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Abstract. Here, we study several variants of matching problems that arise in covariate
balancing. Covariate balancing problems can be viewed as variants of matching, or b-matching,
with global side constraints. We present here a comprehensive complexity study of the
covariate balancing problems providing polynomial time algorithms, or a proof of
NP-hardness. The polynomial time algorithms described are mostly combinatorial and
rely on network flow techniques. In addition, we present several fixed-parameter tractable
results for problems where the number of covariates and the number of levels of each
covariate are seen as a parameter.

Funding: This work was supported by National Science Foundation [Grants CMMI-1760102 and NSF
2112533]; Israel Science Foundation (308/18).

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2022.2286.

Keywords: algorithms • complexity • matching • covariate balance • observational studies

1. Introduction
In many modern scenarios, one studies a variant of
the matching problem, or the b-matching problem,
where there is an additional family of side constraints.
Such side constraints were studied, for example, in
the context of mechanism design where one adds pro-
portional constraints (a.k.a. distributional constraints)
for b-matching on bipartite graphs. In that case, the set
of nodes on one side has some additional property, and
the constraints say that the matched nodes to a node on
the other side have the same distribution of the addi-
tional property (as the entire set of nodes). This is in
addition to the upper bound constraint on the total
number of nodes matched to that node of the other
side; see, for example, Ágoston et al. (2018), Nguyen
and Vohra (2019), Bei et al. (2020), and Ashlagi et al.
(2020). Other constraints of this type were also studied;
see, for example, ratio constraints (Yahiro et al. 2020)
and general multidimensional knapsack constraints
(Nguyen et al. 2019). Here, we are motivated by applica-
tions of design of observational studies that use what is
referred to as “matching methods under fine-balanced
constraints.”

The problem of balancing covariates arises in obser-
vational studies in various contexts such as statistics
(Rosenbaum 2002, Rubin and Stuart 2006), epide-
miology (Brookhart et al. 2006), sociology (Morgan
and Harding 2006), economics (Imbens 2004), and

political science (Ho et al. 2007). In an observational
study, there are two disjoint groups of samples, one of
treatment samples and the other of control samples.
Each of the samples in the two groups is characterized
by several observed covariates, or features.

Even though covariate balancing problems have been
extensively studied (Stuart 2010, Rosenbaum 2020),
the complexity status of many variants of the problems
has not been established in theory. Some of our results
demonstrate that two-covariate balancing problems are
polynomial time solvable, whereas almost all problems
are hard for three or more covariates. These results have
practical implications such as justifying the use of implicit
enumeration techniques or heuristics for the hard cases. A
new approach suggested by our results is to make use of
the two-covariate polynomial cases and relax the problem
by either selecting two major covariates to represent all
covariates or aggregating covariates into two sets. This
relaxation would then be solved efficiently andmight pro-
vide good-quality solutions to the respective hard prob-
lems. However, the possible use of such an approach
depends on additional aspects that are beyond the scope
of our study because they should be based on strong stat-
istical justifications.

Covariate balancing problems arise when estimat-
ing causal effects using observational data. It is desir-
able to replicate a randomized experiment as closely
as possible by obtaining treatment and control groups
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with similar covariate distributions. This goal can often
be achieved by choosing well-matched samples of the
original treatment and control groups, thereby reducing
bias in the estimated treatment effects due to the
observed covariates. The matching is to assign each
treatment sample to one unique control sample or, in
other setups, to assign each treatment sample to a
unique set of κ control samples, for κ a prespecified inte-
ger, where every control sample is assigned to at most
one treatment sample. Detailed reviews of matching-
related methods used for covariate balancing problems
are given by Stuart (2010) and Rosenbaum (2020).

In this paper, we address various problems of balanc-
ing covariates. The covariates here are nominal in that they
take on discrete values or categories. The set of values of
each nominal covariate partitions the treatment and con-
trol samples to a number of subsets referred to as levels,
where the samples at every level share the same covariate
value. In an ideal situation known as exact matching, the
samples of the treatment and the control in each matched
pair or matched set belong to the same levels over all
covariates. However, satisfying the requirement that
matched samples in each pair or set belong to the same
levels over all covariates typically results in a very small
selection from the treatment and control group, which is
not desirable. To address this, Rosenbaum et al. (2007)
introduced a weaker requirement to match all treatment
samples to a subset of the control samples, called selec-
tion, so that the proportion (or the number, if κ � 1) of
control and treatment samples in each level of each covari-
ate is the same. This requirement is known in the litera-
ture as fine balance.

To formalize the discussion, we introduce essential
notation. Let the number of treatment samples be n and
the number of control samples be n′. Let the set of all
treatment samples be denoted by T , |T | � n. Let P be
the number of covariates to be balanced. For
p � 1, : : : ,P, covariate p partitions both treatment and
control groups into kp levels each. Let the partition of the
treatment group under covariate p be Lp,1,Lp,2, : : : ,Lp,kp
of sizes ℓp,1,ℓp,2, : : : ,ℓp,kp . Similarly, let the partition of
the control group under covariate p be L′p,1,L′p,2, : : : ,L′p,kp
of sizes ℓ′p,1, ℓ′p,2, : : : ,ℓ′p,kp . Let κ be an integer specifying
the ratio of the number of matched control samples to
the number of matched treatment samples.

We define the κ-fine-balance constraints for a selection
of treatment and a selection of control samples as follows:

Definition 1 (κ-Fine-Balance). For an integer κ, a selec-
tion S ⊆ T of the treatment group and a selection S’ of
the control group, we say that (S,S′)-κ-fine-balance is
satisfied if κ · |S ∩ Lp,i | � |S′ ∩ L′p,i | for p � 1, : : : ,P and
i � 1, : : : , kp.

Obviously for S, S’ satisfying (S,S′)-κ-fine-balance,
the cardinality of S’ is κ times as large as the cardinal-
ity of S, |S′ | � κ |S|.

We are now ready to define the four families of prob-
lems investigated here with complexity that varies accord-
ing to the number of covariates and the value of κ. The
maximum κ-fine-balance selection (κ-FBS) problem is to
select a subset S ⊆ T and a subset S′ of the control group
so as to maximize the size of the selection S (equivalent to
maximizing the size of S′ because |S′ | � κ |S|) where the
(S,S′)-κ-fine-balance constraints are satisfied.

In the second problem family, the fine balance con-
straints are relaxed and replaced by bounds on the
violation of each level size. This problem, previously
studied in Zubizarreta et al. (2014), King et al. (2017),
and Visconti and Zubizarreta (2018), is to maximize
the selection size subject to constraints on the amount
of imbalance permissible at each level. We refer to this
problem as the Bounded Balance Selection (BBS), or
κ-BBS for κ ≥ 2. In a slight generalization of the prob-
lem previously studied, we permit different bounds
on the excess than the bounds on the deficit at each
level. Let B(d)

p,i and B(e)
p,i be the upper bounds on the defi-

cit and excess, respectively, at level i of covariate p, for
p � 1, : : : ,P and i � 1, : : : ,kp. Formally, the relaxed con-
straints we consider are as follows.

Definition 2 (κ-Bounded-Balance). For an integer κ, a
selection S ⊆ T of the treatment group and a selection
S′ of the control group, we say that (S,S′)-κ-bounded-
balance is satisfied if −B(e)

p,i ≤ κ · |S ∩ Lp,i | − |S′ ∩ L′p,i | ≤
B(d)
p,i for p � 1, : : : ,P and i � 1, : : : ,kp.

Using the definition of the κ-bounded-balance con-
straints, the κ-BBS problem is to find a selection S ⊆ T
of the treatment group and a selection S′ of the control
group satisfying the κ-bounded-balance constraints so
as to maximize the selection size, |S|. Note that for this
problem, and unlike κ-FBS, the objective is not neces-
sarily equivalent to maximizing |S′ |. We also consider
the variant of this problem, κ-MBBS, where we add
the constraint |S′ | � κ |S|. We show that our results for
κ-FBS also hold for κ-MBBS. One way to formulate
this new variant using κ-BBS is to add one auxiliary
covariate with only one level with zero upper bounds
on its deficit and excess. However, our results depend
on the number of covariates, so we will avoid using
this reformulation of κ-MBBS. When we compare the
output of the κ-FBS problem and the output of the
κ-BBS problem, we expect that in the κ-BBS problem
when the upper bounds on the deficit and excess are
increased the size of the selection of the treatment
group is increased. Thus, the κ-BBS problem serves as
a tool to examine the solutions obtained as the Pareto-
optimal solutions with respect to the objectives of
maximizing the selection size and minimizing the
upper bounds on the deficit and excess.

Another problem studied here is the κ-fine-balance
matching (κ-BM) problem, first introduced by Rosenbaum
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et al. (2007) for one covariate. Here, we are given a dis-
tance, or cost, measure between each treatment and each
control sample. The κ-BM problem is to minimize the
total cost of the assignment of each treatment sample in T
to κ control samples such that the selection of matched
control samples S′ satisfies (T ,S′)-κ-fine-balance. Regard-
ing the introduction of this problem by Rosenbaum et al.
(2007), it should be mentioned that in that paper the fine
balance constraints ensure that the joint distribution of the
covariates is equated between the matched treatment and
the control group. Here, we define the fine balance con-
straints over the marginal distributions of the covariates.
The two definitions coincide for the case where there is
only one covariate, which is why we say that the κ-BM
problem was introduced for one covariate in Rosenbaum
et al. (2007). Observe that relaxing the κ-fine-balance con-
straints when there are several covariates so that they
relate to the marginal distributions of the covariates
instead of the joint distribution of the covariates has bene-
fits for practitioner. For example, it allows feasible solu-
tions even in cases where there is no selection enforcing
the fine balance constraints over the joint distribution.

Another problem family newly introduced here is
an optimization where the feasible sets are optimal for
another problem. Formally, in the first stage the goal
is to find the optimal selections to the κ-FBS problem.
In the second stage, among all maximum-sized selec-
tions, find the selection that minimizes the total dis-
tance of an assignment of each selected treatment
sample to exactly κ selected control samples. We refer
to this problem as maximum selection κ-fine-balance
matching problem (κ-MSBM).

Notation-wise, for the case of κ � 1 we omit the prefix
κ, so (S,S′)-κ-fine-balance is called (S,S′)-fine-balance,
κ-FBS problem is called FBS problem, κ-BBS problem is
called BBS problem, κ-BM problem is called BM prob-
lem, and κ-MSBM problem is called MSBM problem.

A summary of the problems investigated here is
given in Table 1.

1.1. Related Literature
The concept of fine balance was first introduced by
Rosenbaum et al. (2007), who studied the κ-BM prob-
lem for the 1-covariate problem and proposed a net-
work flow algorithm. Sauppe et al. (2014) showed that
the BM problem for two or more covariates is
NP-hard, and therefore, no polynomial running time
algorithm is known for the κ-BM problem. Rosen-
baum (2012) considered the problem of finding a sub-
set of the treatment samples of certain cardinality that
is matched to a subset of the control samples so as fine
balance constraints are satisfied and the total cost is
minimized. In Rosenbaum (2012), the two objectives of
minimizing the total distance and of maximizing the
selection size are seen as a biobjective optimization

problem, and a procedure for finding the Pareto-
efficient frontier of these objectives is designed.

It is not always feasible to find a selection S′ of the
control samples that satisfies the (T ,S′)-κ-fine-balance
constraints in the κ-BM problem. To that end, several
papers considered the goal of minimizing the viola-
tion of this requirement, which we refer to as imbal-
ance (Yang et al. 2012, Zubizarreta 2012, Pimentel et al.
2015, Bennett et al. 2020, Hochbaum et al. 2022). The
studies in all these papers require the entire treatment
group to be selected or matched. Sauppe (2015), Ben-
nett et al. (2020), and Hochbaum et al. (2022) consid-
ered finding the selection of the control group that
minimizes an imbalance objective, defined as∑P

p�1
∑kp

i�1 ||S′ ∩ L′p,i | − κ · ℓp,i |. This problem is called
minimum κ-imbalance problem. The problem is trivial to
solve for the 1-covariate problem (see Section 2 for
details); the 2-covariate problem was proven to be pol-
ynomial time solvable using linear programming in
Bennett et al. (2020) and using network flow algo-
rithms in Sauppe (2015) and Hochbaum et al. (2022);
for three or more covariates, the problem is NP-hard
(Sauppe 2015, Bennett et al. 2020, Hochbaum et al.
2022). Yang et al. (2012) and Pimentel et al. (2015) con-
sidered a more complicated problem that minimizes
the total assignment cost of the matched sets, each
consisting of a single treatment sample and κ control
samples, subject to the requirement that the selection
of matched control samples is optimal for the mini-
mum κ-imbalance problem. Yang et al. (2012) pro-
posed two network flow algorithms for the case of the
1-covariate problem; Pimentel et al. (2015) proposed a
network flow algorithm for the case in which the
covariates form a nested sequence. Zubizarreta (2012)
considered a different variant that minimizes the total
assignment cost of the matched sets with a penalty on the
imbalance and presented a mixed integer programming
formulation for an arbitrary number of covariates. The
bounded balance problem BBS was considered in Zubi-
zarreta et al. (2014), King et al. (2017), and Visconti and
Zubizarreta (2018). In King et al. (2017) it was used as a
subroutine calledmultiple times for generating an efficient
frontier on the trade-off between the violation of the fine
balance and the size of the selection. Additional models
for optimization with fine balance constraints were
studied in Nikolaev et al. (2013), Tam Cho et al. (2013),
Sauppe et al. (2014), Sauppe (2015), Sauppe and Jacobson
(2017), Dutta et al. (2017), Kwon (2018), Kwon et al.
(2019a, b), Karmakar et al. (2019), Sharma et al. (2020), and
Kwon et al. (2020).

1.2. Contributions
We introduce here, for the first time, polynomial time
algorithms for several covariate balancing problems.
For the FBS and BBS problems on two covariates or
less, we provide polynomial time network flow
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algorithms solving the problems. For problem instan-
ces of κ-FBS, κ-BBS, κ-BM, and MSBM, where the
number of level intersections is fixed, we show that
the problems are polynomial time solvable, using spe-
cific mixed integer programming formulations. More
specifically, we prove that the κ-FBS, κ-BBS, κ-BM,
and MSBM problems are solvable in fixed-parameter
tractable (FPT) time for the parameter being the total
number of covariates levels, yet the κ-MSBM problem
is NP-hard for constant κ ≥ 3, even when the numbers
of covariates levels are constant.

For the κ-FBS problem, we prove that for three or
more covariates, the FBS and κ-FBS problems are
NP-hard for any value of κ. For the case of the 2-covariate
problem, we present an efficient algorithm for the FBS
problem based on an integer programming formulation
of the problem in which the constraint matrix has the
structure of network flow constraints. For the resulting
minimum cost network flow problem, we apply an
algorithm with running time O(n · (min{n+ n′,k1k2} +
(k1 + k2)log(k1 + k2)). We also prove that for κ ≥ 3, the
2-covariate κ-FBS problem is NP-hard. For the remaining
case in which κ � 2 and the number of covariates is two,
the complexity status of the 2-FBS problem is left open.

The κ-BBS problem generalizes κ-FBS by allowing vio-
lations of the fine balance constraints. When the permissi-
ble violations are zero, the κ-BBS problem is the κ-FBS
problem. Therefore, because it is only harder, for three or
more covariates the BBS and κ-BBS problems are
NP-hard for any value of κ, and for κ ≥ 3 the 2-covariate
κ-BBS problem is NP-hard as well. For the two covariates
BBS, we provide a polynomial time algorithm in the form
of a minimum cost network flow that runs in time
O(n · (min{n+ n′,k1k2} + (k1 + k2)log(k1 + k2)). Similarly,
for the 2-BBS problem on two covariates, the complexity
status remains open.

As indicated earlier, the 2-covariate BM problem is
NP-hard, and therefore, there is no polynomial time
algorithm for the κ-BM problem with two or more
covariates unless P � NP. The κ-BM problem is shown
here to be solvable in polynomial time when the num-
ber of level intersections is fixed. However, when

there are two covariates and only one of the two cova-
riates has a fixed number of levels (so the number of
level intersections in not necessarily fixed), the κ-BM
problem is equivalent to the exact matching problem.
The exact matching problem is known to have a
randomized polynomial time algorithm (Mulmuley
et al. 1987), but the existence of a deterministic poly-
nomial time algorithm for the problem is a long-
standing open problem. Therefore, the existence of a
deterministic polynomial time algorithm for the prob-
lem of two covariates κ-BM problem where the first
covariate has a fixed number of levels, is an open
problem as well.

The κ-MSBM problem is newly introduced here. It
relaxes the requirement in the κ-BM problem of select-
ing all treatment samples and replaces it with a maxi-
mum size selection possible while enforcing the
κ-fine-balance constraints. This κ-MSBM problem, as
shown here, is NP-hard with two or more covariates
for any given value of κ. Moreover, it is also proven
here to be NP-hard for the 1-covariate problem when
κ ≥ 3. We present a polynomial algorithm for the
1-covariate MSBM problem, but the complexity status
of the 1-covariate, 2-MSBM problem is left open. We
observe here that, for any number of covariates, if the
selections of treatment and control samples are fixed,
then the optimal assignment among the selected sam-
ples, and therefore the optimal solution to the
κ-MSBM problem, is attained by solving a minimum
cost network flow problem. See Section 2 for details.

A summary of the complexity results for the four
problem families, excluding the case of fixed number
of level intersections, is given in Table 2.

1.3. Paper Overview
In Section 2, we consider the case of the 1-covariate κ-FBS,
κ-BBS, κ-BM, and MSBM problems and provide a com-
pact representation of the sample selections. Then, we
present our complexity and algorithmic results of the
other cases for the four families of problems separately,
that is, the κ-FBS problem in Section 3, the κ-BBS in Sec-
tion 4, the κ-BM problem in Section 5, and the κ-MSBM

Table 1. Summary of Problems Studied Here

Problem name Objective Constraints

Max fine-balance selection (FBS) max |S| (S,S′)-fine-balance
Max κ-fine-balance Selection (κ-FBS) max |S| (S,S′)-κ-fine-balance
Max bounded-balance selection (BBS) max |S| (S,S′)-bounded-balance
Max κ-bounded-balance selection (κ-BBS) max |S| (S,S′)-κ-bounded-balance
Max modified bounded-balance selection (MBBS) max |S| (S,S′)-bounded-balance and |S′ | � |S|
Max κ-modified-bounded-balance selection (κ-MBBS) max |S| (S,S′)-κ-bounded-balance and |S′| � κ · |S|
Fine-balance matching (BM) min assignment cost (T ,S′)-fine-balance
κ-Fine-balance matching (κ-BM) min assignment cost (T ,S′)-κ-fine-balance
Max selection fine-balance matching (MSBM) min assignment cost (S,S′) optimal for FBS
Max selection κ-fine-balance matching (κ-MSBM) min assignment cost (S,S′) optimal for κ-FBS

Hochbaum, Levin, and Rao: Covariate Balancing
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problem in Section 6. The fixed-parameter complexity
results are provided in Section 7.

2. Preliminaries
Consider first the case of a single covariate, p � 1, that
partitions the control and treatment groups into, say, k
levels each. Let the sizes of levels of the treatment group
be ℓ1, : : : ,ℓk and the sizes of levels of the control group
be ℓ′1, : : : , ℓ′k. It is easy to see that there exists a selection
S′ of control samples that satisfies the (T ,S′)-κ-fine-
balance if and only if ℓ′i ≥ κℓi for i � 1, : : : , k. If this con-
dition is satisfied, then any subset S∗ of the control
group with κ · ℓi samples in level i, i � 1, : : : , k, satisfies
the (T ,S∗)-κ-fine-balance and as such is a feasible selec-
tion for the κ-BM problem. With these known numbers
of control samples to be selected in each level, the opti-
mal solution to the 1-covariate κ-BM problem is found
using a minimum cost network flow formulation, as
shown next. Note that a standard linear programming
formulation of the minimum cost network flow
(MCNF) is given in Appendix A in the e-companion.

The MCNF problem, the solution to which is an
optimal solution to κ-BM, is constructed on a bipartite
graph, with the treatment samples each represented
by a node on one side and the control samples each
represented by a node on the other side. The cost on
each arc between a treatment sample and a control
sample is the “distance” value between the two, and
the arc capacity is 1. Each treatment sample has a sup-
ply of κ. To account for the requirement that in each
level i of control samples there will be κ · ℓi samples
matched, we add to the bipartite graph a third layer
of k nodes, one for each level. The ith node in the third
layer has demand of κ · ℓi, and there are arcs to this
demand node from all control samples in level i with
capacity 1 and cost of 0. In an optimal solution to this
MCNF problem, the control sample nodes through
which there is a positive flow (of one unit) are the
ones selected and matched to the respective treatment
sample nodes from which they have a positive flow.

If ℓ′i < κℓi for some i, then there is no selection S′ of
control samples that satisfies the (T ,S′)-κ-fine-balance.

Addressing this context, as mentioned earlier, Yang
et al. (2012), Zubizarreta (2012), Pimentel et al. (2015),
Bennett et al. (2020), and Hochbaum et al. (2022) consid-
ered the problem of minimizing the κ-imbalance, which
is the sum of violations for all levels, ∑k

i�1||S′ ∩ L′i | − κ · ℓi |. The solution to this 1-covariate mini-
mum κ-imbalance problem is straightforward. In step
1, select min{κ · ℓi,ℓ′i} control samples in level i; if the
number of control samples selected is less than κn in
step 1, then we select arbitrary additional control sam-
ples such that the selection is of size κn. Another way to
address this context is to seek a solution for the
(S,S′)-κ-fine-balance where, rather than forcing all
samples of T to be included, finding a solution in which
the size of the selection S, and equivalently |S′ |, is maxi-
mized. This problem is the κ-FBS problem. The solution
to the 1-covariate κ-FBS problem is also straightfor-
ward; select ℓ̄ i �min{ℓi, 	ℓ′i=κ
} treatment samples of
level i and κ · ℓ̄ i control samples of level i.

Similarly, the solution to the 1-covariate κ-BBS problem
is straightforward. For all levels i, let ℓ̄ i �min{ℓ′i ,κℓi},
and if ℓ̄ i < ℓ′i , then select min ℓi,

⌊
ℓ̄ i+B(d)

1,i
κ

⌋{ }
level i treat-

ment samples and ℓ̄ i control samples of level i, and
otherwise select all level i treatment group and any κℓi
control samples of level i.

The solution to the 1-covariate κ-MBBS problem is
simple as well. First, select ℓ̄ i �min{ℓ1,i, 	ℓ′1,i=κ
} num-
ber of level i treatment samples and κ · ℓ̄ i number of
level i control samples. Next, we create a pool of can-
didate samples. For each level i, if there exists an unse-
lected treatment sample in the level, we add up to
B(d)
1,i =κ of them to the pool; otherwise, we add up to

B(e)
1,i of remaining control samples in this level to the

pool. Let t denote the number of treatment samples in
the pool and c denote the number of control samples
in the pool. Then, we add to the selected groups
min{t, 	c=κ
} number of treatment samples and κ ·
min{t, 	c=κ
} number of control samples chosen arbi-
trarily from the candidate pool. This is an optimal sol-
ution for the 1-covariate κ-MBBS problem.

Table 2. Summary of Complexity and Algorithmic Results Derived Here (Here, n is the Size of Treatment Group and n′ is
the Size of Control Group)

Problem One covariate Two covariates ≥ 3 covariates

FBS O(n+ n′) O(n · (min{n+ n′, k1k2} + (k1 + k2)log(k1 + k2))) NP-hard
κ-FBS (κ ≥ 2) O(n+ n′) NP-hard for κ ≥ 3, open for κ � 2 NP-hard
BBS or MBBS O(n+ n′) O(n · (min{n+ n′, k1k2} + (k1 + k2)log(k1 + k2))) NP-hard
κ-BBS or κ-MBBS (κ ≥ 2) O(n+ n′) NP-hard for κ ≥ 3, open for κ � 2 NP-hard
κ-BM (any κ) O((n+ n′)3)

Rosenbaum et al. (2007)
NP-hard

Sauppe et al. (2014)
NP-hard

MSBM O((n+ n′)nn′) NP-hard NP-hard
κ-MSBM (κ ≥ 2) NP-hard for κ ≥ 3

open for κ � 2
NP-hard NP-hard
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Again, for the 1-covariate problem of finding an
optimal matching, or assignment, among all optimal
selections for either the minimum κ-imbalance or the
FBS problem, we solve an MCNF problem for the known
number of samples to select from each level, similar to the
one defined above with the following modifications. For
the minimum κ-imbalance, we first need to change the
demand of the demand nodes in the above MCNF prob-
lem from κ · ℓi to min{κ · ℓi,ℓ′i} for each level i. We also
add a dummy demand node in the third layer with
demand κ · n−∑k

i�1min{κ · ℓi,ℓ′i}, which connects with
all control nodes each with capacity 1 and cost of 0. For
the optimal selections of FBS, in addition to changing the
demand from ℓi to ℓ̄ i for each level i, we also remove the
supply on each treatment sample, add for every level i a
supply node with supply ℓ̄ i, and add arcs from this sup-
ply node to all treatment samples in level iwith capacity 1
and cost of 0. The best assignment found with a selection
that is optimal for the FBS problem is an optimal solution
for the MSBM problem. However, this method does not
apply to the κ-MSBM problem with κ ≥ 2. We further
show that even the 1-covariate κ-MSBM problem is
NP-hard for κ ≥ 3 (see Section 6).

Hence, all problems discussed here, except for the
κ-MSBM problem, are polynomial time solvable for
the 1-covariate case. In Section 6, we show that the
1-covariate κ-MSBM does not admit a polynomial
time algorithm for κ ≥ 3 unless P � NP.

Consider next the case of multiple covariates. For the
κ-FBS problem (and similar arguments hold also for
κ-BBS problem), we observe that the selections from the
treatment and control groups can be represented com-
pactly in terms of level-intersections. For P covariates, the
intersection of the level sets L1,i1 ∩ L2,i2 ∩ : : : ∩ LP,iP , ip �
1, : : : ,kp, p � 1, : : : ,P form a partition of the treatment
group. Similarly, the intersection of the level sets L′1,i1 ∩
L′2,i2 ∩ : : : ∩ L′P,iP , ip � 1, : : : ,kp, p � 1, : : : ,P form a parti-
tion of the control group. Therefore, instead of specify-
ing which sample belongs to the selection, it is sufficient
to determine the number of selected samples in each
level intersection for the two groups, because the iden-
tity of the specific selected samples has no effect on
the fine balance requirement. With this discussion, we
have a theorem on the representation of the solution to
the κ-FBS problems in terms of the level-intersection sizes.

Theorem 1. The level-intersection sizes si1,i2,: : : ,iP and
s′i1,i2,: : : ,iP are an optimal solution to the κ-FBS problem if
there exists an optimal selection S of treatment samples and
S′ of control samples such that si1,i2,: : : ,iP � |S ∩ L1,i1 ∩
L2,i2 ∩ : : : ∩ LP,iP | and s′i1,i2,: : : ,iP � |S′ ∩ L′1,i1 ∩ L′2,i2 ∩ : : : ∩
L′P,iP | for p � 1, : : : ,P, ip � 1, : : : , kp.

We will say that the optimal selection for the covari-
ate problems here is unique if for any optimal selec-
tion S and S′ the numbers si1,i2,: : : ,iP � |S ∩ L1,i1 ∩ L2,i2 ∩
: : : ∩ LP,iP | and s′i1,i2,: : : ,iP � |S′ ∩ L′1,i1 ∩ L′2,i2 ∩ : : : ∩ L′P,iP |

are unique. In order to derive an optimal selection
given the optimal level-intersection sizes, one selects
any si1,i2,: : : ,iP treatment samples from the intersection
L1,i1 ∩ L2,i2 ∩ : : : ∩ LP,iP and any s′i1,i2,: : : ,iP control sam-
ples from the intersection L′1,i1 ∩ L′2,i2 ∩ : : : ∩ L′P,iP for
ip � 1, : : : , kp, p � 1, : : : ,P.

We observe here that, for any number of covariates,
if the optimal selection of treatment and control sam-
ples in terms of level-intersections is known and
unique, then the optimal assignment among the
selected samples, and therefore the optimal solution
to the κ-MSBM problem, can also be attained by solv-
ing an MCNF problem as follows. For each nonempty
level intersection of treatment samples there is a
source node with supply of si1,i2,: : : ,iP . This source node
is connected to all treatment samples in the intersec-
tion L1,i1 ∩ L2,i2 ∩ : : : ∩ LP,iP with arcs of capacity 1 and
cost of 0. For each nonempty level intersection of con-
trol samples there is a demand node with demand of
s′i1,i2,: : : ,iP . This demand node is connected from all con-
trol samples in the intersection L′1,i1 ∩ L′2,i2 ∩ : : : ∩ L′P,iP
with arcs of capacity 1 and cost of 0. The treatment
and control sample nodes through which there is a
positive flow (of some unit) are the ones selected, and
a positive flow between a treatment node and a con-
trol node indicates that the two samples are matched.
This is a minimum cost network flow problem with a
total demand (or supply) bounded by min{n,n′} and
O(nn′) arcs and O(n+ n′) nodes. Therefore, the succes-
sive shortest paths algorithm, discussed below in
Section 3, solves this problem in O((n+ n′)nn′) steps.

3. The Maximum k-Fine-Balance
Selection (k-FBS) Problem

In this section, we show the complexity and algorith-
mic results for the κ-FBS problems. We present the
results separately first for three or more covariates,
then the 2-covariate FBS problem, and finally the
2-covariate κ-FBS problem for κ ≥ 3.

3.1. NP-Hardness for the k-FBS Problem for Any
Constant k with P ≥ 3

We show here that even for κ being constant, the κ-FBS
problem with three or more covariates is NP-hard. This
result excludes (under the assumption that P≠NP) the
possibility that there is a value of κ for which the κ-FBS
problem (to this value of κ) is polynomial time solvable.
The proof via reduction from the three-dimensional
matching problem of this technical result is provided in
Appendix B in the e-companion.

Theorem 2. The κ-FBS problem is NP-hard when p � 3
for any constant κ.

Corollary 1. The κ-FBS problem is NP-hard for any inte-
ger P ≥ 3, for any constant κ.

Hochbaum, Levin, and Rao: Covariate Balancing
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For any constant integer κ, any 3-covariate κ-FBS prob-
lem instance, and any p > 3, we can construct an equiva-
lent P-covariate κ-FBS problem instance as follows; for
each sample of the given 3-covariate κ-FBS problem
instance, we create a sample for the constructed κ-FBS
problem instance such that they have the same level value
for covariate p � 1, 2, 3. For p � 4, : : : ,P, set covariate p to
have only one level so that all samples in the constructed
κ-FBS problem instance have the same value.

Therefore, the NP-hardness of the 3-covariate κ-FBS
problem implies that the P-covariate κ-FBS problem is
NP-hard for every value of Pwhen P ≥ 3. w

Because the κ-FBS problem is NP-hard for P ≥ 3,
there is no polynomial time algorithm unless P � NP.

In the following subsections, we will discuss the
remaining case of the 2-covariate problems.

3.2. The Network Flow Algorithm for FBS with p 5 2
In this subsection,wepresent an integerprogramming for-
mulationwith network flow constraints for the 2-covariate
FBSproblem.We then showhow to solve the problemeffi-
cientlywith anetworkflowalgorithm.

It was noted in Theorem 1 that there is no differentia-
tion between the individual samples selected in each level
intersection, only the number of those selected counts. We
thus define the decision variables as follows:

• xi1,i2 : the number of treatment samples selected
from the (i1, i2) level intersection L1,i1 ∩ L2,i2 for i1 �
1, : : : ,k1 and i2 � 1, : : : ,k2;

• u′i1,i2 : the number of control samples selected from
the (i1, i2) level intersection L′1,i1 ∩ L′2,i2 for i1 � 1, : : : ,k1
and i2 � 1, : : : , k2.

Let ui1,i2 � |L1,i1 ∩ L2,i2 | and u′i1,i2� |L′1,i1 ∩ L′2,i2 | for
i1 � 1, : : : ,k1, i2 � 1, : : : , k2. Clearly, xi1,i2 must be an
integer between 0 and ui1,i2 , and x′i1,i2 must be an inte-
ger between 0 and u′i1,i2 . With these decision variables,
the following is an integer programming formulation
for the 2-covariate FBS problem:

(IP− FBS)
max

∑k1
i1�1

∑k2
i2�1

xi1,i2 (1a)

s:t:
∑k2
i2�1

xi1,i2 −
∑k2
i2�1

x′i1,i2 �0

i1�1,:::,k1 (1b)
∑k1
i1�1

xi1,i2 −
∑k1
i1�1

x′i1,i2 �0

i2�1,:::,k2 (1c)
0≤xi1,i2 ≤ui1,i2

i1�1,:::,k1, i2�1,:::,k2 (1d)
0≤x′i1,i2 ≤u′i1,i2

i1�1,:::,k1, i2�1,:::,k2 (1e)
xi1,i2 ,x

′
i1,i2 integers

i1�1,:::,k1, i2�1,:::,k2 : (1f)

The objective Equation (1a) is the total number of
selected treatment samples. Constraints Equation (1b)
are the fine balance requirement under covariate 1,
because ∑k2

i2�1xi1,i2 equals the number of selected treat-
ment samples in level i1 under covariate 1 and ∑k2

i2�1x
′
i1,i2

equals the number of selected control samples in the
same level. Similarly, constraints Equation (1c) are the
fine balance requirement under covariate 2.

Formulation (IP-FBS) is in fact also a network flow
formulation. In a minimum cost network flow formu-
lation, each column of the constraint matrix corre-
sponding to a variable that is a flow along an arc has
exactly one 1 and one –1. The corresponding MCNF
network is shown in Figure 1, where all capacity
lower bounds are 0, and each arc has a cost per unit
flow and upper bound associated with it. The flow on
the arc from node (1, i1) to node (2, i2) represents vari-
able xi1,i2 , which is bounded between 0 and ui1,i2 , as
stated in constraints Equation (1d); arc from node
(2, i2) to node (1, i1) represents variable x′i1,i2 , which is
bounded between 0 and u′i1,i2 , as stated in constraints

Figure 1. Min-Cost Network Flow Graph Corresponding to
Formulation (IP-FBS)

Note. Arc legend: (cost, upperbound).
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Equation (1e). To get a “minimize” type objective, we
take the negative value of |S| � ∑k1

i1�1
∑k2

i2�1xi1,i2 as the
objective, so the per unit arc cost should be –1 for arcs
from any node in {(1, 1), (1, 2), : : : , (1,k1)} to any node
in {(2, 1), (2, 2), : : : , (2,k2)}. All other arcs have cost 0. It
is easy to verify that constraints Equation (1b) are cor-
responding to the flow balance at nodes (1, i1) for all
i1, and constraints Equation (1c) are corresponding to
the flow balance at nodes (2, i2) for all i2.
Theorem 3. The 2-covariate FBS problem is solved as a
minimum cost network flow problem in O(n · (min{n+
n′,k1k2} + (k1 + k2)log(k1 + k2)) time.

To solve the minimum cost network flow problem
of the 2-covariate FBS problem, we choose the algo-
rithm of successive shortest paths that is particularly effi-
cient for an MCNF with “small” total arc capacity (see
Ahuja et al. (1993), section 9.7). The successive shortest
paths algorithm starts with a network graph with no
negative cycles, so we first modify the network shown
in Figure 1 using a well-known arc reversal transfor-
mation in section 2.4 of Ahuja et al. (1993). The result-
ing network graph is shown in Figure 2.

The successive shortest path algorithm iteratively
selects a node s with excess supply (supply not yet
sent to some demand node) and a node t with unful-
filled demand and sends flow from s to t along the
shortest path in the residual network (Jewell 1958,

Iri 1960, Busaker and Gowen 1961). The algorithm ter-
minates when the flow satisfies all the flow balance
constraints. Because at each iteration the number of
remaining units of supply to be sent is reduced by at
least one unit, the number of iterations is bounded by
the total amount of supply. For the network in Figure 2,
the total supply is n.

At each iteration, the shortest path can be solved with
Dijkstra’s algorithm of complexity O(|A| + |V| log |V|),
where |V| is number nodes and |A| is number of arcs
(Tomizawa 1971, Edmonds and Karp 1972). In our for-
mulation, |V| isO(k1 + k2), which is at mostO(n). Because
the number of nonempty sets L1,i1 ∩ L2,i2 is at most
min{n,k1k2}, the number of unit-cost arcs is O(min
{n,k1k2}). Because the number of nonempty sets L′1,i1 ∩
L′2,i2 is at most min{n′,k1k2}, the number of zero-cost arcs
is O(min{n′,k1k2}). So the total number of arcs |A| is
O(min{n+ n′,k1k2}).

Hence, the total running time of applying the suc-
cessive shortest path algorithm on our formulation is
O(n · (min{n+ n′,k1k2} + (k1 + k2)log(k1 + k2)). w

In contrast to the 2-covariate FBS problem, which is
polynomial time solvable, we show next that the
2-covariate κ-FBS problem is NP-hard when κ ≥ 3.

3.3. NP-Hardness For the 2-Covariate k-FBS
Problem with k ≥ 3

We prove that the 2-covariate κ-FBS problem is
NP-hard for all constant values of κ such that κ ≥ 3.
The proof via reduction from the exact 3-cover prob-
lem is given in Appendix B in the e-companion.

Therorem 4. The 2-covariate κ-FBS problem is NP-hard
for any constant κ ≥ 3.

4. The k-BBS and the k-MBBS Problems
In this section, we show the complexity and algorith-
mic results for the κ-BBS problems. We also show that
these results hold also for κ-MBBS. Because the κ-FBS
problem is a special case of κ-BBS problem with all
bounds being 0 (and also of κ-MBBS, because if all
bounds are 0 then we also have |S′ | � κ |S|), we can
infer from the last section that the κ-BBS and κ-MBBS
problems are also NP-hard for each of the following
cases:

• The number of covariates is at least 3;
• κ ≥ 3.
Next, we present a polynomial time algorithm for the

2-covariate BBS and the 2-covariate MBBS problems.

4.1. The Network Flow Algorithm for BBS and
MBBS with p 5 2

In this subsection, we present an integer program-
ming formulation with network flow constraints for
the 2-covariate BBS problem and a similar formulation
for the 2-covariate MBBS problem. We then show how

Figure 2. Min-Cost Network Flow Graph After Arc Reversal

Note. Arc legend: (cost, upperbound); node legend: (supply).
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to solve the problem efficiently with a network flow
algorithm.

We use the decision variables to indicate the num-
ber of selected samples from the two groups:

• xi1,i2 : the number of treatment samples selected
from the (i1, i2) level intersection L1,i1 ∩ L2,i2 for i1 �
1, : : : ,k1 and i2 � 1, : : : ,k2;

• x′i1,i2 : the number of control samples selected from
the (i1, i2) level intersection L′1,i1 ∩ L′2,i2 for i1 � 1, : : : ,k1
and i2 � 1, : : : ,k2. Additionally, we introduce variables
that represent the deficits and excesses:

• dp,i: the deficit corresponding to level i under cova-
riate p for p ∈ {1, 2} and for i � 1, : : : ,kp;

• ep,i: the excess corresponding to level i under cova-
riate p for p ∈ {1, 2} and for i � 1, : : : ,kp.

With these decision variables the following is an
integer programming formulation for the 2-covariate
BBS problem:

(IP − BBS)

max
∑k1
i1�1

∑k2
i2�1

xi1,i2 (2a)

s:t:
∑k2
i2�1

xi1,i2 −
∑k2
i2�1

x′i1,i2 + e1,i1 − d1,i1 � 0

i1 � 1, : : : , k1 (2b)

∑k1
i1�1

xi1,i2 −
∑k1
i1�1

x′i1,i2 + e2,i2 − d2,i2 � 0

i2 � 1, : : : , k2 (2c)
0 ≤ xi1,i2 ≤ ui1,i2

i1 � 1, : : : , k1, i2 � 1, : : : , k2 (2d)
0 ≤ x′i1,i2 ≤ u′i1,i2

i1 � 1, : : : , k1, i2 � 1, : : : , k2 (2e)

0 ≤ dp,i ≤ B(d)
p,i p ∈ {1, 2}, i � 1, : : : , kp (2f)

0 ≤ ep,i ≤ B(e)
p,i p ∈ {1, 2}, i � 1, : : : , kp (2g)

xi1,i2 , x
′
i1,i2 integers

i1 � 1, : : : , k1, i2 � 1, : : : , k2: (2h)

In order to obtain an integer programming formula-
tion for the 2-covariate MBBS problem, we add the
constraint

∑k1
i1�1

∑k2
i2�1

xi1,i2 �
∑k1
i1�1

∑k2
i2�1

x′i1,i2 :

We denote by (IP-MBBS) the resulting integer
program.

The two formulations (IP-BBS) and (IP-MBBS) are
in fact also network flow formulations. The corre-
sponding MCNF network for (IP-MBBS) is shown in
Figure 3. Here, all capacity lower bounds are 0, and
each arc has a cost per unit flow and upper bound

associated with it. The flow on the arc from node
(1, i1) to node (2, i2) represents variable xi1,i2 , which is
bounded between 0 and ui1,i2 as stated in constraints
Equation (2d); arc from node (2, i2) to node (1, i1) rep-
resents variable x′i1,i2 , which is bounded between 0
and u′i1,i2 as stated in constraints Equation (2e). To
get a “minimize” type objective, we take the nega-
tive value of |S| � ∑k1

i1�1
∑k2

i2�1xi1,i2 as the objective, so
the per unit arc cost should be –1 for arcs from any
node in {(1, 1), (1, 2), : : : , (1,k1)} to any node in
{(2, 1), (2, 2), : : : , (2,k2)}. All other arcs have cost 0.
There are two additional nodes 1, 2 (in addition to
the nodes (1, 1), (1, 2), : : : , (1, k1), (2, 1), (2, 2), : : : , (2,k2)).
The node p � 1, 2 is connected to the nodes (p, 1),
(p, 2), : : : , (p,kp) via edges corresponding to the deficit
and excess of the corresponding level of covariate p.
It is easy to verify that constraints Equation (2b) cor-
respond to the flow balance at nodes (1, i1) for all i1,
and constraints Equation (2c) correspond to the flow
balance at nodes (2, i2) for all i2. Moreover, by sum-
ming up constrains Equation (2b), we get that the
total deficit corresponding to covariate 1 should
equal the total excess corresponding to covariate 1,
and thus node 1 in the network should have 0 sup-
ply/demand. Similar argument applies to node 2 as
well.

The network flow graph for (IP-MBBS) is modified
slightly for the 2-covariate BBS problem (IP-BBS). We
add two arcs, from node 2 to node 1 and from node 1
to node 2. Both of these arcs have infinite capacity
upper bound, zero capacity lower bound, and zero
cost. In addition, all supplies/demands of the nodes
are set to 0. We these adjustments, the minimum cost
flow on the network described in Figure 3 provides
the optimal solution to (IP-BBS).

Using the same arguments as in the proof of Theo-
rem 3, we conclude with the following theorem.

Theorem 5. The 2-covariate BBS problem and the 2-cova-
riate MBBS problem are solved as a minimum cost network
flow problem in O(n · (min{n+ n′,k1k2} + (k1 + k2)log
(k1 + k2)) time.

5. The 2-Covariate k-Fine-Balanced-
Matching (k-BM) Problem

The 1-covariate κ-BM problem is solvable in polyno-
mial time (Rosenbaum et al. 2007). However, the BM
problem is already NP-hard for two or more covari-
ates (Sauppe et al. 2014). For the 2-covariate BM
problem and the 2-covariate κ-BM problem, the com-
plexity status when the numbers of levels of both
covariates are constants (or upper bounded by a
slowly growing function of n) is discussed in Section 7
together with the other three families of problems.
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Here, we consider an intermediate case where only
one of the covariates has a constant number of levels.
We will show here that the 2-covariate BM problem
and the 2-covariate κ-BM problem where one of the
covariates, say the second covariate, has a constant
number of levels can be solved efficiently if and only
if the exact matching problem on bipartite graphs can
be solved efficiently.

Let LBM be the special case of the 2-covariate BM
problem, where the second covariate has a constant
number of levels, whereas the first covariate has no
restriction on the number of levels. In Section 7, we will
establish that if both covariates have constant number of
levels, then the 2-covariate BM problem is polynomial
time solvable. We show here that the complexity status
of the 2-covariate problem in which only one covariate
has a constant number of levels is linked to the complex-
ity status of the exact matching problem and its weighted
version denoted as weighted exact matching. In order to
present this connection, we assume that the distance
matrix is integral, and all distances are given in unary;
that is, there is a polynomial π in the variable denoting
the input encoding length where δij ≤ π for all i, j.

The exact matching in bipartite graph problem is
defined as follows.

5.1. Exact Matching
Given an integer number k together with a bipartite
graph, G � (V1

⋃
V2,E) with |V1 | � |V2 | � q, such that

the edge set E is partitioned into Eb
⋃
Er, where Eb is

the set of blue edges and Er is the set of red edges.
Find a perfect matching that has exactly k blue edges
(and all other q – k edges are red).

The complexity status of the exact matching prob-
lem is as follows. Whereas Mulmuley et al. (1987)
showed that there is a randomized polynomial time
algorithm for the problem, the existence of a deter-
ministic polynomial time algorithm is still an impor-
tant open problem. The correctness of the algorithm
of Mulmuley et al. (1987) follows by using their isolat-
ing lemma, and the algorithm itself is based on com-
puting the square root of the determinant of a matrix
that is randomly obtained from the input graph G
with the partition of the edges into blue and red.

The weighted exact matching problem is defined as
follows.

5.2. Weighted Exact Matching
Given a target value K and a bipartite graph G � (V,E)
together with nonnegative integral distances δe for all
e ∈ E, there is a polynomial π in the variable that

Figure 3. Min-Cost Network Flow Graph Corresponding to Formulation (IP-MBBS)

Note. Arc legend: (cost, upperbound).

Hochbaum, Levin, and Rao: Covariate Balancing
10 Operations Research, Articles in Advance, pp. 1–15, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

70
.1

75
.1

39
.5

6]
 o

n 
22

 S
ep

te
m

be
r 

20
22

, a
t 2

1:
24

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



equals |V| + |E| such that δe ≤ π for all e ∈ E. Find a
perfect matching of total distance exactly K.

Note that the weighted exact matching problem is a
generalization of the exact matching problem, because
the later problem can be interpreted as the weighted
exact matching problem where the weight of a blue
edge is 1 and the weight of a red edge is 0. Thus, a poly-
nomial time algorithm for the weighted exact matching
problem gives a polynomial time algorithm for the
exact matching problem. On the other hand, it is known
that a polynomial time algorithm for the exact matching
problem gives a polynomial time algorithm for the
weighted exact matching problem (see proposition 1 in
Papadimitriou and Yannakakis 1982). If the algorithm
for the exact matching is deterministic (randomized),
then the algorithm for the weighted exact matching
is deterministic (randomized, respectively) as well
(Papadimitriou and Yannakakis 1982). Therefore, the com-
plexity of the weighted problem has the same status as
the one of the exact matching problems. Namely, the
result of Mulmuley et al. (1987) gives a randomized poly-
nomial time algorithm for the weighted exact matching
problem, whereas the existence of a deterministic polyno-
mial time algorithm for this problemwill result in a deter-
ministic polynomial time algorithm for the exact matching
in bipartite graphs problem.

We show in Appendix C in the e-companion the fol-
lowing connections between the exact matching problem
(or the weighted exact matching) and problem LBM.

Theorem 6. If there is a deterministic (or randomized)
polynomial time algorithm for LBM, then there is a deter-
ministic (or randomized, respectively) polynomial time
algorithm for exact matching in bipartite graphs.

Theorem 7 . If there is a deterministic (or randomized)
polynomial time algorithm for weighted exact matching in
bipartite graphs, then there is a deterministic (or random-
ized, respectively) polynomial time algorithm for LBM.

Next, we consider the κ-LBM that is the special case
of 2-covariate κ-BM, where the second covariate has a
constant number of levels, and once again we assume
that the distance matrix is integral and the maximum
distance is upper bounded by a polynomial π in the
variable that equals the input encoding length. We
show in Appendix C that κ-LBM has the same com-
plexity status as LBM (for all κ ≥ 2). That is, we estab-
lish the following result.

Theorem 8. There is a polynomial time algorithm for LBM if
and only if there is a polynomial time algorithm for κ-LBM.

6. The Maximum Selection k-Fine-
Balance Matching (k-MSBM) Problem

Because any κ-BM problem can be solved as a κ-MSBM
problem with the same κ and the same number of

covariates, we can infer that the P-covariate κ-MSBM
problem is also NP-hard for P ≥ 2 and any constant κ.
And in Section 2, we show that the 1-covariate MSBM
problem can be solved as an MCNF problem in polyno-
mial time. We show in Appendix B in the e-companion
that the 1-covariate κ-MSBM problem is NP-hard even
for any constant κ ≥ 3 by reduction from the Exact-3-
cover problem.

Theorem 9. For any constant value of κ such that κ ≥ 3,
the 1-covariate κ-MSBM problem is NP-hard even with
only one level.

For the 1-covariate κ-MSBM problem where κ � 2,
the complexity status remains open.

7. Fixed-Parameter Tractable Algorithms
In this section, we consider the special cases of the
κ-FBS, κ-BBS, κ-BM, and MSBM problems, where all
covariates have a small number of levels. Let K �∏P

i�1ki be the number of level intersections. Observe
that if the number of covariates is constant and all
covariates have a constant number of levels, then K is
a constant. In this section, we establish that the prob-
lems κ-FBS, κ-BBS, κ-BM, and MSBM can be solved in
fixed-parameter tractable (FPT) time with parameter
K. In order to state these results, we say that a prob-
lem is fixed-parameterized complexity with parame-
ter K and denote it by FPT(K) if it has an algorithm
whose time complexity is upper bounded by a func-
tion of the form f (K) ·poly, where f(K) is some com-
putable function of the parameter K and poly is some
polynomial in the variable that equals the input
binary encoding length. We also say that an algorithm
runs in FPT(K) time and mean that its time complexity
can be upper bounded by a function of the form
f (K) ·poly, where f(K) is some computable function of
the parameter K and poly is some polynomial in the
variable that equals the input binary encoding length.
Here, we show that these problems, namely κ-FBS,
κ-BBS, κ-BM problems for all κ, and MSBM problem,
are FPT(K). In particular, our results imply that these
problems are polynomial time solvable if K is a con-
stant, but they also provide such polynomial time
algorithms for some superconstant values of K like
K �O(log n=log log n). As shown in Theorem 9, unless
P=NP we cannot obtain similar results for κ-MSBM
where κ ≥ 3. The complexity status of the 2-MSBM
problem with constant K is open.

Our proof for the FPT(K) results uses the existence
of fast algorithms for solving integer programming in
fixed dimension and for solving mixed-integer linear
programs if the number of integral variables is fixed.
In Lenstra Jr. (1983) (also see Kannan 1983 for an
improved time complexity of these algorithms), it is
shown that the integer linear programming problem
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with a fixed number of variables is polynomially solv-
able; Lenstra Jr. (1983) also showed that a mixed-integer
linear program with a fixed number of integer variables
can be solved in polynomial time. In fact, these algo-
rithms run in FPT time, with parameter being the num-
ber of integral variables. Therefore, to prove our results,
we show either an integer programming (IP) formula-
tion with the number of decision variables O(K) or a
mixed-integer linear program (MILP) with O(K) integer
variables such that solving this MILP to optimality
ensures that the resulting solution is integral and solves
the corresponding problem.

7.1. The k-FBS Problem
First consider the κ-FBS problem. For this problem,
we use an integer program with dimension O(K) that
is based on (IP-FBS). Let ui1,i2,: : : ,iP � |L1,i1 ∩ L2,i2 ∩ : : : ∩
LP,iP | and u′i1,i2,: : : ,iP � |L′1,i1 ∩ L′2,i2 ∩ : : : ∩ L′P,iP | for ip � 1,
: : : ,kp, p � 1, : : : ,P. The decision variables are as
follows:

xi1,i2,: : : ,iP : the number of treatment samples selected
from the (i1, i2, : : : , iP) level intersection L1,i1 ∩ L2,i2 ∩
: : : ∩ LP,iP for ip � 1, : : : ,kp, p � 1, : : : ,P;

x′i1,i2,: : : ,iP : the number of control samples selected
from the (i1, i2, : : : , iP) level intersection L′1,i1 ∩ L′2,i2 ∩
: : : ∩ L′P,iP for ip � 1, : : : ,kp, p � 1, : : : ,P.

The integer programming formulation is as follows:

max
∑k1
i1�1

∑k2
i2�1

⋯
∑kP
iP�1

xi1,i2,: : : ,iP (3a)

s:t: κ ·∑k1
i1�1

:::
∑kp−1
ip−1�1

∑kp+1
ip+1�1

:::
∑kP
iP�1

xi1,i2,: : : ,iP

� ∑k1
i1�1

:::
∑kp−1
ip−1�1

∑kp+1
ip+1�1

:::
∑kP
iP�1

x′i1,i2,: : : ,iP

p � 1, : : : ,P ip � 1, : : : , kp (3b)

0 ≤ xi1,i2,: : : ,iP ≤ ui1,i2,: : : ,iP p � 1, : : : ,P,

ip � 1, : : : , kp (3c)

0 ≤ x′i1,i2,: : : ,iP ≤ u′i1,i2,: : : ,iP p � 1, : : : ,P,

ip � 1, : : : , kp (3d)

xi1,i2,: : : ,iP , x
′
i1,i2,: : : ,iP integers p � 1, : : : ,P,

ip � 1, : : : , kp: (3e)

Note that this integer programming formulation has
2K decision variables and O(K) constraints, and thus
the algorithm that constructs it and solves it to opti-
mality runs in FPT(K) time. The optimal solution for
this integer program encodes the optimal solution for
κ-FBS similarly to the proof of Theorem 1.

7.2. The k-BBS Problem and the
k-MBBS Problem

We introduce an integer programming formulation
for the problem based on (IP-BBS) with O(K) decision
variables and O(K) constraints. We use the decision
variables to indicate the number of selected samples
from the two groups:

xi1,i2,: : : ,iP : the number of treatment samples selected
from the (i1, i2, : : : , iP) level intersection L1,i1 ∩ L2,i2 ∩⋯
∩ LP,iP for ip � 1, : : : ,kp and for p � 1, : : : ,P;

x′i1,i2,: : : ,iP : the number of control samples selected
from the (i1, i2, : : : , iP) level intersection L1,i1 ∩ L2,i2 ∩⋯
∩ LP,iP for ip � 1, : : : ,kp and for p � 1, : : : ,P.

Additionally, we use variables that represent the
deficits and excesses:

dp,i: the deficit corresponding to level i under covari-
ate p for p ∈ {1, 2, : : : ,P} and for i � 1, : : : ,kp;

ep,i: the excess corresponding to level i under covari-
ate p for p ∈ {1, 2, : : : ,P} and for i � 1, : : : ,kp.

With these decision variables, the following is an
integer programming formulation for the κ-BBS
problem:

max
∑k1
i1�1

∑k2
i2�1

⋯
∑kP
iP�1

xi1,i2,: : : ,iP

s:t: κ ·∑k1
i1�1

:::
∑kp−1
ip−1�1

∑kp+1
ip+1�1

:::
∑kP
iP�1

xi1,i2,: : : ,iP−

−∑k1
i1�1

:::
∑kp−1
ip−1�1

∑kp+1
ip+1�1

:::
∑kP
iP�1

x′i1,i2,: : : ,iP+
+ ep,ip − dp,ip � 0 p � 1, : : : ,P ip � 1, : : : , kp
0 ≤ xi1,i2,: : : ,iP ≤ ui1,i2,: : : ,iP

p � 1, : : : ,P ip � 1, : : : , kp

0 ≤ x′i1,i2,: : : ,iP ≤ u′i1,i2,: : : ,iP

p � 1, : : : ,P ip � 1, : : : , kp

0 ≤ dp,i ≤ B(d)
p,i p ∈ {1, 2, : : : ,P}, i � 1, : : : , kp

0 ≤ ep,i ≤ B(e)
p,i p ∈ {1, 2, : : : ,P}, i � 1, : : : , kp

xi1,i2,: : : ,iP , x
′
i1,i2,: : : ,iP integers

p � 1, : : : ,P ip � 1, : : : , kp

dp,i, ep,iintegers p ∈ {1, 2, : : : ,P}, i � 1, : : : , kp

Because this integer programming formulation has
O(K) decision variables and O(K) constraints, it can
be solved to optimality in FPT(K) time. For the
κ-MBBS problem, we use the fact that it is a special
case of κ-BBS problem with one additional covari-
ate, but this transformation does not change the
value of K, so the same result holds for κ-MBBS
problem as well.
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7.3. The k-BM Problem
Next, consider the κ-BM problem. In Section 2, we
describe an MCNF formulation when the level inter-
section sizes s′i1,i2,: : : ,iP for p � 1, : : : ,P and ip � 1, : : : ,kp
are given. Observe that if we treat the sizes s′i1,i2,: : : ,iP
for all p and ip as decision variables, then by enforcing
the integrality of these K variables and adding the
constraints saying that

∑k1
i1�1

:::
∑kp−1
ip−1�1

∑kp+1
ip+1�1

:::
∑kP
iP�1

s′i1,i2,: : : ,iP � κ · ℓp,ip ,

ip � 1, : : : ,kp p � 1, : : : ,P,

forcing the κ-fine balance constraints to the MCNF
formulation, we get a MILP formulation of κ-BM with
K integral variables. In fact, if we restrict ourselves to
common integral values of these K variables, then the
other decision variables are integral, as we argue next.
By considering the values of these K integral variables
as constants, the resulting linear programming formu-
lation is in fact an MCNF LP formulation whose sup-
ply/demand vector depends on the values of these K
integral variables. Thus, the optimal solution for the
MILP is without loss of generality integral, and even
if it does not satisfy this integral requirement, it can be
transformed to another optimal solution that is inte-
gral in polynomial time.

Because the number of variables of the resulting
mixed-integer program is at most n · n′ +K, the num-
ber of integer variables is K, and the number of con-
straints is O(n · n′), we conclude that the algorithm
that formulates this MILP and solves it to optimality,
guaranteeing that the optimal solution is integral,
runs in FPT(K) time.

7.4. The MSBM and k-MSBM Problems
We know from Theorem 9 that the 1-covariate κ-MSBM
problem for κ ≥ 3 is NP-hard already if the unique cova-
riate has only one level.

We consider next theMSBM problem. In Section 2, we
describe anMCNF formulation if all of the level intersec-
tion sizes si1,i2,: : : ,iP and s′i1,i2,: : : ,iP are given. Observe that if
we treat si1,i2,: : : ,iP and s′i1,i2,: : : ,iP as decision variables, then
by enforcing the integrality of these O(K) variables and
adding the constraints saying that

∑k1
i1�1

:::
∑kp−1
ip−1�1

∑kp+1
ip+1�1

:::
∑kP
iP�1

si1,i2,: : : ,iP

�∑k1
i1�1

:::
∑kp−1
ip−1�1

∑kp+1
ip+1�1

:::
∑kP
iP�1

s′i1,i2,: : : ,iP ,

ip � 1, : : : ,kp p � 1, : : : ,P,

That is, the fine balance constraints, in addition to the
constraint saying that the sum over all si1,i2,: : : ,iP equals
the objective function value of FBS, to the MCNF for-
mulation, we get a MILP formulation of MSBM with
2K integral variables. In fact, if we restrict ourselves to
common integral values of these 2K variables, then the
other decision variables are without loss of generality
integral as well, as we argue next. By considering the
values of these 2K integral variables as constants, the
resulting linear programming formulation is in fact an
MCNF LP formulation whose supply/demand vector
depends on the values of these 2K integral variables.
Thus, the optimal solution for the MILP is without loss
of generality integral, and even if it does not satisfy this
integral requirement, it can be transformed to another
optimal solution that is integral in polynomial time.

Because the number of variables of the resulting
mixed-integer program is at most n · n′ + 2K, the num-
ber of integer variables is 2K, and the number of con-
straints is O(n · n′), we conclude that the algorithm
that formulates this MILP and solves it to optimality,
guaranteeing that the optimal solution is integral,
runs in FPT(K) time. The existence of such an algo-
rithm implies that MSBM is solvable in polynomial
time for a fixed number of level intersections.

Hence, we proved that MSBM is fixed-parameter
tractable; the fixed-parameter tractability of κ-MSBM
for κ ≥ 3 is NP-hard, and the fixed parameter tractabil-
ity of 2-MSBM is open.

8. Conclusions
This paper presents a comprehensive complexity
study of several problems related to covariate balanc-
ing. For the problems of fine balance selection and
bounded balance selection, for two covariates, these
problems of maximizing the size of the treatment
selection subject to the fine balance constraint and the
bounded balance constraints, respectively, are both
polynomial time solvable with network flow. The
respective two-covariate problems, with κ factor selec-
tion of the control samples, are hard for κ ≥ 3 and
open for κ � 2. These problems and the other prob-
lems studied here are NP-hard for three or more cova-
riates. We further show that the problems with fixed
numbers of covariates and levels are fixed-parameter
tractable, including for general κ, except for κ-MSBM,
which is fixed-parameter tractable only for κ � 1 and
NP-hard for κ ≥ 3. The practical implications of these
complexity results are that for a small number of level
intersections and mostly for 2-covariates, the prob-
lems can be efficiently solved. These facts can be used
in relaxations that aggregate the level intersections to
a small number or aggregate covariates to two repre-
sentative covariates. However, the possible use of
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such relaxations depends on additional aspects that
are beyond the scope of our study because they
should be based on strong statistical justification.
Such justification need not exist in all cases, but we
believe that our work will initiate studies concerning
the question of under what cases such procedures
have sound statistical justifications.

References
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