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The facility terminal cover problem is a generalization of
the vertex cover problem. The problem is to “cover” the
edges of an undirected graph G = (V , E ) where each
edge e is associated with a non-negative demand de .
An edge e = [u, v ] is covered if at least one of its end-
point vertices is allocated capacity of at least de . Each
vertex v is associated with a non-negative weight wv .
The goal is to allocate capacity cv ≥ 0 to each vertex
v so that all edges are covered and the total allocation
cost,

∑

v∈V
wv cv , is minimized. A recent paper by Xu et al.

[Networks 50 (2007), 118-126], studied this problem, and
presented a 2e- approximation algorithm for this problem
for e the base of the natural logarithm. We generalize here
the facility terminal cover problem to the multi-integer
set cover, and relate that problem to the set cover prob-
lem, which it generalizes, and the multi-cover problem.
We present a �-approximation algorithm for the multi-
integer set cover problem, for � the maximum coverage.
This demonstrates that even though the multi-integer
set cover problem generalizes the set cover problem,
the same approximation ratio holds. In the special case
of the facility terminal cover problem this yields a 2-
approximation algorithm, and with run time dominated
by the sorting of the edge demands. This approximation
algorithm improves considerably on the result of Xu et al.
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1. INTRODUCTION

The facility terminal cover problem (FTC) is defined as
follows. Given an undirected graph G = (V , E) where each
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vertex v is associated with a non-negative weight wv, and each
edge e is associated with a non-negative demand de, the goal
is to allocate capacity cv ≥ 0 to each vertex v ∈ V so that for
every edge e = [u, v] either cu ≥ de or cv ≥ de, and so that∑
v∈V

wvcv is minimum. We note that it is possible to allocate

no capacity to a vertex v by setting cv = 0. The problem FTC
was introduced by Xu et al. [11], and it was motivated by
several problems in networks and operations research.

For an algorithm A, denote the objective value of a solu-
tion it delivers on an input I by A(I). An optimal solution is
denoted by OPT, and the optimal objective value is denoted
by OPT as well. The (absolute) approximation ratio of A
is defined as the infimum ρ such that for any input I ,
A(I) ≤ ρ · OPT(I). We restrict ourselves to algorithms that
run in polynomial time.

The vertex cover problem is a special case of FTC where
the demand of each edge is one, i.e., for all e ∈ E de = 1.
For the vertex cover problem any optimal solution consists of
capacity allocation to the vertices that is either zero or one.
For the FTC problem the capacity can assume the value zero
or any value in the set {de|e ∈ E}.

Previous results for the weighted vertex cover problem
include the first 2-approximation algorithms by [6] that was
shown to run in the time of solving a minimum cut on
a bipartite graph in [7]. Various algorithms with the same
approximation ratio, or slightly better for restricted types of
graphs, were shown, for example, in [1,7,9]. In [7] it was con-
jectured that unless P = NP it is impossible to improve the
approximation ratio to 2−ε for any ε > 0 for the vertex cover
problem on general graphs. To date NP-hardness results con-
firmed that unless P = NP it is impossible to approximate the
vertex cover problem within 10

√
5 − 21 � 1.3606 [3], and

under the stronger assumption of the unique games conjec-
ture it is impossible to approximate the vertex cover problem
within an approximation ratio of 2 − ε for all ε > 0 [10].
A survey of approximation algorithms for the vertex cover
problem and the set cover problem is presented in [8].
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Another related problem is vertex cover with hard capac-
ities, which is the variant of vertex cover where each selected
vertex can be used to cover up to a prespecified number of
edges incident to this vertex (its capacity). Chuzhoy and
Naor [2] proved that the weighted problem is at least as
hard (to approximate) as the set cover problem, and for
the unweighted version they presented a 3-approximation
algorithm. This 3-approximation algorithm was improved by
Gandhi et al. [4] to a 2-approximation algorithm.

Xu et al. [11] presented a 2e-approximation algorithm for
FTC where e is the base of the natural logarithm. Their algo-
rithm is based on randomized geometric grouping of the
edges into sets of roughly equal demand edges, and then
applying a vertex cover 2-approximation algorithm for each
resulting edge class. They also wrote that “It also seems dif-
ficult to apply those LP-based methods to solve the FTC
problem, as the natural formulation of the FTC problem is
a quadratic programming.”

Our contributions here are in several respects: We present
a 2-approximation algorithm for FTC. We present a for-
mulation of FTC as a linear mixed integer programming
problem. A linear programming relaxation of this formu-
lation is used to obtain the 2-approximation algorithm. We
devise an alternative O(m log n) time 2-approximation algo-
rithm for FTC based on the primal-dual scheme. We then
define a generalization of the set cover problem, the FTC
problem and the multi-cover problem, which we call the
multi-integer set cover problem or MISC. We provide a mixed
integer programming formulation of MISC and generate from
the relaxation, or from a primal-dual approach, an efficient
approximation algorithm for the problem that gives the same
approximation bound as for the easier set cover problem.

The multi-integer set cover problem (MISC) is a general-
ization of FTC for hypergraphs and a generalization of the set
cover problem. In a graph each edge is a set of 2 endpoint ver-
tices, whereas in a hypergraph a “hyperedge” is an arbitrary
sized set of “vertices”. A formal definition of MISC, in which
sets are to be covered and which is “dual” to another possible
formalization, is as follows: Given a collection of sets (the
hyperedges) S1, S2, . . . , Sm over a ground set V , where each
element v ∈ V is associated with a non-negative weight wv,
and each set Si is associated with a non-negative demand di.
The goal is to allocate capacities to the elements, cv ≥ 0 is
the capacity of v, such that for each set Si there is an ele-
ment u ∈ Si with cu ≥ di and so that

∑
v∈V

wvcv is minimized.

Clearly, MISC generalizes FTC where each set Si consists of
the two end-vertices of the edge ei in the graph G.

The following notation is used throughout: Vectors are
denoted in boldface, so x is a vector and xi is the value of
the ith entry in the vector. � denotes the maximum coverage,
� = maxi=1,2,...,m |Si|. For FTC � = 2. A(1) denotes the
total size of the hyperedges in the input, A(1) = ∑m

i=1 |Si|.
Obviously A(1) ≤ �m. We let the size of V be n = |V |.

In Section 2 we present a �-approximation algorithm for
MISC based on solving a linear program. In Section 3 we
present a �-approximation algorithm for MISC using the

primal-dual technique with an improved time complexity of
O(m log n + A(1)). Our approximation algorithm gives a 2-
approximation algorithm for FTC thus improving the result
of [11].

2. FORMULATION AND A LINEAR
PROGRAMMING APPROXIMATION ALGORITHM

Let xv be a decision variable indicating the capacity
assigned to v ∈ V , and ziv be a binary variable for each pair
(i, v), i ∈ {1, . . . , m} and v ∈ Si, indicating whether element
v ∈ Si is designated to cover i and thus assume a capacity
level at least di:

(MISC)

min
∑

v∈V wvxv

subject to
∑

v∈Si
ziv ≥ 1 i = 1, . . . m

xv ≥ diziv i = 1, . . . m v ∈ V
0 ≤ ziv integer for 1 = 1, . . . ,

m and v ∈ V .

In this formulation it is not necessary to restrict the value
of the variables ziv to be ≤1. It is easy to see that for any
feasible MISC problem there is always an optimal solution
where the variables ziv are binary.

A fractional feasible solution to (MISC) is obtained
by solving the linear programming (LP) relaxation of the
problem:

(LP-MISC)
min

∑
v∈V wvxv

subject to
∑

v∈Si
xv ≥ di i = 1, . . . m

0 ≤ xv for all v ∈ V .

Obviously an optimal solution of value OPT to MISC is a
feasible solution to (LP-MISC) and with the same objective
value. To see that LP-MISC is indeed a relaxation of MISC
notice that for an optimal solution x̄ to LP-MISC, setting
ziv = x̄v/di is a feasible fractional solution to MISC.

We conclude that the objective value of an optimal solu-
tion x̄ to LP-MISC is at most OPT. We now argue that the
solution �x̄ = (�x̄v)v∈V resulting from multiplying by �

the capacity of each element with respect to its capacity in x̄,
is a feasible solution to MISC. This is so because for each set
Si,

∑
v∈Si

x̄v ≥ di, and thus there must be an element u ∈ Si

such that di|Si| ≤ x̄u. Hence for this u, di ≤ |Si|x̄u ≤ �x̄u.
Since this argument holds for all sets, we conclude that the
solution (�x̄v)v∈V is a feasible solution to MISC. By the lin-
earity (in the capacities) of the objective function of MISC,
we conclude that the cost of (�x̄v)v∈V is exactly � times
the cost of x̄ and hence at most � times the cost of OPT.
Therefore, (�x̄v)v∈V is a �-approximate solution, and since
(LP-MISC) can be solved in polynomial time, we established
the following theorem.

Theorem 1. There is a polynomial time �-approximation
algorithm for MISC. Therefore, there is a polynomial time
2-approximation algorithm for FTC.

64 NETWORKS—2009—DOI 10.1002/net



3. THE PRIMAL-DUAL ALGORITHM

We next improve the time complexity of our approx-
imation algorithm for MISC. To do so, we extend the
approximation algorithm of Hall and Hochbaum [5] for the
multi-set cover problem. The multi-set cover problem (MSC)
is defined, for positive integer demands di, by the following
formulation:

(MSC)
min

∑
v∈V wvxv

subject to
∑

v∈Si
xv ≥ di i = 1, . . . m

0 ≤ xv ≤ 1 integer for v ∈ V .

In contrast to MISC, the cover for the multi-set cover
problem is formed of elements v ∈ V each with capacity 1.

Let A = (aij) be the 0−1 constraint matrix of (LP-MISC).
Then LP-MISC is restated as follows.

(LP-MISC)
min

∑n
j=1 wjxj

subject to
∑n

j=1 aijxj ≥ di i = 1, . . . m
0 ≤ xj for j = 1, . . . , n.

The dual to the linear programming relaxation LP-MISC
is:

(MISC-dual)
max

∑m
i=1 diyi

subject to
∑m

i=1 aijyi ≤ wj j = 1, . . . , n
yi ≥ 0 i = 1, 2, . . . , m.

In the primal-dual algorithm, we generate, like the algo-
rithm for multi-set cover, a feasible cover along with a feasible
and maximal dual solution. (For definition of “maximal” and
its importance in approximating covering problems see [8].)
The algorithm works, like approximation algorithms for other
covering problems, by choosing at each iteration any violated
constraint, or uncovered set, and covering it with the cheap-
est (in terms of reduced cost) available element. The distinct
feature needed in this algorithm is that the selected violated
constraint is the one that has the largest demand level among
all violated constraints. We use this feature to ensure that the
dual solution remains feasible throughout the algorithm.

The dual-feasible MISC algorithm:

Step 0: {initialize} I = {1, 2, . . . , m}, J = V =
{1, 2, . . . , n}, xj = 0 for all j ∈ J , yi = 0 for all i ∈ I .

Step 1: Let i ∈ I with di = maxp∈I dp. Let wk = min{wj|j ∈
J and aij = 1}. (k is the minimum reduced cost column
covering row i.) If no such minimum exists, stop - the
problem is infeasible. Set xk = di.

Step 2: {update of dual costs and reduced costs} Set yi ←
yi +wk . For all j ∈ J such that aij = 1 set wj ← wj −wk .

Step 3: {remove all sets/rows covered by element/column k.
Their demand value can only be smaller than di} J ←
J \ {k}. For all i′ such that aki′ = 1, set I ← I − {i′}. If
I = ∅ stop, else go to Step 1.

The output of the algorithm is two vectors x and y and the set
of indices of elements in the cover V \ J .

From the choice of wk and the update in Step 2 all the
reduced costs wj are non-negative throughout the algorithm,
and the reduced costs of the elements in the cover are 0,
wk = 0 for all k ∈ V \ J .

The properties that are satisfied by the output of the
algorithm x and y are as follows:

1. x is a feasible solution to MISC.
2. For every j = 1, . . . , n for which xj > 0, its dual constraint

is binding (i.e., satisfied with equality). That is because
the reduced costs at the end of the algorithm are the slacks
in the dual constraints.

3. The dual solution y is feasible for MISC-dual.

For these properties to hold it is necessary that the violated
constraint is chosen to be the one with the largest demand.

We note that A(1), the number of nonzero entries in a 0−1
matrix A, is equal to

∑n
j=1

∑m
i=1 aij.

Lemma 1. The time complexity of algorithm dual-feasible
MISC is O(m log n+A(1)) which is dominated by O(m log n+
�m).

Proof. The claim follows by noting that after sorting the
demand values di in O(m log n) time, the other operations
of the algorithm take O(1) time per non-zero entry of the
constraint matrix, for a total of A(1) extra operations. Since
A(1) ≤ �m) the stated complexity follows. ■

Lemma 2. Algorithm dual-feasible MISC is a �-
approximation algorithm.

Proof. Let i(j) be the unique row for which column j
was selected and removed from J . Let the (primal) solution
delivered by the algorithm be x = xH and the optimal solution
be x = x∗. We denote the total cost of a solution x by w(x) =∑n

j=1 wjxj. We denote by J ′ the subset of J at the end of the
algorithm corresponding to variables of value 0. We need to
show that w(xH) ≤ maxi{∑j aij}w(x∗).

Let y be the dual solution delivered by the algorithm. Then,
w(xH) = ∑

j∈V\J ′ wjdi(j) = ∑
j∈V\J ′(

∑m
i=1 aijyi)di(j). Using

the weak duality theorem we get that for any solution to the
linear programming relaxation, and in particular an optimal
solution x∗ to the linear programming relaxation,

∑
j∈V\J ′

(∑m

i=1
aijdi(j)yi

)

≤ maxi

{∑
j∈V\J ′ aij

} ∑m

i=1
di(j)yi

≤ maxi

{∑
j∈V\J ′ aij

} ∑n

j=1
wjx

∗
j

= maxi

{∑
j∈V\J ′ aij

}
w(x∗).

It follows that w(xH) ≤ maxi

{∑
j∈V\J′ aij

}
w(x∗) ≤ �OPT.

■

With Lemma 1 and Lemma 2 we have thus established the
following theorem.
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Theorem 2. There is an O(m log n + �m) time �-
approximation algorithm for MISC. Therefore, there is an
O(m log n) time 2-approximation algorithm for FTC.
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