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1. Introduction 
In this paper we investigate an extremely simple, powerful technique for devising 
approximation algorithms for a wide variety of NP-complete problems in routing, 
location, and communication network design. Each of the polynomial-time algo- 
rithms presented here delivers an approximate solution guaranteed to be within a 
constant factor 6 of the optimal solution; such a polynomial-time algorithm is 
called a &approximation algorithm. In addition, for several of these problems we 
can show that, unless P = NP, there does not exist a (6 - e)-approximation 
algorithm for any fixed t > 0; we call such approximation algorithms best possible. 
The basis for this approximation technique is the concept of the power of a graph. 

The following three examples illustrate the range of problems to which the 
power-of-graphs technique is applicable. The k-center problem is a problem from 
location theory: Given n cities and the shortest path distances between all pairs of 
cities, the aim is to choose k cities as centers so that the city farthest from its closest 
center is as close as possible. A second example is the bottleneck wandering 
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Communication Network Problems 6 

(k, @-partition with diameter d 2d 
k-clustering* 2 
k-center* 2 
k-switching network 3 

Weighted Center Problems 6 

(singly) weighted k-center 3 
FIGURE 1 weighted k-center with at most I centers 3 

k-supplier* 3 
m-weighted k-center 9m-6 

Vehicle Routing Problems 6 

k-path vehicle routing* 
wandering salesperson* 
repeated city TSP* 
single depot k-vehicle routing* 

salesperson problem: The salesperson starts in some city u and must wind his or 
her way to city V, visiting each city exactly once; the salesperson travels to a new 
city each day, and wishes to choose a route that minimizes the travel time on the 
longest day of traveling. For a final example, consider the k-clustering problem: 
We wish to partition II cities into k clusters so that the longest distance between 
two cities in the same cluster is minimized. For each of these problems, we wish to 
find a subgraph of the complete graph satisfying certain constraints such that the 
length of the longest edge included in the subgraph is minimized; such problems 
are called bottleneck problems. For each instance of a bottleneck problem there is 
a class of subgraphs of the given complete edge-weighted graph that satisfy the 
constraints of the problem; call this the class offeasible subgraphs 22 The objective 
of a bottleneck problem is to find a graph G contained in 9 such that the maximum 
weight of an edge in G is minimized. Notice that no restrictions are placed on g, 
and that 5 might even depend on the instance itself. In each of the examples given 
above, 2~ is determined by purely combinatorial restrictions, but in other examples 
discussed below, there are additional cost constraints that the feasible graphs must 
satisfy. 

For all of the problems considered in this paper we make the assumption that 
the underlying graph is complete, so that the edge weight cij is defined for all i, j. 
Furthermore, we always assume that the edge weights must satisfy the triangle 
inequality; that is, for all i, j, k 

cij f cjk 2 cik. 

This assumption is a natural one, since, for most of the problems that we consider, 
the nodes correspond to locations and the edges weights correspond to shortest 
path distances. The results discussed in this paper are tabulated in Figure 1. For all 
but one of the problems mentioned, these are the first algorithms that ensure any 
constant guarantees; for the clustering problem, Gonzalez has reported an identical 
bound using a different approach [7]. 

As indicated by the asterisks, many of the results given in Figure 1 are best 
possible. Best possibility results are extremely rare, and it is surprising that so 
general a technique can be used to prove such tight complexity bounds. To the. 
best of the authors’ knowledge, the only other such best possible results can be 
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ice 
repeat 

begin 

i-hi-l- 1 
Gi c BOTTLENECKG(c,) (Recall e, is the ith shortest edge) 
P c path with the most edges from u to v in Gi {This is NP-hard) 
end 

FIGURE 2 

until P is a Hamiltonian path 
output P 

found in [7], [ 111, [ 151, and [ 161 and another sort of best possible approximation 
result can be found in [ 141. 

2. A Powerful Approximation Technique 
In this section we present the fundamentals of the approximation technique that 
we use to derive a plethora of applications. Our technique, which is a generalization 
of one used in [ 161, is based on the following crucial, and yet quite natural, 
observation. 

Observation. For any bottleneck problem, the value of the optimal solution is 
always one of the edge weights in the original specification of the instance of the 
problem. 

Throughout this paper, Gc = (V, EC) denotes the complete graph of the instance, 
and the edge weights are denoted cii. Furthermore, we label the edges of EC so that 
c,, 5 c,, I m-0 I c, m where m = (Z). The following notation will also be used 
extensively. If G = (V, E) is an arbitrary subgraph of Gc, let 

max(G) = max cii. 
(i,j)EE 

Furthermore, we define the bottleneck graph of c to be BOTTLENECKG(c) = 
(V, E) where E = ((i, j) ] cV I c). Note that max(BOTTLENECKG(cii)) = cii. 
Finally, an edge subgraph of G = (V, E) is a graph H = (V, F) such that F c E; 
note that the vertex sets are identical. 

Let us return to the example of the bottleneck wandering salesperson problem. 
For this problem, the feasible subgraphs S are the Hamiltonian paths from u to V. 
Thus, we can restate the wandering salesperson problem in the following way: Find 
the minimum value c, such that BOTTLENECKG(c) contains a Hamiltonian path 
from u to V. By the observation made above, the optimal value must be one of the 
cij. This leads us to the algorithm shown in Figure 2. 

The procedure in Figure 2 could be mimicked for all bottleneck problems; the 
only change needed is that at each iteration of the until loop, a test is made to 
determine whether Gi contains an appropriate feasible edge subgraph. However, 
for all of the problems we consider, this decision problem is NP-complete. 

The key notion that we use for all of the approximation algorithms given here is 
that of the power of a graph. If G = (V, E) is an arbitrary subgraph of G and t 
is a positive integer, let the tth power of Gc be G’ = (V, E’), where there is an edge 
(u, v) in G’ wherever there was a path from u to v with at most t edges in G; more 
formally, let 

E’ = ((iO, i,) ( 3il, i2, . . . , il-, such that (imml, i,) E E, m = 1, . . . , 1, 1 I t). 

Powers of graphs are useful because of the following simple lemma, which is a 
consequence of the fact that the edge weights satisfy the triangle inequality. 
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procedure bottleneck@, CC, t) 
ihO 
repeat 

begin 

FIGURE 3 i-i+1 
G, t BOTTLENECKG(c,) 
out.test t test@, Gi, t) 
end 

until otlt.test is not a “certificate of failure” do 
output owtest. 

LEMMA 1. max(G’) 5 t - max(G). 

PROOF. Consider an arbitrary edge (i, j) in G’. By the definition of G’, there is 
a path in G with at most t edges from i to j. The weight of each of these edges is at 
most wax(G). By the triangle inequality, the weight of any edge (i, j) is no more 
than the total weight of any path from i to j. Therefore the weight of (i, j) is at 
most t - max(G), and the claim is proved. 0 

For a particular instance of some bottleneck problem, let 2Y denote the set of 
feasible subgraphs of G. Thus, we wish to minimize max(G) such that G E 55’. In 
the algorithm presented above, at iteration i we check whether .!? contains a graph 
G that is a subgraph of Gi = BOTTLENECKG(c,). Since this decision problem is 
NP-complete, we need some sort of “relaxed” decision procedure: Suppose that we 
run a procedure test(Y7, Gi, t) that has two termination conditions; either test 
produces a certificate of failure or it produces a graph G E ?Y that is an edge 
subgraph of (Gi)‘. A certificate of failure is some proof that there is no subgraph of 
Gi that is contained in 2Z This suggests the algorithm shown in Figure 3. 

The justification for the approach in Figure 3 is given by the following theorem. 

THEOREM 1. Let 5 denote the feasible subgraphs for an instance Gc of a 
bottleneck problem. Let G* be an optimal subgraph in 2?, and let G be the graph 
output by the procedure bottleneck(5, Gc, t). Then, the value of the approximate 
solution produced, 

max(G) 5 t . max(G*), 

where max(G*) is the value of the optimal solution. 

PROOF. Suppose that the algorithm halts after some iteration i. Since for all 
previous iterations, test produces a certificate of failure, it follows that max(G*) L 
cci. However, the graph output by the procedure is a subgraph of (Gi)‘, and thus, 
by the lemma, 

max(G) 5 max((Gi)‘) 5 t - max(Gi) = t * c,. 

Combining these inequalities, we get the desired result. Cl 

Thus, for any bottleneck problem, the construction of a polynomial-time pro- 
cedure test@‘, G, t) immediately yields a polynomial-time t-approximation algo- 
rithm for this problem. The remainder of this paper is devoted to exhibiting a wide 
variety of problems for which this is possible. 

3. Solving Communication Network Design Problems 
In this section we construct an approximation algorithm for a broad class of 
communication network design problems. Suppose that we wish to assign each of 
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n locations to one of k communication networks, where the structure of each 
network is set in some specific way. Furthermore, we wish to do this in such a way 
that thelength of the longest link used for communication is minimized. This is a 
natural objective since the reliability of a given link usually decreases as its length 
increases, and we wish to ensure that all links of each network are likely to remain 
functional. 

More formally, suppose that 9 is a family of graphs (Fi 1 i = 1, 2, . . .), where, 
for every positive integer j, there is at least one member of 9 with j vertices. These 
are the allowed network structures. A (k, F)-partition is defined to be a graph 
G = (Uf=l Vi, U f==, Ei) where Vi n K = 0 for i # j, and Gi = ( I$, Ei) is isomor- 
phictoamemberof3foreachi= I,..., k. Thus a (k, Sr)-partition corresponds 
to the complete set of k communication networks of permissible structure. Let 
part(F, G) denote the minimum number of parts, k, into which the vertices of G 
can be partitioned such that a (k, F)-partition is an edge subgraph of G. We 
consider the following network communication design problem: Given a complete 
edge-weighted graph, find the (k, P-)-partition, G, such that max(G) is minimized. 
The cost of the optimal solution can be stated equivalently as the minimum value 
c, such that part(z BOTTLENECKG(c)) 5 k. 

For example, if 3- = (Ki,i 1 i = 0, 1, . . .), where K,,,,,, denotes the complete 
bipartite graph formed between sets containing m and n vertices, then part(Z G) 
is the equivalent of the domination number dam(G), the size of the smallest set of 
vertices such that every vertex is either in the set or adjacent to a vertex in the set. 
(Such a set of vertices is called a dominating set.) The corresponding design problem 
is the k-center problem that was described above. 

Another common example is the family 9 = (Ki 1 i = 1, 2, . . .l where Ki denotes 
the complete graph on i vertices. In this case, part(z G) is the clique partition 
number, K(G), the minimum number of parts into which the vertex set can be 
partitioned such that the graph induced on each part is a clique. The corresponding 
optimization problem is the clustering problem. 

As a final example, consider P- = (K,,,, 1 m, n = 0, 1,2, . . .). This example differs 
from the previous two in that there is more than one graph for most graph sizes. 
Since a complete bipartite graph represents a switching network of depth 1, the 
corresponding design problem is called the k-switching network problem. 

If G is an arbitrary graph, let diam(G) denote the number of edges in the shortest 
path between the pair of vertices of G that are farthest apart (where path lengths 
here are just the number of edges in the path). An alternate, equivalent definition 
of diam(G) is the minimum value t such that G’ is a complete graph. Thus it 
follows that diam(K,) = 1 for all n and diam(K,,,) = 2 for all m - n > 1. 

Suppose that ST satisfies the constraint that for all i, diam(P’i) I d. Furthermore, 
suppose that there is a procedurefindST(i) that on input i produces a member of 
Sr with i vertices within time polynomial in i. Under these assumptions, we 
construct a polynomial-time 2d-approximation algorithm to find a feasible (k, F)- 
partition. As discussed in the previous section, if 5Y denotes the class of feasible 
subgraphs of Gc given by (k, 9-T)-partitions, we need only construct the procedure 
test@‘, G, 2d). Before discussing this procedure, we give a few useful definitions. 
An independent set in a graph is a set of pairwise nonadjacent vertices. A maximal 
independent set is an independent set that is not properly contained in any 
independent set. Unlike the problem of finding a maximum-sized independent set, 
it is easy to find a maximal independent set in polynomial time. 

The procedure in Figure 4 makes use of a few simple facts. 

FACT 1. If G contains a (k, ST)-partition, then I 5 k. 
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procedure test@, G, 2d)((k, 9)-partition) 
S c maximal independent set in Cd 
if ( S 1 > k then output “certificate of failure” produced 

else do 
begin 

FIGURE 4 

(Note that S is a dominating set of Cd) 
if 1 S ( c k then add nodes arbitrarily to make 1 S I = k 
{Suppose that S = Iv,, v2, . . . , vk)J 
partition all of the nodes into V,, V2, . . . , Vk where v, 

dominates all of the nodes in V, in Cd. 
(Note that Vi induces a clique in Gzd) 
Form the (k, 9)-partition by replacing Vi 

by Jind 9( I Vi I ) 
INote that this (k, 9)-partition is a subgraph of GZd) 
end 

PROOF. Suppose that H = (V, E) is the (k, 9)-partition contained in G, where 
V = Uf=, 6, E = U:=, E;, and Hi = ( Vi, Ei) is isomorphic to Fji E 9I 
Since diam(Fi) I d for all i, (Hi)d is a clique. Therefore, the partition of V = 
iv,, v,,..., I/k] induces a clique cover in Hd. As a result, the size of the smallest 
clique cover, K(H~) 5 k. 0 

FACT 2. If K(G) I k, then every independent set in G has size at most k. 

PROOF. Suppose that there exists an independent set S in G with more than k 
vertices. Consider any minimum clique cover. Since this cover has at most k 
cliques, two vertices in S must be in the same clique. But then S could not be an 
independent set. Cl 

FACT 3. If S is a maximal independent set of G, then it is a dominating set 
ofG. 

PROOF. Suppose that S is not a dominating set of G. Then there exists a vertex 
v such that v is not adjacent to any vertex in S. However, this implies that S U (v) 
is also an independent set, which contradicts the assumption of maximality. III 

FACT 4. (KI,i)2 = Ki+l. 

FACT 5. Any graph on i vertices is isomorphic to an edge subgraph of Ki. 

Using these five facts, we can prove the following theorem. 

THEOREM 2. Let 9 be a family of graphs satisfying diam(Fi) 5 d for i = 
1,2,...; suppose further that findY(i) constructs a member of 3 with i vertices in 
polynomial time. Then the procedure bottleneck yields a 2d-approximation algo- 
rithm for the (k, Y)-partition problem. 

PROOF. In order to prove this result, we show that the procedure test given 
in Figure 4 correctly produces a certificate of failure or a feasible (k, 9)-partition 
in G2d. 

A certificate of failure must prove that the input G does not contain a (k, 9)- 
partition. Suppose that the routine claimed that a certificate of failure was produced, 
and that there was a (k, 6)-partition contained in G. By Fact 1, it follows that 
K(G~) 5 k. Applying Fact 2, we get that every independent set in Gd has size at 
most k. However, the set S produced by the procedure is an independent set in Gd 
with more than k vertices. This contradiction proves that the certificate of failure 
is generated correctly. 
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We show next that in the absence of a certificate of failure a (k, @-partition is 
found in Gzd. By Fact 3, the set 5’ is a dominating set, and this clearly remains true 
if more vertices are added to S. By the definition of a dominating set, each of the 
sets Vi formed must contain K,,Iv,I-~. By Fact 4, the graph induced on I’; in (cd)’ 
= Gzd is a clique on 1 Vi ] vertices. Using the procedure find5 we can find a 
member F of 9 with 1 Vi ] vertices. By Fact 5, the graph induced on Vi in Gzd 
contains a graph isomorphic to F. Cl 

COROLLARY 1. For the clustering problem, the procedure bottleneck produces 
a clustering of cost at most twice the cost of the optimal clustering. 

Consider now the k-center problem; an immediate corollary of the theorem 
would be a 4-approximation algorithm for this problem. However, it is quite easy 
to improve this result. 

COROLLARY 2. For the k-center problem, the procedure bottleneck produces a 
center of cost at most twice the cost of the optimal. 

PROOF. In the procedure in Figure 4, the set S generated is a maximal inde- 
pendent set of Gd. Since the family ~7 for the k-center has a maximum diameter 
of 2, d = 2, then by Fact 3, S is a dominating set in G2. If S is the set of centers 
selected, every location not chosen is adjacent to some vertex of S in G2. Therefore, 
we need not consider G4. 0 

For both of these problems it is not hard to prove that unless P = NP, there does 
not exist a (2 - t)-approximation algorithm for any fixed 6 > 0 [S, 121. These 
results, by themselves, do not exclude the possibility of tangibly better algorithms 
for these problems, even if P # NP: It might be possible to have a polynomial-time 
approximation algorithm guaranteed to deliver a solution of cost at most aOPT + 
p, although no cY-approximation algorithm exists unless P = NP. (Recall that an 
a-approximation algorithm must deliver a solution of cost at most (UOPT). This 
behavior occurs for the problem of edge coloring multigraphs, where there is a 
polynomial algorithm that uses at most L(9x’ + 6)/8J colors where X’ denotes the 
chromatic index of a multigraph, and yet if there were a (4/3-t)-approximation 
algorithm, then P would equal NP [ 111. The following theorem shows that for the 
k-center problem this behavior is impossible. 

THEOREM 3. If there exists a polynomial-time approximation algorithm ti for 
the k-center problem, such that & is guaranteed to produce a solution of cost at 
most aOPT + p for every instance Z, where CY < 2, p > 0, and OPT(Z) denotes 
the value of the optimal solution, then P = NP. 

PROOF. We show that such an algorithm can be used to solve the dominating 
set problem in polynomial time. Since the dominating set problem is NP-complete 
[6], this implies that P = NP. Suppose that we wish to decide whether G has a 
dominating set of size k. Form the matrix C = (cii) so that cij = w if (i, j) is an edge 
of G, and cij = 2w otherwise, where w = 2p/(2 - CL). Notice that C satisfies the 
triangle inequality. It is not hard to see that C has a k-center of cost w if and only 
if G has a dominating set of size k. Therefore, if G has a dominating set of size k, 
the algorithm must deliver a set of cost no more than 

w 

( ) 
4 + 2P = (a + 2)P < 40 aw+P’(Y2-a +P= 2-a 2--Ly Yjy= 2w . 
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procedure test@, G, 3)(k-switching network) 
St maximal independent set in G2 
if ) S 1 > k then output “certificate of failure” produced 

else do 
begin 
(Note that S is a dominating set of G’) 
if 1 S 1 < k then add nodes arbitrarily to make 1 S 1 = k 
(Suppose that S= IV,, VZ, . , vk)} 
partition all of the nodes into VI, VZ, . . . , Vk where vi 

dominates all of the nodes in Vi in GZ 
further partition each Vi into CJ, and W; = Vi - Ui 

where 17, is the set of vertices adjacent to vi in G 
form the k-switching network by generating the complete bipartite graph 

between Ui and W, for each i. 
end 

Since every choice of centers has a cost of either w or 2w, the algorithm must 
produce a set of cost w. If G does not have a dominating set of size k, then clearly 
the algorithm will yield a set of cost 2w. Notice that this proof does not even 
require that (Y and /3 be constants, only that they be computable in polynomial 
time. Finally, we note that an analogous result can be obtained for the clustering 
problem. 0 

Consider the k-switching network problem. As a corollary to Theorem 2, we 
get a 4-approximation for this problem, but once again this can be improved (see 
Figure 5). 

COROLLARY 3. For the k-switching network problem, the procedure bottleneck 
produces a network of cost at most three times the cost of the optimal switching 
network. 

PROOF. This result follows almost directly from the. proof of Theorem 2. 
Consider the modified procedure given in Figure 5. As was’aigued in the proof of 
Theorem 2, the certificate of failure is produced correctly, so we need only show 
that a feasible solution is found in G3 when a certificate is not found. Consider the 
graph induced by Vi in G3. Choose a vertex u E Ui and a vertex w E IV;. Note that 
by definition u is adjacent to Vi in G and w is adjacent to Vi in G*. Therefore, u 
and w must be adjacent in G3, and the solution constructed is indeed a subgraph 
ofG3. 0 

For the k-switching network problem it can be shown that the existence of a 
(2 - E)-approximation algorithm would imply that P = NP, but it is not known 
whether any stronger statement is possible. 

4. Solving Weighted Center and Weighted Supplier Problems 
For the problems discussed in the previous sections, the set of feasible subgraphs 
for each bottleneck problem was constrained by purely combinatorial restrictions. 
In this section, in addition to a weighted version of the k-center problem, we 
consider a closely related problem, the k-supplier problem. For this problem there 
are customers and suppliers, and we wish to choose the centers only from the set 
of suppliers, and only the customers must be serviced efficiently. Using these two 
problems as examples, we show how to use the power-of-graphs technique for 
problems where the feasible subgraphs 5 are further constrained by additional cost 
functions. Furthermore, in the case of the k-supplier problem, we obtain a best 
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procedure tesf (X7, G, 3){ Weighted k-center) 
St maximal independent set in G* 
foralljESdo 

begin 
w +-- mmNGti) w 
let I(j) be a node in N&j) with W/(j) = w 
end 

S’ - U,ES 4A 
if Cjss. wj > k then output “certificate of failure” produced 

else output S’ 

541 

FIGURE 6 

possible result. For the k-center problem, we also present algorithms for the case 
in which the feasible choice of centers is constrained by multiple weighting 
functions. 

An instance of the (singly) weighted k-center problem is specified by a complete 
edge-weighted graph Gc = (V, EC) with edge weights cii that satisfy the triangle 
inequality and node weights wj. A feasible center is a set S of nodes such that 

Thus a certificate of failure for the routine test must prove that the input G does 
not contain a dominating set of total weight at most k. Furthermore, if test does 
not produce a certificate of failure, then it must find a set of nodes of total weight 
at most k such that it is a dominating set for G’ for some t. The routine given in 
Figure 6 yields a dominating set in G 3. It will be useful to define N&v) as the 
neighborhood of v in G; that is, the set of vertices adjacent to v in G as well as v 
itself. 

THEOREM 4. The procedure bottleneck yields a 3-approximation algorithm for 
the weighted k-center problem. 

PROOF. Consider the algorithm given in Figure 6. First, we show that if S’ is 
output, then it is a feasible dominating set in G3. By Fact 3, it follows that S is a 
dominating set in G*. In other words, for every vertex in G there is path with at 
most two edges to some vertex in S. Then, for every vertex v of S there is some 
vertex in S’ that is adjacent to v in G. Therefore, for every vertex in G, there is a 
path with at most three edges to some vertex in S’. Equivalently, S’ is a dominating 
set in G3. Furthermore, if S’ is output, then it follows that the total vertex weight 
of S’ is at most k. Therefore, S’ is a feasible dominating set in G3. 

To complete the proof, we need only show that the certificate of failure is 
produced correctly. To do this, we show that the total weight of S’ is no more 
than the weight of the minimum weight dominating set of G. Suppose that S* = 
i Vl, v2, **a, v,] is the minimum total weight dominating set in G. Partition the 
vertices of G into I’, , V2, . . . , I’,,, so that 5 c iVG(v/.). In G2, the graph induced on 
each Vj is a clique. Thus, S contains at most one vertex from each Vj; let ?j be this 
vertex (if it exists). Since vj E NG(cj), the vertex l(3) that is added to S’ must have 
weight at most w,,,. Thus S’ has weight at most the total weight of S*. 0 

Notice that this result can be extended almost immediately to the weighted 
k-center problem where we further constrain feasible solutions to have at most 1 
centers. We simply add to the routine test a check whether 1 S 1 = 1 S’ 1 5 1; if not, 
this also constitutes a certificate of failure. Thus we have obtained the following 
corollary. 
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procedure IM(F’, G, 3) (k-supplier) 
if there exists v E VCvSt that is not adjacent to any supplier 

then output “certificate of failure” produced and return 
S c maximal independent set in the graph induced in GZ by VC,,, 
foralljESdo 

FIGURE 7 
begin 
w - minkN8c,~v,, w 
let I(j) be a node in NC(j) n l&, with W,,,, = w 
end 

S’ + u,,.s Ici) 
if CIES, w, > k then output “certificate of failure” produced 

else output S’ 

COROLLARY 4. For the weighted k-center problem, where the feasible solutions 
are further constrained to have at most 1 centers, the procedure bottleneck yields a 
3-approximation algorithm. 

Consider now the k-supplier problem. An instance of the k-supplier problem is 
given by an edge-weighted complete graph and a partition of the nodes into a 
supplier set l&, and a customer set V& furthermore, each supplier i has a weight 
w;. The aim is to choose a set of supplier of total weight at most k, so that every 
customer is as close as possible to some supplier that was selected. This problem is 
very similar to the ordinary weighted k-center problem, when some subset of the 
nodes is given infinite weight. The essential difference is that in the k-supplier 
problem, the suppliers not selected need not be close to any of the suppliers 
selected. The algorithm is nearly identical to the one for the weighted k-center 
problem (see Figure 7). 

THEOREM 5. The procedure bottleneck yields a 3-approximation algorithm for 
the k-supplier problem. 

PROOF. The proof of this result is nearly identical to that of Theorem 4. If there 
exists a customer that is not adjacent to any supplier, it is clear that no feasible 
solution exists, so we are justified in producing a certificate of failure. Suppose that 
S’ is output by the procedure. By the same reasons as above, there must be a path 
with no more than three edges from each customer to some supplier. Therefore, 
S’ is a feasible choice of suppliers in G3. 

To complete the proof, we show that the total weight of S’ is at most the weight 
of the minimum weight choice of suppliers so that every customer is adjacent to 
some chosen supplier. Suppose that S* = (vi, v2, . . . , v,) is the minimum weight 
choice of suppliers serving every customer. Partition V,,, so that V; C N&v;). In 
G2, the graph induced on each Vi is a clique, and therefore S contains at most one 
vertex from each V;; let Si be this vertex (if it exists). Since vi is adjacent to Si, the 
vertex l(fi) has weight at most wq. Therefore, the total weight of S’ is at most the 
total weight of S*. q 

It should be noted that this problem could have been modeled in terms of a 
complete bipartite graph (thereby relaxing the requirement for distances between 
customers or between suppliers.) With a suitable modification of the notion of a 
triangle inequality, the entire framework can be carried over to this setting to 
provide a more general result. Surprisingly, the above algorithm can be shown 
to be best possible. The following result is due to Howard Karloff (private 
communication). 
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THEOREM 6. Ifthere exists a (3 - e)-approximation algorithm for the k-supplier 
problem for any fixed t > 0, then P = NP. 

PROOF. We show that such an algorithm could be used to solve the hitting set 
problem in polynomial time. 

Hitting Set 
INSTANCE: A collection %? of subsets of a finite set S and a positive integer k. 

QUESTION: Does there exist a subset S’ c S where 1 S’ 1 I k such that S’ 
contains at least one element from each subset in %7? 

Given an instance of the hitting set problem, form an instance of the k-supplier 
problem in the following way. Let I/sup = S and let I’,,, = %Y = (Or, . . . , &). 
Define the distance matrix C = (cii) to be 

1 

2 if ii, j) G I/sup or i&j) G Vcust, 
Cii 3 if i E I/SUP and j E Vcust and i 4 Dj, 

1 if i E VSUp and j E V,,,t and i E Dj. 
It is straightforward to verify that these distances satisfy the triangle inequality. 

It is not hard to see that the k-supplier problem has a solution of cost 1 if and only 
if there is a k-hitting set S’. Furthermore, if there is no k-hitting set, the cost of the 
optimal k-supplier must be 3. Therefore, if the algorithm guarantees a ratio of 
3- c and there is a k-hitting set, the algorithm delivers a set of suppliers of cost 1. 
If there is no k-hitting set, then clearly the set of suppliers produced by the 
algorithm has a cost of 3. Cl 

In another type of generalization of the k-center problem, the feasible choice of 
centers is restricted by several independent resource constraints. With a substantial 
increase in the bound of the performance guarantee, Theorem 4 can be extended 
to any fixed number of independent vertex weight constraints. That is, each 
vertex has m nonnegative weights, WI’), . . . , w$“), and a center S must satisfy 
CiES w(j) 5 k for all j = 1, . . . . m. The following lemma is essential in the 
construction of our algorithm. 

LEMMA 2. Let D = (vl, . . . , vr) be a dominating set for a connected graph G. 
If m I I, then there exists a partition of D into D,, 4, . . . , D, such that each set 
Di is a dominating set in G3m-2. 

PROOF. Partition the vertices of G into 1 parts, I’, , . . . , V/, so that vi E V; and 
V; c NG(vi). Form the graph H = (D, F), where (v;, vj) E F if and only if some 
vertex in V; is adjacent to some vertex in Vj. Note that H is connected and let T 
be any spanning tree of H. It is useful to observe that any dominating set in T is a 
dominating set in H and is also a dominating set in G4. More generally, any 
dominating set in Tp is a dominating set in G . 3p+’ Therefore, to prove the lemma, 
we need only find a partition of D so that each part is a dominating set in TM-‘. 

Suppose that any single vertex in D is a dominating set in T”‘-‘. In this case 
constructing the partition is easy, since any partition suffices. Otherwise, suppose 
that {v) is not a dominating set in Tm-‘. Root the tree Tat v. Partition the vertices 
of T by the length of the (unique) path from v to each vertex; let Si denote the set 
of vertices that are distance i from v. By the choice of the root, each of So, Sr , . . . , 
S,,, is nonempty. Let D;+, = (V 1 v E S’, j = i mod m]. It is clear that these Di form 
a partition of D. Furthermore, it follows directly from the construction that Di is a 
dominating set in T”‘-’ for all i. 0 
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FIGURE 8 
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procedure test@, G, 9m - 6) {m-weighted k-center) 
for i := 1 to 1 V( do 

ti) w, + CFI w, 
call test.wkeenter(G3m-2, 3) 

The restriction in Lemma 2 that G be connected is unnecessary, since each 
connected component can be treated separately. Using Lemma 2 we can prove the 
following theorem. 

THEOREM 7. For the m-weighted k-center problem, the procedure bottleneck 
yields a (9m - @-approximation algorithm. 

PROOF. Let test.wkcenter denote the procedure test in Figure 6 that was used 
to prove Theorem 4. Consider the procedure in Figure 8. 

Suppose that there is a feasible dominating set D in G; that is, &D WY) I k for 
all j = 1, . . . , m. Therefore, 

Consider the partition promised by Lemma 2, and choose the part D, such that 
CiED, wi is smallest. By the pigeonhole principle, it follows that &D, w; 5 k. 
Therefore, if G contains a feasible m-weighted center, then G3m-2 contains a feasible 
singly weighted center with the modified weights. As a consequence, if a certificate 
of failure is produced by the subroutine call test.wkcenter(G3m-2, 3) it is a valid 
certificate of failure for test. Furthermore, if the subroutine produces a dominating 
set D’ in (G3”-2)3 = G9m-6 such that J&D, Wi 5 k, it follows from the nonnegativity 
of the w(j) that &,DS w(j) 
for G9m’6. 0 

, I kforeachj= 1, . . . . m. Thus, D’ is a feasible center 

The unfortunate aspects of this result is that, although the bound is constant for 
a fixed value of m, the performance guarantee, even for m = 2, is not very good. 
For any fixed value of m, it is possible to find a solution guaranteed to be within a 
factor of 3 of the optimal solution, on the condition that we do not require the 
algorithm to be polynomial time, but only pseudopolynomial time. Furthermore, 
the algorithm has a running time that is exponential in m. Thus we are trading 
decreased efficiency for an improved performance guarantee. Further details can 
be found in an earlier version of this paper [lo]. 

5. Solving Routing Problems 

In this section we consider several routing problems. Most of the algorithms 
presented here make use of the following theorem. 

THEOREM 8 [4]. If G is a biconnected graph with more than 2-vertices, then G2 
contains a Hamiltonian cycle. 

Recently, Lau [ 131 and Parker and Rardin [ 161 independently found a polyno- 
mial-time algorithm that constructs a Hamiltonian cycle in the square of a 
biconnected graph. This algorithm is used as a subroutine in some of the results of 
this section, and we denote it findtour( As Parker and Rardin [ 161 show, this 
immediately leads to a 2-approximation algorithm for the bottleneck traveling 
salesperson problem, since, if G is not biconnected, this is a certificate of failure. 
Furthermore, biconnectivity can be tested in polynomial time. 
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Recall that for the wandering salesperson problem, we seek a route for the 
salesperson, from a fixed starting point to a fixed destination, that passes through 
all of the remaining cities. Under the bottleneck cost criterion, we wish to find 
such a route where the longest intercity distance traversed is as small as possible. 
Another interesting generalization of the traveling salesperson problem is the vehicle 
routing problem, where there are some k vehicles that may be used to traverse all 
of the cities. We consider the following variant: Designate some subset of the cities 
as potential endpoints of routes of the vehicles; this subset may contain no more 
than 2k points. In this model the initial and final endpoints of each route must be 
distinct. We wish to use at most k vehicles so that all of the cities, both the potential 
endpoints and the remaining ones as well, are visited exactly once. We refer to this 
problem as the k-path vehicle routing problem. Note that, if k = 1 and the subset 
contains two cities, then this problem reduces to the wandering salesperson problem 
mentioned above. We present a 2-approximation algorithm for the k-path vehicle 
routing problem (and thus for the wandering salesperson problem as well). It is 
possible to show that, even in the special case of the wandering salesperson problem, 
improving this guarantee would prove that P = NP. 

As was done in the previous sections, we construct a procedure test that either 
produces a certificate of failure in G or produces a feasible routing in G2. We call 
a collection of (simple) paths in G a path covering for G if each vertex of G is 
contained in exactly one path. If X is the set of potential endpoints, G has a feasible 
routing if there exists a path covering of G with at most k paths where the endpoints 
are in X; such a path covering is called feasible. The following lemma provides us 
with a suitable certificate of failure. 

LEMMA 3. If there exists a vertex v such that a component of G - v does not 
contain a vertex of X, then G cannot contain a feasible path covering. 

PROOF. Suppose that the vertices of G can be covered with 15 k paths, and yet 
there exists a component of G - v that does not contain a vertex of X. This 
component is nonempty; it must contain some vertex u, which must lie on one of 
the 1 paths, say P. Since removing v disconnects u from X, all paths from u to a 
vertex of X must pass through v. But then P cannot be a path, since the portions 
of this path from each of the endpoints of P to u must contain v. 0 

It is easy to see that it is possible to determine whether there exists such a 
certificate of failure in polynomial time. Although this condition seems weak, we 
can find a path covering in G2 in the event that this certificate of failure is not 
found. The routing is found by constructing a biconnected graph H such that any 
Hamiltonian cycle found in H2 gives a feasible routing in G2. The construction 
used, which we call the H-construction, is a slight modification of one given by 
Chartrand et al [2]. 

Suppose that Lemma 3 does not provide a certificate of failure for G = (V, E). 
Let X c V be the subset of possible endpoints. We have assumed that 2 5 ] X ] 5 
2k. (If ] X ( < 2, then no path covering could exist.) Let Hi = (Vi, Ei), i = 1, . . . , 5 
be live disjoint copies of G. Let xl and x2 be two additional vertices not contained 
in Ui Vi. We construct a graph H consisting of the five copies Hi and the two 
vertices xl and x2, where both x1 and x2 are adjacent to all of the vertices in the 
copies of X in each of the Hi. 

It is not hard to see that H must be biconnected; that is, the removal of any one 
vertex cannot disconnect H. (This follows from the fact that no certificate of failure 
was found.) Therefore, we may use the procedure findtour to find a Hamiltonian 
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procedure test@, G, 2) (k-path vehicle routing) 
if there exists v such that a component of G - v does not contain a vertex of X then 

output “certificate of failure” produced 
else 

FIGURE 9 
form the H-construction on G 
callJndtour(H2) 
{let 7 denote the tour output by this procedure) 
let Hi be the copy of G such that no vertex in Hi is 
adjacent in 7 to either x, or xz 

output the portion of T in Hi 

cycle in H2. Let xi, and xi, be the successor and predecessor ofx; in this Hamiltonian 
cycle. Consider the four vertices xls, x2$, xlp, x2,; there must be at least one copy 
Hi, such that none of these vertices is in Vi. Consider the portions of the 
Hamiltonian cycle that lie within Hi. These portions must form a path covering 
of Hi. 

All that remains to be shown is that the endpoints of each of the paths must be 
contained in X. Suppose that this is not true. Suppose that one of these paths has 
an endpoint w not contained in X. Since it is an endpoint of one of these segments, 
it must either be preceded or succeeded on the Hamiltonian cycle by a vertex not 
in Vi. However, consider the graph H2. If w is not equal to any copy of a vertex in 
X, then x1 and x2 are the only vertices not in Vi that are adjacent to w. Thus w 
must be either succeeded or preceded by either xl or x2. This is a contradiction, 
since Hi was chosen so that this would not be true. Therefore, the path cover 
produced must have the desired property that each path has its endpoints in X. 
Since X contains at most 2k points, there cannot be more than k such paths, and 
we have obtained the required routing. Therefore, we have verified the correctness 
of the procedure in Figure 9 and thus have the following result. 

THEOREM 9. For the bottleneck k-path vehicle routing problem, the procedure 
bottleneck yields a 2-approximation algorithm. 

It is convenient to refer to the procedure used to find a feasible k path covering 
in the absence of a certificate of failure asfindpaths(G, X). 

Consider the variant of the wandering salesperson problem where we do not fix 
the endpoints of the route. We can run the procedure given above for all (5) choices 
of endpoints to get a path that is again guaranteed to be within a factor of 2 of the 
optimum of all such paths. However, there is a more direct approach to finding an 
approximate solution in this case, and we outline it. If G = (I’, E) is a connected 
graph with m > 1 biconnected components, define the graph B(G) = (V’, E’) in 
the following way. Let V’ = (u,, u2, . . . , u,) U (v ] v is a vertex in at least two 
biconnected components) where each Ui corresponds to a biconnected component 
and Ui 4 V. Let E’ = ((Ui, v) ] v is a vertex in the biconnected component 
corresponding to Ui). It is easy to see that B(G) must be a tree (Figure 10). The 
reader is referred to [I] for a detailed exposition on the biconnected components 
of a graph. 

THEOREM 10. The procedure bottleneck yields a 2-approximation algorithm for 
the wandering salesperson problem without fixed endpoints. 

PROOF. First we show that the certificate of failure is produced correctly; that 
is, if a certificate is produced, then G does not contain a Hamiltonian path. If G is 
disconnected, then it clearly does not contain a Hamiltonian path. Consider any 
path in G, and consider the subgraph of this path that is induced by the vertices of 
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procedure test@, G, 2) {wandering salesperson without fixed endpoints) 
if G is disconnected then output “certificate of failure” produced and return 
if G is biconnected then callfindtour(G2) 
else 

if B(G) is not a path 
then output “certificate of failure” produced 
else 

for each biconnected component of G, G, with two vertices 
ui and v, that are contained in other components do 

call pafhs(Gi, { ui, vi)) 
for each of the two “end” biconnected components Gi do 

callJindtour(G~) 
“paste” the paths together to obtain a Hamiltonian path 

FIGURE 10 

any biconnected component of G. Since a path cannot repeat vertices, this subgraph 
must also be a connected path. As a result, if G has a Hamiltonian path and is 
connected, but not biconnected, then the graph B(G) is a path. 

Now suppose that no certificate of failure is generated. If G is biconnected, 
findtour produces a Hamiltonian cycle, so any edge can be deleted from the cycle 
to form a Hamiltonian path. If G is not biconnected and no certificate of failure is 
produced, then B(G) is a path. Consider a biconnected component Gi that contains 
two articulation points Ui and Vi. If there is a Hamiltonian path in G, there must 
be a Hamiltonian path for Gi from Ui to vi. Fortunately, there is such a path in Gf 
and it can be constructed by the same method used in the fixed endpoint case. 
Note that since Gi is biconnected, if X = (ui, Vi], then G - v is connected, and 
therefore contains a vertex of X for every choice of v. As a result, the procedure 
findpaths is applicable, and will provide us with the desired Hamiltonian path from 
Ui to Vi. For each of the two biconnected components that share only one vertex 
with some other biconnected component, we may simply usefindtour to construct 
a Hamiltonian cycle, and then convert this cycle into path by deleting one of the 
edges of the cycle incident to the vertex that is contained in another biconnected 
component. These pieces, together, form a Hamiltonian path in G. Cl 

In a well-known relaxation of the bottleneck traveling salesperson problem, cities 
may be visited more than once, but edges may be used at most once. Thus, for this 
problem we wish to find the smallest value of c such that G = BOTTLENECKG(c) 
contains a Hamiltonian walk. (A walk is a connected collection of cycles; that is, 
vertices are allowed to be repeated, but edges are not. A Hamiltonian walk is a 
walk that contains all of the vertices of a given graph.) Once again it is possible to 
prove the following result. 

THEOREM 11. For the bottleneck traveling salesperson problem with multiple 
visits allowed, the procedure bottleneck gives a 2-approximation algorithm. 

PROOF. For this algorithm we need to find a Hamiltonian walk in G*, or else 
prove that G does not contain a Hamiltonian walk. If G is not connected, then it 
clearly does not contain a Hamiltonian walk; this will serve as our certificate of 
failure. If G is connected, then it contains a spanning tree T. We give a procedure 
for constructing a Hamiltonian walk in the square of a tree T rooted at a vertex v. 
To do this, we give a recursive procedure for finding a path in T* that visits every 
vertex, possibly repeating vertices but not edges. The path found starts at some 
child of v in T and ends at v. If T has more than 2 vertices, the edge between v and 
this child is not used in the path, and thus the path can be completed to a 
Hamiltonian walk by adding this edge. (Note that, despite its name, walk only 
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procedure wulk( T, v) 
let zd,, u2, . , ul be the children of v in T 
if v is adjacent to all other vertices of T 

then return (u,, ~2, . , ul, v) 
else 

FIGURE 1 I 
foralli= l,...,Ido 

begin 
let T, be the subtree of T rooted at ui 
W, t walk( Ti, ui) 
end 

W, c W, traversed in the reverse. direction 
return ( W,, v, W2, . . . , v, W,, v) 

produces this path, and not the entire walk.) It is not hard to verify that the 
procedure walk (Figure 11) does produce such a path. Cl 

In the single-depot k-vehicle routing problem we wish to choose a routing where 
all (nondepot) cities are serviced exactly once by at most k vehicles, such that the 
longest intercity distance traveled is minimized. An instance of this problem 
consists of a complete edge-weighted graph Gc, an integer k, and a special vertex 
v; this is the depot. We construct a 2-approximation algorithm for this problem by 
reducing it to the ordinary traveling salesperson problem. In order to do this, we 
show how to transform an instance of the single-depot problem Gc into an instance 
of the traveling salesperson problem G =‘, such that Cc has a feasible vehicle routing 
solution of cost c if and only if Gc, has a feasible traveling salesperson solution 
of cost c. We construct the instance Gc, as follows. We add k - 1 vertices 
h, u2, * * * , ukml] = U so that the new vertex set is V U U where V rl U = 0. 
Define the edge costs in the following way: 

Cij7 i, j E V, 
c; = 

1 
0, i, j E U U (v), 
G”, i E V - (v), j E U. 

It is straightforward to verify that these new edge costs also satisfy the triangle 
inequality. 

LEMMA 4. Gcr has a traveling salesperson tour of bottleneck cost c ifand only 
ifGC has a vehicle routing using at most k vehicles of bottleneck cost c. 

PROOF. Suppose that Gc, has a traveling salesperson tour of bottleneck cost c. 
Letel, . . . . e, be the edges of this tour, in order. If ei = (v,, v,), simply delete it 
from the sequence. If ei = (v,, x) for some x E V - (vl), then replace ei with 
(vl, x). It is easy to see that the resulting sequence of edges is a feasible routing 
for Gc of cost c. Suppose that Gc has a vehicle routing of bottleneck cost c 
that uses I vehicles, where I 5 k. Suppose that vehicle i’s route consists of vI, vii, 
Vi29 - . . 9 vl. Consider the cycle in Gc, 

VI, hl, VIZ, . . . , v2, v21, v22, . . . , v3, . . . , VI, VII, . . . , v/+1, . . . , vk, vl. 

Once again it is easy to verify that this is a traveling salesperson tour of cost c. 0 

Note that Lemma 4 holds for both the ordinary cost and the bottleneck cost 
objectives. Therefore, we may apply Christolides’ algorithm to get a 3/2-approxi- 
mation algorithm for the total-cost single-depot problem [3]. A similar algorithm 
was obtained recently by Frieze [5]. For the bottleneck cost criterion we have 
obtained the following result. 
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THEOREM 12. The procedure bottleneck yields a 2-approximation algorithm for 
the single-depot k-vehicle routing problem. 

It is significant to note that all of the problems in this section have the property 
that if there existed approximation algorithms for them with a better performance 
guarantee, then there would exist polynomial-time algorithms to solve them to 
optimality. As an example, consider the following result for the k-path vehicle 
routing problem. 

THEOREM 13. For everyfixed E > 0 and everyfixed integer k > 0, if there exists 
a 2 - E approximation algorithm to solve the k-path vehicle routing problem with 
the triangle inequality, then P = NP. 

PROOF. We show that given such an algorithm, we could solve the Hamiltonian 
path problem in polynomial time. Since this problem is known to be NP-complete, 
this implies that P = NP. Suppose that the graph G is the instance of the 
Hamiltonian path problem. Make k copies of this graph. For each copy add two 
vertices that are adjacent to all of the vertices in the copy. Call this graph H, and 
let X consist of all these added vertices. It is easy to verify that G has a Hamiltonian 
path if and only if there are some k paths covering the vertices of H such that all 
of these paths have distinct endpoints in X. Now we create the weighted instance 
of the k-path vehicle routing problem by assigning edges of H a weight of 1, and 
nonedges a weight of 2. It is easy to see that the weights for the completed graph 
satisfy the triangle inequality. Therefore we may use the assumed algorithm. If 
there is good covering of H, then the bottleneck cost is 1. The algorithm must then 
produce a routing of cost no more than 2 - L But this must then be a routing of 
cost 1, and from this routing it is easy to extract the Hamiltonian path of G. 
Therefore, if there is a Hamiltonian path in G, the algorithm will find it. If the 
approximation algorithm produces a routing of cost 2, we know that G does not 
contain a Hamiltonian path. q 

6. Conclusions 

In this paper we have presented a very general technique for creating approximation 
algorithms for problems in location theory, routing, and communication network 
design. We have exhibited a wide range of problems for which this technique is 
applicable. In every case, the algorithm given produces an approximate solution 
that is guaranteed to be within a constant factor of the optimal solution. One of 
the most attractive features of this technique is the great flexibility that it has in 
dealing with additional constraints on feasible solutions, within precisely the same 
framework. Furthermore, for many of the problems considered, the algorithm 
produced by this technique is best possible, in the very strong sense that the 
existence of an algorithm with a better performance guarantee would imply that 
P=NP. 

A salient feature of this approach is that for each instance a lower bound on the 
optimal value is produced, in addition to an approximate solution. As a result, 
these heuristics are especially well suited for use within a branch-and-bound routine. 
Empirical results for the k-center problem indicate that such an approach may 
indeed be a very fruitful one for obtaining optimal solutions to bottleneck problems. 
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