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Abstract
We present a combinatorial algorithm for cell detection in two-photon calcium imaging.
Calcium imaging is a modern technique used by neuroscientists for recording movies of
in-vivo neuronal activity at cellular resolution. The proposed algorithm, named HNCcorr,
builds on the combinatorial clustering problem Hochbaum’s Normalized Cut (HNC). HNC
is a model that trades off two goals: One goal is that the cluster has low similarity to the
remaining objects. The second goal is that the cluster is highly similar to itself. The HNC
model is closely related to the Normalized Cut problem of Shi and Malik, a well-known
problem in image segmentation. However, whereas Normalized Cut is an NP-hard problem,
HNC is solvable in polynomial time. The neuronal cell detection in calcium imaging movies
is viewed here as a clustering problem. HNCcorr utilizes HNC to detect cells in these movies
as coherent clusters of pixels that are highly distinct from the remaining pixels. HNCcorr
guarantees, unlike existing methodologies for cell identification, a globally optimal solution
to the underlying optimization problem. Of independent interest is a novel method, named
similarity-squared, that is devised here for measuring similarity. In an experimental study
on data from the Neurofinder cell identification benchmark, HNCcorr is a top performer. In
particular, it achieves a higher average score than two frequently used matrix factorization
algorithms. The Python and Matlab implementations of HNCcorr used here are publicly
available. The use of HNCcorr demonstrates that combinatorial optimization is a valuable
tool for neuroscience and other biomedical disciplines.
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1 Introduction

This work is motivated by a critical challenge facing the neuroscience community, of extract-
ing high quality signals of neuronal activity from calcium-imaging data. While there are
excellent optical imaging tools for measuring and recording cellular resolution data, avail-
able algorithms that extract the signals from this data do not provide the quality required.
State-of-the-art approaches either require tens of hours of manual labor in the processing of
each experimental dataset, or else, use methods that provide results of inadequate quality
due to the use of heuristic approaches rather than optimization. Due to the shortcomings of
existing algorithms, the full potential of the acquired data is not realized. We introduce here
a new approach for addressing this problem that utilizes a new combinatorial optimization
clustering model, named Hochbaum’s Normalized Cut (HNC) (Hochbaum 2010, 2013).

HNC is an intuitive clusteringmodel that combines two desirable goals: The objectswithin
the cluster should be homogeneous, and the cluster should be distinct from the remaining
objects. Homogeneity is captured by high total similarity between the objects within the
cluster, whereas distinctness is represented by small similarity between the cluster and its
complement. HNC has been successfully applied to a wide array of applications. Hochbaum
et al. (2013) showed that HNC outperforms spectral clustering for image segmentation. Bau-
mann et al. (2019) provide a comparative study of binary classification algorithms including a
supervised variant of HNC. They demonstrate that the supervised version of HNC is competi-
tive with state-of-the-art machine learning techniques. Other successful applications of HNC
include enhancing the detection of nuclear radiation sources (Yang et al. 2013), evaluating
the effectiveness of drugs (Hochbaum et al. 2012), and video-tracking (Fishbain et al. 2013).

Calcium imaging is an imaging technique used by neuroscientists for measuring calcium
concentrations at a cellular resolution in live and behaving animals (Stosiek et al. 2003).
It is commonly used to simultaneously record the neuronal activity of thousands of neu-
rons, the primary component of the central nervous system. When a neuron activates (fires),
calcium ions are released into the cell. The cell then becomes fluorescent due to calcium
sensitive, genetically modified proteins. After the spike, the calcium concentration rapidly
decays to normal levels. These changes in fluorescence are recorded with fast-scanning laser
microscopes, producing movies of the fluorescence of cells in a slice of the brain. In these
movies, a pixel is characterized by a fluorescence signal that changes over time. From these
movies, researchers extract the activity signals from individual neurons by estimating the
time-varying fluorescence of these cells. The extracted activity signals are then used as the
starting point for all subsequent analysis to test hypotheses about the function of neurons
and neural circuits in relation to the behavior of the animal. We focus here on two-photon
calcium-imaging, where cells have minimal overlap between them.

A crucial step in the analysis of calcium imaging datasets is to identify the locations of the
individual cells in the movie in order to extract their signal. This cell identification problem
consists of outlining the spatial footprint, represented by a set of pixels, of each cell in the
imaging plane. The identification is complicated by high noise levels in the recorded movie,
the presence of out-of-focus fluorescence sources above or below the imaging plane, and the
fact that most cells are only visible when they activate. Our interest here is in active cells with
measurable changes in fluorescence. The task of cell identification is cast here as a clustering
problem of constructing a cohesive cluster of pixels that are distinct from their environment.
The spatial footprint of a cell is such a cluster since the pixels in the footprint share the unique
time-varying signal of the contained cell.
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If done manually, the process of identifying cells requires hours of manual user input
for each dataset, which, accumulated over a single project, adds up to hundreds of hours of
time committed by researchers. Hence, a number of automated methods have been devel-
oped for cell identification in calcium imaging movies. These existing techniques can be
classified into three classes: Semi-manual region of interest (ROI) detection (Kaifosh et al.
2014; Driscoll et al. 2017), shape-based detection algorithms (Gao 2016; Klibisz et al. 2017;
Apthorpe et al. 2016; Pachitariu et al. 2013), and matrix factorization algorithms (Mukamel
et al. 2009;Maruyama et al. 2014; Pnevmatikaki and Paninski 2013;Diego-Andilla andHam-
precht 2014; Pnevmatikakis et al. 2016; Pachitariu et al. 2017; Levin-Schwartz et al. 2017).
Semi-manual ROI detection techniques rely on user’s input for detecting and segmenting
cells. This process has been reported to be highly labor-intensive (Resendez et al. 2016) and
may miss cells with a low signal to noise ratio or a low activation frequency. Shape-based
identification methods locate the characteristic shape(s) of cells using deep learning (Gao
2016; Klibisz et al. 2017; Apthorpe et al. 2016) or dictionary learning (Pachitariu et al. 2013).
Shape-based techniques are typically applied to a summary image of the movie obtained by
removing the time dimension and compressing the movie to a single average intensity image.
The third class of techniques uses a matrix factorization model to decompose a movie into
the spatial and temporal properties of the individual neuronal signals. The use of the matrix
factorization algorithm CNMF (Pnevmatikakis et al. 2016) is currently prevalent for the task
of cell identification. The name CNMF is derived from the algorithm’s use of constrained
non-negative matrix factorization.

We demonstrate here how HNC is adapted to an algorithm, named HNCcorr, for cell
identification in two-photon calcium imaging movies. The name HNCcorr is derived from
HNCand the use of a similaritymeasure based on correlation.Amajor distinction ofHNCcorr
as compared to most alternative algorithms is that HNC is solved efficiently and to global
optimality (Hochbaum 2010, 2013). The optimality guarantee of HNC makes the output
of the optimization model transparent, since the effect of the model input and parameters
on the resulting optimal solution is well understood. In contrast, most other approaches for
cell identification, such as matrix factorization algorithms, rely on non-convex optimization
models that are intractable. This means that the algorithms cannot find a global optimal
solution to their optimization model but instead find a locally optimal solution, which is
dependent on the initial solution. As a result, these algorithms provide no guarantee on the
quality of the delivered solutions and cells may remain undetected.

One unique feature of HNC is the use of pairwise similarities. Pairwise similarities con-
siderably enhance the quality of prediction for data mining as has been noted in the past:
by Dembczyński et al. (2009); Baumann et al. (2019) for machine learning purposes, by Ryu
et al. (2004) for improved medical diagnosis, and by Zhu et al. (2003) in semi-supervised
learning. For HNCcorr, we devised a novel method for computing similarities between pairs
of pixels named (sim)2, similarity-squared. The idea of (sim)2 is to associate, with each pixel,
a feature vector of correlations with respect to a subset of pixels. Similarities between pairs of
pixels are then computed as the similarity of the respective two feature vectors. The novelty
in similarity-squared is that it replaces the direct similarity between a pair of objects - pixels
here - by a comparison of how each of the two objects relates to a reference set of objects. For
example, one advantage of (sim)2 over regular pairwise correlation is that it considers any
two background pixels, pixels not belonging to a cell, as highly similar whereas correlation
deems them dissimilar. This improves the clustering since it incentivizes that background
pixels are grouped together.

We present here the experimental performance of the HNCcorr on the Neurofinder bench-
mark (CodeNeuro 2016) for cell identification in two-photon calcium imaging datasets.
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This benchmark is currently the only available benchmark that objectively evaluates cell
identification algorithms. The datasets in this benchmark are annotated two-photon calcium
imaging movies recorded under varying experimental conditions. On this benchmark, HNC-
corr achieves a higher average score than two frequently used matrix factorization algorithms
CNMF (Pnevmatikakis et al. 2016) and Suite2P (Pachitariu et al. 2017).

We further provide a running time comparison between the MATLAB implementations
of HNCcorr, CNMF, and Suite2P. HNCcorr has similar running time performance as Suite2P
and is about 1.5 times faster than CNMF. Python andMATLAB implementations of HNCcorr
are available at https://github.com/quic0/HNCcorr.

1.1 Summary of motivation and contributions

Motivation

– Calcium imaging is a crucial analysis tool in modern neuroscientific research.
– There is a lack of effective algorithms for cell identification, thus inhibiting the analysis

of calcium imaging data.
– An optimizationmodel to identify cells in calcium imaging data, that is solved efficiently,

would address the lack of effective algorithms.

Contributions

– Devising the HNCcorr algorithm for cell identification in two-photon calcium imaging
movies.

– Contributing to the development of automated algorithmic infrastructure that delivers an
accurate extraction of neuronal activity from calcium imaging data.

– Introducing the first combinatorial optimization model of the cell identification problem
that is solved in polynomial time to global optimality.

– Introducing the novel similarity measure similarity-squared, (sim)2, which is expected to
be applicable beyond the context of calcium imaging. The novelty in similarity-squared
is that it replaces the direct similarity between a pair of objects by a comparison of how
each of the two objects relates to a reference set of objects.

– Presenting an extensive experimental study demonstrating thatHNCcorr delivers superior
performance to that of two commonly-used matrix factorization algorithms.

1.2 Overview of this work

The remainder of this work is organized as follows: In Sect. 2, we describe the HNC problem.
In Sect. 3, we describe methods for solving HNC. In Sect. 4, we discuss a solution for scaling
similarity-based machine learning methods, such as HNC, to large instances. In Sect. 5,
we describe the HNCcorr algorithm and how it relates to HNC. We describe the novel
similarity measure (sim)2 in Sect. 5 since the motivation for (sim)2 is tied to the problem of
cell identification. In Sect. 6, we evaluate the experimental performance of HNCcorr on the
Neurofinder benchmark datasets. Finally, we present concluding remarks in Sect. 7.
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2 The HNCmodel for similarity-based clustering

HNC (Hochbaum 2010, 2013) is a intuitive model for similarity-based data mining and clus-
tering. It is applicable to both supervised and unsupervised learning problems. We describe
in this section how HNC is defined and how it relates to Normalized Cut (Shi and Malik
2000), a well-known problem from image segmentation.

2.1 Notation

Let G = (V , E) denote an undirected graph. Let n denote the number of nodes in V ,
and let m be the number of edges in E . Every edge [i, j] ∈ E has an associated weight
wi j ≥ 0. We denote the weighted degree of node i ∈ V by di = ∑

[i, j]∈E wi j . For
A, B ⊆ V , let C(A, B) = ∑

[i, j]∈E,
i∈A, j∈B

wi j be the sum of weights of the edges between

nodes in the set A and those in set B. Note the following relation for undirected graphs:∑
i∈A di = 2C(A, A) + C(A, V \A).
Let the set S ⊂ V be a non-empty set of nodes. Its complement is S̄ = V \S. The sets

(S, S̄) form a bi-partition referred to here as a cut. The capacity of a cut (S, S̄) is C(S, S̄).
Given a source node s ∈ V and sink node t ∈ V , an s, t-cut is a cut (S, S̄) where s ∈ S and
t ∈ S̄. The set S of an s, t-cut (S, S̄) is known as the source set of the cut, and the set S̄ is
known as the sink set of the cut. The minimum s, t-cut problem on G is to find an s, t-cut
that minimizes C(S, S̄).

For a directed graph GD = (VD, A), let wi j ≥ 0 denote the arc weight of arc (i, j) ∈ A.
We use the same notation as for undirected graphs to denote a cut (S, S̄) and its capacity
C(S, S̄). Note that the capacity C(S, S̄) of a cut (S, S̄) in a directed graph includes only
the sum of weights on arcs from S to S̄ and not on arcs in the reverse direction. Similar to
undirected graphs, the minimum s, t-cut problem on a directed graphGD is to find an s, t-cut
that minimizes C(S, S̄).

2.2 The HNCmodel

HNC (Hochbaum 2010, 2013) is a graph-based clustering model that trades-off two objec-
tives: The homogeneity of the cluster and the distinctness of the cluster to the remaining
objects. HNC is defined here on an undirected graph G = (V , E), but it applies to directed
graphs as well. The node set V is the set of objects, and the edges in E represent pairwise
similarity relations between objects. The pairwise similarity along edge [i, j] ∈ E is mea-
sured with a similarity weight wi j ≥ 0. The objects i and j are considered more similar as
wi j increases.

The cluster of interest in HNC is a non-empty set S ⊂ V . We represent the homogeneity
of the cluster S with C(S, S), the total sum of similarities between objects in the cluster. We
measure distinctness with C(S, S̄), which is the capacity of the cut (S, S̄). The HNC model
balances the maximization of C(S, S) and the minimization of C(S, S̄).

HNC requires that S and S̄ contain one ormore seed objects, otherwise the optimal solution
is to select S = V with C(S, S) = ∑

[i, j]∈E wi j and C(S, S̄) = 0. Let SP ⊂ V denote a
non-empty set of positive seeds that must be contained in the cluster S. Similarly, SN ⊂ V
denotes the non-empty set of negative seeds that are in S̄. These seed sets guarantee that both
S and S̄ are non-empty. In a supervised context, these seed sets contain the labeled objects
in the training data.

123



Annals of Operations Research

The HNC model is to optimize the ratio of distinctness and homogeneity:

min
∅⊂S⊂V

SP⊆S, SN⊆S̄

C
(
S, S̄

)

C (S, S)
. (1)

This objective is equivalent tominimizing the cut capacityC(S, S̄)divided by theweighted
degree of the nodes in S:

min
∅⊂S⊂V

SP⊆S, SN⊆S̄

C
(
S, S̄

)

∑
i∈S di

, (2)

as shown next:

Lemma 1 (Hochbaum 2010) The set of optimal solutions to (1) and (2) are identical.

Proof

C(S, S̄)

C(S, S)
= 2C(S, S̄)

∑
i∈S di − C(S, S′)

= 2
∑

i∈S di
C(S,S̄)

− 1
.

The problems are thus equivalent, since they have equivalent objectives and the same set of
feasible solutions. �	

2.3 Relation to normalized cut

HNC is a close relative of the Normalized Cut (NC) problem. Its use in the context of image
segmentation was popularized by Shi and Malik (2000). The NC problem is defined as:

min∅⊂S⊂V

C
(
S, S̄

)

∑
i∈S di

+ C
(
S, S̄

)

∑
i∈S̄ di

. (3)

Compared to (2), the NC problem has an additional term in the objective. Although this
changemay seemminor, it has profound impact on the complexity of the problem. In fact, Shi
andMalik showed that theNormalizedCut problem isNP-hard (Shi andMalik 2000)whereas
there is a practical, polynomial-time algorithm for the HNC problem (Hochbaum 2010). In
previous work (Sharon et al. 2006), it was mistakenly assumed that the HNC problem is
identical to Normalized Cut and therefore NP-hard.

The Normalized Cut problem is often used as the theoretical motivation for the spectral
clusteringmethod. Spectral clusteringwas popularized by Shi andMalik (2000) as a heuristic
for the Normalized Cut problem, since spectral clustering solves a continuous relaxation of
the Normalized Cut problem. HNC was shown to be a form of discrete relaxation of normal-
ized cut (Hochbaum 2013). Yet, HNC is solved more efficiently than the spectral clustering
method. Furthermore, an extensive empirical comparison ofHNC to spectral clustering for the
purpose of image segmentationwasprovidedbyHochbaumet al. (2013).Theoutcomesof that
comparison indicate that theHNC solutions are superior, both visually and in terms of approx-
imating the objective of the Normalized Cut problem, to the spectral clustering algorithm.

2.4 Linearizing ratio problems

A common method to solve ratio problems such as (1) and (2) is to instead consider an
optimization problem over the epigraph of the ratio function. When you minimize a ratio
objective over a feasible region X , minx∈X f (x)

g(x) , this optimization problem is equivalent to:
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min
x,λ≥0

λ

s.t
f (x)

g(x)
≤ λ

x ∈ X

⇔
min
x,λ≥0

λ

s.t f (x) − λg(x) ≤ 0

x ∈ X

This is equivalent to finding the smallestλ such that there is a “yes” answer to the following
λ-question: “Is there a solution x ∈ X such that f (x) − λg(x) ≤ 0?” This reduces the
optimization problem to a sequence of oracle calls to the λ-question.

For the HNC formulation in (1), we can answer the associated λ-question by solving the
linear optimization problem in (4) and checking whether the objective value is non-positive:

min
∅⊂S⊂V

SP⊆S, SN⊆S̄

C
(
S, S̄

) − λC(S, S). (4)

Similarly, we answer the λ-question for the HNC formulation in (2) with the linear optimiza-
tion problem in (5):

min∅⊂S⊂V
SP⊆S, SN⊆S̄

C
(
S, S̄

) − λ
∑

i∈S
di . (5)

We note that the linear formulations in (4) and (5) are alternative formulations of HNC
irrespective of their associated ratio problems, since they capture the trade-off between homo-
geneity and distinctness.

3 Algorithms for solving HNC

In Sect. 3.1 we provide integer programming formulations for both (4) and (5). We show how
these formulations imply efficient polynomial time algorithms based on minimum cut for
solving the linear HNC problems with a fixed value of λ (Hochbaum 2010, 2013). In Sect.
3.2, we extend this analysis and demonstrate how (5) is solved for all λ values simultaneously
in the same complexity, that of a single minimum cut, by using a parametric minimum cut
procedure (Hochbaum 2010, 2013). This directly provides an algorithm to solve the ratio
version of HNC.

3.1 Solving for fixed � values

In this section, we demonstrate how to solve the linearized HNC problems in (4) and (5) for
a fixed value of λ ≥ 0. We first present an integer programming formulation for (4). The
integer program uses the decision variable xi to denote whether node i ∈ V is in the cluster
S:

xi =
{
1 if i ∈ S,

0 if i ∈ S̄.

Another decision variable zi j denotes whether edge [i, j] ∈ E is in the cut, and the decision
variable yi j denotes for edge [i, j] whether i and j are both in the cluster S:

zi j =
{
1 if i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S,

0 otherwise,
yi j =

{
1 if i, j ∈ S,

0 otherwise.
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With these decision variables, the following integer programming problem is a formulation
of HNC (Hochbaum 2010):

min
∑

[i, j]∈E]
wi j zi j−λ

∑

[i, j]∈E]
wi j yi j , (6)

s.t. xi − x j ≤ zi j ∀[i, j] ∈ E, x j − xi ≤ z ji ∀[i, j] ∈ E,

yi j ≤ xi ∀[i, j] ∈ E, yi j ≤ x j ∀[i, j] ∈ E,

xi = 1 ∀i ∈ SP , xi = 0 ∀i ∈ SN ,

xi ∈ {0, 1} ∀i ∈ V , yi j , zi j ∈ {0, 1} ∀[i, j] ∈ E .

This integer program is recognized as a monotone integer programing with up to three
variables per inequality (IP3) (Hochbaum 2002). Monotone IP3 are integer programs with
up to three variables per inequality, where in each constraint two of the variables appear with
opposite sign coefficients and a third variable, if present, appears only in one constraint. A
typical monotone constraint on three variables is ai j xi − bi j x j ≤ ci j + zi j where ai j and bi j
are non-negative.Anymonotone IP3 is solvablewith aminimumcut on an associated directed
graph (Hochbaum 2002). Monotone IP3 integer programs have multiple applications. For
instance, it was used for nuclear threat detection (Hochbaum and Fishbain 2011).

The graph associated with the formulation in (6) hasm+n nodes and up to 4m+2n arcs,
where n is the number of nodes andm is the number of edges inG. The complexity of solving
the integer program in (6) is therefore T (m + n + 2, 4m + 2n). The notation T (n,m) =
O(nm log n2

m ) denotes the complexity of solving the minimum s, t-cut problem on a graph
with n nodes and m arcs with the HPF (Hochbaum’s PseudoFlow) algorithm (Hochbaum
2008) or the Push-relabel algorithm (Goldberg and Tarjan 1988).

The linearized version of (2) as given in (5) translates to another monotone IP3 for which
the corresponding graph is smaller (Hochbaum 2013):

min
∑

[i, j]∈E]
wi j zi j−λ

∑

i∈V
di xi , (7)

s.t. xi − x j ≤ zi j ∀[i, j] ∈ E, x j − xi ≤ z ji ∀[i, j] ∈ E,

xi = 1 ∀i ∈ SP , xi = 0 ∀i ∈ SN ,

xi ∈ {0, 1} ∀i ∈ V , zi j ∈ {0, 1} ∀[i, j] ∈ E .

The graph associated with the formulation in (7) and contains only O(n) nodes. We
now show the construction of the graph for this formulation, referred to as the auxiliary
graph (Hochbaum 2013).

Let the auxiliary graph be a directed graph GA = (V ∪ {s, t}, A). The arc set A consists
of the following sets of arcs: For every edge [i, j] ∈ E , add the two arcs (i, j) and ( j, i) to
A. Both arcs have a capacity of wi j ≥ 0. We also add arcs (s, i) with capacity λdi for every
node i ∈ V . Finally, for every positive seed i ∈ SP we add an infinite capacity arc (s, i),
and for every negative seed j ∈ SN we add an infinite capacity arc ( j, t). A schematic of the
auxiliary graph is provided in Fig. 1.

The source set of a minimum s, t-cut in the auxiliary graph GA is an optimal solution to
the linearized HNC problem in (5):

Theorem 1 (Hochbaum 2013) The source set S∗ of a minimum s, t-cut (S∗ ∪ {s}, S̄∗ ∪ {t})
in GA is an optimal solution to the linearized HNC problem in (5) for a fixed value of λ.
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(a) (b)

Fig. 1 Schematics of a similarity graph G and the corresponding auxiliary graph GA for the linearized HNC
in (5). The node sP ∈ SP is a positive seed, whereas the node sN ∈ SN is a negative seed

Proof Let (S ∪ {s}, S̄ ∪ {t}) be any finite s, t-cut in GA. The infinite capacity arcs (s, i) for
i ∈ SP guarantee that SP ⊆ S. Similarly, SN ⊂ S̄. Thus, the set S is a feasible solution for 5.
GA always contains a finite cut when the seed sets are disjoint, SP ∩ SN = ∅.

The capacity of cut (S ∪ {s}, S̄ ∪ {t}) is equal to:

C(S ∪ {s}, S̄ ∪ {t}) = C(S, S̄) + λ
∑

i∈S̄
di = C(S, S̄) + λ

(

D −
∑

i∈S
di

)

= λD + C(S, S̄) − λ
∑

i∈S
di ,

where D = ∑
i∈V di denotes the sum of weighted degrees. Thus, minimizing the capacity

of the cut is equivalent to minimizing C(S, S̄) − λ
∑

i∈S di . �	
The auxiliary graph has n + 2 nodes and up to 2m + 2n, since every edge [i, j] ∈ E has
two associated arcs and every node has up to two associated arcs. One arc connecting it to
the source node s with capacity λdi , and potentially another arc that connects a seed node to
either the source node s or to the sink node t .

Corollary 1 The linearized HNC problem in (5) for a fixed value of λ is solvable in
O (T (n + 2, 2m + 2n)).

Since the linearized HNC problem in (5) provides a more efficient algorithm than the
problem in (4), we henceforth consider only formulation (5) and its associated ratio problem
(2).

3.2 Solving simultaneously for all � values

Whereas the previous section describes an algorithm to solve the problem in (5) for a fixed
value of λ, we now show that we can solve (5) simultaneously for all values of λ in the
complexity of a single minimum cut with a parametric minimum cut problem (Gallo et al.
1989; Hochbaum 2008). This directly implies that the ratio version of HNC in (2) is solved
in the same complexity, since these problems are equivalent to finding the smallest λ such
that the objective of the linear problem in (5) is non-positive.

Parametric minimum cut solves the minimum cut problem as a function of λ on a special
type of graph, the parametric flow graph. A directed s, t-graph G(λ) is a parametric flow
graph if all arcs capacities adjacent to the source node s are monotone non-decreasing and
all arc capacities adjacent to the sink node t are monotone non-increasing as a function of λ.
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The only arcs in GA whose capacity depends on λ are the arcs adjacent to the source node
s. The capacity of arc (s, i) ∈ A is λdi and is monotone non-decreasing in λ since di , the
weighted degree of node i , is non-negative for all nodes i ∈ V . The graph GA(λ) is therefore
a parametric flow graph.

It was shown that the source set of a minimum cut in a parametric flow graph as a function
of λ are nested:

Lemma 2 (Gallo et al. 1989; Hochbaum 2008) Let S∗(λ) denote the source set of a minimum
s, t-cut in the parametric flow graph G(λ). Then, for λ1 < λ2:

S∗(λ1) ⊆ S∗(λ2).

Although the capacity of the cut increases with increased λ, the source set of the minimum
cut is strictly incremented at most n times. This implies that there are at most n values of
0 ≤ λ1 < λ2 < · · · < λ� for which the source set is augmented by at least one node. We
refer to such λ-values as breakpoints. Let the sets S∗

1 ⊂ S∗
2 ⊂ · · · ⊂ S∗

� denote the associated
minimal source sets of the minimum cut, where S∗

1 is the source set of the minimum cut for
λ ∈ [0, λ1].

Gallo et al. (1989) showed that the breakpoints and their associated source sets are found
in the complexity of a single minimum cut with the push-relabel algorithm (Goldberg and
Tarjan 1988). Hochbaum (2008) showed that theHPF algorithm also identifies all breakpoints
in the complexity of a single minimum cut. These are the only two known algorithms that
solve the parametric minimum cut in the complexity of a single minimum cut. Since the
auxiliary graph is a parametric flow graph with n + 2 nodes and 2m + 2n arcs, it implies
that solutions to the linearized HNC in (5) for all values of λ are found simultaneously in
T (n + 2, 2n + 2m).

With the breakpoints λi and associated source sets S∗
i for i = 1, . . . , � we are able to

solve the ratio version of HNC as well. Recall that these problems are equivalent to finding
the smallest λ such that the objective value of (5) is non-positive. Since the source sets only
change at the breakpoints, it is sufficient to find the smallest λ-breakpoint where the objective
value of (5) is non-positive. The source set for this breakpoint is the optimal cluster for the
ratio version of HNC.

Theorem 2 (Hochbaum 2013) The HNC ratio problem in (2) is solved in T (n+ 2, 2n+ 2m)

with a parametric minimum cut procedure.

4 Sparse computation: addressing the challenge of scaling in the
presence of pairwise similarities

Computing pairwise similarities poses a challenge at scale as the number of pairwise similar-
ities grows quadratically in the number of objects (Hochbaum and Baumann 2016; Baumann
et al. 2016, 2017). As a result, it is prohibitive to compute or store all pairwise similarities for
large datasets. Hochbaum and Baumann (2016) proposed the method of sparse computation
to overcome this challenge.

Sparse computation identifies a set of relevant pairwise similarities without computing
the pairwise similarities first. For binary classification, it was shown, for a large number of
datasets, that the accuracyobtainedwith sparse computation is almost identical to the accuracy
obtained with the complete set of all pairwise similarities (Hochbaum and Baumann 2016).
See Fig. 2 for an example. Sparse computation maintains high accuracy levels by discarding
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Fig. 2 Accuracy at selected sparsity levels for the letter recognition dataset (Frey and Slate 1991) obtained
with three similarity-based classifiers [k-nearest neighbors, a supervised variant of HNC (Yang et al. 2013),
and SVM (Cortes and Vapnik 1995)] on a sparse set of pairwise similarity generated with sparse computation.
Sparsity, reported on a log scale, is measured as the percentage of all possible pairwise similarities that are
not computed. The runtime of the algorithms is inversely proportional to the sparsity level

negligibly small similarities between far-away objects without computing their pairwise
similarity first. The edge is discarded for each pairwise similarity that is deemed negligible,
thus rendering the graph sparse.

While sparse computation enables the scaling of similarity-based machine learning meth-
ods to larger datasets, it also has benefits for small datasets. Foremost, it substantially reduces
the running time of similarity-based clustering or classification methods such as HNC or k-
nearest neighbors at almost no loss in accuracy (Hochbaum and Baumann 2016; Baumann
et al. 2016). The computational bottleneck for these methods is typically the computation
of the pairwise similarities. In addition, sparse computation helps to discern structure in the
datasets by discarding negligible pairwise similarities.

Sparse computation takes as input a dataset with n objects represented by their feature
vectors R1, . . . , Rn ∈ R

d . The method consists of two steps: dimension reduction, and
grid construction and pair selection. In the dimension reduction step, the data is projected
onto a low-dimensional space. Sparse computation relies on closeness in the low-dimensional
space as a proxy for similarity in the original space. In the grid construction and pair selection
step, pairs of close objects in the low-dimensional space are identified. The output of sparse
computation consists of the set of such pairs. These pairs form the edge set E for the similarity
graph used by similarity-based machine learning algorithms. Next, we explain each step in
more detail.

In the dimension reduction step, the input data is projected from a d-dimensional space
onto a p-dimensional space, where p � d . The projection is done with a probabilistic variant
of principle component analysis (PCA) called approximate PCA (Hochbaum and Baumann
2016). Approximate PCA is based on the work by Drineas et al. (2006). Let the data in the
p-dimensional space be normalized, i.e., the values of each dimension are scaled to the range
[0, 1]. The complexity of this step is O(d2n + d3), where n is the number of objects.

In the grid construction and pair selection step, the goal is to select objects that are close
in the low-dimensional space. In particular, we select all pairs of objects that have an L∞
distance smaller or equal to ω in the p-dimensional space. This is achieved as follows. First,
the range of values along each dimension is subdivided into κ = 1

ω
equally long intervals.

This partitions the p-dimensional space into κ p grid blocks. Parameter κ denotes the grid
resolution. Each object is thus assigned to a single grid block based on its p coordinates.

Since the largest L∞ distance within a block is equal to ω = 1
κ
, all pairs of objects that

belong to the same block are selected and deemed relevant. In addition, some pairs of objects
are within a distance of ω but fall in different yet adjacent blocks. To select those pairs as
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well, adjacent blocks need to be considered. Each block has up to 3p − 1 neighbors in a
p-dimensional space. By selecting all pairs of objects that are assigned to adjacent blocks,
it can be guaranteed that all pairs of objects whose distance is less than or equal to ω are
selected. It is possible that pairs of objects whose L∞ distance is more than ω but less than
2ω are selected as well, whereas pairs of objects whose distance is more than 2ω will not be
selected. The pairwise similarity is computed for the selected pairs of objects. The complexity
of computing the pairs of objects is O(3dn).

The set of pairs forms the edge set E . The number of pairs that are selected is controllable
with the grid resolution κ and the dimension p of the low-dimensional space.

5 A description of the HNCcorr algorithm

HNCcorr is an adaptation of HNC for cell identification in calcium imaging. It takes as input
a motion-corrected calcium imaging movie and outputs the spatial footprints of the cells that
were identified in the movie. The resulting spatial footprints can then be used to identify the
activity signal of each cell with specialized algorithms (cf. Vogelstein et al. 2010; Grewe
et al. 2010; Theis et al. 2016; Pnevmatikakis et al. 2013; Jewell and Witten 2018).

We now give a brief description of HNCcorr. Additional details on each aspect of the
algorithm is provided in the appropriate subsections. The HNCcorr algorithm initializes
with a nearly-exhaustive ordered list of candidate locations. A candidate location is a single
pixel in the imaging plane that is indicative of a potential cell. Section 5.2 describes how
this list is generated. HNCcorr then evaluates the ordered list of candidate locations one at
a time. Let us refer to the selected pixel as pixel i . First, HNCcorr checks if pixel i was
part of a spatial footprint of a previously identified cell. If it is, then pixel i is discarded.
This prevents repeated identification of the same cell. If it was not, it constructs a graph
on a subset of the pixels and computes the pairwise similarities with (sim)2 as explained in
Sects. 5.3 and 5.4. For this graph, we solve the HNC problem in (5) simultaneously for all λ
with the seeds selected as in Sect. 5.5. We refer to the clusters for each λ-breakpoint in the
solution as candidate clusters. Based on these candidate clusters, a simple post-processor
decided whether a cell was detected and returns its spatial footprint if any. The post-processor
is discussed in Sect. 5.6. Potential extensions for HNCcorr are discussed in Sect. 5.7, and
additional notation is introduced in Sect. 5.1

The pseudocode of the HNCcorr algorithm is provided in Algorithm 1. The core elements
of the HNCcorr algorithm are the construction of the graph, the computation of similarity
weights with (sim)2, and the associated HNC instance. The other components of the algo-
rithm, e.g. the procedure for selecting candidate locations and the post-processingmethod for
candidate clusters, can be replaced with alternative methods. Python and MATLAB imple-
mentations of HNCcorr are available on GitHub at https://github.com/quic0/HNCcorr.

5.1 Notation

A calcium imaging movie consists of T frames each with N = n1 × n2 pixels . We assume
that the pixels are numbered in row-major order. Each pixel i has an associated fluorescence
vector xi ∈ R

T+. Furthermore, the pairwise correlation corr(u, v) between pixel i and j is:

corr(u, v) = 1

T − 1

(xu − μ̂(xu))T(xv − μ̂(xv))

σ̂ (xu) σ̂ (xv)
,
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Algorithm 1 Overview of the HNCcorr algorithm.
Input: M : Movie with fluorescence vector xi for pixels i = 1, . . . , n
Output: Set of spatial footprints of cells
Parameters:

– npatch = 31: Patch size in pixels
– γ = 32%: Percentage of pixels selected from the patch for the reference set
– k = 3: Size of super pixel for positive seeds
– nneg = 10: Number of negative seeds
– ρ = 13 - Radius of the negative seeds circle (depends on m),
– α = 1: Scaling factor
– p = 3: Dimension of the low-dimensional space for sparse computation
– κ = 35: Grid resolution for sparse computation

function HNCcorr(M)
L ←CandidateLocations(M)
S ← ∅ // Set of spatial footprints
SP ← ∅ // Set of pixels in spatial footprints
for cl ∈ L

if cl ∈ SP // Skip to prevent duplication
continue

Construct npatch × npatch patch of pixels centered at cl. V is the set of pixels in the patch. n = |V |.
Let SP be the k × k super pixel centered at cl.
Select SN , set of nneg negative seeds, uniformly from a circle of radius ρ centered at lc.

Samplewithout replacement pixels r1, . . . , rnR from V for nR = γ ×n.// Sample reference set for (sim)2

for i ∈ V
(Ri )h = corr(xi , xrh ) for h = 1, . . . , nR .

Use sparse computation with feature vectors Ri , dimension p, and resolution κ to determine edge set E .
for [i, j] ∈ E

wi j = exp
(−α‖Ri − R j‖22

)
.

Solve linearized HNC in (5) on graph G = (V , E) with weights wi j and seed sets SP and SN .
Let S1, . . . , S� denote the candidate clusters.

Clean each candidate cluster S1, . . . , S� to obtain the cleaned clusters SC1 , . . . , SC� .
C ←PostProcessor(SC1 , . . . , SC� ) // Select best cluster (empty set if not a cell)
if C �= ∅

S ← S ∪ {C}
SP ← SP ∪ C

return S

where μ̂(x) is the sample mean of the vector x and σ̂ (x) is the sample standard deviation.

5.2 Generating candidate locations for cells

The candidate locations are stored in an ordered list of pixels that indicate a potential location
of a cell in the dataset. With each candidate location, the goal is to identify a new cell. The
candidate locations are generated at the start of the algorithm and processed one at a time.
As mentioned, candidate locations are discarded if they are in previously identified cell’s
footprint. This prevents duplicate segmentations of the same cell.

The HNCcorr algorithm is indifferent to the method used to generate the list of candidate
locations. This feature allows for any, possibly parallelized, procedure. Our implementation
of HNCcorr uses a nearly-exhaustive enumeration method, so it is unlikely to miss any
prospective cell.
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The algorithm first computes, for each pixel, the average pairwise correlation to its 8
neighboring pixels. We refer to this value as the local correlation of pixel i :

lci = 1

|N (i)|
∑

j∈N (i)

corr(xi , x j ),

where N (i) denotes the 8-neighborhood of pixel i and |N (i)| = 8. Subsequently, the pixels
are partitioned into ngrid ×ngrid grid blocks starting from the north-west corner. By default,
ngrid = 5. These grid blocks are used for spatial aggregation. For each grid block, it selects the
pixel with the highest local correlation. All other pixels are discarded. We sort the remaining
pixels from high to low in terms of local correlation. The top pseed percent of these pixels
are selected as candidate locations. A summary of this procedure is provided in Algorithm 2.
The complexity of this step is O(N log N ), where N is the number of pixels in the dataset.

Algorithm 2Method for generating candidate locations for cells.
Input: M : Movie with fluorescence vector xi for pixels i = 1, . . . , n
Output: List of candidate locations
Parameters:

– ngrid = 5: Size of each square grid block
– pseed = 40%: Percentage of candidate locations kept for processing

function GenerateLocations(M)
// Compute local correlation
for i = 1, . . . , n

lci = 1
|N (i)|

∑
j∈N (i) corr(xi , x j )

// Select pixel from each grid block with highest local correlation
Initialize L as empty list
Split the pixels into a blocks B1, . . . , Bk of ngrid × ngrid pixels starting at north-west pixel
for b = 1, . . . , k

i∗ ← argmaxi∈GBb lci
Append i∗ to L

Sort L in decreasing order of local correlation: lc1 ≥ lc2 ≥ lc3 . . .

return first �pseed × |L|� pixels in L .

Typically, pseed is set to 40 percent. This value was decided based on an empirical study.
This study indicates that the benefit of increasing it above 40 percent is small for most
datasets, whereas it increases running time.

This procedure for selecting candidate location is an enumeration of all possible pixels
with two types of speedups: Spatial aggregation and discarding of pixels with low local
correlation. These speedups can be deactivate by constructing grid blocks of 1 × 1 pixel
(ngrid = 1) and selecting all remaining pixels (pseed = 100%).

5.3 Construction of the similarity graph for HNC

Given a pixel as a candidate location, the algorithm constructs a graph on an npatch × npatch
square subset of pixels, which we call a patch. The purpose of the patch is to limit the
number of cells and the size of the similarity graph. The patch is centered on the input pixel,
the candidate location. The patch size npatch should be chosen such that it contains a typical
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pixel
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Fig. 3 Sparse computation constructs a sparse similarity graph. Comparison of a complete similarity graph and
the similarity graph constructed by sparse computation for an example patch. For the purpose of illustration,
the nodes are positioned based on the 2-dimensional PCA projection of the pixels’ feature vectors offset by a
small uniformly sampled perturbation. aMean intensity image of the patchwith the outline of two cells marked
in red and blue. b Complete similarity graph with an edge between every pair of pixels. For the purpose of
illustration, only 10,000 randomly sampled edges are shown. c Sparse similarity graph constructed by sparse
computation with a three-dimensional PCA projection and a grid resolution of κ = 25. Two clusters of pixels
(marked with red and blue rectangles) are identified by Sparse Computation. These two clusters match the
spatial footprints of the two cells shown in a. (Color figure online)

cell. By default, npatch = 31, which is significantly less than the size of a movie, typically
n1 × n2 = 512 × 512 pixels.

The algorithm then constructs the graph G = (V , E) consisting of the set of nodes,
denoted by V , and the set of edges that represent the pairwise similarity relations. Each
edge has an associated similarity weight wi j ≥ 0. The similarity weights are described in
Sect. 5.4. The nodes represent the pixels in the patch. The edge set is determined with sparse
computation (Hochbaum and Baumann 2016), see Sect. 4. We use sparse computation to
reduce the number of edges. Sparse computation also helps to identify structure in the data
as shown in Fig. 3.

5.4 Similarity-squared: a novel similarity measure

InHNCcorr, the similarity weightwi j associatedwith edge [i, j] ∈ E measures the similarity
between pixels i and j . We describe here the novel similarity measure (sim)2. We devised
(sim)2 to measure similarity between pixels in calcium imagingmovies, but the concept itself
is applicable in other contexts as well. (sim)2 measures similarities between the similarity
patterns. The name (sim)2 explains that it measures second-order similarity.

5.4.1 Pairwise correlation and background pixels

A common approach to assess the similarity between two pixels i and j is to measure the
correlation corr(xi , x j ) between their fluorescence signals across all frames of the movie.
Correlation is effective for measuring the similarity between two pixels from the same cell,
since the pixels have a correlated fluorescence pattern due to the shared signal of the cell.
Another important group of pixels is the background pixels. These pixels do not belong to a
cell, and they do not typically share a common pattern. Background pixels are only weakly
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Fig. 4 Visualization of the correlation images of six pixels. The color (value) of each pixel shown in each
correlation image is the pixel-to-pixel correlation between that pixel and the pixel marked in red. Lighter
colors represent higher correlations, with the correlation scale truncated at zero. The correlation image is a
visualization of the feature vector of a pixel. The patch is taken from the Neurofinder 02.00 training dataset
and contains two cells. Pixels 1 and 2 belong to the same cell, pixels 3 and 4 belong to the same cell, and
pixels 5 and 6 are background pixels. Even though the pairs of pixels 1 & 2, pixels 3 & 4, and pixels 5 & 6 are
not always highly correlated, their correlation images are nearly identical. (Color figure online)

correlated to each other. As such, the similarity between these background pixels is low if
the similarity is measured by correlation.

However, the lack of strong correlation with other pixels is effectively what characterizes
background pixels. We use this observation to strengthen the similarity measure and aid the
clustering. In other words, the background pixels are similar to each other in the pattern of
being weakly correlated to every other pixel, whereas pixels that belong to a cell are highly
correlated to other pixels in the same cell.

Instead of computing the similarity between pixels directly based on their correlation, we
should evaluate the similarity between any two pixels based on how these two pixels correlate
with all pixels. Figure 4 illustrates this. For a small patch, six pixels are marked in red and
are shown with their pairwise correlation to all pixels in the patch. We refer to these images
as correlation images. Two pixels in each of the two visible cells are marked as well as two
background pixels. The correlation image for each pixel, e.g. pixel 1, shows the pairwise
correlation between pixel 1 and every pixel in the patch, represented by the color of the
pixel, with a lighter color corresponding to higher correlation. The following observations
are drawn from the figure: Pixels belonging to the same cell have nearly identical correlation
images (see pixels 1 & 2 and pixels 3 & 4). Furthermore, background pixels also have nearly
identical correlation images even though the pixels themselves are not correlated (see pixels
5 & 6).

Similarity between background pixels can thus be captured by comparing their correla-
tion images, whereas correlation or other standard similarity measures would not recognize
this. Comparing correlation images instead of computing signal correlation also boosts the
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similarity between pixels in cells with a low signal-to-noise ratio, such as the cell containing
pixel 3 & 4. Whereas pixels 3 and 4 are only weakly correlated, their correlation images are
nearly identical. This approach is an application of a novel technique for computing pairwise
similarities that we call (sim)2.

5.4.2 Similarity-squared

The idea of (sim)2 is to determine the similarity between a pair of objects (here pixels), not
by directly comparing their features, but rather by comparing the objects’ similarities to a
set of reference objects, called the reference set. The resulting pairwise similarities between
objects can be interpreted as a similarity derived from other similarities, hence the name
(sim)2.

Our use of (sim)2 in HNCcorr consists of a three-step procedure. In the first step, HNCcorr
samples a random subset of pixels. This subset of pixels forms the reference set. Let γ denote
the percentage of pixels that are sampled. If n denotes the number of pixels in the patch, then
the reference set RS consists of pixels r1, . . . , rnR for nR = γ n. We use sampling to reduce
the running time of the feature vector computation. It has a negligible effect on the cell
detection performance of HNCcorr as long as γ is at least 25 percent.

In the second step, we compute the feature vector Ri of pixel i . Ri is a vector of dimension
nR . Mathematically, the kth element of the feature vector Ri of pixel i ∈ V is defined as
Ri [k] = corr(xi , xrk ). Assuming that γ = 100%, the feature vector can be interpreted as
a vector representation of the correlation image of pixel i or as the row of pixel i in the
pixel-to-pixel correlation matrix defined over the pixels in the patch.

In the third step, the similarity weights wi j are computed for every edge [i, j] ∈ E . For
general (sim)2, we can use any function of the feature vectors to compute the similarity. We
choose here the Gaussian similarity:

wi j = exp
(−α‖Ri − R j‖22

)
, (8)

where α is a scaling parameter, which is typically set to 1. Note that wi j �= corr(xi , x j ). The

complexity of computing all similarity weights is O
(
γ n2patch

(
m + n2patchT

))
, where m is

the number of edges in the similarity graph and T is the number of frames in the movie.
The default value of γ = 32% for sampling was determined based on an experimental

evaluation of the cell detection performance and the running time performance. The value of
32% provides a substantial improvement in running time compared to γ = 100% and almost
no loss in cell detection accuracy.

5.5 The selection of seeds for HNC

Recall that HNC requires a set of positive seeds SP for the cell S and a set of negative seeds
SN for S̄. For a given candidate pixel and the associated patch, the algorithm selects a super
pixel, a square of k × k pixels, as positive seed set SP . The super pixel is centered on the
input pixel and is thus located in the center of the patch. k is typically set to 3 or selected by
validation on a dataset annotated with cell locations. The super pixel forms the basis of the
cell cluster S. It also ensures that HNC attempts to delineate the footprint of the current cell
of interest.

In addition to the positive seed, HNC requires also a set of negative seeds SN . These
negative seeds are pixels that cannot be selected as part of the cluster in HNC. The negative
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seeds ensure that not all pixels are selected. A total of nneg negative seeds are selected
uniformly from a circle of sufficiently large radius centered at the positive seed. The radius
ρ of the circle is chosen such that any cell that contains the positive seed is inside the circle.
It is typically chosen to be slightly less than m

2 .
The seeds are selected in O(k2 + nneg) per patch.

5.6 Post-processing

As output of the HNC problem, we obtain all nested, optimal clusters S∗
1 ⊂ S∗

2 ⊂ . . . S∗
� .

A cleaning process is applied to each of the clusters: Pixels that are not contiguous to the
positive seed are removed, and pixels that are fully enclosed by pixels in the candidate cluster
are added to the cluster. The resulting cleaned clusters are S∗C

1 ⊂ S∗C
2 ⊂ . . . S∗C

� .
The post-processing algorithm selects one of the cleaned candidate clusters as the cell

footprint or decides that no cell was detected. We retain only the cleaned clusters whose

size
∣
∣
∣S∗C

i

∣
∣
∣ is in a given, user-provided range, typically 40 to 200 pixels. In case all clusters

are discarded, then the algorithm returns the statement that no cell was detected. Otherwise,
each remaining cluster’s size is compared to a preferred cell size that is set by the user.

The candidate cluster for which the square root of the size,

√∣
∣
∣S∗C

i

∣
∣
∣, is closest to the square

root of the expected cell size is selected as the spatial footprint of the cell. We use the
square root of the cluster size since this best reflects the scaling of the area of a circle.
This algorithm is summarized in Algorithm 3. More complex post-processing techniques
based on convolutional neural networks have been explored as well. However, preliminary
experiments showed no substantial improvements.

Algorithm 3 Size-based post-processor of candidate clusters.

Input: SC = {S∗C
1 ⊂ . . . S∗C

�
}: Set of cleaned candidate clusters, where each cluster is a set of pixels

Output: Spatial footprint of the cell (empty set if no cell detected)
Parameters:

– nmin: Minimum number of pixels in a spatial footprint (dataset dependent)
– navg: Expected number of pixels in a spatial footprint (dataset dependent)
– nmax: Maximum number of pixels in a spatial footprint (dataset dependent)

function Postprocessor(C)
for s ∈ SC

if |s| < nmin or |s| > nmax // Discard small/large clusters
SC ← SC\{s}.

if SC = ∅
return ∅

else

return argmin
s∈SC

(√|s| − √
navg

)2

The complexity of this post-processing procedure is O(n2patch�).
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5.7 Potential extensions for HNCcorr

We sketch here how HNCcorr could be extended for real-time data collection and for coun-
tering signal contamination due to overlapping cells.

5.7.1 Online, real-time data collection

Most cell identification algorithms are designed for fully recorded movies, allowing the algo-
rithms to identify cells based on all available data. There is also an interest in online algorithms
that detect cells in real-time. The first such algorithm is OnAcid, which is closely related to
CNMF (Giovannucci et al. 2017). Online algorithms enable closed-loop experiments, where
the environment is adapted according to previously recorded activity (Giovannucci et al.
2017). Real-time detection requires that cell identification algorithms works with streaming
data, observing only a single frame at a time.

We sketch here howHNCcorr could be adapted for online, real-time cell detection. Similar
to the offline implementation, we would use local correlation to identify candidate locations
for cells. The main suggestion for achieving real-time processing is to implement HNCcorr
in parallel, where one process is responsible for maintaining the local correlation estimates,
and one or more other processes independently select and evaluate candidate locations to
identify cells based on the recorded data so far. This parallel setup requires that only the
process for updating the local correlation estimates runs in real-time, whereas the processes
for evaluating candidate locations can be run asynchronously. The extraction of the temporal
activities of identified cells as well as de-duplication of identified cells could be handled
asynchronously as well.

To see how local correlation estimates could be updated in real-time, we note that a
straightforward arithmetic manipulation shows that it is possible to update a pairwise corre-
lation estimate in constant time when a new frame arrives. This makes it possible to update
the local correlation estimate for a pixel in constant time. The work per new frame is thus
O(N ), where N is the number of pixels in the movie. Based on a calculation of the required
number of floating point operations per frame, we estimate that this approach should be capa-
ble of processing movies with 512× 512 pixels at regular frame rates on a modern laptop or
desktop computer.

5.7.2 Overlapping cells

As it stands, HNCcorr does not have the capability to demix cell signals of overlapping.
However, it tends to identify the part of the spatial footprint that does not overlap with another
cell, unless the positive seed happens to be located on the overlap. ThismakesHNCcorr robust
to contamination. In order to further counter signal contamination for overlapping cells, a
matrix factorization method, initialized with the footprints identified by HNCcorr, can be
applied locally as post-processing.

6 Experiments

To evaluate the experimental performance of HNCcorr we compare against other leading
algorithms on theNeurofinder benchmark. Specifically,we compareHNCcorrwith thematrix
factorization algorithms CNMF (Pnevmatikakis et al. 2016) and Suite2P (Pachitariu et al.
2017) as well as 3dCNN, a 3-dimensional convolutional neuronal network.
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Table 1 Characteristics of the test datasets of the Neurofinder benchmark and their corresponding training
datasets. Data reproduced from Neurofinder (CodeNeuro 2016)

Name Source Resolution Length (s) Frequency (Hz) Brain region Annotation method

00.00 Svoboda Lab 512 × 512 438 7.00 vS1 Anatomical markers

00.01 Svoboda Lab 512 × 512 458 7.00 vS1 Anatomical markers

01.00 Hausser Lab 512 × 512 300 7.50 v1 Human labeling

01.01 Hausser Lab 512 × 512 667 7.50 v1 Human labeling

02.00 Svoboda Lab 512 × 512 1000 8.00 vS1 Human labeling

02.01 Svoboda Lab 512 × 512 1000 8.00 vS1 Human labeling

03.00 Losonczy Lab 498 × 467 300 7.50 dHPC CA1 Human labeling

04.00 Harvey Lab 512 × 512 444 6.75 PPC Human labeling

04.01 Harvey Lab 512 × 512 1000 3.00 PPC Human labeling

3dCNN is an algorithm that only recently appeared on the Neurofinder benchmark. As
of the submission of this paper, there is no corresponding publication nor is there publicly
available code for the algorithm. We requested the code for 3dCNN but have not received a
response so far. We therefore excluded the 3dCNN algorithm from the runtime analysis.

6.1 Experimental setup

6.1.1 Datasets

The Neurofinder community benchmark (CodeNeuro 2016), http://neurofinder.codeneuro.
org, is an initiative of the CodeNeuro collective of neuroscientists that encourages soft-
ware tool development for neuroscience research. The collective also hosts the Spikefinder
benchmark, which has led to improved algorithms for spike-inference in calcium imaging
data (Berens et al. 2018). The Neurofinder benchmark aims to provide a collection of datasets
with ground truth labels for benchmarking the performance of cell detection algorithms.

The benchmark consists of 28motion-corrected calcium imagingmovies provided by four
different labs. Datasets are annotated manually or based on anatomical markers. They differ
in recording frequency, length of the movie, magnification, signal-to-noise ratio, and in the
brain region that was recorded. The datasets are split into two groups, training datasets and
test datasets. The eighteen training datasets are provided together with reference annotations
for the cell locations, whereas the reference annotations for the nine test datasets are not
disclosed.The test datasets and their undisclosed annotations are used by the Neurofinder
benchmark to provide an unbiased evaluation of the performance of the algorithms. The
characteristics of the test datasets are listed in Table 1. We note that some cells are not
marked in the reference annotation. This does not invalidate the experimental analysis since
the task of annotating cells remains equally difficult for each algorithm.

All datasets can be downloaded directly from the Neurofinder benchmark for cell identi-
fication (CodeNeuro 2016), https://neurofinder.codeneuro.org.

6.1.2 Active versus inactive cells

We group the datasets into two sub-groups: Datasets in which most annotated cells are
active, i.e. have a detectable fluorescence signal other than noise, and datasets in which
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Fig. 5 Approximate percentage of active cells among annotated cells in the training datasets. To determine the
activity of the cells in a movie we used the following approximate analysis. First, we downsample the movie
by averaging 10 frames. For every annotated cell, we compute the average intensity over time of the pixels in
the spatial footprint. This timeseries is used an estimate of the cell’s signal. A cell is then considered active if
the 
 f / f (Jia et al. 2011) of this timeseries is at least 3.5 standard deviations above the median of 
 f / f for
a total of at least 3 time steps in the movie. Due to the approximate nature of this analysis, its interpretation
should be limited to understanding the general ratio between active and inactive cells in the datasets

most annotated cells are inactive. We make this distinction because inactive cells cannot be
found byCNMF, Suite2P, andHNCcorr due to the lack ofmeasurable changes in fluorescence
other than noise. These cells are detectablewith shape-based detection algorithms—e.g. (Gao
2016), when the cell’s fluorescence differs from the background.

The datasets with inactive cells are: 00.00, 00.01, and 03.00. The presence of inactive
cells in these datasets has been noted in previous work (Pachitariu et al. 2017) as well as
in a discussion of the benchmark’s reference annotation on GitHub.1 Experimentally, we
also observed that the percentage of annotated cells that are active is substantially lower for
training datasets 00.00, 00.01, and 03.00 as shown in Fig. 5. Results for the test datasets
could not be evaluated due to the lack of a reference annotation but similar results are
expected.

6.1.3 Evaluation metrics

The list of cells identified by each of the algorithms is comparedwith the reference annotation.
For this comparison, we use the submissions on the Neurofinder website. Each algorithm’s
submission was submitted by the algorithm’s authors. This ensures that the results are rep-
resentative of the algorithm’s performance. Furthermore, the evaluation is fair since none of
the authors had access to the reference annotation.

The algorithms are scored based on their ability to reproduce the reference annotation using
standard metrics from machine learning. Each cell in the reference annotation is counted as
a true positive (TP) if it also appears in the algorithm’s annotation. The cells in the reference
annotation that are not identified by the algorithm are counted as false negatives (FN), and
the cells identified by the algorithm but that do not appear in the reference annotation are
counted as false positives (FP). Each algorithm’s performance is scored on a dataset based
on recall = T P

T P+FN and precision = T P
T P+FP . The overall performance of the algorithm on

a dataset is summarized by the F1-score, which is the harmonic mean of recall and precision.
For all metrics, higher scores are better.

1 See e.g. issues 16 and 24 on https://github.com/codeneuro/neurofinder.
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Table 2 Dataset dependent parameter values used for the HNCcorr implementation

Dataset Radius circle Size Post-processor Post-processor Post-processor
Patch size negative seeds superpixel lower bound upper bound expected size
(m) (ρ) (k) (nmin) (nmax) (navg)

00.00 31 × 31 10 pixels 5 × 5 40 pixels 150 pixels 60 pixels

00.01 31 × 31 10 pixels 5 × 5 40 pixels 150 pixels 65 pixels

01.00 41 × 41 14 pixels 5 × 5 40 pixels 380 pixels 170 pixels

01.01 41 × 41 14 pixels 5 × 5 40 pixels 380 pixels 170 pixels

02.00 31 × 31 10 pixels 1 × 1 40 pixels 200 pixels 80 pixels

02.01 31 × 31 10 pixels 1 × 1 40 pixels 200 pixels 80 pixels

03.00 41 × 41 14 pixels 5 × 5 40 pixels 300 pixels 120 pixels

04.00 31 × 31 10 pixels 3 × 3 50 pixels 190 pixels 90 pixels

04.01 41 × 41 14 pixels 3 × 3 50 pixels 370 pixels 140 pixels

A cell in the ground truth annotation is identified if the center of mass of the closest cell in
the algorithm’s annotation is within 5 pixels. These two cells are then matched and can not
be matched with another cell. Each cell in either annotation is thus matched at most once.

6.1.4 Code accessibility

The software used to generate the results in this work is available for non-commercial use at
https://github.com/quic0/HNCcorr. The code is also available as supplementary material.

6.1.5 Computational hardware

The experiments were run withMATLAB 2016a on a single core of a Linuxmachine running
Linux Mint 18.1. The machine is equipped with an Intel i7-6700HQ CPU running at 2.60
GHz and 16GB RAM.

6.1.6 Algorithm implementations

The results in Figs. 6 and 8 are taken directly from Neurofinder (CodeNeuro 2016) and were
produced by the authors of the respective algorithms. The results in Fig. 9 were generated
by us. In the remainder, we describe the HNCcorr implementation used for all experiments
including those reported in Figs. 6 and 8. We also describe the CNMF and Suite2P imple-
mentation used for the experiment reported in Fig. 9.
HNCcorr All datasets for HNCcorr were preprocessed by averaging every ten frames into
a single frame to reduce the noise. All parameters were kept at their default settings with
the exception of dataset specific parameters listed in Table 2. These parameters are dataset
dependent due to varying cell sizes across datasets. For the experiments reported in Figs. 6
and 8, we used non-default values for the reference set sampling rate (γ = 100%) and the
grid resolution used for sparse computation (κ = 25). These changes have a marginal effect
on the cell detection quality of the algorithm, but they result in increased running times.

CNMFTheCNMF implementationwas obtained fromhttps://github.com/epnev/ca_source_
extraction. The base configuration was taken from the file run_pipeline.m in the CNMF
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repository. We turned off the patch-based processing, and set the number of cells, as denoted
by K , equal to 600. We used the same values for the maximum and minimum cell size,
max_size_thr and min_size_thr, as in HNCcorr. We also set the temporal down-
sampling tsub to 10 to match the down-sampling used with HNCcorr.

Suite2P The Suite2P implementation was obtained from https://github.com/cortex-lab/
Suite2P. The base configuration was taken from the file master_file_example.m in
the Suite2P repository. The diameter parameter was tweaked per dataset to maximize
the F1-score on the Neurofinder training datasets. The selected values per (dataset) are: 8
(00.00), 10 (00.01), 13 (01.00), 13 (01.01), 11 (02.00), 11 (02.01), 12 (03.00), 11 (04.00),
and 12 (04.01).

6.2 Cell detection performance

The experimental performance of the algorithms HNCcorr, 3dCNN, CNMF, and Suite2P
on the six test datasets containing active cells is shown in Fig. 6. The cells identified by

Fig. 6 Cell identification scores for the HNCcorr, CNMF, and Suite2P algorithms on the Neurofinder test
datasets with active cells. For each of the listed metrics, higher scores are better. The data is taken from Neu-
rofinder submissions Sourcery by Suite2P, CNMF_PYTHON by CNMF, 3dCNN by ssz, and submission
HNCcorr by HNCcorr
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(a) (b)

Fig. 7 Contours of the cells identified by HNCcorr overlaid on the respective local correlation image

HNCcorr are shown for two datasets in Fig. 7. Overall, the HNCcorr algorithm has superior
performance across datasets compared to the matrix factorization algorithms. The HNCcorr
algorithm achieves a 15 percent relative improvement compared toCNMF in terms of average
F1-score across datasets. It also attains a minor improvement of 4 percent compared to
Suite2P. However, it performs about 3 percent worse than 3dCNN, which detects both active
and inactive cells unlike HNCcorr, Suite2P, and CMNF.

HNCcorr performs particularly well on datasets 02.00 and 02.01 where it attains sub-
stantially higher F1-scores than the other algorithms, due to higher detection capability as
measured by recall. Although 3dCNN is able to match the near-perfect recall of HNCcorr,
it attains lower precision for datasets 02.00, 02.01. This indicates that 3dCNN detects either
cells that are not in the reference annotation or incorrectly marks non-cell regions as cells.

6.3 Leading neurofinder submissions

HNCcorr andmatrix factorization algorithms identify cells based on their uniquefluorescence
signal. As such, they are able to detect cells that activate, i.e. have one or more spikes
in calcium concentration, but they cannot detect cells without any signal. As discussed,
Neurofinder datasets 00.00, 00.01, and 03.00 have a large number of inactive cells. Therefore,
matrix factorization algorithms and HNCcorr only detect a small percentage of cells in these
datasets.

The leading Neurofinder submission for both Suite2P and HNCcorr therefore rely on a
shape-based detection algorithm for these datasets. The HNCcorr + Conv2d submission uses
the Conv2d (Gao 2016) neural network for datasets 00.00, 00.01, and 03.00 and HNCcorr
for the remaining datasets. Similarly, Suite2P + Donuts submission uses Donuts (Pachitariu
et al. 2013) for the datasets 00.00, 00.01, and 03.00 and Suite2P for the remaining datasets.
Togetherwith the 3dCNN, these submissions are the top three submissions for theNeurofinder
benchmark. Figure 8 shows how the three submissions compare. In particular, the 3dCNN
algorithm outperforms the other shape-based detection algorithms on datasets 00.00, 00.01,
and 03.00. As discussed before, HNCcorr attains higher F1-scores for the 02.00 and 02.01
datasets.
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Fig. 8 Cell identification scores on all test datasets for the three leading submissions of the Neurofinder
benchmark in July 2018. For each of the listed metrics, higher scores are better. The 3dCNN entry is based
on the Neurofinder submission 3dCNN by ssz. The Suite2P + Donuts (Pachitariu et al. 2013) entry is taken
from the submission Sourcery by Suite2P. It uses the Donuts algorithm for datasets 00.00, 00.01, and
03.00 and the Suite2P algorithm for the remaining datasets. The HNCcorr + Conv2d entry is taken from
the submission HNCcorr + conv2d by HNCcorr. It uses the Conv2d algorithm (Gao 2016) for datasets
00.00, 00.01, and 03.00 and the HNCcorr algorithm for the remaining datasets. The results obtained with the
Conv2d algorithm reported here differ slightly from the Conv2d submission on the Neurofinder benchmark
since the Conv2d model was retrained by the authors of this paper

6.4 Runtime analysis

Wecompared the running time performance ofHNCcorr, CNMF, andSuite2P on nine training
datasets of the Neurofinder benchmark. 3dCNN was excluded since the underlying code is
not available. Running time results are given in Fig. 9. The measured time for CNMF and
Suite2P also includes the time to provide the associated cell signals, since they are determined
simultaneously, whereas for HNCcorr it does not. On average, HNCcorr is 1.5 times faster
than CNMF. Compared to Suite2P, HNCcorr performs equally well on average. We observed
similar performance for a large experimental dataset consisting of 50,000 frames not reported
here.
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Fig. 9 Running time results for nine training datasets of the Neurofinder benchmark. The measured time for
CNMF and Suite2P also includes the time to provide the associated cell signals, since they are determined
simultaneously, whereas for HNCcorr it does not. Running times are based on a single evaluation

7 Conclusions

We present here the HNCcorr algorithm for cell detection in two-photon calcium imaging
datasets. The HNCcorr algorithm builds upon the combinatorial clustering problem HNC
and makes use of the newly devised similarity measure (sim)2. Experimentally, we demon-
strate that HNCcorr is a top performer for the Neurofinder benchmark both in terms of cell
detection quality and running time. HNCcorr achieves a higher average score than the matrix
factorization algorithms CNMF and Suite2P with similar or faster running time. This work
demonstrates that combinatorial optimization is a valuable tool for analysis in neuroscience
or other disciplines.

In future work, HNCcorr could be extended to support real-time data, which enables direct
feedback experimentation. Another extension of interest is adapting HNCcorr for one-photon
and light-field calcium imaging, where the main challenge is dealing with overlapping cells.
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