (1995) 269-309

and homogeneous. Unlike Fujishige's algorithm, the lexicographically optimal flow
algorithm of [12] does not extend to the nonhomogeneous case without change in the
running time. This is because, as explained later, their algorithm requires that the
parametric capacities are linear in the parameter, while for (Network) with nonhomoge-
neous cost these capacities are piecewise linear. The purpose of this section is to devise
and validate a lexicographically optimal flow algorithm that runs in the same time as a
single application of the preflow algorithm, in the presence of piecewise linear paramet-

ric capacities. This algorithm is shown to be applicable to solving (Network) with
nonstrictly convex and nonhomogeneous cost in the running time of a single application
of the preflow algorithm.

It is also shown that the algorithm of [12] for finding all breakpoints of the cut
capacity of a parametric flow network with linear parametric capacities has invalid
initialization procedure. We propose an alternative valid initialization procedure that
corrects for the flaw in that algorithm.

The equivalence of (Network) and the lexicographically optimal flow problem is
discussed in Subsection 6.1. In Subsection 6.2, we show how to formulate a parametric
flow problem to solve the lexicographically optimal flow problem. Subsections 6.3 and
6.4 contain the properties of the parametric flow problem which are used to prove the
validity of the algorithm presented in Subsections 6.5 and 6.6. In Subsections 6.5 and
6.6, we present the algorithm, based on the algorithms in [12], that solves the
lexicographically optimal flow problem.

6.1. Lexicographically optimal flow problem

Let G be the multiple sink flow network on which problem (Network) is defined (as
in Subsection 2.1, (5)). The following observations and assumptions simplify the

problem: The optimal solution x satisfies x k <~--ak/b ~, hence we may set u k
min{u k, - ak/bk}; As the maximum flow value may not exceed the capacities of the arcs
adjacent to the sink, B ~ min{B, Etk ~ ruk}, and it is assumed without loss of generality
that B is the maximum flow value. To ensure that, we add an additional arc going into
the sink s with capacity equal to B and cost zero. The flow on that arc is then one
component of the out-flow vector.

Let the set of sinks be T = {t» t » . . . , t,,} and x i the flow from sink ti to t. Then the

network resource allocation problem is rewritten as:

(Network) min ~bk x k + ak x k
k = l

s.t. x = (x 1, x a x~) is the out-flow vector of a

maximum flow f of G.

The corresponding lexicographically optimal flow problem is defined:

(Lexico) Find a maximum flow f which lexicographically maximizes

the n-component vector whose kth component is the

kth smallest element of {bkx « + ak l tk ~ T}.

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 295

The following theorem due to Fujishige [10] and an additional observation stated as
Lemma 6.2 establishes the equivalence of (Network) and (Lexico).

Theorem 6.1. Let r be a submodular function defined on a distributive lattice A of
subsets of E, a finite set, and let {gk(Xk)[k ~ E} be differentiable convex functions.
Consider the following optimization problem (which is similar to (GAP) defined in
Section 1 except that the constraint on the set E is equality and there are no
nonnegativity constraints)

(GAP') min ~ gk(xk)
k~E

E xk = r (E)
k~E

~_,xk<~r(A), A ~ A .
kEA

Then x is an optimal solution of (GAP') if and only if x lexicographically maximizes
the vector whose kth component is the kth smallest element of the vector of derivatives,
{g~(xk) I k ~ E}.

Lemma 6.2. Let r be defined on the lattice of all subsets of E. Assume that r is
monotone, i.e. for every pair of subsets A, B GE with A GB we haue r (A) <,% r(B).
Then every feasible solution of (GAP') is nonnegative.

Proof. Suppose that ~ is a feasible solution of (GAP') with Xp < 0 for some p ~ E.
Then,

r (E - { p }) > ~ ~,, Y c k = r (E) - 2 p > r (E) > ~ r (E - { p }) ,
k ~ E - { p)

which is a contradiction. []

Theorem 6.1 has an analogue for the network resource allocation problem.

Theorem 6.3. x* = {x; It k ~ T} is an optimal solution of (Network) if and only if x*
is the out-flow vector of a solution f of (Lexico).

Proofi For all S _ T, define r(S) to be the value of maximum flow achievable through
the subset of sinks, S. In particular, r (T) = B, the maximum flow value of G. It is
known (see e.g. [9]) that r is a submodular function and (Network) can be written as

B 1 2 (P (6 . 1)) ~bkx k + akx k
k ~ l

(i) ~ «~ = B (= r (T))
k=l

(ii) ~_, xk<~r(S), S G T
tk~S

(iii) x~>10 for k - - 1 n.

296 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

r is a monotone function defined on the set of all subsets of T. So by Lemma 6.2, the
nonnegativity constraints, (iii) can be relaxed from (P(6.1)) without ehanging the
solution. Thus our theorem directly follows from Theorem 6.1. []

For the case when a h = 0 and b h > 0 for all k = 1 , n, Fujishige [9] developed a
strongly polynomial algorithm which solves (Lexico) in the time required to solve at
most 2 n - 1 maximum flow problems on G. It can be easily shown that the same
algorithm can be used to solve the general case in which a 4= 0 in the same running time

by the translation, Yh = x h - ab/bh of the submodular polyhedron of (P(6.1)) as the
translation preserves the submodularity. This running time exceeds the running time
established here by a factor of O(n).

6.2. The parametric flow problem

In order to solve the problem (Lexico), we consider the network G with parametric

capacities ck(A) assigned to eaeh arc (te, t) for k = 1 , n, with co(A) = max{0, (A -
a«)/b h} defined for A >~ min{ab I k = 1 , . . , n}. As shown in the following subsection,
from the breakpoints of the parametric flow problem defined on G with the parametric
capacities, one can construct a solution of (Lexico) and hence a solution of (Network).

The parametric capacities functions ch(A) are monotone increasing in A, where the
parametric algorithm of [12] which we use requires that the capaeity functions at the
sink are nonincreasing, and at the source they are nondecreasing. To this end we
reintroduce the problem with the reversed roles of source and sinks.

(Lexico') Find a maximum flow f on G which lexieographically

maximizes the n-component vector whose kth element is the

kth smallest element of {bkx h + a h I sh ~ S}.

In the reversed network, G, we have a sink s and ares (s, s h) for k = 1 n (each

s h corresponds to a t h in G.) Each arc (s, s h) of 6 is assigned the parametric capacity
ch(A). Denote this parametric flow network by G(A); so G(Ä) with some fixed value

A = Ä stands for the network 6 with capacity ck(Ä) on each arc (s, s k) and 6 (~) is 6
with each arc (s, s k) assigned infinite capacity. For an s - t cut (X, X) of G, ca(X, X)
denotes the capacity of (X, ,~) in G(A). Let K(A) be the capacity of minimum s - t cut

of 6(,~).
In order to establish the validity of the algorithm several important properties of G(A)

are considered first.

6.3. Properties of G(A)

The minimum cut capacity function K(A), as shown in Subsection 6.6, is a monotone
nondecreasing piecewise linear function. Ler the breakpoint of K(A) be the value of A
where the slope of K(A) changes. At certain breakpoints, some nodes of 6 shift from
the sink side to source side as A increases; we call such breakpoints node-shifling
breakpoints.

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 297

For each k = 1 , . . , n, let A k be the node-shifting breakpoint where s k shifts from
sink side to source side. Without loss of generality, we may assume that A 1 ~< A 2 ~< • • •
<~ Aù. Let kl , k 2 , . . , kp_ 1 be the values of k such that Akj < Akj+ 1. Let k o = 0 and

kp = n. Then {Akt, Ak2 A«p} is the subsequence of all distinct values of A k sorted in
increasing order:

A1 A k 1 < l~k I + 1 A k 2 < " ° " < l~kj_ 1 + 1

= A k t < . . . <Akt,_1+1 Akp.

L e m m a 6.4. (i) For j = 1 p , (x 1 x k) = (cl(A 1) c « (A k)) attains the maxi-

mum f low value achievable through sinks {sl sk), i.e. E ~ ~ l x k is the value o f the
maximum f low of the multiple source network G with the additional restrictions that

X k j + l X n ~ O .

(ii) On G(~), there is a maximum f low f which gives the in-flow vector x such that

x k = ck(A k) for all k = 1 , . . , n.

Proof. The proof is essentially identical to the proof of Theorem 4.1 of [12] and is
repeated here for completeness sake.

(i) Let {s} = X 0 c X 1 c X 2 c . . . c X p be the sets such that (Xi, Xj) for j = 1 , . . p

is the minimum cut with the largest source side o_f G(Akt). Then ski - 1+ 1, Ski_l+2 , Sk i
~ X j - X j _ 1. For j = 1 , . . , n , the cut (_Xj_» Xj_ 1) is a minimum cut for G(Ak) as

well. Thus C xk(Xj_I , Xj_ 1)= cxk(Xj, Xj); see Fig. 5. It follows by induction on
j = l p,

kj

c%(Xj , X j) = ~ c / (A k) + f i Ck(Akj), (6 .1)
k = l k = k j + l

~k

x/.--~." / , \ / ? ~~+,

Fig. 5. G(A).

2 9 8 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

which implies for j = 1 , p,
kj

c ~ (X j - { s } , Xy)= E ck(Ak). (6.2)
k = l

Which, in turn, implies (i).
(ii) Consider the maximum flows, f~, f2 , fp generated by the parametric flow

algorithm of [12] for the successive parameter A values Akt, Ach, Ak. When the
parametric maximum flow algorithm is restarted with new value A~j of A, the flow on
each arc (s, s k) with k ~ {ky_ 1 + 1, ky_ 1 + 2 , . . , n} is first increased frorn ck(A~j_~) to
ck(Ak~). This additional flow will reach the sink t, because of (6.1) and the fact that (Xj,
Xj) is the minimum cut of G(Akj). By repeating the argument inductively on j = 1 , p,
we have xk= ck(A k) for k = 1 n. In particular fp is the desired flow.

[]

Remark 1. The proof holds for any type of parametric capacities once they satisfy the
monotonicity assumption and the range of A begins at the point where all parametric
capacities are zero.

Remark 2. In the proof of Theorem 4.1 of [12], the cut (Xj, Xy) is claimed to be not
only the minimum s - t cut but also the smallest source side of minimum s - t cut of
G(A«j+I). This is false even in the simpler case where the parametric capacities are
linear functions without constant terms: if there is alternate cut (Z, Z) such that
sl ski ~ Z, c(Z - {s}, Z) = c(Xj - {s}, Xj) and Z is properly contained in Xj (see
Fig. 5), then (Z, Z) is also a minimum s - t cut of G(Ak~+l), and such an example is not
hard to construct. Consequently, the breakpoint algorithm as currently stated in [12] is
invalid, since "contracted" subsets of vertices in the initialization step are not necessar-
ily disjoint. In Subsection 6.4, we define a new method of "contracting" a pair of
subsets of vertices which are not disjoint but still possess the property required for the
breakpoint algorithm.

Lemma 6.5. Let ~ be a value such that Akj < 6 < A~j+ 1 for some 1 <~ j <~ p - 1. Then
(Xj, Y,i) is the minimum s - t cut with largest source side of G(6).

Proof. Let (Y, Y) be the minimum s - t cut of G(B) such that [YI is maximum. Then
since A,i </~, we have Xj ~ Y. Our claim is that Xj = Y. So assume the contrary:
assume that Y properly contains Xj. Then Y must contain an element Sq ~{skj+l,
ski+2, . . , ski+) with %(6) > 0 (see Fig. 5) since otherwise

c (Y - { s } , Y) = c (X y - { s } , L) , (6.3)

and hence cak(Y, Y) = cAk(Xj, Xj). This implies that (Y, Y) is a minimum cut of
^ , J . J . .

G(Ak). But it contradlcts tlie maxlmahty of [Xy [.
This however means that 6 is a breakpoint of K(A) at which the node Sq shifts from

the sink side to source side. But it is not possible since Akj+x is the smallest breakpoint
larger than 3% and Akj < 6 < Aki+l. So Xj = Y. []

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 299

X j + "j + I ~ - ;~k i+~

X0."
ù" X j.1.,

X j + 1 . " t

.*

° ° . . ~ s

Fig. 6. GR(- /x) .

Consider now the reversed parametric network Gg(A) of G(A), i.e. the parametric
network obtained from G(A) by reversing the directions of all arcs, considering the
sources as sinks and sink as source while maintaining the same capacities (Fig. 6). When
the parametric maximum flow algorithm of [12] is applied to Gg(A), the parameter A is
replaced by - / x in order to satisfy the monotonicity requirement. For j = p, p - 1 ,1,

the algorithm finds the minimum cut with the largest source side (X}, X)) (in the
reversed network) for the breakpoint --Akj; see Fig. 6. for -A«j+. An argument
analogous to the one in the proof of Lemma 6.5 implies that if Akj < 6 < Akj+~ (so
--Akj+~ < --6 < --Akj), then (.,~~+ 1, X~+ 1) is the minimum cut with the largest source
side for tz = - õ in the reversed network.

Corollary 6.6. Let 6 be a value such that A~j < 6 < Akj+l for some 1 <~ j <~ p - 1. Then

(X~+ 1, X}+ 1) is the minimum s - t cut with smallest source side o f G($) where (X) , X~)

denotes the minimum s - t cut with smallest source side o f G(A~j) for k = 1, 2 n.

The following lemma is also needed for the algorithms in subsequent subsections.

Lemma 6.7. (i) X~+ 1 c X j but, (il) X~+ 1 is not contained in X j_ 1.

Proof. (i) follows from the fact that (Xj, .Yj) is a minimum cut of G(Akj+l) as
mentioned in the proof of Lemma 6.4.

To prove (ii), assume X~+ 1 c_Xj_ 1. Then in G(Ak,+l), for every k ~ {kj_ 1 + 1, kj_ 1
+ 2 kj}, the arc (s, s k) is saturated with the flow equal to ck(A~ +1). But ck(Akj+l)
>~ ck(Ak~) for every k. Furthermore, there is at least one index q ~ tkj_ 1 + 1, kj 1 +

300 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

2 , kj} such that Cq(l~kj) > 0 since otherwise (Xj, Xj) would not have been an s - t
minimum cut of G(Ak). This implies that cù(A k) > c_(A k).

Thus (6.1)implies ihat for I + {1, 2 kj_ li+~ (Xj+ 1 j {s}),

k~l

But in G(Akj_I) for each k e l , the flow ck(A k) on the arc (s, s k) can reach the sink t
through the cut (X~+ 1 - {s}, - ' X~+ 1) of G. Hence,

cœ(X;+I--{S}, ~tj+l) 9 E Ck(J~k),
k~l

which is a contradiction. []

6.4. The contraction of G(A)

Let 6 and A be different values of A with 6 < A. Assume that all parametric
capacities are linear functions of A on the closed interval [6, A] (but not necessarily
outside the interval). Let f(g) be a maximum flow and (W, W) ((Z, Z), respectively) be
the corresponding minimum cut with the largest source side of G(6) (GR(A), respec-
tively).

The purpose of this subsection is to show that the node-shifting breakpoints of G(A)
on the open interval (6, A) can be found by the breakpoint algorithm of [12]. We first
present a modified initialization procedure to correct for the flaw addressed in Remark 2.

The initialization procedure of the algorithm contracts W and Z into source and sink
respectively, where by the contraction of a subset of vertices we mean shrinking of the
vertices of the set into a single vertex, eliminating loops and combining arcs by adding
their capacities. This contraction procedure is to achieve the property that

(*) in the contracted network, the s - t cut with the trivial source side {s} (sink side
{t}) is the unique cut which corresponds to a minimum s - t cut of G(ô) (G(A),
respectively),

where the correspondence is the one obtained by expanding the contracted vertex set.
However, as pointed out in the Remark 2 of the previous subsection, W and Z are not

necessarily disjoint and the contraction procedure as proposed in [12] is invalid.
The following preliminary lemma is needed to establish the modified initialization

procedure. Its proof follows directly from Lemma 6.5, Corollary 6.6 and Lemma 6.7.

Lemma 6.8. G(A) has node-shifting breakpoint on the open interval (6, A) if and only
if W does not include Z; or equivalently, W U Z is a proper subset of the vertex set of
G(A).

Procedure Contraction(G(A); W, 2)

Step 1" For every source s c E W A 2, delete the arc (s, s c) from G(A).
Step 2: Contract W - Z and 2 into single vertices. Call this contracted parametric

network G(8, a)(A).

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 301

Step 3:

s t

~~b~' w
A

Fig. 7.

Let f' be the flow G(~ a)(A) which corresponds to f of G(A).
Let g' be the flow of G~, a)(h) which corresponds to g of GR(A).
If G(~, a)(A) has at least three vertices, continue to the (main procedure) of the
breakpoint algorithm with initial values f', g', 6 and zl; otherwise G(A) has no
node-shifting breakpoints on (6, A); stop.

Suppose a source Sq ~ W N Z in Step 1 (see Fig. 7). Since 6 < A, c~(W, W) = c s (W

N Z, W N Z). So Xq = 0 in f. Once Sq is in the source side of an s - t minimum cut of
G(6), for every h >~ 6, there is an s - t minimum cut of G(h) in which Sq is in the
source side. Thus for every h >~ 6_, Xq = 0 in the maximum flow of G(,~). So we can
delete (s, %) for every S q ~ W N Z without changing the breakpoints.

Consider Step 2 of the contraction. W is maximum and W n Z is shrunk into the sink.
Hence, in the contracted network, G(a, ,~)(h) where W - Z is shrunk into source, the s - t

cut with the trivial source side is the unique cut corresponding to a minimum s - t cut of
G(6) (see Fig. 7). Also by the maximality of Z, it is elear that the s - t cut of G(~, a)()0
with the trivial sink side is the unique cut corresponding to an s - t minimum cut of
~(A). Thus (*) is achieved in this contraction procedure.

By Lemma 6.8, G(,~) has node-shifting breakpoints on (6, A) if and only if W U Z is
a proper subset of the vertex set of G(h); which means G~~, ,a)(,~) has more than two
vertices. Thus if G(~, a)(A) has only two vertices, source and sink, then we conclude that
the original problem has no breakpoints in (6, A) and terminate. Otherwise we apply
the breakpoint algorithm of [12] to G(~, A)(h).

The details of the breakpoint algorithm of [12] are now briefly sketched: The (main
procedure of the) breakpoint algorithm of [12] starts with a pair of parametric flow
networks: G(~, a)(h) with initial preflow f' and G(~, a)(A) with initial preflow g'. Under
the assumption that all parametric capacities are linear on [6, A], the minimum cut
capacity is a piecewise linear concave function of h on [6, A]. Thus the next guess ~ of
a node-shifting breakpoint on (6, A) can be calculated as the intersection of two tangent
lines determined by the leflmost and the rightmost line segments of the (piecewise linear
concave) minimum cut capacity function (restricted on [6, A]). The algorithm deter-
mines whether ~? is a node-shifting breakpoint by calculating the tangent lines deter-
mined by the s - t minimum cuts with the largest source side and the smallest source side

302 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

for A = r/; if they do not coincide then ~/ is indeed a node-shifting breakpoint. The
algorithm repeats this procedure on the next search intervals [6, r/] and [r/, A]. To
obtain efficient time bound, in the current interval [6, A] the algorithm finds a
maximum flow (and a minimum cut) for A = 7/by concurrent invocation of the preflow
algorithm, for both G(~, a)(h) with initial preflow f' and G(~, a)(A) with initial preflow
g'. By doing this the algorithm can "balance" the numbers of nodes between the source
side and the sink side of the minimum cuts considered in the subsequent search
intervals. The algorithm finds the node-shifting breakpoints on (6, A) in
O(N'M' log(N'2/M')) steps, where M' and N' are respectively the numbers of arcs
and nodes of G(~, a)(h).

6.5. The main algorithm

When a = 0, the main algorithm is identical to the algorithm in Subsection 4.1 of [12]
with the exception of using the modified subroutine, Subroutine Breakpoint-Finder for
finding the node-shifting breakpoints of the minimum cut capacity function K(A), of
d(,O.

Algorithm Lexico-Finder

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Augment the network G with a dummy source s and the arcs (s, s k) for
k = l , . . . , n .
Call this augmented network G.
Assign the parametric capacity ck(A)=rain{0, (A - ak)/b k} to each arc
(s, s k) of G. Denote the parametric flow network by G(A).
Call Subroutine Breakpoint-Finder to find the node-shifting breakpoints of
K(A) for A ~> min{ak I k = 1 n}
For each source s~, k = 1 , . . . , n, find the node-shifting breakpoint A k at which
s k shifts from sink side to source side of a minimum s - t cut of G(A k) as A
increases.
Assign the capacity ck(A k) to each arc (s, s~) of G.
Find a maximum flow f on the network with these upper bounds.
Output the in-flow vector x of f as the optimal solution of (Lexico').

Subroutine Breakpoint-Finder is given in the next subsection. In the following
theorem, we prove the validity of the main algorithm under the assumption that
Subroutine Breakpoint-Finder correctly finds the node-shifting breakpoints of K(A).

Theorem 6.9. Algorithm Lexico-Finder is correct: the maximum flow f obtained in
Step 4 gives the in-flow vector x which is the optimal solution of the problem (Lexico').

Proof. Consider the breakpoints of Step 3, A1,..., A n. Without loss of generality, we
may assume that A1 ~ A 2 ~< • • • ~< A n. Let k 1, k2 , . . . , kp_~ be the values of k such that

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 303

Akj < Akj+l. Let k 0 = 0 and kp = n. Then {Akl, Ak2 Akp} is the subsequence of all

distinct values sorted in increasing order: Also let f be the maximum flow obtained in

Step 4.
By Lemma 6.4, the in-flow vector x of f satisfies x k = ck(A k) for all k = 1 , n

and:

Faet 1. For j = 1 p , (x I Xkj) = (cl(A 1) ckj(Akj)) attains the maximum flow

value achievable through sinks {s 1 sk), i.e. E~~lx~ is the value of the maximum

flow of the multiple source network G with the additional restrictions that xkj + 1

x n = 0 .

From the definition of ck(A):

ck(Ak)=((O A~-ak) /bk ififAk>~ak'A k < a k.

Define]&k = max{Ak, ak}. Then we have:

Fact 2. ck(A k) = ck(]&k) = (]&k -- ak)/bk for all k = 1 n.

Fact 3. {A k] k = 1 n} and {]&k I k = 1 , . . , n} have the identical elements except for

k ' s such that A k <]&k and ck(A k) = ck(]&k) = 0.

Let o- be the permutation of {1 , . . , n} such that]&«(a~ ~<]&«¢2) ~< " " " ~<]&teù). Let

il, i 2 , . . , iq_ 1 be the values of i such that].Lo.(ij)<].Zo_(/j+l). Let i 0 = 0 and iq=n.
Then {]&«~q~,]&«~i2)]&«<iq~} is the set of all the distinct values in increasing order:

B o ' (1) J[~o(i l) <] & o ' (i l + i)]&o'(i2) < " " " <] & o ' (i j - l + l)

.]&o ' (i j) < " " " <] & o ' (i q _ l + l)]&tr(iq)"

For a fixed j = 1 q, let j* denote the maximum value such that Ak~ * ~<]&«~i?,

then since A~ ~<]&k for all k = 1 , . . , n we have:

Fact 4. { s l , . . . , sk~ * } _ {sc(l) schi?}.

Thus for every j = 1 q:
i j i j

~., x«~i)= ~, (m<i)- a«~i))/b«~i~ (Fact 2)
i = 1 i = 1

«»

= E c k (A k) (Fac t3)
k = l

= the maximum flow value achievable through { S l , . . . , s U } (Fact 1)

>~ the maximum flow value achievable through { S«(l~ schi? }
(Fact 4).

Since EI~ aXo-(i) cannot be greater than the maximum flow value achievable through

{s«o) schi?}, E~~ lx«~i) is equal to the maximum flow value achievable through the

sinks {S«~a) schi?}.

304 D.S. Hochbaum, &-P. Hong / Mathematical Programming 69 (1995) 269-309

So rar we have proved that the maximum flow f yields the in-flow vector x such that
for each j = 1 q:

Fact 5 . (Xo-(1) Xo-(ij)) --" ((/&o- (l) - ao-(1))/bo-(1) (/&(r(i]) - ao'(ij))//bcr(ij)) is the
in-flow sub-vector attaining maximum value achievable through the sinks

{So-(1) SŒ(i])}"

Fact 6. /&o-(l) ~/&o-(2) ~ " " " ~/&o-(n) and/&«(i0, /&o-(i2),'",/&cr(iq) is the subsequence of
all distinct values sorted in increasing order.

b(r (1) x ; (1)

and from (Fact

bù(t) x;(,)
Therefore,

It is shown by induction on j = 1 q, using (Fact 5) and (Fact 6) that x is the
solution of (Lexico') with lexicographically maximized vector (/&«(1), /&«(2),..,/&«(n)).
(Alternatively it follows directly from Theorem 9.1 of [16] which is stated in more
general terms.)

First, by (Fact 5), (x«o) Xo-(i l)) = ((/&o.(1) - - ao_(1))//bo.(1) (/&o_(il)--ao.(il))//
be(il)) is the in-flow sub-vector attaining maximum value achievable through the sinks
{s«o) sc(q)}. So the in-flow vector y of any maximum flow of G satisfies

Y«(~) ~< X°'(1) ' " " " ' YŒ(/1) ~ X°'(il)"

Hence,

b«(1)Y«(1) + acr(1) ~</&o-(l) , bo'(il)Yo-(il) -[- a g (i l) •]-'~o-(/1). (6 .4)

Assume this holds for all k ~ j - 1, then

b,r(1)Y,r(1) + ao-(1) ~</&o-(l), • • . , b,r(i;_l)Ycr(ij_l) + ao-(i;_1) ~</&o'(ij_l)" (6.5)

Let x' be an iu-flow vector which gives a strictly better solution to (Lexico') than x.
Then by (6.5) we must have

-1- a g (i) = /&o-(i) ' b°'(ij-l)Xó-(ij 1) -~- a«(i;-1) = /&o-(ij 1)' (6 .6)

6), there must be t with cr(i;_ 1 + 1) ~< o-(t) ~< o '(i ;) such that

+ at(t) >/&o-(t) = bcr(t)x«(t) + ag(t).

(x'«) - o«,)) lBù) > (xt,)- a«,)) lB«).
But then (Fact 5) implies that there must be t' with o-(i;_ I + 1) ~< or(t') ~< «(i;) such
that

(X'(r) - a«(t,)) /So.(,) < (Xo-(,) - a«(t,)) /S«(t,).

Hence:

bo~(t')x'(t') + a«(t') </&o-(t'). (6.7)

(6.6) and (6.7) imply that x' is a worse solution than x, which is a contradiction. Thus
we conclude that the in-flow vector x of f of Step 4 yields the optimal value

(/&co), /&«(2), - . , /&«(n)) to the problem (Lexico'). []

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 305

The complexity of the main algorithm, Algorithm Lexico-Finder, excluding Step 2,
is the same as the complexity of the maximum flow problem on G. This is since Step 4
requires the maximum flow problem on G, while Step 1 and Step 3 can be executed in
O(n) (where n is the number of sources of G.)

In the following subsection, we describe Subroutine Breakpoint-Finder that is called
for in Step 2, which finds the breakpoints of K(A) in the time of a single application of
the preflow algorithm. It follows that the complexity of Algorithm Lexieo-Finder is the
same as that of the preflow algorithm.

6.6. The breakpoint algorithm

When a = 0, Step 2 of Algorithm Lexico-Finder is executed using the breakpoint
algorithm of [12] (discussed in Subsection 6.4) which uses the parametric maximum
flow algorithm developed in the same paper. While, the parametric maximum flow
algorithm works for any type of parametric capacity function once it satisfies the
monotonicity assumption, the breakpoint algorithm requires that parametric capacities
are also linear functions. When all parametric capacities are linear, the capacity function
K(A) is a piecewise concave function with at most n - 2 breakpoints since at each
breakpoint at least one source of G()t) shifts from the sink side to source side of a
minimum cut as ~t increases.

In our case, each parametric capacity ck(A) is a piecewise convex linear function with
single break point (see Fig. 8). So the minimum cut capacity function K(A) is piecewise
linear but not concave in general. The function still has nice properties which allow us to
use the breakpoint algorithm of [12] as subroutine in order to solve the problem in the
same running time.

The set of breakpoints consists of two types of points (which are not necessarily
mutually exclusive). The first type of breakpoints are the node-shifting breakpoints
(where some nodes of the network shift from the source side to the sink side of a
minimum cut as)t increases). Consequently, the number of node-shifting breakpoints is
bounded by the number of nodes in G. The second type of breakpoints are derived from
the breakpoints of the parametric capacities, {a k I k = 1 n}. Even if we may have the
same minimum cut over some range of A, there can be a change in the slope of K(A) if
the parametric capacity of an arc (s, s k) in the minimum cut begins to increase from

ck(x)

/
-ak/b k

/
ak

Fig. 8. Capacity function on arc (s, s,).

306 D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309

'% A%
I I

' 'K(1)
I I

I

I
I

I
I
I
I
I
I
I
I

)~1 Ä~2 L3 ~'4 LS k6)~7 0

Fig. 9. Minimum cut capcity function K(A) of G(A).

zero to positive value at the point A = a k in the range. Thus the second type breakpoints
are from the set D = {a«[k= 1 ,n}. It may be assumed that a k < 0 for every k
since, otherwise, x~ = 0 in the optimal solution. Let 30 ~< 31 ~ ' ' " ~ 3 n _ 1 be the
elements of D sorted in increasing order. In particular 30 = min{a~ [k = 1 , n}. To
this set we add 3ù = 0. In the proof of Theorem 6.9, /z~ is the derivative of kth
objective function at the optimal solution which is nonpositive and h k ~</x~ for
k = 1 , . . , n. So every breakpoint of K(A) lies on the interval [30,3n].

An important property of K(A) is that it is concave between two consecutive 3k's
(see Fig. 9). This is because all parametric capacities are linear between two such points.
This "piecewise" concavity of K(h) is crucial to get an efficient time bound of
Subroutine Breakpoint-Finder.

Subroutine Breakpoint-Finder
Step 0: Obtain the sorted sequence {30, 31 3ù_ 1} of {ap . . . , aù}. Let 3 n ~--- 0.
Step 1: Apply the parametric maximum flow algorithm of [12] to G(h) with

h = 30 3ù to obtain for each 3 k the maximum flow fk and the
min-cuts (Wk, W k) such that [W k [is maximum.
Also apply the parametric maximum flow algorithm to GR(h) to obtain for
each 3 k the maximum flow gk and the minimum cuts (Zk, Zk) such that
[Zkl is maximum.

Step 2: For each k = 0 , n - 1, create /~k(h) from G(A) by contracting W k -
Zk+l and Zk+l to single vertices by Procedure Contraction (G(A);
W~, Zk+ 1) in Subsection 6.4.
Let f~ be the flow on /4k(A) corresponding to fk.

t ^ R Let gk+l be the flow on H~ (A) corresponding to gk+l.
Step 3(a): For each k = 0 n - 1, find the node-shifting breakpoints of G(h) on

(3~, 3k+ 1) by applying the (main procedure of) breakpoint algorithm of
[12] to/~k(A) with initial values 3k, 3k+ 1, f~ and g~+i. Let L be the set of
these breakpoints.

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 307

Step 3(b):
Step 4:

Let L' = L U {8 0, 31 ,6n}. Sort L' in increasing order.
Apply the parametric maximum flow algorithm to G(h) for all A ~ L'.
Select all the values at which some nodes shift from the sink side to source
side and output them as the node-shifting breakpoints of G(h).

Theorem 6.10. Let G have N nodes and M arcs. Subroutine Breakpoint-Finder finds
the node-shifling breakpoints of minimum cut capacity function K(A) of G(A) in
O(NM log(NE/M)) steps.

Proof. The validity of Step 1 through 3 follows/rom the arguments of Subsection 6.4
which assert that the node-shifting breakpoints of G(A) on (6 k, 6k+ 1) can be found by
applying the breakpoint algorithm of [12] to/~«(A) if all parametric capacities are linear
on [6~, 6k+1].

The reason for creating the set L' in Step 3(b), rather than just taking L as the set of
all node-shifting breakpoints, is that some of the 6k's can be node-shifting breakpoints
as weil. Hence the parametric maximum flow algorithm in Step 4, extract all node-shift-
ing breakpoints.

Let A ~ and /~ denote the number of nodes and arcs of G(A) respectively. With this
notation, A ? = N + 1 and /14 = M + n. Also let N« and M« be the number of nodes and
arcs in /~k(A) for k = 0, 1 , . . , n - 1 respectively.

A

Since the number of parameter values, 3k's, is n ~< N - 2, Step 1 also can be done in
O(N/~ log(NE//~t)) steps by applying the parametric maximum flow algorithm of [12]
to G(A) and GR(A).

For a contraction procedure in Step 2, we need to determine the edges in the cut
defined by the vertex set to be shrunk into a single vertex. This can be done in O(/~)
steps by a breadth first search. The running time of other efforts, deleting loops and
combining arcs is also bounded by O(/~) using a standard data structure for network
representation. Since n contraetions are done and n ~<]V, Step 2 requires O(5,)N) steps.

By Lemma 6.5, Corollary 6.6 and Lemma 6.7, it follows that eaeh node of G()t) can
partieipate in at most a single Hk(A) as an unshrunk hode. Henee ù- 1 _ Ek=0N k - O(ü). The
running time of the breakpoint algorithm of [12] for the kth contracted network 6 k is
O(NkM k log(N2/Mk)). Let A be the constant coefficient of the running time. Then the
total work of Step 3 is:

n - 1 n - 1

A ~_~ NkMk log(NE/Mk)<~A ~_, NkM k log(2]VE/Mk)
k = 0 k = 0

n - 1

~<A • NkM log(2]V2/M).
k=0

The last inequality follows from the fact that the function f (x) = x log(K/x) is
increasing in the range 0 < x «. K l4 (where K is a positive constant) and M k <~ ffI <~
2/V2/4. Since n - 1 __ 2k= 0Nk- O(A?), Step 3 requires O(NM log(N2//~)) steps.

The size of L' is O(A?); hence, again by the parametric maximum flow algorithm,
Step 4 ean be done in O(Nk)log(/V2//~)) steps. So the total running time of

308 D.S. Hochbaum, S.-P, Hong / Mathematical Programming 69 (1995) 269-309

Subroutine Breakpo in t -F inde r is O(ATAI log(A~2/&l)). Since A ~ = N + 1, h/l = M + n

and n ~< M, the running time is O(NM log(N2/ (M + n))) which is O(NM log(N2/M)).
[]

Since the running time of Subroutine Breakpo in t -F inde r is O(NM log(Ne/M)),
and the dominant operations in Algorithm Lexieo-Finder are the maximum flow on

and the calls to Subroutine Breakpoin t -F inder , it follows that the network resource
allocation problem is solvable in O(NM log(N2/M)) steps.

So rar the objective function has been assumed to be strictly convex, i.e. b k > 0 for
all k = 1, 2 n. Assume now that the objective function is convex but not strictly
convex: hence there is a proper subset U c T such that b k = 0 if s k ~ T - U.

Theorem 6.3 is still valid since it does not assume the strict convexity of the objective
function. So to solve (Network) is equivalent to solve (Lexico') which finds a maximum

flow of G lexicographically maximizing the sorted sequence of {bkx k + ak[s~ ~ T} in
increasing order.

I f s k ~ T - U , then bkx k + a k is a constant. So it suffices to consider only the
elements of {bkx k + a«l s k ~ U}. That is, if x is an in-flow vector of a maximum flow
such that the sorted sequence of {bkx k + a k I sk ~ U} in increasing order is the lexico-
graphically maximum among all in-flow vectors, then x is the solution of (Network).

This can be done in the following manner:
1. Augment the network G with the arcs (s, s k) and the parametric capacities ck(A) for

only k ' s such that s k ~ U. Apply Algorithm Lexieo-Finder to obtain a maximum

flow g and the corresponding in-flow vector {Yk I sk ~ U}.
2. Create the residual network Gg of G with respect to the flow g. Augment Gg with

the arcs (s, s~) for s k ~ T - U and find a maximum flow of the network. Let the
corresponding in-flow vector be {z~[s k ~ T - U}.

3. Output the in-flow vector {Yk [sk ~ U} U {zkl s k ~ T - U} as an optimal solution of
(Network).
The additional work for the general convex case is to find a maximum flow in the

residual graph Gg. Hence the total running time is the same as that of the strictly convex

case.

7. Concluding remarks

We presented new strongly polynomial algorithms for some special cases of discrete
and continuous ¢onvex separable quadratic optimizations over submodular constraints. It
seems that further improvement on the complexities of the algorithms developed here is
going to be challenging.

As mentioned earlier, every problem considered in this paper is a special case of the
minimum quadratic cost network flow problem; costs are associated only to the flows on
the arcs emanating into the sink of the network. This observation naturally leads us to
the important open question of the strong polynomiality of (general) minimum quadratic
cost network flow problem. This problem seems to be very challenging. Even if the

number of arcs with quadratic cost is fixed, the question still remains open.

D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 309

References

[1] R. Baldick and F.F. Wu, "Efficient integer optimization algorithms for optimal coordination of
capacitators and regulators," IEEE Transactions on Power Systems 5 (1990) 805-812.

[2] M.J. Best and R.Y. Tan, "An O(n 2 log n) strongly polynomial algorithm for quadratic program with two
equations and lower and upper bounds," Research Report CORR 90-04, Department of Combinatorics
and Optimization, University of Waterloo (1990).

[3] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest and R.E. Tarjan, "Time bounds for selection," Journal of
Computer and Systems Sciences 7 (1972) 448-461.

[4] P. Brucker, "An O(n) algorithm for quadratic knapsack problems," Operations Research Letters 3
(1984) 163-166.

[5] W. Cook, A.M.H. Gerards, A. Schrijver and E. Tardos, "Sensitivity results in integer linear program-
ming," Mathematical Programming 34 (1986) 251-264.

[6] S. Cosares and D.S. Hochbanm, "Strongly polynomial algorithms for the quadratic transportation
problem with fixed number of sources,"Mathematics of Operations Research 19(1) (1994) 94-111.

[7] M.E. Dyer and A.M. Frieze, "On an optimization problem with nested constraints," Discrete Applied
Mathematics 26 (1990) 159-173.

[8] G.N. Frederickson and D.B. Johnson, "The complexity of selection and ranking in X + Y and matrices
with sorted columns," Journal of Computer and Systems Sciences 24 (1982) 197-208.

[9] S. Fujishige, "Lexicographieally optimal base of a polymatroid with respect to a weight vector,"
Mathematics of Operations Research 5 (1980) 186-196.

[10] S. Fujishige, Submodular Functions and Optimization, Annals of Discrete Mathemafics 47 (North-Hol-
land, Amsterdam, 1991).

[11] H.N. Gabow and R.E. Tarjan, " A linear-time algorithm for a speeial case of disjoint set union," Journal
of Computer and System Sciences 30 (1985) 209-221.

[12] G. Gallo, M.E. Grigoriadis and R.E. Tarjan, " A fast parametric maximum flow algorithm and
applications," SIAM Journal of Computing 18 (1989) 30-55,

[13] A.V. Goldberg and R.E. Tarjan, "A new approach to the maximum flow problem," in: Proceedings of
the 18th Annual ACM Symposium on Theory of Computing (1986) pp. 136-146.

[14] F. Granot and J. Skorin-Kapov, "Some proximity and sensitivity results in quadratic integer program-
ming," Working Paper No. 1207, University of British Columbia (1986).

[15] F. Granot and J. Skorin-Kapov, "Strongly polynomial solvability of a nonseparable quadratic integer
program with applications to toxic waste disposal," Manuscript (1990).

[16] H. Groenevelt, "Two algorithms for maximizing a separable concave function over a polymatroidal
feasible region," Technical Report, The Gradnate School of Management, University of Rochester
(1985).

[17] D.S. Hochbanm, "On the impossibility of strongly polynomial algorithms for the allocation problem and
its extensions," in: Proeeedings of the 1st Integer Programming and Combinatorial Optimization
Conference (1990) pp. 261-274; D.S. Hochbaum, "Lower and upper bounds for the allocation problem
and other nonlinear optimization problems," Mathematics of Operations Research 19 (1994) 390-409.

[18] D.S. Hochbanm and J.G. Shanthikumar, "Convex separable optimization is not much harder than linear
optimization," Journal of ACM 37 (1990) 843-862,

[19] D.S. Hochbanm, R. Shamir and J.G. Shanthikumar, "A polynomial algorithm for an integer quadratic
nonseparable transportation problem," Mathematical Programming 55(3) (1992) 359-372.

[20] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches (MIT Press, Cam-
bridge, MA, 1988).

[21] N. Megiddo and A. Tamir, "Linear time algorithms for some separable quadratic programming
problems," Operations Research Letters 13 (1993) 203-211.

[22] G.L. Nemhanser and L.A. Wolsey, lnteger and Combinatorial Optimization (Wiley, New York, 1988).
[23] A. Tamir, "A strongly polynomial algorithm for minimum convex separable quadratic cost flow

problems on series-paraUel networks," Mathematical Programming 59 (1993) 117-132.
[24] E. Tardos, "A strongly polynomial algorithm to solve eombinatorial linear programs," Operations

Researeh 34 (1986) 250-256.

