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a b s t r a c t 

We present here a computational study comparing the performance of leading machine learning tech- 

niques to that of recently developed graph-based combinatorial optimization algorithms (SNC and KSNC). 

The surprising result of this study is that SNC and KSNC consistently show the best or close to best per- 

formance in terms of their F 1 -scores, accuracy, and recall. Furthermore, the performance of SNC and KSNC 

is considerably more robust than that of the other algorithms; the others may perform well on average 

but tend to vary greatly across data sets. This demonstrates that combinatorial optimization techniques 

can be competitive as compared to state-of-the-art machine learning techniques. The code developed for 

SNC and KSNC is publicly available. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Data mining, combinatorial optimization and practical efficiency

ppear to be incompatible. This comparative study contests this

resumption: it demonstrates that new combinatorial graph-based

ptimization algorithms for classification have superior perfor-

ance and robustness when compared to well-established ma-

hine learning techniques. 

Binary classification is a fundamental machine learning task;

t is defined as correctly assigning new objects to one of two

roups based on a set of training objects. Driven by the practi-

al importance of binary classification, numerous machine learn-

ng techniques have been developed and refined over the last

hree decades and their relative performance has been evaluated

n several empirical studies (cf., e.g., Caruana, Karampatziakis, &

essenalina, 2008; Caruana & Niculescu-Mizil, 2006; King, Feng, &

utherland, 1995; Lim, Loh, & Shih, 20 0 0 ). Among the best per-

orming and most popular techniques are artificial neural net-

orks, decision trees, ensemble methods, logistic regression, and

upport vector machines. Empirical performance evaluations are

f great interest to practitioners and researchers, as they point
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ut the strengths and weaknesses of the available techniques and

hereby channel research efforts into promising directions. 

The use of graph-based optimization models in data mining

s relatively new. Graph-based optimization models represent the

ata set as a graph and employ different criteria to segment the

raph. The normalized cut is a bipartitioning criterion, common-

lace in image segmentation (cf. Shi & Malik, 20 0 0 ), that cap-

ures desirable cluster properties. As such it is used to measure

he quality of clustering heuristics, for example, in bioinformatics

cf. Kawaji, Takenaka, & Matsuda, 2004 ). Solving the normalized

ut problem, however, is NP-hard and thus impractical. Hochbaum

2010) introduced the HNC (Hochbaum’s Normalized Cut) problem,

hich is a variant of the NP-hard normalized cut problem that can

e solved in polynomial time. HNC-related algorithms are trans-

uction algorithms, as they consider all objects, not just training

bjects, while performing the classification task. Transduction al-

orithms tend to deliver robust results with fewer training objects

ecause they also consider relationships among new objects. 

The HNC criterion has been successfully applied in specific con-

exts. These include image segmentation (cf. Hochbaum, Lyu, &

ertelli, 2013 ), evaluating drug effectiveness (cf. Hochbaum, Hsu,

 Yang, 2012 ), video tracking (cf. Fishbain, Hochbaum, & Yang,

013 ), enhancing the capabilities of low-resolution nuclear detec-

ors (cf. Yang, Fishbain, Hochbaum, Norman, & Swanberg, 2013 ),

nd recently also for identifying and tracking neurons in calcium

maging movies (cf. Spaen, Hochbaum, & Asín-Achá, 2017 ). In the

ork of Yang et al. (2013) on enhancing the capabilities of nu-

lear detectors, HNC was compared to several well-known data
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mining algorithms. The major conclusions of this study were that

HNC and Support Vector Machines (SVM) are by far the most suc-

cessful among the machine learning methods in the comparison

set, in terms of accuracy, with HNC being slightly more accu-

rate than SVM and significantly faster. The drug evaluation study

in Hochbaum et al. (2012) used a collection of machine learning

techniques containing methods previously used for drug evalua-

tion, with similar conclusions. For neuron identification in calcium

imaging movies, the HNC criterion has been a top performer in the

Neurofinder benchmark and has provided superior performance as

compared to matrix factorization techniques (see CodeNeuro.org,

as of March 9, 2017 ). However, there has been no systematic com-

parison of the performance of HNC-related algorithms to that of

state-of-the art machine learning techniques. 

Our goal here is to investigate whether HNC-related techniques,

namely the supervised normalized cut (SNC) and the K -supervised

normalized cut (KSNC), could be competitive for the task of bi-

nary classification compared to twelve established machine learn-

ing techniques. The comparison uses F 1 -scores, precision, recall, ac-

curacy, and running times as performance measures. The estab-

lished methods are artificial neural networks (ANN), classification

trees (CART), the Naive Bayes classifier (CNB), three different en-

semble methods (EADA, EBAG, EGAB), lasso regression (LASSO),

linear regression (LIN), logistic regression (LOG), support vector

machines with different types of kernels (SVM), support vector

machines with only radial basis function kernels (SVMR), and the

K -nearest neighbor method (KNN). These techniques are consid-

ered to be state-of-the-art in binary classification due to their good

performance in previous studies (cf., e.g., Caruana & Niculescu-

Mizil, 2006; Cooper et al., 1997; King et al., 1995 ). We test here

the techniques on twenty data sets that differ with respect to do-

main, size, and skewness. 

A comparative study must be reproducible (cf. e.g., Pedersen,

20 08; Sonnenburg et al., 20 07 ). We therefore place an emphasis on

selecting the implementations of the machine learning techniques.

In contrast to previous comparative studies, we use here standard

and accessible MATLAB implementations of the techniques. The

use of accessible versions significantly enhances the reproducibil-

ity of the results. Standard versions have only a few tuning param-

eters with basic ranges for the values. We employ random search

with a fixed time limit (cf. Bergstra & Bengio, 2012 ) to determine

the tuning parameter values for the techniques. Bergstra and Ben-

gio (2012) demonstrated on several data sets that random search

is more efficient than grid search or manual search. Furthermore,

random search requires minimal user interaction that contributes

to the reproducibility of the results. To avoid overfitting, we used

k -fold cross-validation. None of the tested techniques showed signs

of systematic overfitting. To investigate the consistency of our find-

ings, we tested several alternative experimental designs that differ

with respect to the parameter tuning. We tested designs with dif-

ferent time limits, designs where each technique is applied with

the same number of tuning parameter combinations, and designs

where grid search was used instead of random search. The results

obtained with the different experimental designs were all consis-

tent. Therefore, and due to the lack of space, we report here only

the results of the baseline design. 

The surprising result of this study is that SNC and KSNC consis-

tently have the best or close to best performance in terms of F 1 -

scores. This was unexpected because SNC and KSNC were not orig-

inally designed as machine learning techniques. Furthermore, the

performance of SNC and KSNC is considerably more robust than

that of the other techniques; the others perform well on average

but tend to vary greatly across data sets. 

Another important outcome of our study is that machine learn-

ing techniques that are similarity-based (KNN, KSNC, SNC, SVMR)

tend to outperform non-similarity-based techniques with respect
o all performance measures. Pairwise similarities considerably en-

ance the quality of prediction, pattern recognition and data min-

ng. This has been noted in the past: by Dembczy ́nski, Kotowski,

nd Słowi ́nski (2009) for machine learning purposes, by Ryu, Chan-

rasekaran, and Jacob (2004) for improved medical diagnosis, and

y Zhu, Ghahramani, and Lafferty (2003) in semi-supervised learn-

ng. In terms of running times, the regression-based methods

ASSO, LIN, and LOG, decision trees (CART), and the Naive Bayes

lassifier (CNB) are among the fastest, but their F 1 -scores and ac-

uracy are generally poor. Among the best-performing algorithms

NN requires the least running time, followed by SNC and KSNC.

VMR and EBAG perform well, but they are both computationally

xpensive by comparison. 

For massively large data sets, the scaling of similarity-based

lgorithms could pose a challenge due to the quadratic rate of

rowth in the number of similarities as a function of the num-

er of objects in the data set. To address this, we have recently

ntroduced the technique of sparse computation (cf. Baumann,

ochbaum, & Spaen, 2016; Baumann, Hochbaum, & Spaen, 2017;

ochbaum & Baumann, 2014; Hochbaum & Baumann, 2016 ), which

rovides practical efficiency while retaining accuracy, even for very

arge-scale data sets. With sparse computation , it is possible to ap-

ly the SNC, KSNC, SVMR, and KNN techniques that performed best

r close to best in this study to large-scale data sets. In fact, in

ochbaum and Baumann (2016) SNC, KSNC, and KNN were suc-

essfully applied to data sets comprising of up to 8.5 million ob-

ects. 

The paper is structured as follows. Section 2 reviews pre-

ious comparative studies of binary classification algorithms.

ection 3 describes the new machine learning techniques that are

ased on the HNC optimization problem. Section 4 provides brief

escriptions and implementation details of the established ma-

hine learning techniques tested in this study. Section 5 introduces

he data sets used in this study and Section 6 describes the ex-

erimental setup. Section 7 reports the computational results and

ection 8 concludes this paper with some final comments. 

. Previous comparative studies 

Several studies focus on examining the performance of only

wo or three types of machine learning techniques. For exam-

le, Bauer and Kohavi (1999) present an extensive comparison of

ifferent ensemble algorithms, including bagging and AdaBoost;

erlich, Provost, and Simonoff (2003) compare decision trees and

ogistic regression; Bhattacharyya, Jha, Tharakunnel, and Westland

2011) compare support vector machines, random forests and lo-

istic regression for detecting credit card fraud; and De Caigny,

oussement, and De Bock (2018) compare decision trees, logistic

egression, and ensemble algorithms to a new hybrid classification

lgorithm that is based on logistic regression and decision trees.

owever, these studies provide comparisons only between a lim-

ted selection of techniques, making it difficult to draw general

onclusions about the relative performance of the tested machine

earning techniques. 

Other studies evaluate a broad range of machine learning tech-

iques but focus on a specific application area. LeCun et al.

1995) test fourteen algorithms on a handwriting recognition prob-

em. They use accuracy, rejection rate, running time and memory

equirement as performance metrics. LeCun et al. (1995) conclude

hat boosted neural networks and support vector machines per-

orm best. Cooper et al. (1997) test ten machine learning tech-

iques in terms of their ability to predict mortality in patients

ith pneumonia. The lowest error rates were obtained by neu-

al networks, hierarchical mixtures of experts and logistic regres-

ion. Ahmed, Atiya, Gayar, and El-Shishiny (2010) evaluate eight

achine learning models for time series forecasting. The models



P. Baumann et al. / European Journal of Operational Research 272 (2019) 1041–1057 1043 

a  

a  

p  

f  

f  

f

 

a  

s  

K  

n  

g  

c  

p  

r  

e  

t  

g  

f  

m  

c  

r

 

t  

o  

t  

p  

n  

t  

c  

T  

t

 

l  

s  

s  

m  

r  

r  

c  

t  

i  

t  

w  

b  

a  

t  

r  

d  

e  

i  

m

 

a  

C  

u  

l  

o  

a  

w  

C  

p  

d  

a  

t  

s

 

T  

s  

a  

s  

M  

d  

r  

t  

w  

a  

t  

o  

o

3

 

a  

p  

S  

n  

l  

m  

i  

2  

a  

d

3

3

 

o  

m  

s  

t  

H

 

c  

g  

w  

g  

c  

o  

M  ∑
 

s  

w  

d  

g  

e  

f  

a

H

 

d  

p  

m  

p  

s

 

m  
re applied to the well-known M3 monthly time series database,

nd the best results are obtained by neural networks and Gaussian

rocesses. Although these application-specific studies provide use-

ul information on the suitability of machine learning techniques

or well-defined tasks, the recommended techniques may not per-

orm as well on general-context data sets. 

Only a few studies include several machine learning techniques

nd a relatively large set of classification problems. A comprehen-

ive study called STATLOG was conducted in the early nineties by

ing et al. (1995) . They compare sixteen machine learning tech-

iques that are variations of decision trees, discriminant and re-

ression algorithms, the K -nearest neighbor algorithm, Bayesian

lassification algorithms and neural networks on twelve real-world

roblems. The comparison is organized as a competition between

esearch groups from academia and industry, each with an inter-

st in seeing their own algorithm perform best. The study leaves

he choice of tuning parameters and their ranges to the research

roups, thus making it difficult to compare the performances. Per-

ormance is measured in terms of accuracy and running time. The

ain conclusions of the study are that there is no dominant ma-

hine learning technique and that the performance of the algo-

ithms depends critically on the data sets. 

Lim et al. (20 0 0) extend the results of the STATLOG Project by

esting spline-based statistical algorithms and additional variations

f decision trees and by an in-depth analysis of the training and

esting times of the algorithms. In total, Lim et al. (20 0 0) com-

are twenty-two decision trees, nine statistical algorithms and two

eural network algorithms on sixteen data sets. Their results show

hat there is little variability among the algorithms in terms of ac-

uracy but considerable differences with respect to training time.

he study of Lim et al. (20 0 0) identifies those algorithms that take

he least amount of training and testing time. 

Caruana and Niculescu-Mizil (2006) evaluate ten machine

earning techniques on eleven classification problems with re-

pect to eight performance metrics. One distinctive feature of their

tudy is that the size of the training sets is fixed at 50 0 0. The

achine learning techniques are support vector machines, neu-

al nets, logistic regression, Naive Bayes, memory-based learning,

andom forests, decision trees, bagged trees, boosted trees (in-

luding boosted stumps as a special case). Different variations of

hese machine learning techniques are tested and the space of tun-

ng parameters is explored thoroughly. The performance of each

echnique is measured before and after calibrating its predictions

ith Platt Scaling and Isotonic Regression. Without calibration,

agged trees, random forests and neural nets perform best across

ll eight metrics and eleven classification problems. With calibra-

ion, boosted trees perform best followed by neural nets, SVMs,

andom forests and bagged trees. Naive Bayes, logistic regression,

ecision trees and KNN, in general, perform rather poorly. An inter-

sting result is that the ranking of the machine learning techniques

s generally consistent for the different performance measures. This

eans that performance measures are highly correlated. 

Caruana et al. (2008) test the same set of algorithms as Caruana

nd Niculescu-Mizil (2006) on several high-dimensional data sets.

aruana et al. (2008) also change the setup by using the nat-

ral training sets that were given for each classification prob-

em. The size of these training sets is generally greater than 50 0 0

bjects. The authors focus on the three performance metrics -

ccuracy, area under the ROC curve and squared error - which

ere all among the performance measures used in the study of

aruana and Niculescu-Mizil (2006) . The findings are that the

erformance of machine learning techniques for high-dimensional

ata sets is consistent with the performance reported in Caruana

nd Niculescu-Mizil (2006) for low-dimensional data sets. The

echnique of random forests performs consistently well across data

ets of different dimensionality. 
The results of this collection of studies are often contradictory.

he contradictions could be caused by the use of different data

ets, different im plementations of machine learning techniques,

nd different tuning strategies. Our study differs from previous

tudies mainly in two ways. First, we use basic and widely-used

ATLAB versions of machine learning techniques and employ ran-

om search to optimize tuning parameter values. This guarantees

eproducibility and gives a basic understanding of the general po-

ential of different types of machine learning techniques. Second,

e include for the first time two machine learning techniques that

re variants of graph-based optimization models. For the two new

echniques, we used the MATLAB interface provided on the website

f the authors; see Chandran and Hochbaum (2012, last updated

n Aug, 2012. ). 

. New graph-based machine learning techniques 

The two new graph-based machine learning techniques, SNC

nd KSNC, are variants of the HNC problem. We describe the HNC

roblem first in Section 3.1 . Then, we introduce SNC and KSNC in

ections 3.2 and 3.3 , respectively. The proposed techniques are

ew in the sense that they represent the machine learning prob-

em as a graph partitioning problem that can be solved to opti-

ality in polynomial time. Existing graph-based machine learn-

ng methods employ heuristics (e.g., Cupertino, Zhao, & Carneiro,

015 ) or use the graph representation to extract local information

bout the underlying data distribution (e.g., Bertini, Zhao, Motta, &

e Andrade Lopes, 2011 ). 

.1. The HNC problem 

.1.1. HNC and a related clustering criterion 

An attractive model for clustering within a data set has the goal

f minimizing the ratio of two criteria. One criterion is to maxi-

ize the total similarity of objects within the cluster (the intra-

imilarity). The second criterion is to minimize the similarity be-

ween the cluster and its complement (the inter-similarity). The

NC problem is a ratio problem that combines these two criteria. 

The HNC problem and related problems such as the normalized

ut are defined on graphs. We therefore introduce some essential

raph notation. Let G = (V, E) be an undirected graph with edge

eights w i j associated with each edge [ i , j ] ∈ E . A bi-partition of a

raph is called a cut , (S, S̄ ) = { [ i, j] | i ∈ S, j ∈ S̄ } , where S̄ = V \ S. The

apacity of a cut (S, S̄ ) is the sum of the weights of the edges, with

ne endpoint in S and the other in S̄ : C(S, S̄ ) = 

∑ 

i ∈ S, j ∈ ̄S , [ i, j ] ∈ E w i j .

ore generally, for any pair of sets A , B ⊆V , we define C(A, B ) =
 

i ∈ A, j ∈ B, [ i, j ] ∈ E w i j . In particular, the capacity of a set , S ⊂ V , is the

um of edge weights within the set S , C(S, S) = 

∑ 

i, j ∈ S, [ i, j ] ∈ E w i j . The

eighted degree of node i is the sum of weights adjacent to i ,

 i = 

∑ 

j | [ i, j ] ∈ E w i j . In the context of classification, the nodes of the

raph correspond to objects, each of which is a feature vector. The

dge weights w i j quantify the similarity between the respective

eature vectors associated with nodes i and j . Higher similarity is

ssociated with higher weights. 

With this notation, the formulation of the HNC problem is, 

NC (S ∗) = min 

∅⊂S⊂V 

C(S, S̄ ) 

C(S, S) 
. 

In general, there would be a seed object s that belongs to the

esired cluster, and a seed object t that is not in the cluster. The

roblem is to find a non-empty set S ∗ strictly contained in V , that

inimizes the ratio of the similarity between the set and its com-

lement, inter-similarity, divided by the total similarity within the

et S ∗, intra-similarity. 

The HNC problem was used in the context of image seg-

entation, where it was mistakenly confused with the NP-hard
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problem of normalized cut (cf. Shi & Malik, 20 0 0 ) and referred

to by the same name in Sharon, Galun, Sharon, Basri, and Brandt

(2006) . The problem of normalized cut (NC) is formulated as, 

NC (S ∗) = min 

∅⊂S⊂V 

C(S, S̄ ) ∑ 

i ∈ S d i 
+ 

C(S, S̄ ) ∑ 

i ∈ ̄S d i 
. 

Although the HNC problem and the normalized cut problem ap-

pear similar, the normalized cut problem is intractable, whereas

HNC was shown in Hochbaum (2010) to be polynomial time solv-

able, as a monotone integer program (cf. Hochbaum, 2002 ) with a

minimum cut procedure. 

The spectral method was proposed in Shi and Malik (20 0 0) as

a heuristic for the normalized cut problem. Indeed, the use of the

spectral method has been dominant in image segmentation and

was even used in data mining applications (cf., e.g., Jia, Ding, Xu,

& Nie, 2014 ). An experimental study of image segmentation in-

stances, in Hochbaum et al. (2013) , compared the performance of

an HNC-based classification model with the spectral method and

demonstrated that even as a heuristic for the normalized cut prob-

lem, the HNC-based classification model provides superior solu-

tions. A detailed theoretical discussion of the HNC problem and the

spectral method is given in Hochbaum (2013) . 

The HNC problem is formulated next as an integer program,

which is monotone, thus leading to polynomial time algorithms for

solving it. 

3.1.2. Integer programming formulation 

We provide here a formulation for a slight generalization of the

HNC problem, min ∅⊂S⊂V 
C 1 (S, ̄S ) 
C 2 (S,S) 

, where different sets of similarity

weights can be used for the numerator, w i j , and the denominator,

w 

′ 
i j 

. Let the binary variable x i be 1 if i ∈ S and 0 otherwise. Hence,

the set of nodes { i ∈ V | x i = 1 } form the cluster S , and the set of

nodes { j ∈ V | x j = 0 } form the complement S̄ . We write the edges

of the graph as [ i , j ] ∈ E such that i < j . For each edge [ i , j ] ∈ E , we

introduce one binary variable z ij , which is 1 if one of the nodes

i and j is in S and the other is in S̄ and 0 otherwise. The binary

variable y ij , which is also introduced for each edge [ i , j ] ∈ E , is 1

if both i and j are in S and 0 otherwise. With these variables, the

formulation of the HNC problem is: 

(ratio-HNC) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Min 

∑ 

[ i, j] ∈ E w i j z i j ∑ 

[ i, j] ∈ E w 

′ 
i j 

y i j 

(1) 

s.t. x i − x j ≤ z i j ([ i, j] ∈ E) (2) 
x j − x i ≤ z i j ([ i, j] ∈ E) (3) 
y i j ≤ x i ([ i, j] ∈ E) (4) 
y i j ≤ x j ([ i, j] ∈ E) (5) 
x s = 1 (6) 
x t = 0 (7) 
x i ∈ { 0 , 1 } (i ∈ V ) (8) 
z i j ∈ { 0 , 1 } ([ i, j] ∈ E) (9) 
y i j ∈ { 0 , 1 } ([ i, j] ∈ E) (10) 

The objective function drives the values of z ij to be as small as

possible. Constraints (2) and (3) ensure that z ij is set to 1 if one

of the nodes i and j is in S and the other is in S̄ . Consequently,

the weight between i and j is added once to the numerator of the

objective function. Constraints (4) and (5) guarantee that y i j = 0

unless both i and j are in S . In case both i and j are in S , then

y ij is set to 1 because the objective function drives the values of

y ij to be as large as possible. Consequently, the weight between i

and j is added once to the denominator of the objective function.

Constraint (6) ensures that there is at least one node in S and con-

straint (7) ensures that there is at least one node in the S̄ . Con-

straints (8)–(10) define the domains of the decision variables. 

The optimization problem (ratio-HNC) can be formulated as a

monotone integer program by introducing a second binary decision
ariable z ji for each edge [ i , j ] ∈ E which replaces the variable z ij
n constraint (3). Constraints (2) and (3) together with the ob-

ective function will guarantee that always one of the variables

 ij and z ji will be zero. A monotone integer program has all con-

traints containing up to 3 variables and each constraint is of the

orm a i j x i − b i j x j ≤ c i j z i j . That is, two of the variables, x i and x j ,

ppear with opposite sign coefficients, and the third variable ( z ij 
ere) appears in at most one constraint. Also the variables that ap-

ear “third” must have their objective function coefficients be non-

egative for minimization functions. Any formulation of an integer

rogram that is monotone was shown in Hochbaum (2002) to be

olved as a minimum cut problem on an associated graph where

here is a node for each variable’s integer value. It was further

roved, in Hochbaum (2010) and Hochbaum (2013) , that a ratio

roblem on monotone constraints can be solved as a parametric

ut problem in complexity that is the same as that of a single min-

mum cut procedure. 

To illustrate the algorithmic technique used we provide a sketch

f the algorithm of Hochbaum (2010) solving (ratio-HNC). To solve

he ratio problem one can find the smallest value of λ ( λ∗) for

hich the linearized version of HNC, HNC( λ), has an optimal

bjective function value that is non-positive: min ∅⊂S⊂V C(S, S̄ ) −
C(S, S) ≤ 0 . Let S ( λ) be the optimal solution for this HNC( λ). In-

tead of solving for each value of λ, using e.g., binary search, the

arametric cut procedure finds the optimal solution for all values

f λ in the complexity of a single minimum cut Hochbaum (2002,

010, 2013) with the parametric pseudoflow algorithm, HPF (cf.

ochbaum, 2008 ). This parametric cut procedure produces (up to

he number of nodes n in the graph) breakpoints for the value of

where at each breakpoint the optimal solution set S ( λ) changes.

ne can then find the value λ∗ which is the smallest for which the

bjective function value of HNC( λ∗) is still non-positive. The corre-

ponding solution S ( λ∗) is the optimal solution for (ratio-HNC). 

Concerning ratio problems in general, it is often the case that

he optimal weighting λ∗ of the ratio optimal solution is not nec-

ssarily the best in terms of the quality of the resulting cluster, and

 source set associated with a non-optimal value of λ is a better

luster. After all, any arbitrary scalar multiplication of the numer-

tor, changes the value of the optimal parameter and potentially

he respective bi-partition solution. It is therefore more effective

o consider a “good” weighting of the two criteria instead of solv-

ng for the ratio problem, and solve the problem HNC( λ) for a de-

irable value of λ. Here, this weighting value of λ is one of the

uning parameters to be determined when implementing HNC as

 classification method. In fact, unless stated otherwise, we refer

ere to the linearized version of HNC as HNC. 

In addition, it was shown in Hochbaum (2010) that (ratio-HNC)

s equivalent to minimizing the first term of NC: 

min 

⊂S⊂V 

C(S, S̄ ) ∑ 

i ∈ S d i 
. 

The formulation for this version is monotone as well and can

e solved likewise with a parametric cut procedure in the com-

lexity of a single minimum cut. This same algorithm, with mi-

or adaptation, also solves more general problems than HNC: Any

on-negative node weights q i can be used to replace the weighted

egrees weights of the nodes: 

min 

⊂S⊂V 

C(S, S̄ ) ∑ 

i ∈ S q i 
. 

Indeed, we use here node weights different from d i to derive

he KSNC algorithm. An extensive discussion of these and other

ariants of HNC is provided in Hochbaum (2010, 2013) . 
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Fig. 1. (a) The input consists of labeled nodes with positive ( + ) or negative (–) 

labels and unlabeled nodes; (b) The solution consists of two sets that are separated 

by a cut. All nodes with positive labels form set S , and all nodes with negative 

labels form set S̄ , where the similarity within S and the dissimilarity between the 

two sets are high. 
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Fig. 2. Example of a classification tree. 

Fig. 3. Structure of an ensemble method. We used the number of weak learners w 

as a tuning parameter. 

Fig. 4. Architecture of artificial neural networks tested in this study: feedforward 

network with one hidden layer. The number of nodes in the input layer corresponds 

to the number of features m in the data set. 
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.2. Supervised normalized cut (SNC) 

The set-up of HNC does not require any labeled nodes except

ne node s that belongs to the cluster S and one node t that be-

ongs to the complement. The selection of s and t is to guarantee

hat the solution is non-empty and strictly contained in V . When

nly two nodes are specified as source node and sink node, then

e refer to this variant of HNC as the unsupervised variant of HNC.

owever, HNC can also be implemented as a supervised classifica-

ion method. In the supervised case, the input graph contains la-

eled nodes (training data) that refer to objects for which the class

abel (either positive or negative) is known and unlabeled nodes

hat refer to objects for which the class label is unknown. By as-

igning all labeled nodes with a positive label to set S , as source

odes merged with s , and all labeled nodes with a negative label

o set S̄ , as sink nodes merged with t , the HNC model can be used

n a supervised manner (cf. Fig. 1 ). The goal is then to assign all

nlabeled nodes either to set S or set S̄ . Due to the pre-assignment

f labeled nodes, the graph’s size is reduced since all labeled nodes

re merged with s or t , so the “supervised” graph contains only

nlabeled nodes. This size reduction implies a corresponding re-

uction in the running time of the algorithm. We refer to the use

f HNC in a supervised manner as supervised normalized cut (SNC).

In this study, we choose Gaussian similarity weights that are a

onotone function of Euclidean distances. The Gaussian similarity

f two objects i and j with respect to the feature vectors v (i ) and

 

( j) is: 

 i j = exp 

(
− ‖ v (i ) − v ( j) ‖ 

2 

2 ε2 

)
, 

here ‖ v (i ) − v ( j) ‖ denotes the Euclidean distance between i and j

nd parameter ε represents a scaling factor. The Gaussian similar-

ty function is commonly used in image segmentation and spectral

lustering (cf. Von Luxburg, 2007 ). When implementing SNC there

re two tuning parameters: the relative weighting parameter of the

wo objectives, λ, and the scaling factor of the exponential weights,

. Table 1 lists all tuning parameters of SNC and specifies a range

f values for each parameter. The minimum cut problems were

olved with the MATLAB implementation of the HPF pseudoflow

lgorithm version 3.23 of Chandran and Hochbaum (2012, last up-

ated on Aug, 2012. ) that was presented in Hochbaum (2008) . 

.3. K-Supervised normalized cut (KSNC) 

KSNC is a variant of SNC in which we seek to optimize 

min 

⊂S⊂V 

C(S, S̄ ) ∑ 

i ∈ S q i 
, 

here the node weights q i are the average class label of the K

earest labeled objects. For example if K = 3 and the three near-

st objects to i , in terms of similarity, have labels 0, 1, and 1, then

 is 2/3. In contrast to the weights d , which capture the pairwise
i i 
imilarities between any pairs, whether the nodes are labeled or

ot, the weights q i as defined above only capture the effect of the

abeled nodes on the unlabeled nodes. KSNC is therefore a sort of

ybrid between SNC and KNN. Here again, we consider the lin-

arized version, which we refer to as KSNC: 

min 

⊂S⊂V 
C(S, S̄ ) − λ

∑ 

i ∈ S 
q i , 

he tuning parameters for KSNC are the relative weighting param-

ter of the two objectives, λ, the scaling factor of the exponential

eights, ε, and the integer parameter K . Table 1 specifies for each

f these parameters the range of values that we tested here. 

. Commonly used machine learning techniques 

In this section, we provide a brief description of the estab-

ished classification techniques tested in this study. These tech-

iques can be divided into four groups: decision tree-based tech-

iques, regression-based techniques, similarity-based techniques, 

nd other techniques. Sections 4.1–4.4 describe the tested tech-

iques in the four groups. For each considered technique there are

umerous variations proposed in the literature. For the sake of uni-

ormity and accessibility to codes, we take the basic versions of the

lgorithms implemented in MATLAB R2017b. A more detailed anal-

sis of some of these techniques can be found in Carrizosa and

orales (2013) . 

.1. Decision tree-based machine learning techniques 

A decision tree is based on a hierarchical tree-like partition of

he input data. It predicts a target variable for a new object based
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Table 1 

Lower bounds (LB) and upper bounds (UB) for tuning parameter values. 

Technique Tuning parameter name LB UB Type 

ANN Units in hidden layer 1 200 Integer 

CART Minimum leaf size 1 50 Integer 

Minimum parent size 2 25 Integer 

CNB Threshold 0.25 0.75 Real 

EADA Number of decision trees 2 1,0 0 0 Integer 

EBAG Number of decision trees 2 1,0 0 0 Integer 

EGAB Number of decision trees 2 1,0 0 0 Integer 

LASSO Regularization parameter λL = 2 x with x in [LB, UB] −10.00 3.00 Real 

LIN Threshold −0.50 0.50 Real 

LOG Threshold 0.25 0.75 Real 

SVM Polynomial (1) or radial basis function kernel (2) 1 2 Integer 

Degree of polynomial kernel 1 5 Integer 

Derivative param. of RBF kernel (2 x with x in [LB, UB]) −20.00 20.00 Real 

Cost (2 x with x in [LB, UB]) −20.00 20.00 Real 

SVMR Radial basis function kernel (2) 2 2 Integer 

Derivative param. of RBF kernel (2 x with x in [LB, UB]) −20.00 20.00 Real 

Cost (2 x with x in [LB, UB]) −20.00 20.00 Real 

KNN Parameter K 1 80 Integer 

KSNC Parameter K 1 3 Integer 

Weighting parameter λ = 2 x with x in [LB, UB] −15.00 5.00 Real 

Scaling parameter ε = 2 x with x in [LB, UB] −5.00 10.00 Real 

SNC Weighting parameter λ = 2 x with x in [LB, UB] −15.00 0.00 Real 

Scaling parameter ε = 2 x with x in [LB, UB] −5.00 10.00 Real 

Table 2 

Characteristics of data sets. 

Abbr Downloaded from # Objects # Attributes # Positives # Negatives # Positives 
# Negatives 

IRS LIBSVM 150 4 50 100 0.50 

WIN LIBSVM 178 13 59 119 0.50 

PAR UCI 195 22 147 48 3.06 

SON UCI 208 60 111 97 1.14 

GLA LIBSVM 214 9 70 144 0.49 

HEA LIBSVM 270 13 120 150 0.80 

HAB UCI 306 3 81 225 0.36 

VER UCI 310 6 210 100 2.10 

ION UCI 351 34 225 126 1.79 

DIA UCI 392 8 130 262 0.50 

BCW UCI 683 10 239 4 4 4 0.54 

AUS LIBSVM 690 14 307 383 0.80 

BLD UCI 748 4 178 570 0.31 

FOU LIBSVM 862 2 307 555 0.55 

TIC UCI 958 27 626 332 1.89 

GER UCI 1,0 0 0 24 300 700 0.43 

CAR UCI 2,126 21 1,655 471 3.51 

SPL LIBSVM 3,175 60 1,648 1,527 1.08 

LE1 UCI 20,0 0 0 16 753 19,247 0.04 

LE2 UCI 20,0 0 0 16 9,940 10,060 0.99 
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on the values of its features. Decision trees are referred to as re-

gression trees when the target variable is continuous and as clas-

sification trees when the target variable is discrete. A classification

tree consists of internal nodes and leaf nodes. Each internal node

represents a test on a feature. The arcs leaving an internal node are

labeled with a specific range of possible values. Each leaf node rep-

resents a class label. Given a new object, a series of tests along the

internal nodes, starting from the root node, will determine a leaf

node that predicts the class label. Fig. 2 shows an example of a

classification tree. Numerous methods for constructing classifica-

tion trees have been proposed (cf. Murthy, 1998 ). In this study, we

tested classification and regression trees (CART) and three ensem-

ble methods (EADA, EBAG, EGAB), each of which combines multiple

classification trees into one machine learning technique. 

4.1.1. Classification trees (CART) 

The term classification and regression trees (CART) refers to

methods introduced by Breiman, Friedman, Stone, and Olshen

(1984) for constructing classification and regression trees. The

method of Breiman et al. (1984) for classification trees employs
he Gini impurity index for finding the features that best split the

raining objects. The same splitting criterion is used by default in

he MATLAB function fitctree from the statistics and machine

earning toolbox. The minimum leaf size and the minimum par-

nt size are used as tuning parameters (cf. Table 1 ). The minimum

eaf size specifies a lower bound on the number of objects per leaf

ode and the minimum parent size specifies a lower bound on the

umber of objects per non-leaf node. If both values are provided

nd the minimum parent size is smaller than twice the minimum

eaf size, then the minimum parent size is set to twice the mini-

um leaf size. 
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.1.2. Ensemble of classification trees (EADA, EBAG, EGAB) 

Ensemble methods combine so-called weak learners into one

trong learner to obtain better predictive performance (cf. Fig. 3 ).

e test here three different ensemble methods, namely adap-

ive boosting of Freund and Schapire (1997) , bagging of Breiman

1996) , and gentle adaptive boosting of Friedman, Hastie, Tibshi-

ani et al. (20 0 0) . In our experimental analysis we use the abbre-

iations EADA for adaptive boosting, EBAG for bagging, and EGAB

or gentle adaptive boosting. For all three ensemble methods we

sed classification trees as weak learners and treated the number

f weak learners as a tuning parameter (cf. Table 1 ). The MATLAB

unction used is fitensemble from the statistics and machine

earning toolbox. The argument method is AdaBoostM1 for EADA,

ag for EBAG, and GentleBoost for EGAB. 

.2. Regression-based machine learning techniques 

A binary classification problem can be treated as a regression

roblem in which the dependent variable assumes values 1 or –1.

he resulting regression function can be interpreted as a member-

hip indicator. The higher the predicted value for a given object,

he more likely it is that the object belongs to the positive class. By

sing a threshold above which the object is assigned to the posi-

ive class, a simple classification rule can be obtained. We tested

hree regression-based machine learning techniques. 

.2.1. Linear regression (LIN) 

We computed linear regression models that contain an inter-

ept and a linear term for each feature of the data set. An object is

ssigned to the positive class when the prediction is greater than a

redefined threshold and to the negative class when the prediction

s smaller than or equal to the threshold. The threshold is treated

s a tuning parameter (cf. Table 1 ). The MATLAB function used is

inearModel.fit from the statistics and machine learning tool-

ox; it uses QR decomposition as the fitting method: 

.2.2. Logistic regression (LOG) 

In logistic regression (cf. Bishop, 2006 ) the dependent variable

s assumed to be binary. The value predicted by a logistic regres-

ion model always lies between zero and one and can therefore be

nterpreted as the probability that an object belongs to the posi-

ive class given its vector of feature values. To obtain probabilities,

 logistic function is used that takes the prediction of a linear re-

ression model and maps it to the interval [0,1]. We estimated lo-

istic regression models that contain an intercept and a linear term
or each feature of the data set. An object is assigned to the posi-

ive class when its prediction is greater than a predefined thresh-

ld and to the negative class when the prediction is smaller than

r equal to the threshold. The threshold is treated as a tuning pa-

ameter (cf. Table 1 ). The MATLAB function used is glmfit from

he statistics and machine learning toolbox. This function uses the

RLS (iteratively reweighted least squares) method to find the max-

mum likelihood estimates with an iteration limit of 100. 

.2.3. Lasso regression (LASSO) 

Regression models tend to overfit when the number of features

s relatively large compared to the number of observations. An

verfitted model performs well on training objects but poorly on

bjects from the test set. In general, overfitted models have many

elatively large regression coefficients. Regularization methods aim

o prevent overfitting by adding an extra term to the average

oss function that penalizes large coefficients. In Lasso regression

cf. Tibshirani, 1996 ), there is an added penalty term 

m 

 

i =1 

λL | βi | , 

here m denotes the number of features and β i denotes the co-

fficient associated with the i -th feature. The parameter λL is the

egularization parameter that controls the trade-off between the

verage logistic loss and the size of the coefficient vector measured

y the � 1 -norm. We treat the regularization parameter as a tuning

arameter (cf. Table 1 ). To estimate the regularized logistic regres-

ion model, the MATLAB function lassoglm from the statistics

nd machine learning toolbox is used. The models contain an in-

ercept and a linear term for each feature of the data set. An object

s assigned to the positive class when its prediction is greater than

.5 and to the negative class when the prediction is smaller than

r equal to 0.5. The MATLAB function lassoglm also employs the

RLS method with an iteration limit of 100 for training the model. 

.3. Similarity-based machine learning techniques 

Similarity-based machine learning techniques use, as part of the

nput, pairwise similarities between objects. This group includes

he two new machine learning techniques introduced in Section 3 ,

he K -nearest neighbor algorithm, and support vector machines

ith non-linear kernels. 

.3.1. K-nearest neighbor algorithm (KNN) 

The K -nearest neighbor algorithm (cf. Fix & Hodges, 1951 ) uses

he training objects themselves to classify new objects. It finds the

 training objects most similar to the new object and then assigns

o the new object the predominant class among those K neighbors.
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To find the K -nearest neighbors, each new object is compared to

each training object. We use the MATLAB function fitcknn with

the default setting and treat K as tuning parameter (cf. Table 1 ). Per

default Euclidean distance is used, and the nearest labeled object

is considered to break ties. 

4.3.2. Support vector machines (SVM, SVMR) 

Support vector machine models (cf. Cortes & Vapnik, 1995 ) rep-

resent objects as points in space and find the maximum-margin

hyperplanes that best separate positive training objects from neg-

ative training objects. Objects from the test set are mapped onto

that same space, and their class membership is predicted based on

which side of the hyperplane they fall on. In addition to perform-

ing linear classification, support vector machines can also perform

non-linear classification by using kernel functions. Kernel functions

are similarity functions that are computed over pairs of objects.

These functions implicitly map objects onto a high-dimensional

space. Various extensions of support vector machines exist that

allow to detect important features and interactions among fea-

tures (cf. Carrizosa, Martín-Barragán, & Morales, 2011; Gaudioso,

Gorgone, Labbé, & Rodríguez-Chía, 2017 ), and enable the applica-

tion to multiclass problems (cf. Duarte Silva, 2017 ). We tested here

the standard version of support vector machines with two differ-

ent tuning settings. In the first setting, linear, polynomial, and ra-

dial basis function kernels are used for tuning. The algorithm that

uses this setting is referred to as SVM. In the second setting, only

radial basis function kernels are used for tuning. The algorithm

that uses this setting is referred to as SVMR. The tuning param-

eter ranges are given in Table 1 . We used the MATLAB interface of

the LIBSVM implementation (version 3.17) for support vector clas-

sification (cf. Chang & Lin, 2011 ). LIBSVM uses the SMO (sequen-

tial minimal optimization) algorithm for training support vector

machines. 

4.4. Other machine learning techniques 

Other widely-used machine learning techniques that we tested

in this study include the Naive Bayes classifier (cf. 4.4.1 ) and arti-

ficial neural networks (cf. 4.4.2 ). 

4.4.1. Naive Bayes classifier (CNB) 

A Naive Bayes classifier assigns a new object v to the positive

class when the probability P (y = 1 | v ) is greater than a predefined

threshold. The probability P (y = 1 | v ) is estimated by assuming that

the features are conditionally independent, given the class label: 

P (y = 1 | v ) = 

P (y = 1) 
∏ m 

i =1 P (v i | y = 1) 

P (v ) 
Parameter m denotes the number of features of object i , P (y = 1)

denotes the prior probability that y = 1 and P (v | y = 1) denotes
i 
he probability of obtaining a value v i for feature i when the ob-

ect belongs to the positive class. In the standard version that we

ested here, the conditional probabilities P (v i | y = 1) are assumed

o be Gaussian and estimated based on the training set. Note that

e excluded all features with zero variance in the training and the

orresponding test sets. The threshold is treated as a tuning pa-

ameter (cf. Table 1 ). The MATLAB function used is fitcnb from

he statistics and machine learning toolbox: 

.4.2. Artificial neural networks (ANN) 

An ANN consists of a set of interconnected nodes. Each node

s able to receive input signals and transform them into an output

ignal using a specific transfer function. The nodes are arranged

n layers, and each node is connected to every node in the ad-

acent layers. A typical network consists of three layers. The first

ayer is the input layer, where feature values of a given object

re fed into the network. The second layer is called the hidden

ayer, and the third layer is the output layer, where the predic-

ion of the network is made (cf. Rumelhart, Hinton, & Williams,

986 ). Cybenko (1989) showed that given enough nodes in the

idden layer, an artificial neural network is able to approximate

ny mapping of inputs to outputs to an arbitrary level of accu-

acy. We tested feedforward networks with one hidden layer and

igmoid transfer functions (cf. Fig. 4 ). The network is trained with

caled conjugate gradient backpropagation with σ = 5e-5 (change

n weight for the second derivative approximation) and λ = 5e-7

parameter for regulating the indefiniteness of the Hessian). Train-

ng stops when a maximum number of 1,0 0 0 epochs is reached

r when the performance gradient falls below 1e-6. An epoch cor-

esponds to one forward pass and one backward pass through all

he training examples. This setup is commonly used for classifica-

ion and corresponds to the default setting in MATLAB R2017b. The

umber of nodes in the hidden layer is varied as a tuning parame-

er (cf. Table 1 ). The MATLAB function used is patternnet from

he neural network toolbox: 

. Data sets 

The machine learning techniques are evaluated on twenty data

ets that were downloaded from the UCI Machine Learning Repos-

tory (cf. Asuncion & Newman, 2007 ) and the LIBSVM website

cf. Chang & Lin, 2011 ). The selected data sets represent a vari-

ty of fields including life sciences, physical sciences, engineer-

ng, social sciences, business and others. The data sets differ in
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Fig. 5. Partitioning of data sets. 

Fig. 6. Graphical comparison of all techniques in terms of average ranks (see Table 4 ). 
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Table 3 

F 1 -score averaged across splits. Interpretation: The highest performing techniques (SNC, KSNC, SVMR, and KNN) are all similarity-based. SNC and 

KSNC always deliver average F 1 -scores of at least 40%, which demonstrates their robustness. 

ANN CART CNB EADA EBAG EGAB LASSO LIN LOG SVM SVMR KNN KSNC SNC Avg 

IRS 100.0 100.0 100.0 0.0 ∗ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.9 

WIN 98.2 91.6 100.0 100.0 97.1 97.1 97.1 97.1 97.1 100.0 97.1 97.1 97.1 100.0 97.6 

PAR 86.8 90.3 86.8 92.1 92.4 92.7 87.1 89.4 89.1 85.2 95.9 96.7 96.1 98.0 91.3 

SON 83.1 76.9 79.8 91.7 89.0 91.6 81.6 77.8 79.9 83.8 82.1 86.2 83.6 81.0 83.4 

GLA 71.3 64.6 63.7 70.6 85.9 71.7 69.3 74.3 73.2 83.5 79.1 78.9 79.9 81.5 74.8 

HEA 83.0 86.7 82.9 79.7 85.7 77.0 85.8 84.7 84.4 61.0 85.3 87.0 84.5 84.7 82.3 

HAB 30.2 31.1 36.0 25.3 32.9 26.2 14.3 45.6 45.3 37.2 29.3 35.2 40.5 40.9 33.6 

VER 89.3 86.6 82.2 89.8 90.6 88.0 89.5 88.0 90.0 80.7 91.0 88.4 92.7 91.2 88.4 

ION 91.5 92.1 92.9 94.6 96.0 94.4 89.9 90.1 92.2 96.8 96.8 92.5 93.9 96.3 93.6 

DIA 66.5 62.3 68.7 60.0 61.7 62.9 59.7 69.4 73.0 46.1 61.0 59.4 67.6 69.9 63.4 

BCW 93.2 94.9 94.9 93.9 95.5 93.3 95.3 94.6 95.1 51.0 95.1 95.1 93.4 94.2 91.4 

AUS 86.5 87.9 90.2 89.6 89.2 85.5 90.5 90.7 89.4 51.6 89.6 88.1 89.3 90.1 86.3 

BLD 33.2 43.4 49.3 41.3 31.2 31.5 20.1 50.3 50.8 24.1 37.0 37.3 40.0 42.6 38.0 

FOU 100.0 98.7 73.7 90.4 99.7 90.7 65.6 67.6 67.4 43.8 100.0 100.0 100.0 100.0 85.5 

TIC 97.6 96.4 84.0 97.6 98.7 98.7 97.9 97.9 97.9 100.0 100.0 99.5 98.4 98.8 97.4 

GER 48.8 55.7 53.8 53.1 53.4 52.8 54.6 61.1 59.4 46.9 50.5 44.8 49.6 55.4 52.8 

CAR 95.6 95.1 92.7 96.4 96.7 96.5 94.9 93.0 94.1 88.4 96.3 94.7 95.1 95.1 94.6 

SPL 89.2 94.3 87.4 93.7 97.1 93.8 86.3 86.2 85.9 88.1 91.8 80.9 85.3 86.3 89.0 

LE1 50.2 85.6 54.2 65.5 91.1 77.1 0.0 0.0 0.0 96.8 97.6 94.7 95.1 95.7 64.5 

LE2 93.6 93.2 73.6 82.0 98.1 82.6 72.5 74.7 74.8 86.2 98.8 97.9 98.1 98.5 87.5 

Avg 79.4 81.4 77.3 79.3 ∗ 84.1 80.2 72.6 76.6 77.0 72.6 83.7 82.7 84.0 85.0 

Min 30.2 31.1 36.0 25.3 ∗ 31.2 26.2 0.0 0.0 0.0 24.1 29.3 35.2 40.0 40.9 

Table 4 

Rank of techniques based on the F 1 -score values reported in Table 3 . Interpretation: SNC is the leading technique in terms of average rank, followed 

by SVMR and EBAG. 

ANN CART CNB EADA EBAG EGAB LASSO LIN LOG SVM SVMR KNN KSNC SNC 

IRS 7.0 7.0 7.0 14.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 

WIN 5.0 14.0 2.5 2.5 9.5 9.5 9.5 9.5 9.5 2.5 9.5 9.5 9.5 2.5 

PAR 13.0 8.0 12.0 7.0 6.0 5.0 11.0 9.0 10.0 14.0 4.0 2.0 3.0 1.0 

SON 7.0 14.0 12.0 1.0 3.0 2.0 9.0 13.0 11.0 5.0 8.0 4.0 6.0 10.0 

GLA 10.0 13.0 14.0 11.0 1.0 9.0 12.0 7.0 8.0 2.0 5.0 6.0 4.0 3.0 

HEA 10.0 2.0 11.0 12.0 4.0 13.0 3.0 7.0 9.0 14.0 5.0 1.0 8.0 6.0 

HAB 10.0 9.0 6.0 13.0 8.0 12.0 14.0 1.0 2.0 5.0 11.0 7.0 4.0 3.0 

VER 8.0 12.0 13.0 6.0 4.0 11.0 7.0 10.0 5.0 14.0 3.0 9.0 1.0 2.0 

ION 12.0 11.0 8.0 5.0 4.0 6.0 14.0 13.0 10.0 1.5 1.5 9.0 7.0 3.0 

DIA 6.0 8.0 4.0 11.0 9.0 7.0 12.0 3.0 1.0 14.0 10.0 13.0 5.0 2.0 

BCW 13.0 6.5 6.5 10.0 1.0 12.0 2.0 8.0 4.0 14.0 4.0 4.0 11.0 9.0 

AUS 12.0 11.0 3.0 5.0 9.0 13.0 2.0 1.0 7.0 14.0 6.0 10.0 8.0 4.0 

BLD 10.0 4.0 3.0 6.0 12.0 11.0 14.0 2.0 1.0 13.0 9.0 8.0 7.0 5.0 

FOU 3.0 7.0 10.0 9.0 6.0 8.0 13.0 11.0 12.0 14.0 3.0 3.0 3.0 3.0 

TIC 11.0 13.0 14.0 12.0 6.0 5.0 9.0 9.0 9.0 1.5 1.5 3.0 7.0 4.0 

GER 12.0 3.0 6.0 8.0 7.0 9.0 5.0 1.0 2.0 13.0 10.0 14.0 11.0 4.0 

CAR 5.0 7.0 13.0 3.0 1.0 2.0 9.0 12.0 11.0 14.0 4.0 10.0 8.0 6.0 

SPL 6.0 2.0 8.0 4.0 1.0 3.0 9.0 11.0 12.0 7.0 5.0 14.0 13.0 10.0 

LE1 11.0 7.0 10.0 9.0 6.0 8.0 13.0 13.0 13.0 2.0 1.0 5.0 4.0 3.0 

LE2 6.0 7.0 13.0 10.0 4.0 9.0 14.0 12.0 11.0 8.0 1.0 5.0 3.0 2.0 

Avg 8.85 8.28 8.80 7.92 5.42 8.07 9.43 7.97 7.72 8.97 5.42 7.17 6.47 4.47 
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the number of objects, the number of features, and the distribu-

tion of class labels. The collection comprises binary and multi-

class classification problems. The labels of all multiclass classifi-

cation problems were given as numbers. We converted these mul-

ticlass problems into binary classification problems by first sort-

ing the numeric labels in ascending order and then selecting the

first label as the positive class and all other labels as the nega-

tive class. With this sorting strategy, we treat all multiclass data

sets in the same way and do not exploit any domain knowledge

for the conversion into binary classification problems. Some data

sets have missing values. In those sets, we removed the objects

that contained missing values. Categorical feature values were re-

placed by a set of Boolean features (one Boolean feature per cate-

gory). In the following, we give a short description of each data

set. A summary of characteristics can be found in Table 2 . The

last column of the table states the ratio of the number of ob-
ects in the positive class to the number of objects in the negative

lass. 

• The data set Iris (IRS) contains three classes that refer to differ-

ent types of iris plants. We downloaded the data from the LIB-

SVM website, which gives the data so that the feature values

are in the range [–1,1] and the three classes are labeled from

1 to 3. According to the above-specified conversion procedure,

we treated label 1 as the positive class and the other two labels

as the negative class. 
• The data set Wine (WIN) contains three classes that refer to dif-

ferent types of wine. This data set also stems from the LIBSVM

website and has all feature values in the range [–1,1]. The three

classes are labeled from 1 to 3. According to the above-specified

conversion procedure, we treated label 1 as the positive class

and the other two labels as the negative class. 
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Table 5 

Normalized F 1 -score results. Interpretation: SNC achieves the highest average normalized F 1 -score. EBAG performs well on average and achieves the 

highest minimum normalized F 1 -score. Performance difference between similarity-based techniques (SNC, SVMR, KNN, and KSNC) and non-similarity- 

based techniques (except EBAG) increases when normalized F 1 -score results are considered. 

ANN CART CNB EADA EBAG EGAB LASSO LIN LOG SVM SVMR KNN KSNC SNC Avg 

IRS 100.0 100.0 100.0 0.0 ∗ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.9 

WIN 78.4 0.0 100.0 100.0 66.1 66.1 66.1 66.1 66.1 100.0 66.1 66.1 66.1 100.0 72.0 

PAR 12.8 39.8 13.0 53.6 56.0 58.4 15.1 32.9 30.7 0.0 83.2 89.9 84.9 100.0 47.9 

SON 41.7 0.0 19.2 100.0 81.7 99.1 31.9 5.8 20.3 46.4 35.2 62.6 45.1 27.3 44.0 

GLA 34.2 3.7 0.0 30.7 100.0 35.7 25.0 47.4 42.8 89.0 69.4 68.6 72.8 80.3 50.0 

HEA 84.6 98.9 84.3 72.0 95.1 61.5 95.4 91.3 89.9 0.0 93.5 100.0 90.6 91.3 82.0 

HAB 51.0 53.8 69.4 35.3 59.4 38.1 0.0 100.0 99.2 73.2 48.0 66.9 83.8 85.1 61.7 

VER 71.2 49.2 12.1 76.0 82.2 60.2 73.4 60.4 77.2 0.0 85.5 64.2 100.0 87.5 64.2 

ION 22.9 31.8 44.1 68.0 88.2 65.9 0.0 2.6 33.1 100.0 100.0 37.7 57.7 93.5 53.3 

DIA 75.9 60.1 84.0 51.7 57.9 62.4 50.5 86.7 100.0 0.0 55.4 49.6 79.9 88.3 64.4 

BCW 95.0 98.9 98.9 96.5 100.0 95.2 99.6 98.0 99.1 0.0 99.1 99.1 95.4 97.2 90.9 

AUS 89.2 92.9 98.8 97.2 96.3 86.8 99.4 100.0 96.6 0.0 97.1 93.4 96.4 98.4 88.7 

BLD 42.7 75.9 95.0 68.9 36.1 37.3 0.0 98.4 100.0 12.9 55.1 56.0 64.8 73.1 58.3 

FOU 100.0 97.7 53.2 82.9 99.4 83.5 38.9 42.4 42.0 0.0 100.0 100.0 100.0 100.0 74.3 

TIC 84.9 77.8 0.0 84.9 91.7 91.9 86.9 86.9 86.9 100.0 100.0 96.9 89.8 92.8 83.7 

GER 24.3 66.7 55.6 50.8 52.7 49.3 60.2 100.0 89.6 13.0 34.8 0.0 29.2 65.2 49.4 

CAR 87.6 80.8 52.2 97.0 100.0 98.2 78.0 55.6 69.2 0.0 95.9 76.0 80.6 81.4 75.2 

SPL 51.3 83.3 40.1 79.1 100.0 79.8 33.9 33.2 31.1 44.8 67.5 0.0 27.2 33.3 50.3 

LE1 51.4 87.8 55.6 67.1 93.4 79.0 0.0 0.0 0.0 99.2 100.0 97.1 97.5 98.1 66.2 

LE2 80.0 78.5 4.1 36.0 97.4 38.5 0.0 8.2 8.9 51.9 100.0 96.5 97.4 98.6 56.8 

Avg 64.0 63.9 54.0 70.9 ∗ 82.7 69.4 47.7 60.8 64.1 41.5 79.3 71.0 77.9 84.6 

Min 12.8 0.0 0.0 30.7 ∗ 36.1 35.7 0.0 0.0 0.0 0.0 34.8 0.0 27.2 27.3 

Table 6 

Relative F 1 -score. Interpretation: SNC and KSNC are the leading techniques in terms of average and minimum relative F 1 -score across data sets. 

ANN CART CNB EADA EBAG EGAB LASSO LIN LOG SVM SVMR KNN KSNC SNC Avg 

IRS 107.7 107.7 107.7 0.0 ∗ 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 100.0 

WIN 100.6 93.8 102.4 102.4 99.5 99.5 99.5 99.5 99.5 102.4 99.5 99.5 99.5 102.4 100.0 

PAR 95.1 98.9 95.1 100.8 101.1 101.5 95.4 97.9 97.6 93.3 105.0 105.9 105.2 107.3 100.0 

SON 99.6 92.2 95.6 109.9 106.7 109.7 97.9 93.2 95.8 100.4 98.4 103.3 100.2 97.0 100.0 

GLA 95.3 86.3 85.2 94.3 114.8 95.8 92.6 99.2 97.9 111.6 105.7 105.5 106.7 109.0 100.0 

HEA 100.8 105.3 100.7 96.8 104.1 93.5 104.2 102.9 102.5 74.2 103.6 105.7 102.7 102.9 100.0 

HAB 90.1 92.7 107.2 75.5 97.9 78.1 42.6 135.7 134.9 110.7 87.3 104.8 120.6 121.8 100.0 

VER 100.9 98.0 92.9 101.6 102.4 99.5 101.2 99.5 101.8 91.3 102.9 100.0 104.9 103.2 100.0 

ION 97.8 98.4 99.3 101.1 102.6 100.9 96.1 96.3 98.5 103.4 103.4 98.9 100.3 103.0 100.0 

DIA 104.8 98.2 108.3 94.6 97.2 99.1 94.1 109.4 115.1 72.7 96.2 93.7 106.5 110.1 100.0 

BCW 102.0 103.9 103.9 102.7 104.4 102.1 104.2 103.5 104.0 55.8 104.0 104.0 102.2 103.1 100.0 

AUS 100.2 101.9 104.5 103.8 103.4 99.1 104.8 105.1 103.6 59.8 103.8 102.1 103.4 104.4 100.0 

BLD 87.4 114.2 129.7 108.6 82.0 83.0 52.8 132.5 133.8 63.3 97.4 98.2 105.3 112.0 100.0 

FOU 116.9 115.4 86.1 105.7 116.5 106.1 76.7 79.1 78.8 51.2 116.9 116.9 116.9 116.9 100.0 

TIC 100.2 99.0 86.3 100.2 101.3 101.4 100.5 100.5 100.5 102.7 102.7 102.2 101.0 101.5 100.0 

GER 92.3 105.3 101.9 100.4 101.0 100.0 103.3 115.6 112.4 88.8 95.5 84.8 93.8 104.9 100.0 

CAR 101.1 100.5 98.0 101.9 102.2 102.0 100.2 98.3 99.5 93.5 101.8 100.1 100.5 100.5 100.0 

SPL 100.2 106.0 98.1 105.2 109.0 105.4 97.0 96.9 96.5 99.0 103.1 90.8 95.8 96.9 100.0 

LE1 77.7 132.6 84.0 101.5 141.2 119.5 0.0 0.0 0.0 149.9 151.2 146.8 147.4 148.3 100.0 

LE2 107.0 106.5 84.1 93.7 112.2 94.5 82.9 85.4 85.6 98.5 113.0 111.9 112.2 112.6 100.0 

Avg 98.9 102.8 98.6 100.0 ∗ 105.4 99.9 87.7 97.9 98.3 91.5 105.0 104.1 106.6 108.3 

Min 77.7 86.3 84.0 75.5 ∗ 82.0 78.1 0.0 0.0 0.0 51.2 87.3 84.8 93.8 96.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The data set Parkinson (PAR) contains voice recordings from

healthy people (negatives) and people with Parkinson’s disease

(positives). 
• The data set Connectionist Bench, Sonar (SON) contains patterns

of sonar signals that bounce off mines (positives) or rocks (neg-

atives). 
• The data set Glass (GLA) contains six classes that refer to

different types of glass. The data set was downloaded from

the LIBSVM website and has all feature values in the range

[–1,1]. The six classes are labeled {1,2,3,5,6,7}. According to

the above-specified conversion procedure, we treated label 1

as the positive class and all other labels as the negative

class. 
• The data set Heart disease (HEA) is a set of patients with (posi-

tives) or without (negatives) heart disease. 
• The data set Haberman’s Survival (HAB) is a set of patients who

have received breast cancer surgery. Patients who survived five
years or longer after the surgery form the positive class and

patients who died within five years after the surgery form the

negative class. 
• The data set Vertebral Column (VER) contains biomechanical fea-

tures of patients with (negatives) and without (positives) spinal

disorders. 
• The data set Ionosphere (ION) contains good (positives) and bad

(negatives) radar returns. 
• The data set Pima Indians Diabetes (DIA) contains a set of

female patients of Pima Indian heritage with (positives) and

without (negatives) diabetes mellitus. As indicated on the UCI

website, zero values in the data set are likely to encode

missing values. We therefore discarded all objects with zero

values. 
• The data set Breast Cancer Wisconsin (Original) (BCW) contains

features of malignant (positives) and benign (negatives) breast

cancer tumors. 
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Table 7 

The standard deviation of F 1 -scores across splits. Interpretation: All techniques achieve similar F 1 -scores for the different splits. 

ANN CART CNB EADA EBAG EGAB LASSO LIN LOG SVM SVMR KNN KSNC SNC Avg 

IRS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

WIN 4.07 5.33 0.00 0.00 6.39 6.39 6.39 6.39 6.39 0.00 6.39 6.39 6.39 0.00 4.32 

PAR 5.93 4.23 7.59 5.54 5.99 7.57 4.17 4.52 5.01 7.39 1.50 2.23 2.70 2.87 4.80 

SON 6.75 15.14 3.91 5.73 2.85 4.41 6.73 4.69 8.77 9.45 7.45 10.15 12.87 23.22 8.72 

GLA 7.66 12.17 11.93 5.41 11.34 4.56 18.94 17.00 9.64 8.34 10.04 7.78 7.75 5.56 9.87 

HEA 7.13 8.02 6.53 3.61 7.44 4.59 6.52 3.68 8.50 12.08 5.15 12.39 11.23 12.64 7.82 

HAB 10.47 13.34 20.65 12.21 4.91 13.31 14.31 19.28 16.51 23.51 14.11 21.15 8.67 12.00 14.60 

VER 3.77 4.96 2.21 4.74 3.47 4.64 4.70 2.92 1.96 3.25 4.34 4.04 2.62 1.49 3.51 

ION 3.99 1.82 3.84 4.22 1.96 6.12 7.68 6.49 8.65 3.39 3.39 3.95 3.95 3.45 4.49 

DIA 9.68 13.32 6.74 8.93 12.25 14.81 8.51 7.57 7.01 16.32 9.51 8.66 7.80 7.34 9.89 

BCW 5.77 2.22 2.22 3.22 1.87 2.82 2.85 2.31 1.94 9.99 1.94 1.94 2.26 2.15 3.11 

AUS 5.06 3.96 2.54 3.00 3.35 4.66 2.18 2.46 2.99 9.91 1.76 4.39 2.95 2.84 3.72 

BLD 13.49 14.44 12.42 16.63 15.64 13.89 6.05 8.22 10.32 23.91 10.98 10.84 5.01 3.03 11.78 

FOU 0.00 1.32 5.35 2.27 0.71 2.07 6.11 4.73 5.00 18.22 0.00 0.00 0.00 0.00 3.27 

TIC 1.56 2.82 2.88 1.99 1.92 2.17 1.65 1.65 1.65 0.00 0.00 0.46 0.11 2.17 1.50 

GER 11.67 11.16 10.48 7.95 12.11 6.14 7.26 9.60 10.61 7.63 8.38 6.96 9.82 8.32 9.15 

CAR 0.83 1.52 1.61 0.66 0.76 1.00 1.44 1.98 1.29 2.46 0.74 1.03 0.77 0.54 1.19 

SPL 0.77 1.44 1.96 1.29 0.98 1.47 1.44 1.17 1.19 1.47 1.01 0.88 1.62 2.01 1.34 

LE1 45.87 1.94 1.54 3.55 2.99 3.11 0.00 0.00 0.00 2.00 1.85 1.91 1.24 1.56 4.83 

LE2 1.40 0.71 0.81 0.58 0.34 0.82 1.04 0.82 0.80 0.42 0.20 0.50 0.38 0.33 0.65 

Avg 7.29 5.99 5.26 4.58 4.86 5.23 5.40 5.27 5.41 7.99 4.44 5.28 4.41 4.58 

Max 45.87 15.14 20.65 16.63 15.64 14.81 18.94 19.28 16.51 23.91 14.11 21.15 12.87 23.22 

Table 8 

The best F 1 -scores obtained for validation sets averaged across splits. Interpretation: There is no indication of systematic overfitting , as these F 1 - 

scores are very similar to those reported for the test sets (see Table 3 ). 

ANN CART CNB EADA EBAG EGAB LASSO LIN LOG SVM SVMR KNN KSNC SNC Avg 

IRS 100.0 100.0 100.0 0.0 ∗ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.9 

WIN 97.7 95.2 97.2 96.0 97.3 96.1 99.1 98.5 98.1 100.0 99.7 99.5 98.9 99.7 98.1 

PAR 92.3 91.8 90.2 94.0 93.5 93.5 90.8 92.4 91.8 85.6 95.7 97.1 97.1 97.2 93.1 

SON 82.4 80.1 78.7 85.5 85.5 84.3 78.9 79.0 79.2 87.9 88.1 87.0 87.7 88.0 83.7 

GLA 59.5 72.1 61.0 69.2 79.4 68.2 60.7 64.2 66.1 69.2 71.4 69.8 72.3 72.5 68.3 

HEA 76.5 79.8 81.9 76.8 79.0 74.5 81.1 81.5 81.0 59.3 80.7 79.7 77.9 78.4 77.7 

HAB 34.7 41.2 40.8 33.5 31.5 33.5 23.4 49.4 48.9 36.7 31.3 37.3 47.4 41.8 37.9 

VER 87.7 88.5 83.8 86.2 88.4 85.2 88.3 87.6 90.1 80.4 89.0 88.5 89.7 89.9 87.4 

ION 92.9 92.7 93.6 94.5 94.7 94.9 91.9 90.8 91.4 96.0 96.1 92.8 92.9 95.6 93.6 

DIA 61.2 67.5 67.0 62.1 65.4 59.7 62.9 69.4 69.5 47.2 63.4 62.4 66.9 67.1 63.7 

BCW 95.0 96.2 96.4 95.1 96.4 95.1 95.7 96.9 96.6 51.6 96.4 96.5 96.7 96.7 93.0 

AUS 83.6 85.3 85.3 84.5 84.7 82.3 85.6 85.1 85.2 49.5 84.5 84.5 84.8 84.9 82.1 

BLD 37.6 44.0 48.9 39.5 37.8 36.9 19.5 50.7 51.3 27.2 34.4 40.4 45.8 45.2 39.9 

FOU 100.0 98.2 69.4 86.4 99.1 88.6 62.7 64.7 64.5 42.6 100.0 100.0 100.0 100.0 84.0 

TIC 98.7 98.0 83.3 98.9 99.2 99.4 98.8 98.8 98.8 100.0 100.0 99.4 98.8 99.4 98.0 

GER 54.0 52.8 59.6 53.4 52.3 52.0 55.8 61.4 61.6 40.4 56.2 49.8 53.9 58.8 54.4 

CAR 94.9 95.9 93.2 96.2 97.2 96.7 94.1 93.5 94.2 88.1 95.8 95.7 95.7 95.7 94.8 

SPL 89.0 95.4 88.4 93.9 97.3 93.7 85.1 85.1 85.2 86.8 91.6 81.9 86.3 87.3 89.1 

LE1 77.8 84.5 56.8 69.1 90.0 76.9 0.0 0.0 0.2 95.7 96.6 95.5 95.5 95.9 66.7 

LE2 92.7 92.5 73.5 81.6 97.5 82.8 72.7 74.6 75.0 86.3 98.5 97.9 97.9 98.1 87.3 

Avg 80.4 82.6 77.5 78.8 ∗ 83.3 79.7 72.3 76.2 76.4 71.5 83.5 82.8 84.3 84.6 

Min 34.7 41.2 40.8 33.5 ∗ 31.5 33.5 0.0 0.0 0.2 27.2 31.3 37.3 45.8 41.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The data set Australian Credit Approval (AUS) contains credit

card applications of people who were (positives) or were not

(negatives) granted credit. 
• The data set Blood Transfusion Service Center (BLD) contains a

set of blood donors. The positive class label indicates that the

donor donated blood in 2007. 
• The data set Fourclass (FOU) is an artificially created data set

in which the objects are positioned in two-dimensional space

such that they are not linearly separable. The positive and neg-

ative labels are given for this data set. 
• The data set Tic-Tac-Toe Endgame (TIC) encodes the complete

set of board configurations at the end of the game when

player “x” plays first. Wins for player “x” are treated as

positives. 
• The data set German (GER) contains a set of people described

by a set of features as good (negatives) or bad (positives) credit
risks. 
• The data set Cardiotocography (CAR) consists of fetal car-

diotocograms that belong to one of the three classes “normal”

(label 1), “suspect” (label 2), and “pathologic” (label 3). Accord-

ing to the above-specified conversion procedure, we treated la-

bel 1 as the positive class and the other two labels as the neg-

ative class. 
• The data set Splice contains a set of DNA sequences. The pos-

itive class are sequences that contain an exon/intron or an in-

tron/exon splice junction. DNA sequences that contain neither

junction belong to the negative class. 
• The data set Letter Recognition comprises numerical features of

letter images. As in the study of Caruana and Niculescu-Mizil

(2006) , we used two binary variants of this data set. In data set

LE1 , only letter “O” is treated as positive. This labeling obviously

results in a high class imbalance. In data set LE2 , letters {“A”,

“B”, . . . , “M”} were treated as positives, which results in a well-
balanced class distribution. 



P. Baumann et al. / European Journal of Operational Research 272 (2019) 1041–1057 1053 

6

 

2  

E  

a  

s  

i  

c  

a  

p  

t

 

n  

t  

t  

t  

c  

n  

S  

w  

i  

f  

2

6

 

a  

a  

r  

a  

s  

w  

w

 

a  

r  

f  

i  

f  

s  

p  

g  

w  

u  

n  

u  

n  

s  

f

t

w  

p  

o

 

t  

o  

c  

i  

p  

fl

6

 

a  

p  

o  

S  

a

6

 

m  

b  

c  

p  

s  

p  

d  

g  

p  

t  

a

 

 

 

 

 

 

 

6

 

t  

o  

f  

T  

f  

r

F

P

R

A

N  

c  

w  

t

. Experimental design 

As shown in Fig. 5 , we created five random partitions (split 1,

, . . . , 5) of each data set by applying stratified random sampling.

ach partition divides the entire data set into a training (90%) and

 test set (10%). The training set is further divided into 10 equal-

ized sets, called folds, for a stratified 10-fold cross-validation that

s used during tuning. The tuning and the evaluation of the ma-

hine learning techniques are performed separately for each split,

nd the average performance across the splits is reported (see

seudocode experimental analysis). Note that the same splits and

he same folds are used for all techniques. 

Sections 6.1 and 6.2 describe how the machine learning tech-

iques are tuned and evaluated, respectively. Section 6.3 presents

he four data preprocessing options that are considered during

uning, and Section 6.4 introduces the four performance measures

hat we use to compare the different techniques. Section 6.5 dis-

usses alternative experimental designs that we tested and as

oted, all provide consistent results. Therefore, we report in

ection 7 only the results of the baseline experimental design that

e describe next in Sections 6.1 –6.4 . The experimental analysis is

mplemented in MATLAB R2017b and the computations were per-

ormed on a workstation with two Intel Xeon CPUs (model E5-

687W v3) with clock speed 3.10 GHz and 256 GB of RAM. 

.1. Tuning 

The goal of tuning is to find a promising preprocessing option

nd a set of tuning parameter values. We use random search with

 predefined time limit to determine the values of the tuning pa-

ameters and the best preprocessing option. For several algorithms

nd data sets, Bergstra and Bengio (2012) showed that random

earch is superior to grid search or manual search. It is noted that

e still tested alternative tuning strategies including grid search

ith consistent results (cf. Section 6.5 ). 

The tuning is performed for a given technique, a given split, and

 given performance measure referred to here as the tuning crite-

ion (see pseudocode tuning). For each tuning parameter, a uni-

ormly distributed random number is selected from a prespecified

nterval. Table 1 lists the lower and upper bounds of these intervals

or all tuning parameters and all techniques. The set of randomly

elected tuning parameter values is then evaluated with each pre-

rocessing option (see Section 6.3 ) based on the training set of the

iven split using 10-fold cross-validation. This process is repeated

ith different sets of randomly selected tuning parameter values

ntil the time limit is reached. Then, the best performing combi-

ation (of preprocessing option and set of tuning parameter val-

es) with respect to the tuning criterion is identified. This combi-

ation is used for the evaluation that we will explain in the next

ection. The time limit was determined for each data set with the

ormula 

ime limit = 

⌊(
n 

100 

)1 . 25 

+ 0 . 5 

⌋
, 

here n denotes the number of objects in the data set. The ex-

onent of the formula is chosen such that the time limit grows

ver-proportionally with the size of the data set. 

Using random search has several advantages. First, it is possible

o control the tuning time and roughly allocate the same amount

f tuning time to all techniques. Second, it is not necessary to

hoose a discrete set of values for each tuning parameter as it

s in grid search. Instead, it is sufficient to define only a tuning-

arameter-specific lower and upper bound, which reduces user in-

uence significantly. 
.2. Evaluation 

The evaluation is performed for a given technique, a given split,

 given performance measure, and a given combination of tuning

arameter values and preprocessing option. The entire training set

f the given split is used to classify the objects in the test set. In

ection 7 we report the respective performance measures averaged

cross splits. 

.3. Preprocessing 

Preprocessing procedures can sometimes improve the perfor-

ance of machine learning techniques by modifying the input data

efore the machine learning technique is applied. Some prepro-

essing procedures scale the feature values to a certain range to

revent features with large values from dominating distance or

imilarity computations even though other features are more im-

ortant for distinguishing the objects. Attribute scaling can also re-

uce the running time of machine learning techniques that use

radient descent due to faster convergence. Other preprocessing

rocedures reduce the dimensionality of the input data in order

o reduce noise (non-relevant features). Four preprocessing options

re considered here: 

• No preprocessing is performed. 
• Normalization scales the values of the features to the interval

[0,1]. If v i represents the vector of values of a given feature

i , then the vector of normalized values v ′ 
i 

is computed as fol-

lows: 

v ′ i = 

v i − min (v i ) 
max (v i ) − min (v i ) 

. 

• Dimensionality reduction is used to reduce the number of fea-

tures in the data sets. Here we reduce the number of features

by performing Principal Component Analysis (PCA) and select-

ing only the first leading principal components that explain at

least 80% of the variance in the original data set. 
• First normalization and then dimensionality reduction is applied. 

.4. Performance measures 

The study in Caruana and Niculescu-Mizil (2006) demonstrated

hat different performance measures are highly correlated. Based

n this result, we focused here on the four most widely used per-

ormance measures: F 1 -score, precision, recall, and accuracy. Let TP ,

N , FP , and FN denote the number of true positives, true negatives,

alse positives, and false negatives, respectively. F 1 -score, precision,

ecall, and accuracy are then defined as follows: 

 1 -score = 

2 T P 

2 T P + F P + F N 

recision = 

T P 

T P + F P 

ecall = 

T P 

T P + F N 

ccuracy = 

T P + T N 

T P + F P + T N + F N 

ote that the F 1 -score is the harmonic mean of precision and re-

all. As some of the techniques do not have a probabilistic output,

e do not report here the performance measure AUC (area under

he curve). 
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6.5. Alternative experimental designs 

It is important to note that although we present one specific

experimental design, we tested numerous alternative designs. It

turned out that irrespective of the choice of experimental design,

the observed general performance of the techniques coincides with

the performance we report for the baseline design in the next sec-

tion. In particular, SNC or KSNC consistently showed best or close

to best performance. 

Specifically, we tested designs D1 to D4, which are all based on

the partitioning of data sets shown in Fig. 5 but differ with respect

to parameter tuning. 

• Design D1 corresponds to the above-described design but im-

poses smaller time limits for the different data sets. 
• Design D2 is also based on random search but instead of a time

limit, a fixed number of c randomly chosen combinations of

tuning parameter values is applied. The value c was selected

from the set {15,30}. 
• Design D3 uses grid search instead of random search. The set

of values for each tuning parameter was defined such that each

technique was tested with roughly the same number of tuning

parameter combinations. 
• Design D4 uses grid search instead of random search. The set

of values for each tuning parameter was defined individually for

each tuning parameter. In this design, techniques with a greater

number of tuning parameters (e.g., KSNC) were applied with a

greater number of tuning parameter combinations than tech-

niques with a smaller number of tuning parameters (e.g., LOG).

7. Computational results 

In this section, we report and comment on the results obtained

when tuning and evaluating the techniques with respect to the

F 1 -scores. Table 3 presents the F 1 -scores of each machine learn-

ing technique for the different data sets averaged across the splits.

The rows of the table refer to data sets, and the columns refer to

machine learning techniques. The data sets are listed in ascend-

ing order with respect to the number of objects they contain, i.e.,

the smallest set is listed in the first row. For each data set, the top

three values that are within 5% of the best result are stated in bold.

An F 1 -score of zero results when a machine learning technique as-

signed all objects of the test set to the negative class. This hap-

pened once to the regression-based algorithms (LIN, LOG, LASSO)

and to EADA. The zero F 1 -score of EADA for data set IRS occurs

because the first weak learner already classified all objects in the

validation sets correctly. If this happens, then the MATLAB imple-

mentation of AdaBoost does not add any weak learners and clas-

sifies all objects as negatives. The last two rows of the table state

the average and the minimum value for each algorithm. As indi-

cated by the asterisks, the average and the minimum for EADA

are computed without the zero F 1 -score. The unnormalized aver-

age across data sets should be considered with caution, as different

data sets have different natural scales for the F 1 -score. We there-

fore rank the techniques for each data set separately such that the

best-performing technique is given rank 1, the second best, rank 2,

etc., as shown in Table 4 . In the case of ties (such as in IRS), aver-

age ranks are assigned. The ranks are computed based on the F 1 -

score values reported in Table 3 . The average rank is more mean-

ingful than the average F 1 -score across data sets. In addition, we

normalized the values of Table 3 by subtracting from each value

the minimum value obtained for the respective data set and divid-

ing the result by the difference between the maximum value and

the minimum value obtained for the respective data set. In this

way, the highest F -score receives the value 100, and the lowest
1 
 1 -score receives the value zero. The normalized F 1 -score results

re shown in Table 5 . Table 6 reports the F 1 -score relative to the

verage F 1 -score that was obtained for each data set. This allows

o compare the performance of each technique with the data set-

pecific average performance of all techniques. 

The similarity-based algorithms SNC, SVMR, KSNC, and KNN are

ll among the top five techniques. As can be seen in Tables 4 and 5 ,

he highest average rank as well as the highest average normalized

 1 -score was achieved by SNC. With the exception of EBAG, the

verage performance of all non-similarity-based machine learning

echniques is considerably lower than the performance of SNC. Per-

aps the most surprising result is that SNC is also superior to all

ther machine learning techniques in terms of robustness. The SNC

lgorithm not only achieves the highest average normalized F 1 -

core but also the highest average relative F 1 -score and the high-

st minimum relative F 1 -score. The comparison of the techniques

n terms of average ranks is visualized in Fig. 6 using CD (criti-

al difference) diagrams introduced by Demšar (2006) . We applied

he Friedman test to statistically compare the average ranks of the

echniques. The null-hypothesis of the Friedman test states that

ll of the techniques are equivalent and so their ranks should be

qual. We can reject the null-hypothesis for α = 0 . 1 . According to

lgorithm 1 Pseudocode experimental analysis. 

1: for each technique do 

2: for each data set do 

3: for each split do 

4: Perform tuning 

5: Perform evaluation 

6: end for 

7: Calculate the average performance across splits 

8: end for 

9: end for 

lgorithm 2 Pseudocode tuning. 

1: function Tuning (Technique, split, tuning criterion, time limit) 

2: do 

3: Randomly draw a value for each tuning parameter from

prespecified range 

4: for each preprocessing option do 

5: for each fold do 

6: Hold-out objects from the respective validation set

7: Use remaining training objects to classify hold-out

objects 

8: end for 

9: Calculate the average performance across folds 

10: end for 

11: while time limit not reached 

12: Determine the best combination of tuning parameter set

and preprocessing option 

13: end function 

he Nemenyi test, the performance of two techniques is signifi-

antly different if the corresponding average ranks differ by at least

 critical difference. This critical difference is also shown in Fig. 6 .

t α = 0 . 1 , the performance of SNC is significantly better than the

erformance of ANN, CNB, LASSO, and SVM. The performance of

he other techniques are not significantly different from each other

ccording to the Nemenyi test. This is to be expected, as the Ne-

enyi test is known to be very conservative (cf. Garcia & Herrera,

008; Ula ̧s , Yıldız, & Alpaydın, 2012 ). More powerful post hoc tests

uch as the Bergmann and Hommel procedure (see Bergmann &

ommel, 1988 ) are not applied here, as they lead to intense com-

utation for fourteen techniques and twenty data sets. 
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Table 9 

Total running time in seconds for performing an evaluation of all splits. Interpretation: The Naive Bayes classifier (CNB), the K -nearest neighbor algorithm (KNN), 

classification trees (CART), linear regression (LIN), and logistic regression (LOG) are the fastest techniques. The running time of similarity-based techniques 

increases with the increasing size of the data sets. The running time of SVM with polynomial and rbf kernel (SVM) is erratic and strongly depends on the 

tuning parameter values in addition to the data set size. The running times of SNC, KSNC, and KNN are stable and predictable. 

ANN CART CNB EADA EBAG EGAB LASSO LIN LOG SVM SVMR KNN KSNC SNC 

IRS 0.964 0.037 0.040 0.099 9.672 11.657 0.070 0.047 0.083 0.014 0.013 0.040 0.014 0.013 

WIN 1.027 0.038 0.037 11.009 10.517 11.868 0.055 0.046 0.061 0.013 0.014 0.038 0.014 0.012 

PAR 0.974 0.039 0.037 10.988 11.603 12.209 0.727 0.065 0.019 0.015 0.018 0.036 0.015 0.014 

SON 1.088 0.041 0.043 11.316 12.906 12.449 0.522 0.056 0.067 0.028 0.027 0.038 0.017 0.016 

GLA 0.940 0.038 0.038 10.718 11.810 11.989 0.150 0.046 0.019 0.091 0.544 0.038 0.015 0.014 

HEA 0.926 0.038 0.048 10.900 12.776 12.018 0.041 0.047 0.020 46.955 0.024 0.037 0.018 0.016 

HAB 0.935 0.038 0.037 10.676 13.048 11.770 0.036 0.045 0.019 25.068 0.687 0.038 0.018 0.016 

VER 1.035 0.038 0.036 11.427 12.451 12.157 0.049 0.046 0.023 0.016 0.019 0.039 0.019 0.017 

ION 1.033 0.041 0.049 11.888 12.877 12.552 0.120 0.065 0.168 0.028 0.028 0.039 0.021 0.021 

DIA 0.967 0.040 0.038 11.519 13.605 12.477 0.039 0.050 0.018 73.582 0.026 0.040 0.030 0.029 

BCW 0.976 0.039 0.036 11.602 12.698 12.405 0.043 0.045 0.022 0.012 0.019 0.040 0.069 0.064 

AUS 1.106 0.043 0.040 12.154 16.288 12.720 0.040 0.049 0.028 91.560 0.088 0.041 0.071 0.065 

BLD 1.172 0.040 0.036 11.587 15.959 12.494 0.039 0.047 0.034 179.684 10.024 0.041 0.073 0.069 

FOU 1.529 0.041 0.036 11.700 12.735 12.656 0.039 0.046 0.019 145.422 0.029 0.041 0.100 0.096 

TIC 1.421 0.049 0.052 12.218 17.273 13.139 0.319 0.078 0.351 0.240 0.248 0.041 0.132 0.120 

GER 1.304 0.056 0.051 12.396 19.632 13.097 0.089 0.070 0.046 14.386 5.701 0.043 0.158 0.143 

CAR 2.047 0.075 0.053 13.663 20.412 14.074 0.389 0.081 0.317 60.031 0.384 0.049 0.637 0.595 

SPL 2.549 0.100 0.174 15.514 32.727 15.539 0.409 0.166 0.239 1.787 6.137 0.099 1.402 1.318 

LE1 53.913 0.197 0.154 57.473 76.001 21.330 1.491 0.241 0.383 38.082 3.898 0.343 60.359 56.400 

LE2 60.357 0.441 0.274 60.164 119.240 37.368 1.399 0.244 0.312 41.841 174.805 0.345 62.060 57.843 

Sum 136.263 1.468 1.310 319.011 464.229 285.968 6.066 1.580 2.247 718.855 202.735 1.466 125.242 116.882 

Table 10 

Total running time in seconds for performing tuning of all splits. Interpretation: The observed running time for tuning is close to the imposed time limit for 

most techniques. Exceptions are EADA, EBAG, EGAB, and SVM, whose running times vary strongly between tuning parameter values. 

ANN CART CNB EADA EBAG EGAB LASSO LIN LOG SVM SVMR KNN KSNC SNC 

IRS 41 10 10 12 382 451 10 11 11 10 10 11 10 10 

WIN 40 10 10 433 413 461 10 11 11 10 10 10 10 10 

PAR 38 11 10 422 440 467 27 11 10 165 10 10 10 10 

SON 38 11 12 451 477 483 30 11 12 29 10 10 10 10 

GLA 37 15 15 436 449 470 16 15 15 30 39 16 15 15 

HEA 37 16 16 471 484 477 15 16 15 401 15 16 15 15 

HAB 37 21 21 429 511 457 20 21 20 228 23 21 20 20 

VER 38 21 20 455 481 462 20 21 20 282 20 20 20 20 

ION 41 26 26 454 481 490 26 26 27 73 26 26 25 25 

DIA 37 31 31 452 523 477 31 31 30 643 31 30 30 30 

BCW 78 55 56 455 476 491 55 56 55 243 56 56 55 55 

AUS 83 55 56 488 587 480 56 55 55 796 70 56 55 55 

BLD 92 60 61 448 577 484 61 60 61 1,482 94 60 60 60 

FOU 103 76 75 462 502 475 75 75 75 1,287 76 75 75 75 

TIC 112 86 85 490 703 493 87 86 88 119 87 85 85 85 

GER 96 91 91 480 798 504 91 91 91 114 155 91 90 90 

CAR 261 231 231 521 822 540 231 231 232 977 260 231 232 232 

SPL 424 377 378 641 1,520 617 380 377 378 496 524 376 379 378 

LE1 4,293 3,762 3,763 4,140 6,341 3,834 3,767 3,763 3,763 48,772 4,049 3,765 4,047 3,838 

LE2 5,733 3,766 3,764 3,828 5,577 3,883 3,775 3,763 3,762 5,201 5,814 3,764 3,846 3,954 

Sum 11,660 8,730 8,730 15,968 22,544 16,498 8,784 8,731 8,733 61,359 11,379 8,729 9,091 8,989 
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Table 7 reports the standard deviation of the F 1 -scores across

plits. The lowest standard deviations are achieved by KSNC, SVMR,

nd EADA. However, all techniques exhibit rather low standard de-

iations. 

None of the techniques appears to systematically suffer from

verfitting as the F 1 -scores that we reported in Table 3 are simi-

ar to the best F 1 -scores obtained for the validation sets averaged

cross splits (see Table 8 ). 

In additional experiments, we tuned the techniques for F 1 -

cores and evaluated for precision and recall. The best average pre-

ision results were obtained by SVMR (86.4%) followed by EBAG

86.3%) and KNN (86.0%). The best average recall results were ob-

ained by SNC (89.1%) followed by KSNC (87.0%) and CNB (83.6%).

inally, we tuned for accuracy and evaluated for accuracy. The best
S  
verage accuracy results were obtained by SNC (90.1%) followed by

VMR (89.9%) and EBAG (89.9%). 

Turning to an analysis of the running time of the different ma-

hine learning techniques, Table 9 lists for each technique and data

et the total running time required to evaluate all splits. The eval-

ation of a split includes the time required to train the technique

n the training set and the time required to classify the objects of

he test set. Overall, the Naive Bayes classifier (CNB), the K -nearest

eighbor algorithm (KNN), classification trees (CART), linear regres-

ion (LIN), and logistic regression (LOG) are clearly the fastest tech-

iques. SNC has very low evaluation times for data sets that are

mall in terms of the number of objects. However, the evaluation

imes increase considerably when the number of objects increases.

lso the evaluation times of ANN, EADA, EBAG, EGAB, SVM, and

VMR go up sharply as the number of objects increases. For the
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similarity-based machine learning techniques (KNN, KSNC, SNC,

and SVM), the evaluation time increase occurs because the num-

ber of pairwise similarities grows quadratically in the size of the

data set. This hinders the applicability of similarity-based machine

learning techniques for very large data sets. However, recently in

Hochbaum and Baumann (2014) , Hochbaum and Baumann (2016) ,

Baumann et al. (2016) , Baumann et al. (2017) , we devised a method

called sparse computation that generates only the relevant simi-

larities, resulting in sparse similarity matrices even for massively

large data sets. The results in Hochbaum and Baumann (2014) ,

Hochbaum and Baumann (2016) , Baumann et al. (2016) , Baumann

et al. (2017) demonstrate that with this technique, significant im-

provements in running time can be achieved with minimal loss in

accuracy. 

The tuning time measures the time required to determine the

best combination of preprocessing option and tuning parameter

values. As mentioned in Section 6.1 , we provided the same tun-

ing time for all techniques. In Table 10 , we report for each tech-

nique and each data set the actual total tuning time required for

all splits. The reported tuning times for ANN, EADA, EBAG, EGAB,

SVM, and SVMR exceed the prescribed time limit for some data

sets quite considerably. This indicates that performing a single or a

few runs (one or a few random combinations of tuning parameter

values) with these algorithms sometimes exceeds the prescribed

time limit. Fast techniques such as CART, CNB, KSNC, LASSO, LIN,

LOG, and SNC could test a large number of tuning parameter com-

binations within the given time limit. Note that the tuning times

of SNC and KSNC can be reduced substantially when grid search is

used instead of random search because the similarities computed

for a specific value of ε can be reused for all values of λ and k . 

8. Conclusions 

This paper presents a detailed comparison of twelve established

and two new machine learning techniques applied to twenty data

sets. The machine learning techniques are considered in their ba-

sic forms with well-defined sets of tuning parameters. The study

demonstrates that the new combinatorial optimization algorithms

consistently show the best or close to best performance, and their

performance is also the most robust. An important insight derived

from this study is that similarity-based algorithms perform con-

siderably better than non-similarity-based machine learning algo-

rithms. This implies that further investigations of effective machine

learning techniques should focus on similarity-based algorithms

and on combinatorial optimization algorithms. 
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