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Abstract The weighted matroid parity problems for the matching matroid and gam-
moids are among the very few cases for which the weighted matroid parity problem
is polynomial time solvable. In this work we extend these problems to a general rev-
enue function for each pair, and show that the resulting problem is still solvable in
polynomial time via a standard weighted matching algorithm. We show that in many
other directions, extending our results further is impossible (unless P = NP). One
consequence of the new polynomial time algorithm is that it demonstrates, for the
first time, that a prize-collecting assignment problem with “pair restriction” is solved
in polynomial time. The prize collecting assignment problem is a relaxation of the
prize-collecting traveling salesman problem which requires, for any prescribed pair
of nodes, either both nodes of the pair are matched or none of them are. It is shown
that the prize collecting assignment problem is equivalent to the prize collecting cycle
cover problem which is hence solvable in polynomial time as well.
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1 Introduction

Let G = (V, E) be an undirected graph, and let S ⊆ V be a given subset of nodes. A
matchingmatroid is defined over the ground set Swhere a subset S′ ⊆ S is independent
in this matroid if there exists a matching in G that covers all nodes in S′. Note that
for a matching matroid M , there is always a bipartite graph G ′ such that M is the
matching matroid of G ′.

A gammoid is a generalization of the matching matroid. Here, we consider a rep-
resentation of a gammoid as used by Tong et al. [22]. A gammoid is represented by
a bipartite graph G = (V ∪ U, E) (where V and U are the sides of the bipartition),
and we are given a subset V ′ ⊆ V such that G has a matching covering all nodes of
V \V ′. The ground set of the gammoid is V ′, and a subset I ⊆ V ′ is independent in
the gammoid if there exists a matching covering all nodes in I ∪ (V \V ′). Observe that
if V = V ′, then the gammoid is a matching matroid. This definition of a gammoid is
based on its characterization as the contraction of a transversal matroid.

Given amatroid over a ground set S, theweightedmatroid parity over thismatroid is
defined as follows. The elements of S are partitioned into pairs where each pair {s, s′}
is associated with a positive weight π{s,s′} and the objective is to find an independent
set of the matroid consisting of a subset of pairs of maximum total weight (that is, an
independent set that is a union of a subset of the pairs that maximizes the total weight
of the pairs in this subset). The unweighted matroid parity is the special case of the
weighted matroid parity where for every pair in the collection of pairs the weight of
the pair is one.

The unweighted matroid parity was studied extensively (see e.g. Chapter 43 in
[20] for a survey of results). Here, we mention that the problem is NP-hard for general
matroids and unsolvable in polynomial time in the oraclemodel [20]. However, Lovász
[14] established a polynomial time algorithm for the special case of the unweighted
matroid parity for linear matroid with a given representation. The algorithm of Lovász
as well as its later improvements [6,8,16,17] heavily use the fact that the problem is
unweighted, and it is unclear how (or if possible at all) to generalize this result for the
weighted case. The unweighted problem for general matroid has a polynomial time
approximation scheme [13].

The complexity status of the weighted matroid parity is unclear. The unique cases
for which polynomial time algorithms were established [22] are the gammoid and
its special cases of the matching matroid and the transversal matroid. However, ran-
domized pseudopolynomial time algorithms are known for the case of linear matroids
with a given representation [5,15], and they lead to fully polynomial time randomized
approximation schemes for this case of linear matroids with a given representation
[18]. For general matroids, there is a 3/2-approximation algorithm [13], and for the
special case of strongly base orderable matroids there is a polynomial time approxi-
mation scheme [21] (where a matroid is a strongly base orderable matroid if for any
two bases B1,B2 of the matroid there exists a bijection f : B1 → B2 such that for any
X ⊆ B1 the set B1\X ∪ ⋃

x∈X { f (x)} is also a base of the matroid).
In this work, we study the following generalization of the weighted matroid parity

for gammoids and matching matroids that we call matching with pairs (MP).
The input consists of an undirected (not necessarily bipartite) graph G = (V, E) with

123



Weighted matching with pair restrictions 651

weight for each edge where w(e) denotes the weight of the edge e, a subset V ′ ⊆ V ,
and a set of pairs P where each pair is a subset of V with exactly two nodes, such
that each node in V appears in at most one pair of P , for every p ∈ P , p ⊆ V ′,
and G has a matching that matches all nodes in V \V ′. Each pair p ∈ P is associated
with a reward function π p defined over the power set of p (This means that there
is a reward for the case that both nodes are matched, or one is matched, the other
is matched, or none are matched). Both the weights of edges and the reward could
be positive or negative. A feasible solution is a matching M in G that matches all
nodes in V \V ′. For a given matching M , we denote by V (M) the set of nodes that are
matched in M , and X (M) the set of nodes left exposed by M . The goal is to find a
matching M inG such that V \V ′ ⊆ V (M) that maximizes the sum of the total weight
of its edges and the total reward of all pairs in P , where a pair p ∈ P is awarded a
reward π p(V (M) ∩ p). That is, the goal is to maximize the value of M defined as
Z(M) = ∑

e∈M w(e) + ∑
p∈P π p(V (M) ∩ p) over all matchings M of G such that

V \V ′ ⊆ V (M). Note that the definition of the reward functions can be used to enforce
logical conditions on pairs such as: for a given pair either both are matched or both
are exposed (by setting the reward of other options to be −∞), or for a pair {u, v} if u
is matched then v is also matched, etc. We let V P = ∪p∈P p be the set of nodes that
appear in pairs of P .

1.1 Motivation

A well known relaxation of the TSP defined on a graph G = (V, E) is attained by
relaxing the subtour elimination constraints. The relaxed problem is to find a cycle
covering at minimum total edge cost (also known as the 2-factor problem). That is,
a subset of edges E ′ ⊆ E that forms a collection of cycles containing all nodes, and
thus the degree of each node with respect to E ′ is 2 (or in the directed case each
node has outdegree and indegree equal to 1 with respect to the set of arcs E ′). The
minimum cost cycle covering problem can be solved as an assignment problem and
is thus polynomial time solvable. The construction of the assignment bipartite graph
has the nodes of G duplicated, one copy on each side of the bipartition.

Consider next the prize collecting TSP, where the goal is to find a tour that visits a
subset of the nodes so that the cost of the tour, minus the rewards/prizes collected from
the nodes visited isminimum (see e.g. [1–4,7,10–12,19]). For the prize collecting TSP
onemight consider the analogous relaxation, the prize-collecting assignment problem,
where the goal is to find a matching on a subset of the nodes, so that the cost of the
matching minus the prize value associated with the subset of nodes is minimum. It is
easy to see that this problem is solved in polynomial time as minimumweight bipartite
matching.

Although the prize-collecting assignment problem is a relaxation of the prize-
collecting TSP problem, it is a poor relaxation. That is, because the implied collection
of arcs may have some nodes with indegree (outdegree) equal to 1 while the outdegree
(indegree) is equal to 0. Therefore the resulting collection of edges may not form a
collection of cycles. To impose the condition that in the prize collecting tour each node
is of degree 2 or 0 one has to add pair restrictions. That is, if one node is matched then
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the other node of the pair has to be matched also. Thus either both nodes are matched,
or neither of them is matched. With this restriction, the solution would be optimal for
the prize collecting cycle cover in which the cost of the edges in the cycles, minus the
sum of prizes derived from the nodes covered in the cycles, is minimum.

The prize-collecting assignment problem with pair restrictions is introduced here,
for the first time, and is shown to be solved in polynomial time as a special case of
MP . More precisely, we define a maximization problem called prize collecting
2- factor (PCT F) (that is equivalent to the minimization problem discussed above)
as follows. Given an input graph G = (V, E) with cost c(e) for each edge e ∈ E and
prize π(v) for each node v ∈ V , the goal is to select a subset of nodes S ⊆ V and an
edge multi-set E ′ ⊆ E where each edge e ∈ E ′ connects two nodes of S (and each
edge of E is allowed to be taken twice to E ′) and the degree of each node (of S) in the
multi-graph (S, E ′) is exactly 2, so that

∑
v∈S π(v) − ∑

e∈E ′ c(e) is maximized.
We now explain how to use the algorithm for MP for solving PCT F : Given

an input for PCT F with a graph G = (U, E), edge costs c(e), and node prizes
π(v), we construct a bipartite graph G(2) = (U ∪ U ′, E (2)) as an input for MP by
duplicating each node of v ∈ U to two copies, v, v′ (where v ∈ U and v′ ∈ U ′). For
each edge e = [u, v] ∈ E there are two edges [u, v′], [u′, v] ∈ E (2) both of weight
w([u, v′]) = w([u′, v]) = −c(e). Let the list of pairs be {{u, u′} : u ∈ U } (that
is, for each original node we have a pair consisting of its two copies). The input for
MP is defined by letting π {u,u′}(A) be π(u) if A = {u, u′}, 0 if A = ∅, and −∞
otherwise (meaning we are not allowed to match only one copy of the original node
u). In the resulting instance, every solution of positive value has the property that for
each original node u ∈ U either both copies are matched (in this case we will say that
u is in the solution) or both are exposed. Based on an optimal solution for the instance
ofMP we will create an optimal solution for the prize collecting 2-factor instance by
defining S as the set of nodes in the solution and E ′ as the set of edges for which at
least one of the copies of the edge is in the solution (if both copies are in the solution
forMP , we will take two copies of the edge for E ′).

1.1.1 Paper outline

In Sect. 2, we show that MP is polynomially solvable using an algorithm for com-
puting a maximum weight matching in an auxiliary multi-graph with O(|V | + |P|)
nodes and O(|E |+|P|) edges. This results in a polynomial time algorithm for solving
PCT F . In Sect. 4 we show that various generalizations of the result of Sect. 2 are
impossible as these generalizations are NP-hard in the strong sense.

2 SolvingMP in polynomial time using a maximum weight matching

Given the input to MP we construct a new (multi-)graph Ḡ = (V̄ , Ē) where G is a
subgraph of Ḡ, by adding a gadget consisting of three newnodes and five new edges for
eachpair. Formally, V̄ = V∪∪p∈PVp and Ē = E∪∪p∈P Ep where in Ē theremight be
parallel edges. For every p ∈ P ,Vp consists of three newnodes (distinct for eachpair in

P) denoted as q(p)
1 , q(p)

2 , q(p)
3 . Next, we define the edges in Ep for a pair p = {u, v}
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x 

u v 

q({u,v})
2 q({u,v})

1 

q({u,v})
3 

π ({u,v})( ) 

w([u,v])+π ({u,v})({u,v}) 

w([u,x])+½∙π ({u,v})({u,v}) 

π ({u,v})({v}) - ½∙π ({u,v})({u,v}) π ({u,v})({u}) - ½∙π ({u,v})({u,v}) 

0 0 

ø

Fig. 1 An example of the graph Ḡ where G has three nodes x, u, v and two edges [x, u], [u, v] and P
consists of one pair {u, v}. The dashed edges are edges in E whereas the solid edges are in E{u,v}. Next to
each edge we state its weight according to w′

(u 
= v). We have Ep =
{[

v, q(p)
1

]
,
[
u, q(p)

2

]
, [u, v],

[
q(p)
1 , q(p)

3

]
,
[
q(p)
2 , q(p)

3

]}
,

thus (p ∪ Vp, Ep) is a cycle over five nodes u, v, q(p)
1 , q(p)

3 , q(p)
2 appearing along the

cycle in this order.
Finally, we define the new weight function w′ : Ē → R defined over the edges of

Ḡ. First, consider an edge [u, v] ∈ E . If u, v /∈ V P , then w′([u, v]) = w([u, v]); If
u ∈ V P and v /∈ V P , let x ∈ V be such that {u, x} ∈ P , and define w′([u, v]) =
w([u, v]) + π {u,x}({u,x})

2 ; similarly, if u /∈ V P and v ∈ V P , let x ∈ V be such that

{v, x} ∈ P , and define w′([u, v]) = w([u, v]) + π {v,x}({v,x})
2 ; if {u, v} ∈ P , then

define w′([u, v]) = w([u, v]) + π {u,v}({u, v}); last, if u, v ∈ V P and {u, v} /∈ P ,
let x, y ∈ V be such that {u, x}, {v, y} ∈ P and define w′([u, v]) = w([u, v]) +
π {u,x}({u,x})

2 + π {v,y}({v,y})
2 . This completes the description of the new weights of edges

in E .
Next, consider an edge of Ep for a pair p = {u, v}. We define the following weights

of the five edges in Ep. w′([u, v]) = π {u,v}(∅), w′
([

v, q(p)
1

])
= π {u,v}({u}) −

π {u,v}({u,v})
2 , w′

([
u, q(p)

2

])
= π {u,v}({v}) − π {u,v}({u,v})

2 , w′
([

q(p)
1 , q(p)

3

])
=

w′
([

q(p)
2 , q(p)

3

])
= 0. We refer to Fig. 1 for an illustration of the gadget with the new

weight function.
In this resulting graph Ḡ with resulting edge weight w′ we compute a maximum

weight matching M ′ such that (V \V ′) ∪ ∪p∈P

(
p ∪

{
q(p)
3

})
⊆ V (M ′) (so we com-

pute a maximum weight matching under the constraint that this set of nodes must be
matched).

Lemma 1 We have the following properties.
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1. Given a matching M in G that is a feasible solution for MP , there exists a
matching M ′ in Ḡ that is feasible for the auxiliary problem defined above, such
that the total weight of M ′ according to w′ equals the value of M as a solution to
MP .

2. Given a matching M ′ in Ḡ that is a feasible for the auxiliary problem defined
above, there exists a matching M = M ′ ∩ E in G that is feasible for MP , such
that the total weight of M ′ according to w′ equals the value of M as a solution to
MP .

Proof Computing the matching M ′ from M , we start with M ′ = M , and process the
pairs in P one by one. Each such pair p will have a corresponding iteration, in which
we add edges from Ep to the matching. Consider a pair p = {u, v} that is considered
in the current iteration.

If p ⊆ X (M), then we add the edges [u, v],
[
q(p)
1 , q(p)

3

]
to (the current) matching

M ′. If p∩V (M) = {u}, then we add the edges
[
v, q(p)

1

]
,
[
q(p)
2 , q(p)

3

]
to the matching

M ′. Similarly, if p∩V (M) = {v}, then we add the edges
[
u, q(p)

2

]
,
[
q(p)
1 , q(p)

3

]
to the

matchingM ′. Finally, if p ⊆ V (M), thenwe add to thematching the edge
[
q(p)
1 , q(p)

3

]
.

Observe that when we process the pair p = {u, v} we added to the matching only
edges from Ep in a way that the resulting set M ′ is indeed a matching, and since we
only augment M , the resulting matching matches all nodes in V \V ′. The feasibility
of the matching is ensured by the fact that whenever we process a pair p, in all cases
the nodes in p ∪ {q(p)

3 } are matched either in M or by the new edges we add to M ′ in
the current iteration. This shows that if M is feasible for the MP instance, then the
constructed matching M ′ is feasible for the auxiliary problem.

In the other direction, if M ′ is feasible for the auxiliary problem, then all nodes of
V \V ′ are matched in M ′. Observe that in Ḡ all edges adjacent to nodes of V \V ′ are
edges of E (because V P ⊆ V ′) and thus M = M ′ ∩ E is a feasible solution forMP .
Thus, we conclude that M is a feasible solution for MP if and only if M ′ is feasible
for the auxiliary problem.

It remains to show that Z(M) (the value of M as a solution toMP) equals the total
weight of M ′. To do that, we split the weight according to w′ of edges of M incident
to nodes in V P ; a weight of such an edge [x, y] is split into an original weight of

w([x, y]), a prize value of π {x,z}({x,z})
2 for x if there exists z such that {x, z} ∈ P , and

a prize value of π {y,z}({y,z})
2 for y if there exists z such that {y, z} ∈ P (this means in

particular that if {x, y} ∈ P then we split w′([x, y]) − w([x, y]) evenly between x
and y, and otherwise if |{x, y} ∩ V P | = 1, then w′([x, y]) − w([x, y]) is the prize
value of the node of {x, y}∩V P ). For an edge in Ep, we say that its weight according
to w′ is a prize value. Now, the claim that Z(M) equals the total weight of M ′ follows
by showing that for every pair p = {u, v} ∈ P in all cases the total prize values of the
edges in Ep and the nodes in p equals the reward π p(V (M) ∩ p) of p (in M).

To prove the last claim consider a pair p = {u, v} ∈ P . First, consider the direction
inwhichwe augment thematchingM into a feasible solution for the auxiliary problem.

If p ∩ V (M) = ∅, then the matching is augmented by the edges [u, v],
[
q(p)
1 , q(p)

3

]
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of total weight of π {u,v}(∅) + 0 that equals the reward of p. If p ∩ V (M) = {u},
then the matching is augmented by the edges

[
v, q(p)

1

]
,
[
q(p)
2 , q(p)

3

]
of total weight

of π {u,v}({u})− π {u,v}({u,v})
2 and together with the prize value of u, we get a total prize

value that equals the reward of p. Similarly, if p ∩ V (M) = {v}, then the matching

is augmented by the edges
[
u, q(p)

2

]
,
[
q(p)
1 , q(p)

3

]
of total weight of π {u,v}({v}) −

π {u,v}({u,v})
2 and together with the prize value of v, we get a total prize value that

equals the reward of p. Finally, if p ⊆ V (M), then we add to the matching the edge[
q(p)
1 , q(p)

3

]
of zero weight, but each of u and v obtains the prize value π {u,v}({u,v})

2 ,

and together this equals the reward of p.
Finally, consider the direction in which we are given a feasible solution for the

auxiliary problem M ′ and we define the matching M = M ′ ∩ E as a feasible solution
forMP .Wewill show that the total weight ofM ′∩Ep togetherwith the prize values of
u and v equals the reward of p (according to M). If p∩V (M) = ∅, then M ′ ∩Ep must

be either [u, v],
[
q(p)
1 , q(p)

3

]
or [u, v],

[
q(p)
2 , q(p)

3

]
(because no other feasiblematching

in
({

u, v, q(p)
1 , q(p)

2 , q(p)
3

}
, Ep

)
covers u, v, q(p)

3 , and in both cases the total weight

of the edges inM ′∩Ep isπ {u,v}(∅)+0 that equals the reward of p. If p∩V (M) = {u},
then M ′ ∩ Ep =

{[
v, q(p)

1

]
,
[
q(p)
2 , q(p)

3

]}
of total weight of π {u,v}({u})− π {u,v}({u,v})

2
and together with the prize value of u, we get a total prize value that equals the reward

of p. Similarly, if p ∩ V (M) = {v}, then M ′ ∩ Ep =
{[

u, q(p)
2

]
,
[
q(p)
1 , q(p)

3

]}
of

total weight of π {u,v}({v})− π {u,v}({u,v})
2 and together with the prize value of v, we get

a total prize value that equals the reward of p. Finally, if p ⊆ V (M), then M ′ ∩ Ep

is either
[
q(p)
1 , q(p)

3

]
or

[
q(p)
2 , q(p)

3

]
of zero weight, but each of u and v obtains the

prize value π {u,v}({u,v})
2 , and together this equals the reward of p. ��

Based on Lemma 1, an algorithm that constructs an instance for the auxiliary
problem, finds a maximumweight matching satisfying the conditions of that instance,
and defines a solution toMP by identifying the set of edges from the solution to the
auxiliary problem belonging to E , solvesMP optimally in the same time complexity
as the algorithm for maximum weighted matching in the auxiliary graph (that must
match a given subset of nodes). Thus, we conclude our main result stated as follows.

Theorem 2 Problem MP can be solved in polynomial time using an algorithm for
maximum weighted matching.

3 Applying the algorithm for solving PCT F

For the instance ofPCT F we are guaranteed that there exists a solution of finite value
(i.e., a solution that does not use edges of Ḡ of weight −∞. Thus, in the instance of
the auxiliary problem that we create (after transforming the instance of PCT F to an

instanceG ofMP) for a pair p = {u, u′}we never use the edges
[
u′, q(p)

1

]
,
[
u, q(p)

2

]

as they have weight of −∞, and thus we can delete them from the graph Ḡ. In the
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f

g

-c([h,g])+ (g)/2+ (h)/2

h

f’

g’

h’0

0

0

-c([h,g])+ (g)/2+ (h)/2

-c([f,g])+ (g)/2+ (f)/2-c([f,g])+fi (g)/2+ (f)/2�

��

� � �

� �

Fig. 2 An example of the resulting graph for solving PCT F via maximum weight bipartite matching
where G is a path over three nodes f, g, h. Next to each edge we state its weight according to w′

resulting graph, for every pair we have a connected component of the three additional
nodes of its gadget, and picking one edge of every such connected component will

match the nodes in
{
q(p)
3 : p ∈ P

}
, and thus we can consider the problem of the

remaining nodes.
Thus, we can remove from Ḡ all nodes of the form q(p)

1 , q(p)
2 , q(p)

3 for all pairs
p. In the resulting graph the auxiliary problem asks to match all nodes where beside
the edges of G with their modified weight w′ (such that w′([u, v′]) = −c([u, v]) +
π(u)/2+ π(v)/2) we add the zero weight edges [u, u′] for every node in the instance
of PCT F . See Fig. 2 for an illustration of the resulting graph and the weight of edges
(according to w′). The resulting graph is a bipartite graph, and we need to compute
a maximum weight perfect matching in it in order to solve optimally the auxiliary
problem. Thus, we conclude the following.

Proposition 3 There exists an algorithm for solving PCT F on a graph with n nodes
and m edges, in the same time complexity of computing a maximum weight perfect
matching in a bipartite graph with 2n nodes and 2m + n edges.

Remark 4 Given an instance of weighted matroid parity for gammoids, one can define
a reward function for every pair of nodes (in the set of pairs) p = {s, s′} in the following
way π p({s}) = π p({s′}) = −∞, π p(∅) = 0, and π p(p) is the weight of this pair in
the weighted matroid parity problem. Then, we can apply the same transformation as
we did above for PCT F and obtain a graph where we look for a maximum weight
matching. This graph that we obtained is equivalent to the instance of the maximum
weight matching instance of Tong et al. [22]. However, our general construction for
MP differs from this construction of Tong et al. [22].
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4 NP-hard generalizations of MP

We first show that generalizing MP to disjoint set of triples makes the problem NP-
hard. Formally, we define the following optimization problem that we call matching
with triples (MT ). The input consists of an undirected graph G = (V, E), and a
set of triples P where each triple is a subset of V consisting of exactly three nodes,
such that each node in V appears in at most one triple of P . The goal is to find a
matching M in G that maximizes the number of triples in P for which M matches all
members of the triple, i.e., to maximize |{p ∈ P : p ⊆ V (M)}|. Notice that this is a
special case of the reward function that assigns non-zero reward only if all nodes of
the triple are matched. In particular MT generalizes the unweighted matroid parity
for the matching matroid to the case of subsets of three elements in each instead of
subsets of two elements (as in the matroid parity problem).

Theorem 5 Problem MT is NP-hard in the strong sense.

Proof We show a reduction from Exact 3-Cover problem (X3C) defined as follows.
The input for X3C is a ground set S = {1, 2, . . . , 3n} and a collection S1, S2, . . . , Sm
of subsets of the ground set where |Si | = 3 for all i . The goal is to decide if there
is a sub-collection of the subsets such that each element of the ground set appears in
exactly one of the subsets in the sub-collection. X3C is NP-hard in the strong sense
(see [9]).

Given an input for X3C, we construct a bipartite graph G = (V, E) where the
nodes in V are partitioned into element nodes and subsets nodes. There is one element
node in G for each element of the ground set, and there are three subsets nodes
for each subset in the collection of subsets. With a slight abuse of notation, for an
element e, we denote by e both the element and its element node. For a subset Si in
the collection of subsets, we denote by S1i , S

2
i , S

3
i its three nodes. The set of triples

is
{
p = {

S1i , S
2
i , S

3
i

} : i = 1, 2, . . . ,m
}
, and it remains to describe the edge set of

the graph G. For each subset Si = {ai , bi , ci } in the collection of subsets such that
ai < bi < ci we have three edges in G as follows:

[
ai , S1i

]
,
[
bi , S2i

]
,
[
ci , S3i

]
. This

completes the description of the input for MT .
To prove the theorem, it suffices to show that there is a solution for X3C if and

only if the optimal solution for the constructed input for MT is at least n. Given a
matching M in G of value (at least) n, for a triple p = {

S1i , S
2
i , S

3
i

}
of our collection

of triples, we have
{
S1i , S

2
i , S

3
i

} ⊆ V (M) if and only if we choose Si to the collection
of subsets in the constructed solution for X3C. Now, since the elements nodes have
degree at most 1 in the matching, each element appears in at most one chosen subset,
and since the matching has value at least n we chose at least n subsets, and thus by
counting, each element appears in exactly one chosen subsets. That is, the instance
for X3C is feasible.

In the other direction, assume that there is a solution for X3C, then we start with
an empty matching M , and for every chosen subset Si = {ai , bi , ci } (to the solution
of X3C), we add to the matching M the three edges [ai , S1i ], [bi , S2i ], [ci , S3i ]. Then,
clearly the triple

{
S1i , S

2
i , S

3
i

}
satisfies

{
S1i , S

2
i , S

3
i

} ⊆ V (M), and since each element
of the ground set appears in at most one chosen subset, the constructed set of edges
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is indeed a matching in G. Thus, the constructed matching M has value at least n as
a solution for MT . ��

We next show that the variant ofMP where pairs are defined as pair of edges and
the objective is to maximize the number of pairs belonging to a matching is NP-hard
(in contrast toMP where the pairs are pairs of nodes and the problem is polynomially
solvable). More precisely, we define the following optimization problem that we call
matching with edge pairs (MEP). The input consists of an undirected multi-
graph G = (V, E), and a set of pairs P where each pair is a subset of E consisting
of exactly two edges, such that each edge in E appears in at most one pair of P . The
goal is to find a matching M in G that maximizes the number of pairs in P for which
M contains the pair, i.e., to maximize |{p ∈ P : p ⊆ M}|.
Theorem 6 Problem MEP is NP-hard in the strong sense.

Proof We show a reduction from 3-Dimensional Matching problem (3DM) defined as
follows. We are given three disjoint sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn},
and C = {c1, c2, . . . , cn} each has n elements, and a collection of subsets T =
{T1, T2, . . . , Tm} where each Ti has exactly one element of each of the sets A, B,C .
The goal is to find out if there exists a sub-collection T ′ of T , such that each element
of A ∪ B ∪ C appears in exactly one subset of T ′. 3DM is NP-complete in the strong
sense (see [9]).

Given an instance for 3DM, we construct an instance for MEP as follows. The
node set of the multi-graph is A ∪ B ∪ C ∪ T , and the edge set is defined as follows.
For each Ti = {ā, b̄, c̄} we have the two edges [ā, b̄] and [c̄, Ti ] in E , and we have
a pair consisting of these two edges. Observe that this definition allows for parallel
edges if ā and b̄ belong to more than one common subset. We say that these two edges
correspond to Ti . We claim that there is a feasible solution for 3DM if and only if there
is a solution M forMEP of value at least n.

If there is a feasible solution T ′ for 3DM, then we let M be the matching consisting
of the edges {[ā, b̄], [c̄, Ti ] : Ti = {ā, b̄, c̄} ∈ T ′} (that is, the matching edges are the
edges that correspond to the subsets in the solution for 3DM). Then, the value of this
collection of edges is clearly |T ′| = n, and this is a matching because each node of
T appears in at most one edge in G, while every node in A ∪ B ∪ C appears at most
once in the selected subsets of T ′ and thus have degree at most one in the subgraph
whose edge set is the selected edges.

In the other direction, let M be a matching of value at least n as a solution for
MEP in the multi-graph G, then we create a sub-collection of subsets T ′ by choosing
to T ′ all subsets whose both corresponding edges belong to M . Thus, we choose a
sub-collection of at least n subsets, and it suffices to show that each element appears
at most once in the sub-collection of chosen subsets. This last claim holds because if
we assume by contradiction that there is an element e that appears in (at least) two
chosen subsets, then its node in the multi-graph has (at least) two incident edges in
the matching, and this is a contradiction. ��
Acknowledgements The topic of prize collecting 2-factor arose from a discussion the first author had with
Alejandro Toriello concerning relaxations for the prize collecting traveling salesman problem.
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