
Sparse Computation for Large-Scale Data Mining
Dorit S. Hochbaum and Philipp Baumann

Abstract—Leading machine learning techniques rely on inputs in the form of pairwise similarities between objects in the data set. The

number of pairwise similarities grows quadratically in the size of the data set which poses a challenge in terms of scalability. One way to

achieve practical efficiency for similarity-based techniques is to sparsify the similarity matrix. However, existing sparsification

approaches consider the complete similarity matrix and remove some of the non-zero entries. This requires quadratic time and storage

and is thus intractable for large-scale data sets. We introduce here a method called sparse computation that generates a sparse

similarity matrix which contains only relevant similarities without computing first all pairwise similarities. The relevant similarities are

identified by projecting the data onto a low-dimensional space in which groups of objects that share the same grid neighborhood are

deemed of potential high similarity whereas pairs of objects that do not share a neighborhood are considered to be dissimilar and thus

their similarities are not computed. The projection is performed efficiently even for massively large data sets. We apply sparse

computation for theK-nearest neighbors algorithm (KNN), for graph-based machine learning techniques of supervised normalized cut

and K-supervised normalized cut (SNC and KSNC) and for support vector machines with radial basis function kernels (SVM), on real-

world classification problems. Our empirical results show that the approach achieves a significant reduction in the density of the

similarity matrix, resulting in a substantial reduction in tuning and testing times, while having a minimal effect (and often none) on

accuracy. The low-dimensional projection is of further use in massively large data sets where the grid structure allows to easily identify

groups of “almost identical” objects. Such groups of objects are then replaced by representatives, thus reducing the size of the matrix.

This approach is effective, as illustrated here for data sets comprising up to 8.5 million objects.

Index Terms—Big data, data mining, similarity-based machine learning, sparsification, supervised normalized cut,K-nearest neighbor

algorithm, support vector machines

Ç

1 INTRODUCTION

SEVERAL leading machine learning techniques for classifi-
cation and clustering such as the K-nearest neighbor

algorithm [1], variants of supervised normalized cut [2], [3],
[4], [5] or support vector machines with Gaussian RBF ker-
nels [6] use as input pairwise similarities [7]. The applica-
tion of similarity-based algorithms to large-scale data sets is
challenging because the number of similarities grows
quadratically as a function of the number of objects in the
data set.

Several sparsification approaches known to date, e.g., [8],
[9], [10], have been applied to reduce the number of non-
zero entries in the similarity matrix with minimal effect on
specific matrix properties. These approaches, however,
have to generate the full set of pairwise similarities in
advance and thus take at least quadratic time.

In this paper, we propose a novel methodology called
sparse computation that overcomes the computational burden
of computing all pairwise similarities between the data
points by generating only the relevant similarities. Hence,
not only is the resulting matrix sparse but also the computa-
tion itself is linear in the number of resulting non-zero

entries. The relevant similarities are identified by projecting
the data points onto a low-dimensional space in which
the concept of grid neighborhoods is employed to find
groups of objects with potentially high similarity. Once the
relevant pairs of objects have been identified, their similari-
ties are computed in the original space. This differentiates
the method from known grid-based clustering algorithms
(e.g., [11], [12], [13]) that use the grid neighborhoods to iden-
tify the clusters. With our approach, objects can belong to
the same grid neighborhood while ending up in different
clusters, or conversely, belong to different neighborhoods
but still get clustered jointly. The grid dimensionality and
grid resolution are the parameters that control the density
of the generated similarity matrix.

A key aspect of sparse computation is the efficient projec-
tion of the data onto a low-dimensional space. Well-known
methods such as Principal Component Analysis (PCA) or
Multidimensional Scaling (MDS) require excessive running
times for large and high-dimensional data sets and are thus
not practical for large-scale applications. We suggest gener-
ating a low-dimensional space using an algorithm referred
to here as approximate-PCA. Approximate-PCA provides
leading principal components that are very similar to the
leading principal components of exact PCA but requires sig-
nificantly less running time than exact PCA. The projection
of the data onto a low-dimensional space can therefore be
accomplished efficiently.

The proposed sparse computation method is broadly
applicable for any algorithm that requires the computation of
pairwise similarities. Examples of such algorithms include
classification algorithms such as theK-nearest neighbor algo-
rithm, variants of supervised normalized cut, support vector
machines with non-linear kernels, and spectral methods, as
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well as clustering algorithms such as Greedy Agglomerative
Clustering algorithms, K-means and other Expectation-
Maximization algorithms. For graph-based algorithms, such
as SNC used here, an additional advantage is that sparse
computation tends to break down the data set into a collec-
tion of isolated components in the graph. The machine learn-
ing task can then be performed for each of these components
separately, which leads to further improvement in the
efficiency of such datamining algorithms.

The new methodology is applied here to four different
similarity-based machine learning techniques: theK-nearest
neighbor algorithm (KNN), support vectormachines (SVMs)
with radial basis function kernels, and two recently devised
graph-based machine learning techniques called supervised
normalized cut (SNC) and K-supervised normalized cut
(KSNC). A recent comparative study in [7] demonstrates
that these similarity-based algorithms are superior to other
leading machine learning techniques. Furthermore, in the
same study, SVMwith a similarity-based kernel (radial basis
function) performed better than SVM with non-similarity-
based kernels (linear and polynomial). The four techniques
are tested and evaluated with respect to accuracy, F1-scores
and running times on ten binary classification data sets from
the UCI Machine Learning Repository, the LIBSVM website
and the ACM SIGKDD website. For six of the data sets, with
up to 46,480 objects, we compared the performance of the
techniques on the standard set-up with the complete matrix,
i.e., the matrix in which the number of non-zero entries coin-
cides with the total number of entries, versus the sparse com-
putation set-up. The sparse computation set-up was tested
using different grid resolutions.

Surprisingly, the accuracies obtained for the sparse
matrices barely differ from the accuracies obtained for the
complete matrices, even for fine grid resolutions corre-
sponding to very low matrix densities. While experiencing
almost no loss in accuracy, the running time of the techni-
ques decreases substantially with increasing grid resolution.
For data sets which contain more than half a million objects,
it was impossible to compute the complete similarity matrix
because of limited memory. For these data sets, we tested
the techniques for sparse matrices generated with increas-
ing grid resolutions and, thus, increased sparsity. Again, we
found that the accuracy of the tested techniques is affected
only to a small extent by the grid resolution. For a similarity
matrix with a density of 0.07 percent, it is still possible to
achieve an accuracy of at least 96.48 percent with all tested
techniques for a testing set in which 36.34 percent of the
objects belong to the positive class. The complete input
matrix would have contained more than 54 billion non-zero
entries.

In addition to the impact of the grid resolution on perfor-
mance and running times, we analyzed the impact of other
control parameters, including the dimensionality of the
low-dimensional space. It turns out that the choice of values
for parameters other than the grid resolution has little
impact on the performance and running time.

We also compared sparse computation to three simple
sparsification approaches that we devised (SRT, URS, PRS)
and an approach published by [8] (AHK). Of these, only
SRT is able to retain an accuracy and F1-scores similar to
those obtained with sparse computation, but at a cost of

computing the complete similarity matrix and sorting all
entries of the matrix. Thus, this approach is not practical for
large-scale data sets.

For massively large data sets, we make further use of the
low-dimensional projection and the grid structure for data
compression. The grid structure allows to easily identify
groups of “almost identical” objects in the projected space
and to replace such groups by representatives, thus reduc-
ing the size of the matrix. This approach is effective, as illus-
trated here, for data sets that comprise up to 8.5 million
objects. In addition to enabling classification and clustering
in massively-large data sets, the method can also be used to
represent data sets compactly with minor loss of relevant
information [41].

The most important contribution of this paper is to
enable the use of similarity-based techniques for large-scale
machine learning by overcoming the quadratic growth of
similarity computations. Our sparse computation technique
achieves for the first time sparsity in a similarity matrix
without computing the full matrix first. For various binary
classification problems, the sparse computation technique is
shown to attain the desired sparsity without diminishing
classification accuracy or F1-scores.

The remainder of the paper is structured as follows. In
Section 2, we present four leading machine learning techni-
ques that require pairwise similarities as part of the input.
Two techniques are established, and two have been recently
developed. Section 3 reviews the existing sparsification
approaches. Section 4 provides a detailed description of the
sparse computation approach. In Section 5, the experimen-
tal design is described, and the results of the empirical anal-
ysis are reported. Section 6 contains concluding remarks
and directions for future research.

2 SIMILARITY-BASED MACHINE LEARNING

In this section, we present four similarity-based machine
learning techniques that delivered a superior and more
robust performance than other techniques such as deci-
sion trees, ensemble methods, and regression-based
methods in a recent comparative analysis [7]. The four
techniques are the K-nearest neighbor algorithm
(cf. Section 2.1), support vector machines (cf. Section 2.2),
the supervised normalized cut algorithm (cf. Section 2.3)
and the K-supervised normalized cut algorithm
(cf. Section 2.4). We present these techniques here as
binary classification algorithms that assign a set of new
objects, which we refer to here as testing objects, to either
the positive or negative class based on a set of training
objects.

2.1 K-Nearest Neighbor Algorithm

The K-nearest neighbor algorithm [14] uses the training
objects themselves to classify new objects. It finds the K
most similar training objects to the new object and then
assigns to the new object the predominant class among
thoseK neighbors. In order to find theK-nearest neighbors,
each new object is compared to each training object. In the
experimental analysis, we determined the nearest neighbors
based on euclidean distances and considered the nearest
neighbor’s label for breaking ties. Parameter K was used as
a tuning parameter (cf. Table 2 in Section 5.2).
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2.2 Support Vector Machines

Support vector machines [15] represent objects as points in
space and find the maximum-margin hyperplanes that best
separate positive training objects from negative training
objects. Testing objects are mapped into that same space,
and their class membership is predicted based on which
side of the hyperplane they fall on. In addition to perform-
ing linear classification, support vector machines can also
perform non-linear classification by using kernel functions.
Kernel functions are similarity functions that are computed
over pairs of objects. These functions implicitly map objects
into a high-dimensional space. In the empirical analysis, we
test SVM with radial basis function (RBF) kernels which
tend to deliver a better performance than linear or polyno-
mial kernel functions [7]. The RBF kernel function value Rij

for objects i and j is computed based on the respective vec-
tors of the attribute values xi and xj by

Rij ¼ e�sjjxi�xjjj22 ;

where s is a scaling parameter. We used the MATLAB inter-
face of the LIBSVM implementation (version 3.20) for sup-
port vector classification (see [16]).

2.3 Supervised Normalized Cut

The classification model of the Hochbaum’s Normalized
Cut (HNC) problem was used initially in the context of
image segmentation. This problem was mistakenly con-
fused with the NP-hard problem of normalized cut [17] and
referred to by the same name in [18]. Although the two
problems look similar, the normalized cut problem is intrac-
table, whereas the HNC problem was shown to be solvable
in polynomial time with combinatorial algorithms in [2]
and [19]. The performance of the HNC classification model
on image segmentation problems was found to be of high
quality and superior to that of other techniques [5]. It was
used later with similar success as a machine learning algo-
rithm in a context related to security [4] and in evaluating
the ranking of drugs according to their effectiveness [3].

The HNC problem is defined with graph formalism. We
therefore introduce some essential graph notation.

Let G ¼ ðV;EÞ be an undirected graph with edge weights
wij associated with each edge ½i; j� 2 E. A bi-partition of a

graph is called a cut, ðS; �SÞ ¼ f½i; j�ji 2 S; j 2 �Sg, where
�S ¼ V n S. The capacity of a cut ðS; �SÞ is the sum of weights

of edges with one endpoint in S and the other in �S:

CðS; �SÞ ¼
X

i2S;j2 �S;½i;j�2E
wij:

More generally, for any pair of sets A;B � V we define

CðA;BÞ ¼
X

i2A;j2B
wij:

In particular, the capacity of a set, S � V , is the sum of edge
weights within the set S,

CðS; SÞ ¼
X

i;j2S;½i;j�2E
wij:

The weighted degree of node i is the sum of edge weights
adjacent to i,

di ¼
X

jj½i;j�2E
wij:

In the context of classification, the nodes of the graph cor-
respond to objects, each of which is described by a vector of
attribute values. The edge weights wij quantify the similar-
ity between the respective vectors of attribute values associ-
ated with nodes i and j. A higher similarity is associated
with higher weights.

The goal of the HNC problem is to find a cluster that
minimizes the ratio of two criteria. One criterion is to maxi-
mize the total similarity of the objects within the cluster (the
intra-similarity). The second criterion is to minimize the
similarity between the cluster and its complement, or the
inter-similarity. The ratio function is a way of combining
the two objective functions. The problem is finding a non-
empty set S� strictly contained in V that minimizes the ratio
of the similarity between the set and its complement, the
inter-similarity, divided by the total similarity within the set
S�, the intra-similarity. The HNC problem formulation is

HNCðS�Þ ¼ min
;�S�V

CðS; �SÞ
CðS; SÞ : (1)

The solution set S� is referred to here as a source set, and its
complement is called a sink set. The optimization problem
HNC, (1), was shown in [2] to be solvable in polynomial
time using a (parametric) minimum cut procedure on the
associated graph. In order to solve the ratio problem (1),
one solves instead for a guessed value of a parameter � the
lambda question:

min
;�S�V

CðS; �SÞ � �CðS; SÞ � 0? (2)

The optimal solution for (1) is attained for �� selected as the
smallest value for which the objective is non-positive:

min;�S�V CðS; �SÞ � ��CðS; SÞ � 0. It was shown in [2] that
all �-questions can be solved with a parametric cut proce-
dure that provides as by-product a solution to min;�S�V C

ðS; �SÞ � �CðS; SÞ for any value of �.
The ratio problem (1) does not necessarily provide the

best clustering solution. It may be the case that a non-
optimal value of � provides a better cluster by giving a
more appropriate weighting of the two objectives. After all,
any arbitrary scalar multiplication of the numerator changes
the value of the optimal parameter and, potentially, the
respective bi-partition solution. It is therefore more effective
to consider a “good” weighting of the two criteria instead of
solving for the ratio problem and to select the cluster that is
the optimal solution for

min
;�S�V

CðS; �SÞ � �CðS; SÞ: (3)

Here, the weight value � is one of the parameters to be tuned
when implementing HNC as a classification method. Addi-
tional details on HNC, its relationship to the normalized cut
problem, several extensions of themodel, and the relationship
to the spectralmethod are provided in [2] and [5].
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The HNC model can be used in an unsupervised or a
supervisedmanner. In the unsupervised case, the graph con-
tains only unclassified nodes that refer to objects for which
the class label is unknown. To guarantee that the solution is
non-empty and strictly contained in V , one has to assign, a

priori, at least one node to set S and one node to set �S. In the
supervised case, the input graph contains classified nodes
(training data) that refer to objects for which the class label
(either positive or negative) is known and unclassified nodes
that refer to objects for which the class label is unknown. By
assigning all classified nodes with a positive label to set S

and all classified nodes with a negative label to set �S the
HNCmodel can be used in a supervised manner. The goal is

then to assign all unclassified nodes either to set S or set �S.
Due to the pre-assignment of classified nodes, the graph can
be compressed such that it contains only unclassified nodes.
This compression can only reduce the running time of the
algorithm.We refer to using the HNCmodel in a supervised
manner as supervised normalized cut (SNC).

In this study, we test SNC with exponential similarity
weights (referred to as Gaussian weights). The exponential
similarity between object i and j is quantified based on the
respective vectors of attribute values xi and xj by

wij ¼ e��jjxi�xjjj2 ; (4)

where parameter � represents a scaling factor. The exponen-
tial similarity function is commonly used in image segmen-
tation and spectral clustering [20]. Two tuning parameters
are used for implementing SNC: the relative weighting
parameter of the two objectives, �, and the scaling factor of
the exponential weights, �. Table 2 in Section 5.2 lists all tun-
ing parameters of SNC and specifies the range of values that
we tested for each parameter. The minimum cut problems
were solved with the MATLAB implementation of the HPF
pseudoflow algorithm version 3.23 of [21] that was pre-
sented in [22].

2.4 K-Supervised Normalized Cut

The algorithm of [2] has been generalized and extended in
[19] to a broader set of problems than HNC. For instance,
the similarity weights used in the numerator, the inter-simi-
larity, can be different from the similarity weights used in
the denominator, the intra-similarity. It was shown in [2]
that the HNC problem (1) is equivalent to

min
;�S�V

CðS; �SÞP
i2S di

: (5)

In [19], it was demonstrated that any non-negative node
weight qi can be used to replace the weighted degrees of the
nodes

min
;�S�V

CðS; �SÞP
i2S qi

: (6)

In our set-up we solve the linearized problem for an appro-
priate weight parameter �:

min
;�S�V

CðS; �SÞ � �
X

i2S
qi: (7)

Additional discussion on this and other variants of HNC
is provided in [2] and [19]. By alternative selections of node
weights, different types of machine learning techniques can
be generated. In this study, we test a variant in which the
node weights qi are the average class label of the K nearest
labeled objects. For example, if K ¼ 3 and the three nearest
objects, in terms of similarity, to i have labels 0,1, and 1,
then qi is 2/3. This version of the problem is referred to as
KSNC. The tuning parameters for KSNC are the relative
weighting parameter of the two objectives �, the scaling fac-
tor of the exponential weights, �, and the integer parameter
K. Table 2 in Section 5.2 includes a specification of the range
of values that we tested for these parameters.

3 EXISTING SPARSIFICATION APPROACHES

The classifcation algorithms presented in the previous sec-
tion, require as input pairwise similarities between the
objects in the data set. The number of pairwise similarities
grows quadratically in the size of the data set, which poses
a challenge in terms of scalability. This challenge is shared
also by a vast spectrum of clustering approaches, including
greedy agglomerative clustering and expectation-maximi-
zation algorithms.

A great deal of research work has been conducted on
sparsifying dense matrices. Such efforts consider input
graphs or matrices that are dense and apply sparsifying
algorithms that aim to preserve various matrix properties.

Arora et al. [8] describe a simple random-sampling based
procedure that generates a sparse matrix whose eigenvec-
tors are close to the eigenvectors of the original matrix. The
algorithm considers all non-zero entries of the original
matrix and uses the Chernoff-Hoeffding bounds to set some
of the entries to zero. The running time of this algorithm is
at least proportional to the number of non-zero entries in
the input matrix. Spielman and Teng [9] present a graph
sparsification algorithm that produces a subgraph of the
original, whose Laplacian quadratic form is approximately
the same as that of the original graph. Their algorithm has a
complexity that is close to being linear in the number of
non-zero entries in the original Laplacian. Jhurani [10]
recently proposed an algorithm that transforms the original
matrix into a sparse matrix with minimal changes to the sin-
gular values and the singular vectors corresponding to the
near null-space of the original matrix.

All these sparsification approaches are based on evaluat-
ing all entries of the complete similarity matrix and deter-
mining for each entry whether or not to round it to zero.
The reading of the entries of the dense similarity matrix
alone requires Vðn2Þ running time for a data set of n objects.
For this reason, these algorithms are not practical for large-
scale data sets. By contrast, our approach determines in
advance which entries of the similarity matrix are relevant
and evaluates only those.

Another strategy that aims to reduce the computational
burden of computing all pairwise similarities is proposed
by McCallum et al. [23]. They suggest to use initially an
approximate similarity measure to subdivide the objects
into overlapping subsets. The exact similarities are then
only computed between objects that belong to the same sub-
set. This strategy reduces the running time significantly
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when the computation of the exact similarity measure is
expensive, e.g., when the number of attributes is large. In
their paper, McCallum et al. [23] study the problem of refer-
ence matching in the context of bibliographic citations of
research papers. The problem consists of grouping citations
that reference the same paper. The approximate distance
measure is based on the number of words two citations
have in common, which can be computed efficiently using
an inverted index. The complexity of this approach is, how-
ever, still Vðn2Þ because the approximate similarity measure
must be computed for all pairs of objects.

Other approaches map the input data to compact discrete
or binary codes in order to efficiently identify nearest neigh-
bors. A good mapping ensures that similar objects in the
original space are likely to get a similar code. A prominent
approach that focuses on preserving a metric of the input
data is locality-sensitive hashing (LSH) [24]. Recently, [25]
proposed an approach to optimize hash functions that are
capable of preserving semantic similarities in terms of the
Hamming distance metric.

4 SPARSE COMPUTATION

We propose here a technique called sparse computation
which achieves, for the first time, sparsity in a similarity
matrix without computing the full matrix first. The tech-
nique partitions a low-dimensional projection of the data
into grid blocks which are then used to identify relevant
similarities. This strategy is new except for the projection
method for which we use an existing procedure.

The sparse computation method works by first projecting
the (high-dimensional) data set onto a low-dimensional
space. In the low-dimensional space, we create grid blocks
and use grid neighborhoods to select pairs of objects that
are deemed to be highly similar. To obtain the projection,
we use a method that we call approximate-PCA which is
based on the constant time singular value decomposition of
Drineas et al. [26]. That method is extremely fast as it selects
a random subset of the objects (rows in the matrix) and a
random subset of attributes (columns in the matrix). This
method was shown in [26] to have bounds on the approxi-
mation error.

Sparse computation consists of three major steps:
dimensionality reduction, grid construction and selection of
matrix entries, and similarity computation. In the
dimensionality reduction step, the input data X 2 Rn	d of n
objects with d attributes is mapped from a d-dimensional
space into a p-dimensional space, where p 
 d. In the grid
construction and the selection of matrix entries step, the
p-dimensional space is divided along each dimension into k
equal intervals resulting in kp grid blocks. We define grid
neighborhoods as blocks that are adjacent either horizon-
tally, vertically or diagonally. Since we always select p ¼ 3
or 2, the number of adjacent blocks is 3p � 1 which is either
26 or 8. We then select pairs of objects that either reside in
the same grid block or in neighboring grid blocks. In the
similarity computation step, for each pair of objects identi-
fied in the previous step, we compute a similarity value
which is a non-zero entry in the corresponding similarity
matrix. We compute the similarity values with a gaussian
similarity function (see (4)). The flowchart shown in Fig. 1
provides an overview of sparse computation.

We present our proposed techniques for accomplishing
each of these steps and compare them to possible alterna-
tives. The remainder of this section is organized as follows:
In Section 4.1, we describe the technique used for the
dimensionality reduction step. We also discuss alternative
techniques such as random projections, which have interest-
ing theoretical properties. In Section 4.2, we describe how
we use the low-dimensional space to efficiently identify
the relevant matrix entries for which the similarity value
will be computed in the third step. In Section 4.3, we explain
the similarity computation step. Section 4.4 introduces an
extension of sparse computation to deal with massively
large data sets. Finally, Section 4.5 contrasts sparse compu-
tation with multi-resolution-based algorithms.

4.1 Step 1: Dimensionality Reduction

For dimensionality reduction, we seek to employ techniques
that achieve a projection from the original number of dimen-
sions d to a small number of dimensions p, which are scalable
to large-scale data sets. Some dimensionality reductionmeth-
ods such as Multi-Dimensional Scaling require to first com-
pute the complete similarity matrix. These methods defeat
the purpose of sparse computation which is to compute only
the relevant similarities instead of the complete similarity
matrix.We propose in this section a highly-scalable sampling
variant of Principal Component Analysis referred to here as
approximate-PCA. Approximate-PCA is compared to a
benchmark technique that is based on random projections.
The two techniques are compared in this section qualitatively
in terms of their properties. In addition, we conducted an
empirical comparison of the two projection techniques and
report results in Table 16 in Section 5.3.5. In principle, it is
possible to use any dimensionality reduction method includ-
ing more advanced ones such as auto-encoders or compres-
sive sensing-based methods. Auto-encoders use artificial
neural networks to learn complex non-linear encodings
(see [27]). In order to obtain such an encoding quickly, one
could train the neural network only for few iterations. Com-
pressive sensing-based dimensionality reduction methods
such as the one proposed by [28] use a subset of data points
as a dictionary. The data points in the dictionary are mapped
to a lower-dimensional space using random projections. The
lower-dimensional space has around 200 dimensions and is
referred to as measurement space. Other data points are then
mapped to the measurement space in which they are repre-
sented as sparse linear combinations of the data points in the
dictionary using regularized regression. Gao et al. [28] dem-
onstrate the effectiveness of compressive sensing-based
dimensionality reduction in several experiments. Although
these alternatives are computationally more expensive than
approximate-PCA, they might be useful in setups in which
the data exhibits non-linear characteristics.

4.1.1 Approximate-PCA

The projection onto a p-dimensional space can be obtained
using Principal Component Analysis. PCA projects the data
points such that the p-dimensional space captures as much
of the variance of the data as possible. For real-world data
sets, a three-dimensional space obtained by PCA is often
sufficient to account for most of the variance (e.g., 80
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percent). Here, we are particularly interested in projections
with p � 3 because the running time of the second step of
sparse computation increases with increasing values of p.
The main drawback of PCA is its computational complexity,
which precludes its use on large-scale data sets.

We propose an algorithm referred to here as approximate-
PCA that provides leading principal components very simi-
lar to exact PCA, but requires significantly less running time.
The idea is to approximate the leading principal components
of the input matrix X by computing exact PCA on a subma-
trix W of X. The number of columns c and the number of
rows r of matrix W can be specified by the user. This
approach was proposed by Drineas et al. [26] to approximate
the singular values and corresponding singular vectors of a
given matrix. For specific values of r and c, the closeness of
the singular vectors of W to the singular vectors of X can be
guaranteed ifW is constructed as follows. First, c columns of

matrix X are selected with probabilities fpigdi¼1, where

pi ¼ jXðiÞj2=kXk2F . The selected columns are each rescaled by
an appropriate factor to form a matrix C 2 Rn	c. Then, r
rows of C are selected with probabilities fqjgnj¼1, where

qj ¼ jCðjÞj2=kCk2F . The selected rows formmatrixW 2 Rr	c.

Drineas et al. [26] prove bounds for the size of the differ-
ence between the leading ‘ left singular vectors of W (W‘)

and the leading w left singular vectors of X (Uw) with
respect to the Frobenius norm and the spectral norm, where
w is a user-specified integer value and parameter

‘ ¼ minfw;max ft : s2
t ðWÞ � gkWk2Fgg. Parameter s2

t ðW Þ
denotes the tth squared singular value of matrix W and
g ¼ �=100w for error parameter � > 0. The approximation
error � for the Frobenius norm holds with probability at

least 1� d when c ¼ Vðw2h2=�4Þ, and r ¼ Vðw2h2=�4Þ, where

h ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log ð2=dÞp

:

kX �W‘W
T
‘ Xk2F � kX � UwU

T
wXk2F þ �kXk2F : (8)

The approximation error � for the spectral norm holds with

probability at least 1� d for g ¼ �=100, c ¼ Vðh2=�4Þ, and
r ¼ Vðh2=�4Þ:

kX �W‘W
T
‘ Xk22 � kX � UwU

T
wXk22 þ �kXk22: (9)

The computation of the probabilities requires only a linear
pass over matrix X, which corresponds to OðndÞ time. The
running time complexity of exact PCA on submatrix W is

Oðrc2 þ c3Þ. Hence, the user can control the running time by
selecting specific values for r and c.

Fig. 1. Flowchart for sparse computation.
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Instead of the probabilistic sampling of r rows and c col-
umns, other sampling and feature selection techniques (see
[29] for a review) could be used. It is even possible to con-
sider domain-specific knowledge if available. In a super-
vised context, one could select the rows such that the class
labels of the training objects are balanced. However, these
other techniques do not possess the theoretical guarantees
of the probabilistic selection described above.

4.1.2 Random Projections

We chose random projections as a benchmark method for
approximate-PCA because it has been successfully used as
a dimensionality reduction technique in Locality-Sensitive
Hashing for nearest neighbor searches where the objects
are points in the d-dimensional euclidean space (see [30]).
Random projections are simple, computationally efficient
and possess theoretical guarantees on preserving pairwise
distances.

The technique of random projections randomly generates
p hyperplanes in the d-dimensional space. The coefficients
of each hyperplane are drawn from the standard normal
distribution. Let the coefficients of these p hyperplanes form

the columns of a random projection matrix R 2 Rd	p. The
projected data X0 2 Rn	p is then the result of a simple
matrix multiplication between the input matrix X and
the random projection matrix R with a running time
complexity of OðdpnÞ:

X0 ¼ XR:

The technique of random projections has distance preserva-
tion guarantees based on the Johnson-Lindenstrauss lemma
(JLL) [31]. The JLL guarantees that there is a linear projec-
tion of the d-dimensional data onto a p-dimensional space

with p > Oð��2log ðnÞÞ that preserves the euclidean distan-
ces between any two data points up to a factor of (1��),
with 0 < � < 1. Dasgupta and Gupta [32] show that a ran-
dom projection matrix with i.i.d. Gaussian entries repre-

sents such a projection with probability Oð1=n2Þ. They also
give tighter bounds on � and p:

p � 4ð�
2

2
� �3

3
Þ lnðnÞ: (10)

For cases in which n is large and p is low, the probabilistic
distance preservation guarantees of random projections are
rather weak. In an empirical analysis with different real-
world data sets and various machine learning algorithms,
Fradkin and Madigan [33] demonstrate that Principal Com-
ponent Analysis consistently outperforms random projec-
tions in terms of classification accuracy. The outperformance
ismost distinct for low values of p.

4.1.3 Comparing Properties of Approximate-PCA

and Random Projections

We contrast the properties of approximate-PCA and ran-
dom projections on two real-world data sets, namely, the
Indian Liver Patient Data set (ILPD) and a variant of the Bag
of Words data set, referred to here as BOW1. The data can be
downloaded from the Machine Learning Repository of the
University of California at Irvine [34].

The ILDP data set has 583 objects with 10 attributes. We
replaced the categorical attribute by two binary variables,
one for each category. Hence, the input matrix X is of size
583 	 11. We reduced the dimensionality of this data set
from d ¼ 11 to p ¼ 3 using exact PCA, approximate-PCA
and random projections. Fig. 2 visualizes the projected
data points in 3D for all three dimensionality reduction
techniques. For each dimension of the p-dimensional
space, the respective coordinates of the objects are scaled
to lie between 0 and 1. The blue dots represent 416 liver
patients, and the red dots represent 167 non-liver patients.
For the exact PCA, the three leading principal columns
explain 81 percent of the total variance. The x, y and z axis
correspond to the first, second, and third principal compo-
nent, respectively. For approximate-PCA, we set the num-
ber of selected columns c to 11 and the number of selected
rows r to 5 which is less than 1 percent of the original
number of rows and seems to be a small number in light
of the approximation errors discussed in Section 4.1.1.
However, it turns out that in practice, even such a small
fraction of the feature vectors is sufficient to discern the
main structure of the data. The two clusters that are clearly
recognizable in the projections obtained by exact PCA and
approximate-PCA refer to male and female patients. These
two clusters are not revealed by the random projection
method. Fig. 2 indicates that in spite of using a tiny sample
of the feature vectors, the quality of the approximate-PCA

Fig. 2. Low-dimensional data setX 2 R583	11: Comparison of exact PCA, approximate-PCA and random projections.
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representation of the data is very high. In this case, one can
conclude from the visualization that it makes sense to
apply a machine learning technique to the set of female
(male) patients separately. When using the graph-based
machine learning techniques of supervised normalized cut
and K-supervised normalized cut (SNC and KSNC), this
will happen automatically as the two clusters will be rec-
ognized as two isolated components in the associated
graphs.

The BOW1 data set has 41,361 objects with 33,781 attrib-
utes. The objects are text documents from two different
sources, and the attributes are vocabulary words that
occurred at least 10 times. The two sources are Enron
emails and NIPS papers. A document is represented as a
so-called bag of words, i.e., a set of vocabulary words. We
used a simplified representation that disregards word
order and multiplicity of words. For each document, a
binary vector indicates which words occur in the docu-
ment. Again, we reduced the dimensionality of the data
set to p ¼ 3 dimensions using exact PCA, approximate-
PCA and random projections. Fig. 3 visualizes the projec-
tions obtained by the three techniques. For the visualiza-
tion, we randomly sampled 5 percent of the projected
Enron emails and 5 percent of the projected NIPS papers.
Exact PCA requires 10,192 seconds on a standard worksta-
tion with two Intel Xeon CPUs (model E5-2687W v3) with
a clock speed of 3.10 GHz and 256 GB of RAM. For approx-
imate-PCA, we set the number of selected columns c to 338
and the number of selected rows r to 414, which corre-
sponds to 1 percent of the total number of columns/rows.
Approximate-PCA with c ¼ 338 and r ¼ 414 requires only
0.18 seconds on the same machine, which corresponds to a
speed up of 55; 818. The projection obtained by approxi-
mate-PCA is very similar to the one obtained by exact
PCA. In the low-dimensional space obtained by the two
PCA-based approaches, the Enron emails are nicely sepa-
rated from the NIPS papers. The random projection
method has the lowest running time with 0.03 seconds,
but it captures only little of the structure of the data set
and does not separate the two classes in the low-dimen-
sional space.

An empirical study comparing the relative effectiveness
of the two techniques is conducted in Section 5.3.5. It turned
out that approximate-PCA is more effective in terms of
accuracy and F1-scores.

4.2 Step 2: Grid Construction and Selection
of Entries in the Similarity Matrix

The goal of this step is to identify the relevant entries in the
similarity matrix without computing them first. Each entry
corresponds to a pair of objects and our strategy is to iden-
tify pairs of objects that are of potential high similarity. The
strategy is based on using grid neighborhoods in the
p-dimensional space to identify pairs for which the similar-
ity will be computed.

Once all objects are mapped into the p-dimensional
space, we subdivide, in each dimension, the corresponding
coordinates of the objects into a pre-specified number of k
equal intervals. In the following, we refer to k as the grid
resolution. It is possible to select a different number of inter-
vals ki in each dimension i ¼ 1; . . . ; p. However, for the sake
of simplicity, we use here uniform values of k for all dimen-
sions which allows us to control the total number of grid
blocks with a single parameter. This partitions the p-dimen-
sional space into kp grid blocks. Each object is assigned to a
single block based on the respective intervals in which its p
coordinates fall. Identifying the block to which an object
belongs is executed efficiently, with Oð1Þ complexity per
object. As we only identify neighboring blocks of non-
empty blocks, the complexity of identifying the neighboring
blocks is Oðminðn; kpÞÞwith p 2 f2; 3g.

The selection of pairs is performed in two steps. First, we
consider all objects in the same block to be similar and thus
select all pairs of objects that belong to the same block,
within-block selection. Second, we consider objects in adjacent
blocks to be similar and select all pairs of objects that belong
to adjacent blocks, between-block selection. Two blocks are
adjacent if they are within a one-interval distance from each
other in each dimension (the Lmax metric). Hence, for each
block, there are up to 3p � 1 adjacent blocks (see Figs. 4 and
5). This generalizes the neighborhood concept used in
image segmentation for two dimensions. For example the
four-neighbors set-up has each pixel considered adjacent to
the pixels on both sides, vertically and horizontally.
Another rule is the eight-neighbors set-up that also consid-
ers diagonally neighboring pixels to be adjacent.

The total number of selected entries depends on the grid
resolution k. The finer the grid resolution, the smaller the
blocks and hence the smaller the set of objects that fall in a
block and its neighborhood. Therefore, a finer grid resolu-
tion (higher value of k) generally leads to a lower number of

Fig. 3. High-dimensional data setX 2 R41;361	33;781: Comparison of exact PCA, approximate-PCA and random projections.
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selected entries in the similarity matrix and therefore
sparser matrices. Notice that for k ¼ 2, all objects are neigh-
bors of each other, and thus the case of k ¼ 2 corresponds to
having the complete matrix.

4.3 Step 3: Similarity Computation

In this step, a similarity value is computed for each matrix
entry (pair of objects) selected in step 2. It is possible to use
any similarity function to quantify the similarity value
between two objects. In our computational analysis, we
compute the similarity based on the original d-dimensional
input space using the gaussian similarity function intro-
duced in Section 2.3 with � as a scaling parameter (see (4)).
For very high-dimensional data sets, such as BOW1, the
similarities could also be computed based on the low
p-dimensional space.

4.4 Grouping of d-Identical Objects

For some data sets, it is possible that the density of objects
within a block is high and consequently a large number of
similarity matrix entries are computed as compared to a bal-
anced density. High density in blocks causes a larger num-
ber of pairwise comparisons to be evaluated and increases
the density of the similarity matrix. To address this, we
introduce the concept of d-identical objects with respect to a
specific grid neighborhood. The idea of d-identical grouping
is to consolidate objects that are within d-distance into few
representatives. Therefore, the presence of blocks with high
density turns out to be advantageous as with d-identical
object consolidation it will lead to a substantial reduction in
the number of objects.

Objects are considered to be d-identical if they are of the
same type (negative training objects, positive training
objects and testing objects), belong to the same block, and
are within d Lmax distance. The value of d is selected as a
fraction of the length of a grid block. This fraction is consid-
ered a parameter to be determined. Sets of d-identical
objects are represented by a single representative, which is
the center of gravity of the set. Note that sets could be sin-
gletons. The representatives are assigned a multiplicity
weight, which is the number of objects in the set that they
represent. The similarities are then computed between rep-
resentatives only, whereby each similarity value is multi-
plied by the product of the weights of the two

corresponding representatives. Hence, the number of repre-
sentatives determine the size of the similarity matrix. In our
empirical analysis, we consider two extremes for the value
of d. For data sets with up to a million objects, we set d to
zero. For data sets with more than a million objects, we set d
to 1, i.e., in each grid block, we replace all positive training
objects by a single representative, all negative objects by a
single representative and all testing objects by a single rep-
resentative. In general, however, d would be set to some
value between these two extremes. Indeed, we are currently
investigating how to set the d parameter as a function of the
properties of the data set.

When d is 1, the total number of representatives is
bounded by the number of grid blocks and can thus be con-
trolled by the parameters k (grid resolution) and p (number
of dimensions). For each of the kp grid blocks, no more than
three representatives are generated which bounds the total
number of representatives by 3kp. A conservative bound on
the total number of pairwise comparisons between repre-
sentatives (total number of non-zeros in the similarity

matrix of the representatives) is ð3þ 9ð3p�1Þ
2 Þkp: For each of

the kp blocks, there are at most three within-block compari-
sons and nine between-blocks comparisons for each adja-
cent block. Since a block has at most 3p � 1 adjacent blocks,
the total number of between-blocks comparisons is
bounded by 9ð3p � 1Þ. This number of between-blocks com-
parisons is divided by 2, because each adjacent block is
counted twice. The bound is conservative as it assumes that
each block contains three representatives, whereas the
actual number can be lesser or zero.

4.5 Contrasting Sparse Computation with Multi-
Resolution Based Algorithms

Existing multi-resolution and grid-based clustering
approaches partition the data space into a number of
(hyper-rectangular) grid blocks and achieve a significant
reduction of the computational complexity by focusing on
the blocks rather than on the data points.

Schikuta [12] proposes the GRIDCLUS algorithm, which
partitions the d-dimensional space into grid blocks such
that each block contains up to a predefined maximum num-
ber of points. Blocks with the highest density (number of
objects per spatial volume) become cluster centers, and the
remaining blocks are then assigned iteratively to the cluster

Fig. 4. Grid blocks in a p ¼ 3-dimensional space. Here the grid resolution k is set to 3. The yellow blocks are adjacent to the orange block.

HOCHBAUM AND BAUMANN: SPARSE COMPUTATION FOR LARGE-SCALE DATA MINING 159



centers. During this process, new cluster centers are built
and existing clusters are merged. Wang et al. [11] propose
STING, which is a multi-resolution clustering algorithm
that recursively partitions the d-dimensional data space into
grid blocks. The root block, which corresponds to the whole
spatial area, is subdivided into children blocks. The subdivi-
sion is recursively repeated for the children blocks until the
average number of objects per block is within a prescribed
range. For each block, summary statistics such as the mean,
variance, and minimum and maximum values are com-
puted for each attribute (dimension) based on the objects
that lie in the block. Due to the hierarchical structure among
the blocks and the summary statistics, spatial data queries
can be processed efficiently. Sheikholeslami et al. [13]
propose WaveCluster, which partitions the original

d-dimensional space intoM ¼ Qd
i¼1 mi grid blocks by divid-

ing each dimension i ¼ 1; . . . ; d intomi intervals. Each object
is assigned to a single block. Wavelet transforms are then
used to convert the feature space of the non-empty blocks
into the frequency domain, where the clusters can be distin-
guished more easily. The GDILC clustering algorithm of
Zhao and Song [35] partitions the original d-dimensional

space into M ¼ Qd
i¼1 mi grid blocks, analogous to Wave-

Cluster. The grid structure is used to compute a density
value for each object by counting the number of objects in
adjacent blocks that are within a predefined distance thresh-
old. Objects with a density value above a given threshold
form a cluster. Based on the grid data structure, the remain-
ing objects are assigned to these clusters and clusters that
are close together are merged.

Sparse computation differs from the above described
approaches in the following ways:

� Unlike other grid-based clustering algorithms, which
construct the grid in the original d-dimensional
space, sparse computation constructs the grid in a
p-dimensional space with p 
 d. This allows to con-
trol the number of grid blocks through the two
parameters p and k. For algorithms that construct the
grid in the d-dimensional space, the number of
blocks depends on the dimensionality of the data
set and grows exponentially in the number of
dimensions. Hence, these algorithms are impractical
for high-dimensional data sets. Furthermore, the
dimensionality reduction step tends to remove noise

in the data set which may lead to higher classifica-
tion accuracy.

� With the exception of GDILC, the mentioned grid-
based clustering algorithms treat data points that fall
into the same block as a single data point. Instead,
sparse computation performs the clustering task for
each data point individually. The grid structure is
only used for selecting pairs of objects deemed to be
similar. Pairs of objects that fall in the same block
can still be assigned to different clusters. Fig. 2 mani-
fests this difference between sparse computation
and grid-based clustering. Grid-based clustering
algorithms would determine, based on the PCA
results, that the clusters are those sets of objects that
are within close proximity in the p-dimensional
space, which in this case are the clusters of male and
female patients. This result will miss out on the goal
of differentiating the clusters of liver and non-liver
patients that are not evident, or separated, in the p
dimensional space. In contrast, sparse computation
will compute similarities among male and female
patients in the original space which enables the
machine learning algorithm to separate liver versus
non-liver patients.

� Sparse computation is robust against distortion
induced by the dimensionality reduction step. The
error of projecting two objects that are far from each
other in the original space to the same block has little
impact on the classification result because the simi-
larity is computed in the original space where it is
close to zero. The error of determining that two
objects that are close to each other in the original
space are dissimilar is unlikely due to the transitivity
of similarities. In order to make such an error it is
necessary that on all possible paths with intermedi-
ate objects between this pair of objects, the same type
of error, in terms of separating objects on the path
and deeming them dissimilar, has to occur. This is
highly unlikely as the group of similar objects form a
clique, with a number of paths between each pair
that is proportional to the size of the clique.

Overall, the novelty of sparse computation lies in decou-
pling the task of identifying groups of similar objects from
the similarity computation task and the classification task.
This makes sparse computation a general, efficient and

Fig. 5. Grid blocks in a p ¼ 3-dimensional space. Here the grid resolution k is set to 5. The yellow blocks are adjacent to the orange block.
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robust methodology that can be combined with supervised
and unsupervised machine learning techniques as well as
any similarity measure.

5 EMPIRICAL ANALYSIS

This section describes how sparse computation affects the
classification performance and running times of different
similarity-based classifiers. In Section 5.1, we present ten
real-world data sets on which the classifiers are tested. In
Section 5.2, we describe how the classifiers are tuned and
tested on the data sets. Finally, Section 5.3 reports the
numerical results.

5.1 Data Sets

We use eight data sets from the UCI Machine Learning
Repository [34], one data set from the LIBSVM website [16],
and one data set from the ACM SIGKDD website [36]. The
selected data sets represent a variety of fields including life
sciences, engineering, social sciences, computer sciences
and business. The data sets differ in the number of objects,
the number of attributes, and the distribution of class labels.
The collection comprises binary and multiclass classification
problems. For the binary classification problems the class of
interest is the positive class, and the complement is the neg-
ative class. We converted the multiclass problems into
binary classification problems by treating one of the classes
as the positive class and all other classes as the negative
class. Some data sets have missing values. For those sets, we
removed the objects that contain missing values. Categorical
attribute values were replaced by a set of boolean attributes
(one boolean attribute per category). In the following, we
provide a short description of each data set. A summary of
the characteristics can be found in Table 1. The last column
of the table lists the ratio of the number of objects in the pos-
itive class to the number of objects in the negative class.

The data set Cardiotocography (CAR) consists of fetal car-
diotocograms. The states “suspect” and “pathologic” were
consolidated into the positive class, whereas the normal
states were treated as negatives.

The data set Splice (SPL) contains a set of DNA sequen-
ces. The positive class are sequences that contain an exon/
intron or an intron/exon splice junction. DNA sequences
that contain neither junction belong to the negative class.
We downloaded the LIBSVM version of this data set in
which the conversion of strings to numbers and the labeling
of the objects have already been performed.

The data set Letter Recognition comprises numerical
attributes of letter images. Similar to [37], we converted this
data set into two binary classification instances. In data set
LE1, only letter “O” is treated as positive. This labeling obvi-
ously results in a high class imbalance. In data set LE2, let-
ters {“A”, “B”,. . ., “M”} were treated as positives, which
results in a well-balanced class distribution.

The data set Adult (ADU) contains census data on adults.
The task is to predict whether an adult’s annual income
exceeds 50; 000 USD. Adults whose annual income exceeds
50; 000 USD form the positive class. In the original data set,
a categorical and a continuous attribute capture the educa-
tional level of the adult. To avoid double use, we removed
the categorical attribute.

The data set Bank Marketing (BAN) contains information
on direct marketing calls that were conducted by a Portu-
guese banking institution. Clients who opened up a long-
term deposit after being called are treated as positives [38].

The data set Covertype (COV) contains cartographic char-
acteristics of forest cells in northern Colorado. There are
seven different cover types, which are labeled 1 to 7. We
treated type 1 as the positive class and types 2 to 7 as the
negative class.

The data set KDDCup99 (KDD) is the full data set from
the KDD Cup 1999 which contains close to 5 million records
of connections to a computer network. Each connection is
labeled as either normal, or as an attack. We treated attacks
as the positive class.

The data set Record Linkage Comparison Patterns (RLC)
comprises 5.7 million comparison patterns of pairs of
patient records from a German cancer registry. The patterns
describe the similarity of the two corresponding patient
records. The attributes refer to personal information such as
for example first name, family name, sex, and date of birth.
The attribute values quantify the agreement of the underly-
ing information. The agreement of name components is
quantified by a real number in the interval [0,1], where 1
indicates complete agreement and 0 indicates maximal dis-
agreement. For all other attributes only the value 1 (equal)
and 0 (not equal) are used. For each attribute that has miss-
ing values, we substitute the missing values with value 0
and introduce an additional binary attribute to indicate
missing values. The goal is to classify the comparison pat-
terns as a match (corresponding records refer to same
patient) or a mismatch (corresponding records refer to dif-
ferent patients). The matches form the positive class.

TABLE 1
Datasets (After Modifications)

Abbr Source Domain Attribute types # Objects # Attributes # Positives # Negatives # Positives
# Negatives

CAR UCI Cardiotocography Real 2,126 21 471 1,655 0.285
SPL LIBSVM Molecular biology Integer 3,175 60 1,648 1,527 1.079
LE1 UCI Letter recognition Integer 20,000 16 753 19,247 0.039
LE2 UCI Letter recognition Integer 20,000 16 9,940 10,060 0.988
BAN UCI Bank marketing Binary, Real 45,211 51 5,289 39,922 0.132
ADU UCI Income prediction Binary, Integer 45,222 88 11,208 34,014 0.330
COV UCI Forest cover types Binary, Integer 581,012 54 211,840 369,172 0.574
KDD UCI Network intrusion detection Binary, Integer 4,898,431 122 3,925,650 972,781 4.035
RLC SIGKDD Record linkage comparison Binary, Real 5,749,132 16 20,931 5,728,201 0.004
BOW2 UCI Bag of words Integer 8,499,752 234,151 299,752 8,200,000 0.037
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The data set Bag of Words (BOW2) comprises over 8.5 mil-
lion text documents from two different sources (New York
Times articles and PubMed abstracts). The attributes are
vocabulary words that occurred at least 10 times. A docu-
ment is represented as a so-called bag of words, i.e., a set of
vocabulary words. We used here a simplified representation
which disregards word order and multiplicity of words. For
each document, a binary vector indicates which words
occur in the document. We treated New York Times articles
as positives.

5.2 Experimental Design

Sparse computation is evaluated in combination with the
four similarity-based classifiers KNN, KSNC, SNC, and
SVM introduced in Sections 2.1-2.4. We first introduce the
performance metrics in Section 5.2.1 and then describe the
tuning and testing of the classifiers in Sections 5.2.2
and 5.2.3, respectively. The experimental analysis is imple-
mented in MATLAB R2015a, and the computations were
performed on a workstation with two Intel Xeon CPUs
(model E5-2687W v3) with a clock speed of 3.10 GHz and
256 GB of RAM.

5.2.1 Performance Metrics

The classification performance is measured here in terms of
accuracy (ACC) and F1-scores (F1). These performance
measures are widely used in the machine learning litera-
ture. Let TP , TN , FP , and FN denote the true positives, true
negatives, false positives, and false negatives, respectively.
The accuracy is defined as the number of correctly classified
objects over the total number of classified objects: ACC =
(TP+TN)/(TP+FP+TN+FN). The F1-score is the harmonic
mean of precision and recall: F1 = 2TP/(2TP + FP + FN).

5.2.2 Tuning

The tuning is performed for a given classifier, a given data
set, and given parameters for sparse computation (number
of randomly selected columns c, grid resolution k, grid
dimensionality p, and number of randomly selected rows r).
As illustrated in Fig. 6, the data set is randomly partitioned

into a training set (60 percent), a validation set (20 percent)
and a testing set (20 percent). The union of the training and
the validation set constitutes the tuning set. The union of
the training and the testing set constitutes the evaluation
set. The goal of tuning is to determine a preprocessing
option and a combination of tuning parameter values based
on the tuning set. Preprocessing modifies the input data
before the classifier is applied, which sometimes improves
performance. We evaluate each combination of tuning
parameter values with and without first normalizing the
tuning set. Normalization scales attribute values to lie
between zero and one and therefore prevents attributes
with large values from dominating distance or similarity
computations, even though other attributes are more impor-
tant for distinguishing the objects [39]. For a data set of n
objects and one selected attribute, let x 2 Rn be the vector of
the values of the attribute and let 1 2 Rn be a vector of all
ones. Then, the vector of normalized values x0 is computed
as follows:

x0 ¼ x�minðxÞ1
maxðxÞ �minðxÞ :

The tuning parameters and the tested ranges of values are
given in Table 2 for all classifiers. KNN, for instance, is
applied 2 	 25 times (once with and once without normali-
zation) to each tuning set. Thereby, the objects in the train-
ing set serve as training objects with known class labels,

Fig. 6. Partitioning of data sets.

TABLE 2
Tuning Parameters

Classifier Tuning parameter name Values

KNN ParameterK 1; 2; . . . ; 25

KSNC Scaling parameter � 1; . . . ; 15

Weighting parameter � 0; 10�3; 10�2; 10�1,1,5,10,20,30

ParameterK 1; . . . ; 3

SNC Scaling parameter � 1; . . . ; 15

Weighting parameter � 0; 10�3; 10�2; 10�1,1,5,10,20,30

SVM Kernel Radial Basis Function

Derivative parameter s 2�5; 2�4; . . . ; 25; 10�10; 10�9; . . . ; 1010
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and the objects in the validation set are to be classified. It is
possible to speed up the tuning by storing intermediate
results. The extent to which intermediate results can be
stored depends on the classifier.

� For all classifiers, only a single grid is computed.
This grid is reused for all combinations of tuning
parameter values. Note that the grid construction is
not affected by the preprocessing option because we
always normalize the tuning set prior to applying
approximate-PCA to reduce the effect of the outliers.
The distance computation is affected by the prepro-
cessing option but not by tuning parameter values. It
is therefore sufficient to compute the distances twice,
once for the original tuning set and once for the nor-
malized tuning set.

� For KNN, the number of nearest neighbors that are
stored for each object in the validation set corre-
sponds to the largest value of parameter K. The sort-
ing is done only twice, once for the distances
computed based on the normalized tuning set and
once for the distances computed based on the origi-
nal tuning set. For each value of K only the majority
label has to be computed for each object in the
validation set.

� From the three tuning parameters of KSNC, only �
affects the similarity computations. We therefore
reuse the distance matrix for all combinations of tun-
ing parameter values. For each value of �, the dis-
tance matrix is converted into a similarity matrix.
These similarity matrices are reused for all values of
�. Analogous to KNN, the nearest neighbors are
determined only twice.

� For SVM, we compute the distances once and con-
vert them into similarities for each value of s.

5.2.3 Testing

The testing is performed for a given classifier, a given data
set, the given parameters for sparse computation (number
of randomly selected columns c, grid resolution k, grid
dimensionality p, and number of randomly selected rows r)
and a given performance measure. We select the combina-
tion of tuning parameter values and preprocessing option
that achieved the best performance with respect to the given
performance measure for the validation set. In the case of
ties, we select the lowest index combination. The flowchart
shown in Fig. 7 illustrates how testing is performed for the
different classifiers. For all classifiers, sparse computation is
applied to the entire evaluation set, which includes the
training objects and the testing objects.

Fig. 7. Flowchart for the testing methodology.
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For SNC and KSNC, the resulting (sparse) similarity
matrix is used to represent the evaluation set as a graph.
The classification is performed by solving a single minimum
cut problem on this graph. Hence, all testing objects are clas-
sified simultaneously.

For SVM, sparse computation is used to compute the ker-
nel matrix for the entire evaluation set. From this kernel
matrix, a kernel matrix for the testing and a kernel matrix
for the training objects are extracted. An SVM model is
trained on the kernel matrix for training objects. The kernel
matrix for testing objects is then fed to the trained SVM
model to predict the class membership for each testing
object.

For KNN, the similarity matrix generated by sparse com-
putation is used to find for each testing object the K nearest
training objects. The performance measure is then com-
puted analogously for all classifiers based on the classified
testing objects.

5.3 Numerical Results

Sparse computation can be controlled by several parameters
that include the grid resolution k, the grid dimensionality p,
and the number of rows (columns) selected for approximate-
PCA r (c). We first report in Section 5.3.1 the performance of
the classifiers for different grid resolutions. In Section 5.3.2,
we study the effect of varying the grid dimensionality p for
different grid resolutions. In Section 5.3.3, we study the impact
of varying the number of rows r for different grid resolutions.
In Section 5.3.4, we compare sparse computation to four alter-
native sparsification approaches. In Section 5.3.5, we apply
sparse computation with d-identical grouping to the largest
data sets, KDD, RLC, and BOW2. Finally, in Section 5.3.6, we
provide general recommendations for parameter selection.

5.3.1 Impact of Grid Resolution

We first focus on the sets CAR, SPL, LE1, LE2, BAN, and
ADU. For these sets, the complete similarity matrices for the
tuning and the evaluation sets are small enough to fit in the
memory of our machine (256 GB). It is therefore possible to
compare the sparse computation approach in terms of the
accuracy, F1-score and running time to that of using the
complete similarity matrix. We tuned and tested the four
classifiers with grid resolutions k ¼ f2; 4; . . . ; 20g. For the
value of k ¼ 2 the similarity matrix is complete. The number
of randomly selected rows r for the approximate-PCA was
set to one percent of the total number of rows in the tuning
set. If one percent of the number of rows was less than 150,
we set r to 150. We did not sample columns for approxi-
mate-PCA because all these data sets have a rather small
number of columns. To construct the grid, we used the top
three principal components, which turned out to be a good
compromise between the amount of variance explained and
the resulting number of blocks in the grid.

Fig. 8 visualizes the impact of the grid resolution on the
accuracy of the classifiers, the density of the similarity matrix
and the tuning times of the classifiers. Each row of plots cor-
responds to a data set. The tuning time measures the time
required to determine the best preprocessing option and the
best combination of tuning parameter values.

The most surprising result of our study is that across all
data sets, the accuracy achieved with the sparse similarity

matrices barely changes with increasing grid resolution. In
some cases, the accuracy even increases with increasing
grid resolution. This is possible as increasing the grid reso-
lution tends to remove more noise from the data set. KNN
achieves the highest accuracy for all data sets except LE2
with a grid resolution greater than or equal to 10. Similarly,
SNC achieves the highest accuracy for all sets except BAN
and ADU with a grid resolution greater than or equal to
eight. KSNC achieves the highest accuracy for all data sets
with a sparse similarity matrix. The accuracy achieved by
SVM is affected more by the grid resolution for sets CAR
and LE1 compared to the other three classifiers. Addition-
ally, SVM achieves the highest accuracies with the complete
similarity matrix.

The density of the similarity matrices decreases with
increasing grid resolution. Thereby the marginal change in
density decreases for all data sets with increasing grid reso-
lution. The tuning time of KNN, SNC and KSNC is roughly
proportional to the density of the similarity matrix. Thus, the
decreased density causes a proportional decrease in the tun-
ing time. This decrease is more pronounced for the large sets
LE1, LE2, BAN, and ADU, for which most of the tuning time
is used for similarity computations. For data set BAN, the
tuning time of KSNC and SNC could be reduced by 98:22
and 98:26 percent, respectively, by increasing the grid resolu-
tion from 2 to 20 with almost no change in accuracy. For the
smaller sets CAR and SPL, the computational overhead
becomes the dominant part of the tuning time for higher grid
resolutions. The reduction in tuning time for SVM is less dis-
tinct. A reason for this is that the LIBSVM implementation
internally converts the precomputed sparse kernel matrix
into a full kernel matrix, which takes a considerable amount
of time for larger sets. The tuning time of KNN for low grid
resolutions is considerably smaller because the similarity
computations can be reused for all values of k and the num-
ber of different tuning parameter combinations is much
larger for SNC and KSNC. However, the difference in tuning
time becomes smaller with increasing grid resolution.

Tables 3, 4, 5, 6, 7, 8 present the results shown in Fig. 8 in
tabular form. In addition to the density, accuracy and tun-
ing time results, the tables also list the testing times and
F1-scores. The testing time includes the time required to
compute the sparse similarity matrix for the evaluation set
and the time required to classify the objects in the testing
set. It is reported here for applying the classifier with the
preprocessing option and the tuning parameter values that
achieved the best accuracy for the validation set. In order to
report the F1-scores, we applied the classifier a second time
to the evaluation set, but this time with the preprocessing
option and the tuning parameter values that achieved the
best F1-scores for the tuning set. For KNN, KSNC and SNC,
the grid resolution again has little impact on the F1-scores,
but it reduces the testing times considerably. It appears that
SVM is less robust with respect to F1-scores compared to
the other classifiers.

For the data set COV, the complete similarity matrix
requires more than 1; 700 GB of storage, assuming that each
entry is represented in double precision with 64 bits. The
memory limit of our machine prevents a comparison of
the sparse computation approach to that of using the
complete similarity matrix. We therefore test sparse

164 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016



computation for COV with grid dimensionality p ¼ 2 and
grid resolutions k ¼ f200; 250; . . . ; 600g. For grid resolutions
below 200, even the sparse matrices require more than
256 GB of memory.

The testing results for the large data set COV are shown
in Fig. 9 and Table 9. Fig. 9 shows the accuracy, density and

tuning time results for KNN, KSNC, and SNC. Because the
LIBSVM implementation internally converts a precomputed
sparse kernel matrix into a full kernel matrix, we could not
apply SVM to the set COV. In columns 13 to 22 of Table 9,
we break down the testing time into different components.
The column PCA states the time required to perform

Fig. 8. Impact of grid resolution on accuracy, density and tuning times.
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approximate-PCA, and the column Grid lists the time
required to construct the grid and to identify neighboring
blocks. These two tasks are identical for all classifiers. The
columns under similarity list for each classifier the time
required to compute euclidean distances and convert them
into similarities. The columns under classification list the
time required for the classification, which includes identify-
ing the K-nearest neighbors for KNN and KSNC and con-
structing the similarity graph and performing the minimum
cut for KSNC and SNC. The last three columns state the
total testing times for each classifier.

The results show that all classifiers are able to achieve
an accuracy of at least 97:24 percent with grid resolution

k ¼ 200. The similarity matrix obtained with this grid
resolution has a density of 0:55 percent. Further increas-
ing the grid resolution from k ¼ 200 to k ¼ 600 reduces
the density to 0:07 percent. Even with such a small den-
sity, it is possible to achieve accuracies of at least 96:48
percent. The size of the similarity matrix obtained with a
grid resolution of 600 is less than 1:2 GB, which allows
for fast processing even on standard notebooks. Interest-
ingly, KSNC and SNC achieve the same accuracy and
F1-score results for most grid resolutions. This happens
when both classifiers select the value zero for tuning
parameter �. Again, the tuning time of KSNC is most
affected by the grid resolution.

TABLE 3
Testing Results for the Data Set CAR

Den [%]

Accuracy [%] F1-score [%] Tuning time [s] Testing time [s]

k KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM

complete matrix 2 100.00 92.47 93.18 94.12 94.59 82.02 83.24 85.03 86.23 0.7 11.3 6.3 11.9 0.34 0.74 0.46 0.54

sparse matrices 4 56.97 92.47 93.65 94.35 92.94 82.02 84.57 85.71 81.01 0.8 7.7 4.7 9.3 0.37 0.46 0.36 0.52
6 25.96 92.47 93.18 94.35 94.12 82.02 83.62 85.71 85.03 0.7 4.3 2.4 6.6 0.41 0.38 0.37 0.48
8 14.40 92.47 92.94 94.59 92.47 82.02 83.52 86.39 81.48 0.7 2.7 1.6 5.0 0.36 0.34 0.37 0.38
10 9.10 92.47 93.41 94.35 91.06 82.02 84.44 85.88 80.98 0.7 1.8 1.2 4.3 0.33 0.36 0.32 0.40
12 6.13 92.71 93.41 93.41 92.24 82.49 84.27 83.33 80.24 0.8 1.6 1.2 4.1 0.39 0.42 0.39 0.53
14 4.45 92.94 93.41 94.35 92.00 82.76 83.91 85.88 79.01 0.9 1.5 1.2 4.1 0.48 0.47 0.45 0.51
16 3.36 92.00 92.71 93.41 90.12 80.68 81.56 82.93 73.42 1.1 1.5 1.4 4.3 0.47 0.49 0.49 0.55
18 2.52 92.24 93.41 92.94 88.47 80.92 82.93 81.71 69.18 1.1 1.5 1.2 4.2 0.49 0.51 0.51 0.58
20 2.00 93.18 93.18 92.47 89.65 83.43 83.43 81.18 76.13 1.2 1.5 1.3 4.2 0.51 0.51 0.51 0.56

TABLE 4
Testing Results for the Data Set SPL

Den [%]

Accuracy [%] F1-score [%] Tuning time [s] Testing time [s]

k KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM

complete matrix 2 100.00 76.38 85.51 74.02 91.81 73.76 87.04 73.36 92.42 1.8 36.2 17.4 29.5 0.90 1.70 1.13 1.40

sparse matrices 4 78.22 75.43 86.14 74.17 78.11 72.04 87.53 78.59 80.39 1.9 32.3 14.6 25.7 1.03 1.45 1.09 1.41
6 48.29 78.58 85.83 80.16 75.75 76.47 87.32 79.22 81.53 1.9 18.9 8.9 19.5 0.94 0.97 0.88 1.24
8 28.66 78.43 84.41 81.89 74.33 76.42 86.64 82.71 80.80 1.9 10.7 5.4 16.3 0.96 0.83 0.65 1.22
10 17.61 79.84 78.74 83.31 70.39 77.80 84.92 84.23 79.08 1.4 6.8 3.4 14.1 0.69 0.71 0.69 0.90
12 11.33 76.54 80.79 81.26 74.80 75.04 83.36 82.32 77.27 1.5 5.1 3.1 12.8 0.79 0.82 0.74 1.18
14 7.60 74.80 80.63 72.91 78.90 72.88 81.94 79.29 81.69 1.6 4.2 2.9 12.2 0.82 0.82 0.79 1.08
16 5.38 74.49 80.94 79.37 79.68 72.54 82.59 80.30 82.96 1.6 3.2 2.4 11.8 0.90 0.85 0.81 1.08
18 3.94 72.60 78.74 76.38 77.95 71.26 81.07 79.94 81.87 1.8 3.0 2.2 11.7 0.93 0.82 0.80 1.03
20 2.92 73.07 80.16 74.80 79.06 72.49 82.40 78.21 83.01 1.9 2.9 2.2 11.7 0.96 0.88 0.87 1.10

TABLE 5
Testing Results for the Data Set LE1

Den [%]

Accuracy [%] F1-score [%] Tuning time [s] Testing time [s]

k KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM

complete matrix 2 100.00 99.35 99.60 99.60 99.52 90.85 94.41 94.41 92.94 65.6 1,675.5 847.6 1,227.0 33.4 73.4 48.9 51.9

sparse matrices 4 67.03 99.35 99.60 99.60 99.35 90.85 94.41 94.41 90.08 53.8 1,132.0 559.8 958.6 31.1 45.5 33.0 47.0
6 35.30 99.35 99.60 99.60 99.52 90.85 94.41 94.41 92.99 45.0 567.9 278.8 697.5 22.6 24.2 17.7 32.0
8 19.66 99.38 99.60 99.60 99.42 91.23 94.41 94.41 91.25 20.4 314.1 151.9 560.6 11.0 13.0 9.7 19.8

10 11.77 99.38 99.60 99.60 99.35 91.17 94.41 94.41 90.30 13.3 190.2 92.9 497.6 7.1 8.5 6.1 17.9
12 7.61 99.45 99.60 99.60 99.10 92.14 94.41 94.41 85.94 10.9 127.5 61.7 460.7 5.4 6.3 4.8 11.8
14 5.19 99.35 99.60 99.60 98.95 90.78 94.41 94.41 82.31 8.6 89.9 43.7 440.8 4.6 4.8 4.0 10.5
16 3.68 99.38 99.58 99.58 98.98 91.17 94.08 94.08 83.46 8.1 64.2 31.7 428.9 4.4 4.6 3.8 9.9
18 2.69 99.33 99.58 99.58 98.90 90.53 92.78 92.78 81.97 7.9 46.3 24.3 426.4 4.2 4.2 3.5 9.6
20 2.04 99.25 99.60 99.60 98.67 88.97 94.37 94.37 78.54 7.0 35.7 20.3 421.3 4.0 3.0 3.6 9.6
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From the breakdown of testing times, we can conclude
that most of the running time is required for input prepara-
tion. While the time required for similarity computations
decreases with increasing grid resolutions, the time required
to construct the grid and to identify neighboring blocks
increases with increasing grid resolutions and becomes the
dominant part of the testing times for grid resolutions
greater than 550. The approximate-PCA and the classifica-
tion task together require insignificant running times.

5.3.2 Impact of Grid Dimensionality

We report the effect of choosing the grid dimension p on the
accuracy, F1-score, density and tuning times for the data set

CAR and classifier SNC. Similar results were obtained for
the other data sets and classifiers. The impact of parameter
p is analyzed for different grid resolutions k, i.e., we tune
and test SNC with different values for both parameters p
and k. The grid resolution k was selected from the set
f2; . . . ; 20g, and the grid dimension p was selected from the
set f1; . . . ; 4g. Parameter r, which defines the number of ran-
domly selected rows for approximate-PCA, was kept con-
stant at 150. Column sampling for approximate-PCA was
not performed. The resulting first four principal compo-
nents account for 31:2, 18:3, 13:5, and 9:5 percent of the vari-
ance in the corresponding submatrix. When PCA is applied
to the entire evaluation set (without selecting a subset of r

TABLE 6
Testing Results for the Data Set LE2

Den [%]

Accuracy [%] F1-score [%] Tuning time [s] Testing time [s]

k KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM

complete matrix 2 100.00 97.45 97.88 97.88 98.08 97.48 97.90 97.85 98.10 65.5 2,531.8 984.5 1,427.7 34.8 70.9 52.6 63.8

sparse matrices 4 67.03 97.38 97.88 97.88 98.08 97.40 97.90 97.85 98.10 55.7 2,115.0 669.6 1,129.2 29.7 46.1 33.0 54.2
6 35.30 97.40 97.88 97.88 98.08 97.43 97.90 97.85 98.10 43.5 914.4 329.3 859.7 22.4 24.7 18.5 42.2
8 19.66 97.35 97.88 97.82 97.97 97.44 97.90 97.85 97.00 20.2 467.9 179.6 724.9 11.1 13.4 9.3 29.5
10 11.77 97.40 97.88 97.82 97.63 97.43 97.90 97.85 97.64 13.3 271.4 105.0 648.3 7.2 8.6 6.5 26.0
12 7.61 97.40 97.88 97.88 97.45 97.43 97.90 97.85 97.46 10.2 179.4 68.9 631.1 5.4 6.1 4.8 22.2
14 5.19 97.08 97.75 97.75 97.22 97.10 97.78 97.78 97.23 8.8 121.6 47.3 602.1 4.6 5.0 4.1 22.4
16 3.68 96.97 97.58 97.60 97.00 97.01 97.60 97.63 97.00 8.2 81.4 36.2 580.2 4.3 4.5 3.9 21.7
18 2.69 96.95 97.42 97.42 96.70 96.98 97.45 97.45 96.69 7.8 58.5 26.2 583.9 4.2 4.0 3.6 21.4
20 2.04 96.73 97.38 97.38 96.50 96.75 97.39 97.30 96.48 7.9 43.6 20.6 579.0 4.2 3.0 3.7 19.0

TABLE 7
Testing Results for the Data Set BAN

Den [%]

Accuracy [%] F1-score [%] Tuning time [s] Testing time [s]

k KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM

complete matrix 2 100.00 89.10 88.69 88.62 89.69 36.62 43.04 36.13 35.28 410 6,465 3,739 9,135 228 407 328 350

sparse matrices 4 43.02 89.14 88.69 88.55 88.72 35.07 43.07 35.25 30.31 282 2,482 1,384 5,150 148 154 125 230
6 19.42 89.06 88.66 88.54 88.63 37.66 43.13 35.86 21.04 100 1,053 543 3,802 64 67 50 113
8 10.54 89.01 88.61 88.28 88.63 36.97 43.02 35.78 27.08 55 583 309 3,426 31 36 26 81
10 6.67 89.12 88.62 88.48 88.66 35.26 42.66 35.00 23.26 37 377 193 3,284 20 22 17 66
12 4.73 89.14 88.35 88.34 88.53 36.32 42.29 36.13 22.91 28 284 149 3,220 15 17 13 57
14 3.54 88.98 88.29 88.52 88.64 36.28 42.70 34.67 21.77 22 201 104 3,214 12 13 10 57
16 2.87 88.94 88.25 88.35 88.56 35.36 41.57 35.73 24.08 19 162 90 3,175 10 12 9 55
18 2.38 88.84 88.43 88.34 88.50 35.25 41.78 36.00 24.36 18 139 78 3,190 9 10 8 55
20 2.05 88.93 88.44 88.44 88.52 35.63 42.07 34.69 25.68 16 115 65 3,156 8 9 7 52

TABLE 8
Testing Results for the Data Set ADU

Den [%]

Accuracy [%] F1-score [%] Tuning time [s] Testing time [s]

k KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM KNN KSNC SNC SVM

complete matrix 2 100.00 83.23 81.63 81.63 83.26 63.31 62.20 60.31 62.06 466 8,122 3,616 10,296 245 448 324 400

sparse matrices 4 31.06 83.18 81.65 81.65 82.68 63.23 62.25 59.57 59.37 307 2,355 974 5,377 166 121 91 230
6 19.13 83.13 81.61 81.61 82.57 62.60 62.17 59.81 59.70 113 1,529 593 4,897 59 72 53 113
8 14.81 83.19 81.60 81.60 82.74 62.75 62.14 60.89 58.77 88 1,183 463 4,636 46 57 43 105
10 12.85 83.19 81.60 81.60 82.56 62.76 62.13 61.01 58.85 75 968 371 4,437 38 49 40 88
12 11.19 83.22 81.61 81.61 82.84 62.83 62.19 60.32 59.17 62 803 317 4,412 34 41 30 83
14 10.78 83.22 81.61 81.61 82.67 62.54 62.15 60.28 59.62 59 803 309 4,403 34 40 30 81
16 9.41 83.24 81.63 81.63 82.63 62.79 62.12 60.27 59.43 52 680 261 4,369 30 36 27 77
18 8.87 83.17 81.51 81.51 82.80 62.96 62.05 60.02 59.83 48 617 255 4,297 28 33 25 75
20 7.93 83.09 81.57 81.57 82.72 62.78 62.18 60.17 59.97 49 591 241 4,329 25 30 23 103
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rows), the first four principal components account for very
similar fractions of the total variance in the evaluation set,
namely 33:28, 18:50, 11:30, and 8:78 percent.

Fig. 10 shows four plots in which the accuracy (top left),
F1-scores (top right), densities (bottom left) and tuning
times (bottom right) are visualized for different values of p
and k. Each curve represents a different value of p. The
same results are presented in tabular form in Table 10.
Increasing the grid dimensionality for a fixed value of k can
only decrease the density. As shown in the bottom left plot
of Fig. 10, the marginal reduction in density obtained by
adding an additional dimension to the grid decreases.

Regarding the impact of the grid dimensionality on the
accuracy and F1-score results, no consistent pattern can be
observed, and thus, choosing a 1-dimensional grid appears
to deliver roughly the same level of accuracy and F1-scores.

5.3.3 Impact of Row Selection

The impact of the number of rows r selected for approxi-
mate-PCA is reported for data set SPL and classifier KSNC.
Similar results were obtained for the other data sets and
classifiers, and the impact of the r value was most noticeable
for the set SPL. We again studied the impact of parameter r
for different grid resolutions k, i.e., we tuned and tested

Fig. 9. Impact of grid resolution on accuracy, density and tuning times for the COV data set.

TABLE 9
Testing Results for the Data Set COV

Den [%]

Testing time [s]

Input preparation

Accuracy [%] F1-score [%] Tuning time [s] Similarity Classification Total

k KNN KSNC SNC KNN KSNC SNC KNN KSNC SNC PCA Grid KNN KSNC SNC KNN KSNC SNC KNN KSNC SNC

200 0.55 97.44 97.24 97.24 96.48 96.21 96.20 587 6,888 3,192 0.4 11 277 266 224 2.0 7.3 5.0 291 285 240
250 0.36 97.32 97.19 97.19 96.31 96.15 96.13 415 4,337 2,240 0.5 17 186 178 153 1.6 2.9 1.3 205 199 171
300 0.26 97.19 97.13 97.13 96.12 96.05 96.05 338 3,127 1,604 0.6 23 144 127 121 1.4 2.4 1.1 170 153 146
350 0.19 97.19 97.09 97.09 96.14 95.99 95.99 280 2,381 1,250 0.6 32 116 99 86 1.6 1.9 0.9 150 134 120
400 0.15 97.07 96.99 96.99 95.97 95.86 95.86 264 1,905 1,014 0.5 42 90 84 74 1.3 2.7 2.0 134 129 118
450 0.12 96.97 96.94 96.94 95.83 95.78 95.78 261 1,589 869 0.5 52 77 71 63 1.1 2.4 1.6 131 126 117
500 0.10 96.83 96.82 96.82 95.64 95.63 95.63 268 1,377 767 0.5 64 68 61 55 1.2 2.0 1.3 134 128 121
550 0.08 96.66 96.69 96.69 95.40 95.44 95.44 283 1,213 700 0.6 77 62 56 51 1.0 1.8 1.1 142 136 131
600 0.07 96.48 96.55 96.55 95.15 95.25 95.25 299 1,091 655 0.5 90 58 52 48 1.0 1.6 1.0 151 144 140

Fig. 10. Impact of grid dimensionality on accuracy, F1-score, density and tuning times for the CAR data set.
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KSNC with different values for both parameters r and k.
The grid resolution k was selected from the set
f2; . . . ; 20g, and the parameter r was selected from the
set fd0:01me; d0:05me; d0:1me; d0:2meg, where m denotes
the number of rows in the tuning set or the evaluation
set, which both have 1,701 rows in total. In contrast to
the experiments in the previous sections, we did not
impose a lower bound on r for this analysis. The grid

dimensionality p was kept constant at 3. Column sam-
pling for approximate-PCA was not performed.

As can be seen from Fig. 11 and Table 11, the impact
of r on the accuracy, F1-scores, densities, and tuning
times is rather limited. It appears that setting
r ¼ d0:01me results in a slightly worse accuracy and
F1-score for higher grid resolutions. For this reason, we
selected at least 150 rows for sets CAR and SPL in the

TABLE 10
Sensitivity Analysis for the Data Set CAR: Impact of Grid Dimensionality

Accuracy [%] F1-score [%] Tuning time [s] Density [%]

k 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

complete matrix 2 94.12 94.12 94.12 94.12 85.03 85.03 85.03 85.03 6.79 6.57 6.58 6.61 100.00 100.00 100.00 100.00

sparse matrices 4 94.12 94.12 94.35 94.35 85.03 85.03 85.71 85.71 5.35 4.51 4.11 4.01 83.02 67.05 56.97 50.90
6 94.12 94.12 94.35 94.35 85.03 85.03 85.71 85.71 3.99 2.95 2.45 2.34 64.18 37.09 25.96 18.34
8 93.88 93.65 94.59 94.35 84.34 83.83 86.39 85.88 3.19 2.02 1.73 1.79 50.95 23.56 14.40 8.76
10 94.12 94.12 94.35 94.12 84.85 85.03 85.88 85.38 2.65 1.49 1.24 1.85 41.99 17.15 9.10 5.20
12 93.88 93.65 93.41 93.88 84.34 83.83 83.33 84.52 2.25 1.11 1.18 1.93 35.62 12.88 6.13 3.44
14 93.65 94.12 94.35 94.35 84.02 85.55 85.88 86.36 1.97 0.86 1.17 1.84 30.67 10.19 4.45 2.35
16 93.41 93.41 93.41 92.47 83.13 83.53 82.93 80.72 1.82 0.74 1.23 1.83 27.19 8.28 3.36 1.75
18 94.12 93.88 92.94 92.71 85.21 84.88 81.71 81.21 1.67 0.67 1.23 1.57 24.14 6.73 2.52 1.29
20 92.94 93.41 92.47 93.41 82.35 83.53 81.18 83.33 1.44 0.62 1.26 1.53 21.82 5.69 2.00 1.01

Fig. 11. Impact of the number of selected rows for approximate-PCA on accuracy, F1-score, density and tuning times for the SPL data set.

TABLE 11
Sensitivity Analysis for the Data set SPL: Impact of the Fraction of Selected Rows for Approximate-PCA

Accuracy [%] F1-score [%] Tuning time [s] Density [%]

k 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

complete matrix 2 85.51 85.51 85.51 85.51 87.04 87.04 87.04 87.04 40.51 40.50 40.77 40.88 100.00 100.00 100.00 100.00

sparse matrices 4 84.88 85.98 82.52 84.72 86.48 87.66 87.66 85.15 37.93 32.71 34.13 32.36 91.08 76.72 81.85 76.49
6 82.36 83.78 86.30 85.35 85.05 85.91 87.41 86.50 27.32 18.59 21.06 18.93 66.94 45.49 49.01 42.84
8 83.15 80.79 82.05 84.09 84.60 82.37 86.48 86.22 17.71 10.21 11.99 10.22 44.30 25.94 29.36 24.11
10 80.63 81.10 81.73 81.42 82.99 84.00 84.49 82.95 10.34 6.51 7.56 6.62 29.74 15.67 17.61 14.68
12 76.85 81.57 81.57 81.26 78.66 85.01 84.07 82.68 7.33 4.76 5.50 4.88 19.83 10.07 11.46 9.21
14 74.33 80.00 81.26 82.52 78.24 81.19 81.78 84.03 5.57 3.86 4.31 3.86 13.75 6.69 7.54 6.09
16 76.38 77.95 82.99 80.00 79.55 82.05 83.38 81.19 4.53 3.11 3.38 3.07 9.78 4.70 5.37 4.23
18 75.28 79.84 83.46 80.00 79.09 81.66 85.27 82.49 3.59 2.96 3.06 2.94 7.27 3.41 3.84 3.07
20 73.07 79.68 81.57 80.63 74.21 82.11 83.64 83.08 3.22 2.88 2.95 2.94 5.43 2.54 2.87 2.32
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experiments discussed in the previous sections. Increas-
ing r also resulted in lower densities.

5.3.4 Comparison with Alternative Sparsification

Approaches

We compare sparse computation (SPC) to four alternative
sparsification approaches on the data set LE1 with classifier
KNN. The benchmark sparsification approaches used here
are referred to as SRT, URS, PRS, and AHK. The approach
SRT sorts all similarity values of the complete matrix and
sets the smallest values to zero such that a prespecified tar-
get density is obtained. The approaches URS and PRS ran-
domly sample entries from the complete similarity matrix
to obtain a sparse similarity matrix with a prescribed target
density. URS and PRS differ in the selection probabilities of
the entries. URS employs uniform probabilities, while PRS
uses probabilities that are proportional to the magnitude of
the entries. The random sampling implementations of URS
and PRS are different. URS generates a vector containing t

unique integers selected randomly from 1 to m
2

� �
, where m

denotes the number of rows/columns of the similarity
matrix. PRS first computes all similarities which serve as
weights for the algorithm of [40]. This algorithm then deter-
mines a weighted random sample without replacement of
size t. AHK is the random-sampling-based sparsification

algorithm of [8], which has been designed for efficient com-
putation of approximate eigenvectors. The approach AHK
runs in a single pass over the similarity matrix and sets
entries to zero according to probabilities that are propor-
tional to the magnitude of the entry. In the algorithm of [8],
some entries are quantized, i.e., their original values are
replaced with either a positive or a negative constant,
depending on the sign of the original entry.

We applied KNN in combination with each of these spar-
sification approaches. For a meaningful comparison, we
first applied sparse computation with r ¼ 150, p ¼ 3, and
k ¼ 2; 4; . . . ; 20. Column sampling for approximate-PCA
was not performed. The densities of the resulting similarity
matrices were then used as the target densities for the
benchmark sparsification approaches. The sparsification
approaches SRT, URS, and PRS always reach the target den-
sity exactly, as we can define the number of entries to be
retained. It is possible that the density of the sparse matrix
computed with AHK differs from the target density because
we generate a random number for each entry of the matrix
and select only those entries for which the random number
is equal to or greater than the respective selection probabil-
ity. However, it turns out that this difference is rather small.

Fig. 12 and Table 12 display the accuracy, F1-score val-
ues, tuning times and densities for KNN applied with each

Fig. 12. Comparison with alternative sparsification approaches.

TABLE 12
Comparison of Alternative Sparsification Approaches

Accuracy [%] F1-score [%] Tuning time [s] Density [%]

k SPC SRT URS PRS AHK SPC SRT URS PRS AHK SPC SRT URS PRS AHK SPC SRT URS PRS AHK

2 99.35 99.35 99.35 99.35 99.35 90.85 90.85 90.85 90.85 90.85 69.96 149.48 156.50 163.35 103.27 100.00 100.00 100.00 100.00 99.86

4 99.35 99.35 99.38 99.20 99.38 90.85 90.85 90.97 88.81 91.17 58.99 123.36 119.98 129.27 106.26 67.03 67.03 67.03 67.03 67.02
6 99.35 99.35 98.85 98.72 98.98 90.85 91.23 83.57 82.35 85.30 44.75 94.12 80.81 93.66 101.43 35.30 35.30 35.30 35.30 35.30
8 99.38 99.38 98.78 98.72 96.40 91.23 91.23 82.56 82.11 5.39 21.16 50.44 39.50 48.63 65.82 19.66 19.66 19.66 19.66 19.66
10 99.38 99.35 98.17 98.20 96.45 91.17 90.85 75.59 74.27 5.52 13.76 44.23 27.59 37.26 60.52 11.77 11.77 11.77 11.77 11.77
12 99.45 99.35 97.70 97.80 96.45 92.14 90.85 68.15 69.44 2.59 10.56 40.09 20.84 33.19 57.74 7.61 7.61 7.61 7.61 7.62
14 99.35 99.35 97.10 97.50 96.43 90.78 91.23 61.21 62.15 3.37 9.00 38.17 17.45 30.95 56.01 5.19 5.19 5.19 5.19 5.20
16 99.38 99.35 97.13 97.02 96.45 91.17 90.85 56.45 56.79 4.79 8.54 36.07 14.71 28.86 55.05 3.68 3.68 3.68 3.68 3.68
18 99.33 99.35 96.47 96.53 96.45 90.53 90.85 50.18 49.82 2.14 8.07 35.61 13.57 27.95 53.98 2.69 2.69 2.69 2.69 2.70
20 99.25 99.35 96.33 96.53 96.43 88.97 90.85 45.90 45.98 7.57 8.11 34.90 12.58 27.43 53.70 2.04 2.04 2.04 2.04 2.04
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of the five sparsification approaches. The main conclusion is
that only SPC and SRT retain a good accuracy for the sparse
matrices. However in terms of the running time perfor-
mance, SRT is inferior to sparse computation. We conclude
that for the purpose of sparsifying similarity matrices for
data sets, sparse computation is the leading technique.

5.3.5 Using d-Identical Grouping

The complete similarity matrices for the KDD, RLC, and
BOW2 data sets comprise 15; 356, 21; 153, and 46; 725 billion
entries, respectively. For these data sets, we set d to be 1, i.e., in
each grid block, we replace all positive training objects by a
single representative, all negative objects by a single represen-
tative and all testing objects by a single representative. The
total number of representatives increases with increasing grid
resolution because a higher grid resolution leads to a higher

number of grid blocks. The values for the remaining parame-
ters of sparse computation are c ¼ d for KDD and RLC and
c ¼ d0:01 de for BOW2 with d denoting the number of attrib-
utes of the corresponding data set, k ¼ f10; 20; 40; 60; 80g,
p ¼ 3, and r ¼ d0:01me, wherem denotes the number of rows
in the tuning set or the evaluation set. For the high-
dimensional data set BOW2, we computed the similarities
with respect to the low-dimensional space.

The KDD data set is unusual in that it contains many
groups of objects that are identical in the original space.
They are therefore identical in the projected space, and by
our terminology, they are 0-identical. These objects will be
grouped into d-identical sets for any positive d.

Fig. 13 and Tables 13, 14, 15 present the testing results for
the KDD, RLC, and BOW2 data sets. Fig. 13 shows the accu-
racy and the tuning time results for KNN, KSNC, and SNC.

Fig. 13. Testing results for the data sets KDD, RLC and BOW2 using d-identical grouping.

TABLE 13
Testing Results for the Data Set KDD

Testing time [s]

Input preparation

Accuracy [%] F1-score [%] Tuning time [s] Similarity Classification Total

k KNN KSNC SNC KNN KSNC SNC KNN KSNC SNC PCA Grid KNN KSNC SNC KNN KSNC SNC KNN KSNC SNC

10 99.818 99.818 99.818 99.89 99.89 99.89 43 70 50 8.5 7.3 0.2 0.2 0.2 < 0.1 < 0.1 < 0.1 19.9 20.2 20.6
20 99.815 99.852 99.850 99.88 99.91 99.91 72 99 79 8.5 21.9 0.6 0.6 0.6 < 0.1 < 0.1 < 0.1 35.1 35.2 35.9
40 99.887 99.890 99.890 99.93 99.93 99.93 155 182 161 8.5 59.3 1.7 1.6 1.6 0.1 0.1 < 0.1 75.9 78.6 75.2
60 99.901 99.897 99.897 99.94 99.94 99.94 255 284 263 8.6 104.3 2.9 2.9 2.9 0.1 0.1 < 0.1 126.9 127.6 122.5
80 99.904 99.908 99.908 99.94 99.94 99.94 374 412 387 8.5 162.9 4.3 4.4 4.3 0.1 0.1 < 0.1 184.8 186.6 183.2
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Tables 13-15 provide the corresponding numerical values
and also state the F1-scores and display a break-down
of the testing times. As can be seen from the accuracy
and F1-score results, even for small grid resolutions
(small number of representatives) the classification per-
formance of all classifiers is surprisingly high. Increasing
the grid resolution (increasing the number of representa-
tives) improves the performance but, at the same time,
increases the tuning and testing times of the algorithms.
As the breakdown of the testing times shows, the
increase in running times is due to the grid construction
and the similarity computations. The last three columns
of Table 13 contain the total testing times, which include,
in addition to the sum of columns 11-18, the time
required to identify the representatives.

When using d-identical grouping, the quality of the pro-
jection becomes important because objects of the same type
that are close together in the low-dimensional space may be
grouped together. Fig. 14 and Table 16 compare for the
BOW2 data set the testing results obtained with SNC and
approximate-PCA to the testing results obtained with SNC
and random projections.

5.3.6 Recommendations for Parameter Selection

We first note that there are no conclusive results on whether
or not to normalize the values of the attributes. Based on our
experiments with different parameter settings, the following
selection of parameter values appears to work best. The row
selection parameter r is set to r ¼ maxð150; d0:01meÞ, where
m denotes the number of rows in the tuning set or the evalua-
tion set. For high-dimensional data sets with more than
d ¼ 150 attributes, the column selection parameter c is set to
c ¼ maxð150; d0:01 deÞ. The grid dimensionality is set to

TABLE 14
Testing Results for the Data Set RLC

Testing time [s]

Input preparation

Accuracy [%] F1-score [%] Tuning time [s] Similarity Classification Total

k KNN KSNC SNC KNN KSNC SNC KNN KSNC SNC PCA Grid KNN KSNC SNC KNN KSNC SNC KNN KSNC SNC

10 99.984 99.984 99.984 97.76 97.76 97.76 18 50 27 1.3 5.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 8.5 7.9 8.4
20 99.985 99.985 99.985 97.93 97.87 97.83 25 58 35 1.7 10.2 0.1 0.1 0.1 < 0.1 < 0.1 < 0.1 13.6 14.1 14.2
40 99.991 99.991 99.991 98.74 98.72 98.71 43 78 53 1.3 23.7 0.4 0.4 0.4 0.1 0.1 < 0.1 27.8 28.6 28.1
60 99.992 99.992 99.992 98.93 98.91 98.95 74 104 81 1.2 44.0 0.9 0.7 0.7 0.1 0.1 < 0.1 48.0 48.6 48.9
80 99.992 99.992 99.992 98.90 98.93 98.93 100 133 108 1.2 66.0 1.3 1.1 1.1 0.1 0.1 < 0.1 70.9 71.5 71.5

TABLE 15
Testing Results for the Data Set BOW2

Testing time [s]

Input preparation

Accuracy [%] F1-score [%] Tuning time [s] Similarity Classification Total

k KNN KSNC SNC KNN KSNC SNC KNN KSNC SNC PCA Grid KNN KSNC SNC KNN KSNC SNC KNN KSNC SNC

10 99.288 99.288 99.284 88.80 88.81 88.76 144 210 163 53.0 14.3 0.2 0.2 0.2 0.1 0.1 0.1 69.9 69.6 69.0
20 99.329 99.329 99.329 89.70 89.74 89.71 218 284 237 52.9 46.8 0.8 0.7 0.7 0.1 0.1 0.1 102.1 102.6 102.3
40 99.513 99.515 99.507 92.80 92.84 92.74 562 620 561 53.2 191.6 3.9 3.8 3.7 0.1 0.1 0.1 273.6 251.0 251.5
60 99.490 99.477 99.490 92.44 92.17 92.53 1,116 1,210 1,141 52.6 456.3 9.6 9.3 9.3 0.2 0.2 0.1 523.4 523.0 522.9
80 99.462 99.511 99.516 92.12 92.75 92.85 2,035 2,068 2,008 53.7 851.0 17.6 17.6 17.3 0.3 0.3 0.2 918.5 935.7 929.6

Fig. 14. Approximate-PCA versus random projections.

TABLE 16
Comparison of Approximate-PCA (APCA) and Random

Projections (RP) on the Data Set BOW2

Accuracy [%] F1-score [%] Tuning time [s]

k APCA RP APCA RP APCA RP

10 99.28 96.74 88.76 29.51 163.30 85.08
20 99.33 96.82 89.71 34.14 236.67 204.64
40 99.51 96.84 92.74 33.72 560.99 756.08
60 99.49 96.86 92.53 33.72 1,141.00 1,723.09
80 99.52 96.86 92.85 33.16 2,007.76 2,922.80
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p ¼ 2 for large-scale data sets with more than half a million
objects and to p ¼ 3 for data sets with less than half a million
objects. The grid resolution k has the strongest impact on the
density of the similarity matrix and should also be selected
based on the size of the data set (higher k for larger data
sets). For data sets with up to 100,000 objects, we recommend
to set k to a value between 20 and 50. For data sets between
100,000 and 1 million objects, we recommend to set k to a
value between 50 and 600 and for data sets with more than 1
million objects, we recommend to set k to a value larger than
600. The d-identical grouping should be used when the data
sets contain a large number of identical or highly-similar
objects. This is detected when the density of the similarity
matrix remains high even for large values of k. For large val-
ues of k it is usually sufficient to set d ¼ 1 as the blocks are
already small enough and do not need to be partitioned fur-
ther into even smaller sub-blocks (see [41]). For further
refinement, we recommend to perform a parameter tuning
based on a validation set.

6 CONCLUSIONS

Similarity-based algorithms have not been used for large-
scale data mining due to the substantial computational
effort that is required to generate a complete similarity
matrix for a large-scale data set. Here, we propose a novel
method, referred to as sparse computation, that provides
practical efficiency for similarity-based algorithms while
retaining their performance. The method generates only
the relevant similarities without performing all pairwise
comparisons between objects in the data set. Sparse com-
putation is implemented with an efficient algorithm,
named “Approximate Principal Component Analysis”
that projects the data onto a low-dimensional space. In
the resulting low-dimensional space, grid neighborhoods
are applied in order to identify groups of objects with
potentially high similarity. Our empirical analysis demon-
strates that sparse computation significantly improves
running times, with minimal loss in accuracy and
F1-scores.

For future research, we intend to consider local sample
density during the grid construction, i.e., using a higher
grid resolution in dense regions, and to use sparse computa-
tion to find isolated components in a data set, which allows
the machine learning task to be performed separately for
each of the isolated components.
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