
SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1179-1192, December 1994

() 1994 Society for Industrial and Applied Mathematics
004

SIMPLE AND FAST ALGORITHMS FOR LINEAR AND INTEGER PROGRAMS
WITH TWO VARIABLES PER INEQUALITY*
DORIT S. HOCHBAUM AND JOSEPH (SEFFI) NAOR

Abstract. The authors present an O(inn log m) algorithm for solving feasibility in linear programs with up to

two variables per inequality which is derived directly from the Fourier-Motzkin elimination method. (The number
of variables and inequalities are denoted by n and m, respectively.) The running time of the algorithm dominates
that of the best known algorithm for the problem, and is far simpler. Integer programming on monotone inequalities,
i.e., inequalities where the coefficients are of opposite sign, is then considered. This problem includes as a special
case the simultaneous approximation of a rational vector with specified accuracy, which is known to be NP-complete.
However, it is shown that both a feasible solution and an optimal solution with respect to an arbitrary objective
function can be computed in pseudo-polynomial time.

Key words, linear programming, integer programming

AMS subject classifications. 05C85, 68Q25, 90C05, 90C 10, 90C27

1. Introduction. In this paper we examine linear and integer programming problems
with two variables per inequality. The problem of computing a feasible solution in the linear
(or fractional) case has been investigated extensively. Shostak [18] suggested that a linear
program with two variables per inequality can be represented as a graph" since each inequality
contains two variables, one can represent the linear program by a graph which has a vertex
for each variable, and an additional vertex x0. Any inequality involving two variables is
represented as an edge between the respective pair of vertices. As for inequalities involving
only one variable (upper and lower bounds on variables), these are represented as edges to
and from vertex x0. We denote the number of variables by n, and the number of inequalities
by m. (W.l.o.g. we can assume that m > n.) The graph consists therefore of n + vertices
and m edges, and there may be multiple edges between any pair of vertices.

Shostak 18] proved that feasibility can be tested by following paths and cycles in this
graph, and thus laid the foundation for all subsequently considered algorithms for the problem.
This feasibility test was refined to a polynomial algorithm by Aspvall and Shiloach], and
later still to an O(mn logm) strongly polynomial algorithm by Megiddo [14]. Recently,
Cohen and Megiddo [4] obtained new algorithms for this problem: (i) they presented a new
O(mn2(log m +log2 n)) time algorithm; (ii) they also gave a randomized algorithm for finding
a feasible solution in the special case of monotone inequalities (to be defined later) with
an expected running time of O(n log n + mn log m log n + mn log n). (This randomized
algorithm was later generalized to hold for the non-monotone case as well in [2]; however, it
follows from [5] that the non-monotone case can be reduced to the monotone case at no extra
cost.) The main feature common to all of these algorithms is determining upper and lower
bounds for each variable by following paths and cycles in the graph.

The first result we present is an O (mn2 log m) algorithm for the feasibility problem. This
algorithm is faster (although only for m < n(lg")), and moreover it is simpler than all other
known algorithms. The backbone of our algorithm is the Fourier-Motzkin elimination method

*Received by the editors July 1, 1993; accepted for publication July 9, 1993. A preliminary version of this paper
appeared in the Proceedings of the 2nd "Integer Programming and Combinatorial Optimization" Conference (IPCO),
CMU, 1992, pp. 44-59.

Department of Industrial Engineering and Operations Research, University of California, Berkeley, California
94720 (dori t@hochbaum, berke i ey. edu). This research was supported in part by Office of Naval Research
grant ONR N00014-91-J-1241.

tDepartment of Computer Science, Technion, Haifa 3200, Israel (naor@cs. technion, ac. i 1). Most of
this work was done while the author was at the Computer Science Department, Stanford University and supported by
contract ONR N00014-88-K-0166. The author was also supported in part by contract ONR N00014-9 l-J-1241.

1179

1180 DORIT S. HOCHBAUM AND JOSEPH NAOR

(Introduced by Fourier (1827), and discovered later by Dines 1918-1919) and Motzkin (1936);
see [17] for details.) In general, this algorithm does not run in polynomial time because it
may generate an exponential number of inequalities in the process of eliminating variables.
However, we show how to implement this algorithm efficiently for linear programs where each
inequality may contain at most two variables. First, at each elimination step, the number of
inequalities on every edge adjacent to the variable currently to be eliminated is reduced to two.
This serves to control the exponential growth of the number of inequalities. In addition, we
maintain the inequalities corresponding to two variables as upper and lower envelopes, where
the envelopes (which are piecewise linear functions) are characterized by their breakpoints.
This representation allows us to dispose of redundant inequalities in each elimination step
quickly by examining all breakpoints associated with the variable currently to be eliminated.

The analogue of the Fourier-Motzkin procedure in computational logic is resolution.
Using resolution, one obtains a satisfying assignment to a set of clauses (in, say, propositional
logic) by eliminating the variables one by one. It is known that resolution can be efficiently
implemented for the case of 2-SAT clauses, i.e., the satisfiability problem, where each clause
may contain at most two literals. This follows since every elimination step generates 2-SAT
clauses, and the total number of 2-SAT clauses is always bounded by a polynomial. Our
algorithm may be viewed as an efficient implementation of resolution for the case of linear
constraints with two variables per inequality.

A linear program with two variables per inequality is called monotone if each inequality
is of the form Ctxi bxj < c, where both a and b are positive. We will consider integer
programming problems on monotone inequalities. We note that the aforementioned reduction
from the non-monotone case to the monotone case does not preserve integrality.

Lagarias 11 has shown that the problem of deciding whether a given rational vector c has
a simultaneous approximation of specified accuracy with respect to the maximum norm, with
denominator Q in a given interval _< Q _< N, is NP-complete. The problem of deciding the
feasibility of a monotone system in integers is a generalized form of this question and hence
NP-complete as well (it is obviously in NP).

The set of feasible solutions of a monotone system can be shown to form a distributive
lattice where the join and meet operations are defined to be maximum component-wise and
minimum component-wise, respectively. This has been observed before by Veinott [20]. We
present an algorithm that computes the solution vectors corresponding to the top and bottom
of the lattice. The lattice structure is crucial for the algorithm, and the manner in which
the search for a feasible solution is conducted guarantees that if one exists, then we are go-
ing to find the solution which is at the top (or bottom). The running time of this algorithm
is a polynomial which depends on the sum of the number of integer valued points in each
one-dimensional projection of the feasible polytope in the fractional case. Hence, this algo-
rithm is pseudo-polynomial in the case when the variables in the integer program are bounded.
Also, in this case the problem is weakly NP-complete.

It is interesting to note that the strongly polynomial feasibility algorithm for linear inequal-
ities with two variables per inequality does not extend to a strongly polynomial optimization
algorithm over such inequalities. (It is only known that when the objective function consists of
d variables, then there is a strongly polynomial algorithm when d is fixed, i.e., it is exponential
in d.)

In contrast, for the integer case, we present a pseudo-polynomial algorithm for the op-
timization problem over a monotone system with an arbitrarily long objective function (that
is, with up to n variables in the objective). We note that the optimization problem over a
non-monotone system is NP-complete in the strong sense, since the vertex cover problem is a

special case of it. The algorithm hinges on the following two observations:

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 181

The elements of a distributive lattice can be represented as closed subsets of a directed
graph (of pseudo-polynomial size) which is derived from the lattice.
A linear objective function defines a modular function on the lattice which in turn

implies that the lattice element of optimal cost corresponds to the closed subset of
optimal cost (when costs are properly defined).

The complexity ofcomputing the closed subset of optimal cost is bounded by a polynomial
in the size of the graph, i.e., it can be computed in pseudo-polynomial time. Even though
the directed graph that represents the lattice is of pseudo-polynomial size, it has a succinct
description, i.e., it can be encoded in polynomial space. This provides a compact encoding of
the complete feasible solution set of a mono’tone system of inequalities.

Finally, we present an application of our Fourier-Motzkin algorithm to identifying fat
polytopes. Fat polytopes are those containing a sphere which circumscribes a unit hypercube,
and hence must contain an integer point. For polytopes derived from inequalities with two
variables per inequality, the procedure for identifying fat polytopes runs in strongly polynomial
time, and thereby can be viewed as an efficient heuristic for finding a feasible integer solution.
A strongly polynomial algorithm for a related problem of finding the largest sphere contained
in a polytope is presented as well.

2. Efficient implementation of the Fourier-Motzkin algorithm. In this section we
show how the Fourier-Motzkin elimination method for finding a feasible solution of a linear
program can be implemented efficiently when the number of variables in each inequality is at
most two. We begin by an informal description of the method for a general linear program.
(The reader is referred to [17, pp. 155-156] for more details.)

Let the variables of the linear program be x x,, and let the set of inequalities be
denoted by E. The variables are eliminated one by one. At step i, the linear program will only
contain variables xi x,,; the set of inequalities at step is denoted by Ei, where initially
E1 E. To eliminate variable xi, all the inequalities in which xi participates are partitioned
into two sets, L and H. The set L contains all the inequalities which are of the form xi >_ 1,
and the set H contains all the inequalities which are of the form xi <_ h, where and h are
linear functions. To obtain the set Ei+l, for all L and h H, a new inequality < h is
added to Ei, and all the inequalities in L and H are eliminated from it. The number of new
inequalities produced is HI ILl. The next theorem is immediate.

THEOREM 2.1. The linear program Ei+I has a feasible solution if and only if the linear
program Ei has a feasible solution.

Hence, a feasible solution can be computed recursively for Ei+I and then extended to Ei.
The main drawback of this method is that the running time is not necessarily polynomial, i.e.,
in general the number of inequalities may grow exponentially.

The discussion henceforth is restricted to inequalities that contain at most two variables
per inequality. It is interesting to note that Nelson [15] proved that when implementing the
Fourier-Motzkin method in this case, the total number of inequalities is bounded by m. nlg n.

As mentioned in the introduction, an equivalent representation of the linear program
is by the graph G (V, E). The vertex set V contains vertices x0, x xn; an edge
between vertex xi and xj (for _< i, j < n) represents the set of inequalities in which xi and
xj participate. The vertex x0 is needed to represent inequalities that contain precisely one
variable, i.e., an edge from xi to x0 denotes an inequality of the form xi <_ a or xi >_ a for
some constant a.

The main feature that allows for the efficient implementation of the Fourier-Motzkin
algorithm is the following. The set of inequalities that correspond to an edge between xi
and xj is represented in the (xi, xj) plane as two envelopes, an upper envelope and a lower
envelope. The feasible region of xi and xj is in between the two envelopes and it is not hard to

1182 DORIT S. HOCHBAUM AND JOSEPH NAOR

see that each envelope is a piecewise linear function that can be represented by its breakpoints
(see Fig. (a)).

x

(5,4)

(3
4

3

(i,
(7,2)

1

2

(.5,o.) o.

-3.5
(2,-3.5)

(a)

x

(b)

FIG. 1. (a) The feasible region defined by the inequalities containing X and x] is a piecewise linearfunction
defined by its breakpoints. (b) The set Bj {-3.5, 0.5, 1, 2, 3, 4} is the set ofbreakpoints projected on the xi axis.

The following procedure of Aspvall and Shiloach plays a crucial role in our algorithm.
This procedure was used by [14] and [4] as well. Let xin and xi

max denote the respective
minimum and maximum feasible values of xi. That is, any value assigned to xi from the
range [xin, xnax] can be complemented to a feasible solution. If the feasible range of some
of the variables is unbounded, then there exist numbers bounded by a polynomial in the binary
representation of the data [17], such that if Xnin and x/nax are set to them, the existence of a
feasible solution is assured.

PROCEDURE 2.1 [1]. Given a variable xi and a value), it can be decided in O(mn)
operations whether (i) ,k < xnin, (ii) ,k > xnax, or (iii) Xnin _< Z _< Xnax.

The main idea underlying Procedure 2.1 is propagating the implications of the equality
xi ,k in a manner very similar to the Bellman-Ford algorithm for computing all shortest
paths from a single source. We remark that even if the linear program in hand is infeasible,
the procedure may still provide one of the above three answers. In this case, infeasibility will
be detected by our algorithm at a later stage. (Note for example the case in which the linear
system consists of two independent subsystems, one feasible and one infeasible.)

We are now ready to provide a high-level view of the algorithm. The main idea is that
the number of inequalities in which xi (the variable to be eliminated) participates can be
significantly reduced using Procedure 2.1. It should be mentioned that a similar idea was used
by Megiddo [14] to obtain upper and lower bounds on the feasible values of variables. The
following is performed at step of the Fourier-Motzkin algorithm. Let G denote the graph
corresponding to the linear program Ei.

1. Let the neighbors of X in the graph Gi be xi, Xid.
Let Bj (1 < j < d) denote the set of breakpoints of the edge (xi, xij) projected on
the xi coordinate (see Fig. (b)).

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 1183

2. Merge the d sorted sequences Bi into a sorted sequence B. (Let the sorted sequence
be bl b,.)

3. Perform a binary search on the sequence B. The aim of the search is to obtain either
(a) a breakpoint bt B such that X/nin. < bt < -’timax, or

min and xax(b) an interval [bt, bt+] (1 < < k) such that bt < J6 < bl+l.
4. In step 3a, variable xi is assigned the value bl and "contracted" with vertex x0 in

graph Gi.

In step 3b, the number of inequalities on each edge adjacent to xi is reduced to at
most two (see Fig. 2). Now, the generic Fourier-Motzkin elimination step is applied
to variable xi.

Let us further elaborate on how the algorithm is implemented and analyze its complexity.
The following invariant is maintained throughout the algorithm; we defer its proof to the end
of the discussion. It is obviously true initially.

INVARIANT 2.1. The nttmber of breakpoints on an edge is at most 0 (m).
By the invariant, the cardinality of the set B is at most O(mn). The binary search at step

3 is performed by successive calls to Procedure 2.1. At each call, either a breakpoint which
is feasible for xi is discovered, or the number of breakpoints to be examined is reduced by
half. Hence, the complexity of sorting the set B and performing the binary search is at most
0 (mn log m). We should remark that in the course of the elimination process, to bound the
running time of Procedure 2.1 by O(mn), we run it on the original graph G and not on the
current graph Gi. However, G is updated as follows. For each eliminated variable (say x)
that was assigned a value (say a) at step 3a, two inequalities are added to graph G" x < a and
x > a. If x is already connected to x0, then the respective bounds are updated according to
the most restrictive bound, or an inconsistency is detected and the algorithm terminates with
a discovery that the system is infeasible.

In step 3a, the linear program Ei+l is obtained from Ei by assigning the value bt to the
variable xi. Otherwise, in step 3b, the generic Fourier-Motzkin elimination step is applied.
Notice that the number of inequalities on each edge adjacent to xi is reduced to at most two
(see Fig. 2). (We assume that the intersections of the upper and lower envelopes (up to two)
are also counted among the original breakpoints.) In addition, two more inequalities, bt < xi
and X <_ bt+, are added to the linear program Ei.

Let xi, and Xiq be any two variables that are adjacent to xi. The edge (xi, xiq) and the
edge (xi, xi,) may each contain at most two inequalities" hence, at step 4, the Fourier-Motzkin
elimination step adds up to four new inequalities between the variables xi and xi. These four
inequalities are added to the set of inequalities that already exist between them. The running
time of adding a new inequality to an already existing envelope is O (log m) time. This follows
since the existing set of inequalities includes at most O (m) inequalities (Invariant 2.1), which
is represented as an (upper and lower) envelope, i.e., as a sorted sequence of breakpoints.
Adding a new inequality amounts to identifying where to insert the newly created breakpoint
in the existing sequence, which can be done using a binary search. We note that it may be the
case that, as a result of adding a new breakpoint, many other breakpoints can disappear. Since
there are at most () pairs of neighbors, the complexity of this step is at most O (n2 log m).

To prove Invariant 2.1, notice that for each variable that is eliminated, the number of
breakpoints added to an edge is a constant, and hence the invariant is maintained. In fact, the
number of breakpoints on an edge will never exceed m -!- 4n throughout the execution of the
algorithm.

At the end of the elimination step, we are left with two variables, x0 and x,,. We now
backtrack and assign values to the inequalities as follows. Choose any feasible value in the
feasible range for xn. Now choose a feasible value for xn_ 1, that satisfies the inequalities w.r.t.

1184 DORIT S. HOCHBAUM AND JOSEPH NAOR

x

4

3

2

1
0.5

-3.5

FIG. 2. Step 3b of the algorithm: for example, bt 2 and bt+l 3. Consequently, the number of inequalities
involving xi and xj is reduced to two. In addition, there are two more inequalities." 2 <_ xi and xi < 3.

xn and x0. Continue inductively by determining a value for Xi, based on the inequalities of X
and xj for j > i, and the range determined by the upper and lower bound inequalities with

x0. Since there are now at most two inequalities on each edge, the running time for the entire
backtracking process is O (n2).

The correctness of the next theorem follows from the above discussion.
THEOREM 2.2. The complexity ofeliminating a variable in the algorithm is O(mn log m).

Hence, the complexity of the entire algorithm is 0 (mn2 log m).

3. Integer programming on monotone inequalities. A linear program with two vari-
ables per inequality is called monotone if for every inequality, the coefficients of the two
variables have opposite signs. We begin by studying the properties of the set of feasible vec-
tors in the case of m.onotone inequalities. This set can be looked upon as a partial order under
the following definition of dominance. Given two feasible vectors, L and L2, we say that
L1 L2 if for all components i, L1 (i) _> L2(i). Let denote the set of all feasible vectors of
a monotone system. We prove that has the nice property that it forms a distributive lattice.
This property will turn out to be very useful for finding a feasible solution and optimizing with
respect to an objective function. It was previously observed by Veinott [20]. A distributive
lattice is a partial order in which

1. Each pair of elements has a greatest lower bound, or meet, denoted by a A b, so that
a A b -< a, a m b -< b, and there is no element c such that c _< a, c -< b and a A b -< c.

2. Each pair of elements has a least upper bound, or join, denoted by a v b, so that
a -< a v b, b <__ a v b, and there is no element c such that a c, b -< c and c -< a v b.

3. The distributive laws hold, namely a v (b A c) (a V b) A (a V c) and a A (b v c)
(a A b) v (a A c).

To prove that is, in fact, a distributive lattice, we define appropriately the meet and join
operations. The meet of two vectors L1 and L2 is defined to be the vector where each
component is the minimum of the two corresponding components in L1 and L2. The join of
two vectors is defined similarly where minimum is replaced by maximum. (See Fig. 3 for an
example.)

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 1185

THEOREM 3.1 [20]. The partial order (E, _) offeasible vectorsforms a distributive lattice
under the above definitions ofmeet andjoin.

Proof We first establish that (, _) is a lattice. To do that, we prove one case, other
cases follow similarly. Let L1 (u un), L2 (Vl vn), and let L L1 x/L2
(w w,,). We show that L is also a feasible solution vector. For a particular inequality
axi bxj < c, we know that

aui buj < c; al)i bvj < c.

If, for example, wi ui and wj vj, then since b is positive, buj <_ bvj, and the inequality
holds for solution vector L as well.

Let a, b, and c be any integers. Then, min(a, max(b, c)) max(min(a, b), min(a, c))
and max(a, min(b, c)) min(max(a, b), max(a, c)). Hence, the distributive laws hold for
the lattice/2. 71

(2,2,2)

2)

(0,2,2) /g1,2)
(0,1,2 ’1)

(0, /(1,1,0)
(0,0,1)/V(O,1,0)

(0,0,0)

y-x<_2
x-y<_O
2z-y<_3
2y-z<_2

O<x, y, z<2

FIG. 3. The sublattice of integral solutions ofa monotone system. Each solution vector is of theform (x, y, z).

Notice that the lattice property holds in both the fractional and the integer case, and in fact
the set of integer feasible solutions is a sublattice of the lattice of feasible solutions. From now
on/2 will denote the lattice in the integer case and we restrict the discussion to this lattice. It is
easy to see that the lattice properties imply that a lattice has a unique minimum and maximum,
denoted by B (bottom) and T (top), respectively.

The problem of checking whether an integer monotone system has a feasible solution was
shown to be NP-complete by Lagarias [11]. This was shown by proving that the following
problem, good simultaneous approximation, is NP-complete. An instance of this problem
consists of a vector of rationals, ot (a/b a,,/bn), and positive integers N, s, and $2.

The question is whether there exists an integer Q, _< Q < N, such that

s1
max {Oai/bi} <--,
<i <n S2

where {fl denotes the distance of/3 to the closest integer. This problem can be expreseed as
an instance of finding an integer feasible solution (x, xn, Q) for the following monotone
system:

1186 DORIT S. HOCHBAUM AND JOSEPH NAOR

--sl .B <_s2(ai.iB Q B. Xi) < SI" B, l<_i<n,

where B --bl. b2... b,, and < Q < N.

However, we will show in 3.1 and 3.2 that for the case of bounded variables, both the
feasibility problem and the optimality problem with respect to an arbitrary objective function
can be solved in pseudo-polynomial time over a monotone system of inequalities. Con-
sequently, integer programming over monotone inequalities with bounded variables is only
weakly NP-complete.

3.1. Integer feasibility over monotone inequalities. In this section we show how a
feasible integer solution can be found. More specifically, our aim is to compute the feasible
solution which corresponds to the top of the lattice, i.e., the feasible vector whose components
are maximal. The same procedure with a slight modification can be applied to find the solution
corresponding to the bottom of the lattice.

During the course of this procedure a current solution vector L (x x,,) (which is
infeasible) is maintained with the invariant that L >- T. The initial value of L is the top of the
fractional lattice where each component is rounded downward to the nearest integer.

It should be noted that in the monotone case, the top (or bottom) of the lattice in the
fractional case can be computed via a simple modification of the algorithm defined in 2. In
step 3a of the algorithm, instead of assigning a value to the variable that is eliminated, two
consecutive breakpoints are computed with the following property. One breakpoint belongs
to the feasible region, and the other breakpoint (the larger one) does not belong to it. The
algorithm continues similarly to step 3b. In the backtracking process, the highest feasible
value is chosen for each variable.

The generic step in the algorithm is as follows. Traverse all the inequalities in the linear
program in some arbitrary order. If an inequality aXi bxj <_ c is invalid, then it is validated
by updating the value of xi as follows"

x
a

The algorithm terminates if either all inequalities traversed in a single step are valid, or L

_
B.

THEOREM 3.2. The algorithm tests in time O(mn2 logm + rn -"7=1 (xnax xnin -[-- 1))
whether a monotone system of inequalities has a feasible solution.

Proof. Assume that the given system of inequalities has a feasible solution. We show that
the invariant that L >- T is maintained throughout the algorithm. Given an invalid inequality
axi bxj < c, where xi ui and xj uj, it is validated by decreasing xi. Assume that the
values of xi and xj in T are 2i and Jj, respectively. By the invariant, uj > 2j. Hence,

.i < < ui

and the invariant is maintained.
It follows from the invariant that we will never need to backtrack, and since the value of

a variable is always decreased by at least one unit whenever an inequality is validated, the
running time of the algorithm is bounded by O(mn2 logm + m. Y’=(x’ax xnin -[- 1)).
This running time is pseudo-polynomial since the feasible range of the variables is bounded.

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 1187

If the monotone system does not have an integer feasible solution, this will be detected
when L -< B, since T B must hold. 13

Recently, T. Feder (private communication) observed that an integer feasible solution can
be computed in pseudo-polynomial time in the non-monotone case when the variables are
bounded.

3.2. Integer optimization over monotone inequalities. In this section we consider the
following integer optimization problem:

min 11) X

i=1

subject to akxi bkxj < Ck, k m,

<i,j <n and a,, bk >0.

We show that the optimal solution can be computed in pseudo-polynomial time where the
polynomial depends on ’i=n (xaax. xnin). Recall that the optimization problem over a non-
monotone system is NP-complete in the strong sense since vertex cover is a special case of
it.

DEFINITION 3.3. Let f be afunction defined on a lattice ., and let a, b .. Thefunction
f is called modular iff(a) + f(b) f(a x/b) + f(a/x b).

It is straightforward to verify that any linear objective function defined on an integer
monotone system is modular.

DEFINITION 3.4. For a directed graph G, a subset S is said to be closed iffor every s S,
all its predecessors, i.e., all vertices s’for which there exists a directedpathfrom s’ to s, belong
to the subset S.

We first review our scheme for minimizing with respect to an objective function. The
following theorem in lattice theory (see [6, p. 72, Thm. 9] and [7, Thm. 2.2.1]) is relevant to
our result.

THEOREM 3.5. Given a distributive lattice ., a partial order can always be associated
with it, such that a one-to-one correspondence can be established between its closed subsets
and the elements of.

The proof of this theorem is constructive and it implies an algorithm for constructing the
partial order. In general, there may be more than one partial order that has the above property;
we denote by I (Z2) the partial order obtained by following the proof of Theorem 3.5 and call
it the generic partial order.

Suppose now that a modular function f is defined on the lattice/2. It can be shown
that in this case, the elements of the partial order can be assigned costs in such a way that
the lattice element of optimal cost would correspond to the closed subset of I (/) of optimal
cost. Computing a closed subset of optimal cost in a partial order is a well-known problem
and its complexity is bounded by a polynomial in the size of I () [16]. (The size of I (/) is
pseudo-polynomial in the case of our lattice.)

The disadvantage of computing with the generic partial order I () is that its structure
is rather complicated, and it seems that it cannot be described compactly, i.e., in polynomial
space (as opposed to pseudo-polynomial space). Instead, we present a directed graph, denoted
by G (/2), that also has the property that a one-to-one correspondence exists between its closed
subsets and the elements of/2. The advantage of this graph is that it can be encoded in
polynomial space via an algorithm which has a short (polynomial) description.

1188 DORIT S. HOCHBAUM AND JOSEPH NAOR

The rest of the section is organized as follows. In 3.2.1 we define the directed graph
G() and prove that it has the desired properties. In 3.2.2 we show how to compute a closed
subset of minimum cost in G (/). For the sake of completeness, we discuss in 3.2.3 how to
obtain the graph G(Z3) from the generic partial order I ().

It should be noted that similar methods were used by Gusfield and Irving [7] to compute
efficiently an egalitarian solution for the Stable Marriage problem. See also [9], [19] for an
application of these methods.

3.2.1. Constructing the directed graph. In this section we define a directed graph G(/2)
such that a one-to-one correspondence can be defined between its closed subsets and the
elements of/2. (See Fig. 4 for an example.)

Let the set Vi be defined as the set of integers that are contained between the largest and
smallest integer feasible values of variable xi. The vertex set of G(/2) is V U t2 V,,, i.e.,
a vertex is created for each v E V/, where _< < n. In addition, there is a special vertex
denoted by s. The edge set of G(/) is defined as follows.

For each variable xi, a directed chain is defined on the set Vi in sorted order. That
is, for each pair of vertices representing two consecutive values, v and v + 1, there
is an arc (v, v + 1). Such a chain is called an xi-chain.
For each inequality axj bxi <_ , the following "ladder" is defined between the

xi-chain and the xj-chain. For all v E Vj, there is an arc from the value corresponding
to ’---- in the xi-chain, to the vertex corresponding to v in the xj-chain. Intuitively,
the arcs can be thought of as constraints, i.e., if the value of variable xj is v, then the
value of variable xi must be at least a-___ in any feasible solution
For each xi-chain, there is a bidirectional edge connecting the vertex corresponding
to the smallest value in Vi to the vertex s. The purpose of these edges is to ensure
that any closed set contains at least one vertex in each xi-chain.

x-chain y-chain z-chain

2 2

FIG. 4. The directed graph G(E) corresponding to the set of inequalities of Fig. 3. For example, the arc

connecting the "0" value in the x-chain to the "2" value in the y-chain is implied by th.e inequality y x < 2.

The next theorem states that this construction is valid.
THEOREM 3.6. There is a one-to-one correspondence between the closed subsets of G(fl_,)

that contain vertex s and the elements of E.

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 1189

Proof. We first prove that every feasible solution vector L defines a closed subset in G (/2).
Let L (ul u,,). The corresponding subset SL in G(/2) is defined by taking for all i,
all the vertices corresponding to integers that are smaller or equal than u in Vi, and s 6 SL.
Assume now that SL is not a closed subset. Then there exist two vertices, v 6 Vi and w 6 Vj,
such that

w SLandv SL, and,
there is an arc from v to w in G().

This arc can only be generated by the inequality axj bxi <_ c. (We now abuse terminology by
treating v and w as both vertices and integers.) Thus, by the construction ofG (/2), v mW-b=-

ajsince u > I--T-] and w _< uj, we get that v < u and hence v SL, contradicting our
assumption.

We now prove the other direction. Let SL be a closed subset in G(Z2). The solution
vector L (Ul u,,) corresponding to SL is defined by taking ui to be the largest integer
belonging to SL in Vi. Since s SL, then every xi-chain in the graph G(Z2) has at least one
representative in the closed subset SL. Suppose L is infeasible, i.e., there exists an inequality
axj bxi <_ C such that auj bui > c. By the construction of G(), there is an arc from the

aujvertex in Vi corresponding to I---T-] to the vertex in Vj. corresponding to uj. Since SL is a
[alj--c attj--cclosed subset, the vertex corresponding to b must belong to SL, and hence, ui > [--],

which contradicts the invalidity of the inequality.
REMARK 3.1. Notice that G(.) has a succinct description and can be encoded in poly-

nomial space. This implies that the complete set of solutions of a monotone system can be
completely encoded in polynomial space.

3.2.2. Minimizing with respect to a modular function. In this section we discuss how
to compute a lattice element minimizing an objective function Yi=l tOiXi" AS mentioned
earlier, this objective function also defines a modular function on the lattice. We first show how
to assign costs to the vertices of G (/2) such that a closed subset of minimum cost corresponds
to a lattice element of minimum cost. Then we briefly review Picard’s algorithm [16] for
finding a closed subset of minimum cost in a directed graph.

The cost of every vertex in G(Z;) is determined as follows. Let the smallest value in Vi
be bi. The cost of the vertex corresponding to bi is wi bi, and the cost of the other vertices
in Vi is wi. It is not hard to see that finding the optimal solution with respect to an objective
function is equivalent to finding the closed subset of minimum cost in G(I2), where the cost
of a closed set is defined to be the sum of the costs of its members. The problem of computing
the minimum cost closed set can be reduced to computing the minimum cut in the following
graph (of pseudo-polynomial size), denoted by G, which is derived from G(12). (Computing
the minimum cut in G can be done by finding the maximum flow from the source to the sink.)

Connect all positive cost vertices to a source and all negative cost vertices to a sink.
The capacity assigned to edges adjacent to the source or sink is equal to the absolute
value of the cost of the vertices to which they are adjacent.
All other edges in G() have infinite capacity in G.

By our construction, the minimum cut must either contain edges adjacent to the source or
to the sink. (Other edges have infinite capacity.) The sink-set of a cut is defined to be the set
of vertices that can be reached from the source only via the cut. Picard 16] proved that the
sink-set defined by the minimum cut in G corresponds to a closed subset of minimum cost in
G(/2). To see that, let N be the sum of the capacities of the edges adjacent to the source in G.
It is not hard to see that the cost of the vertices in the sink-set of any finite cut is equal to -N
plus the capacity of the cut. Hence, a minimum cut defines a closed subset of minimum cost.

Since a minimum cut can be identified in a graph G (V, E) in O(IEIIVI log IVI), e.g.,
[8], and in our graph IVI o(;= IV/I) and IEI < O(m 7=1 IV/I), we have the following
theorem.

1190 DORIT S. HOCHBAUM AND JOSEPH NAOR

THEOREM 3.7. The integer optimal solution of a monotone system of inequalities with
respect to an arbitrary linear objectivefunction can be computed in pseudo-polynomial time,
in O(m(7= IVl)2 log(,n.= IVl))time.

3.2.3. The generic construction. In order to motivate the construction of G (/2), we now
present without proof how it can be obtained from the generic partial order I (E).

Let E[xi a] denote the set of all feasible solution vectors for which xi a. Obviously,
E[xi a] induces a sublattice of/2. We call a lattice element irreducible if for some variable

xi and integer a, it is the bottom element of the sublattice ,[xi a]. The partial order
(I (), -<) is defined as follows" the vertex set is the set of irreducible elements of the lattice
/2; for elements a, b 6 I (Z2), there is an edge from a to b, if a

_
b in/2. The following

theorem is proved in [6, p. 72, Thm. 9] and [7, Thm. 2.2.1].
THEOREM 3.8. There is a one-to-one correspondence between the nonempty closed subsets

of I () and the elements of . Moreover, if closed subsets S and S’ of I () correspond to

vectors L and L’, respectively, then L’ dominates L ifand only if S c_ S’.
However, the partial order I () has a "complicated" structure which we now show how

to simplify and make more regular. (This generalizes the construction in [10].)
The elements L and L2 are called consecutive elements in the lattice E if L2 covers

L1, i.e., there is no element M such that L < M < L2. Suppose elements L and L2 are
consecutive and L1 < L2. The minimal difference between L and L2 is defined to be the "set
of changes" between L and L2. More formally, by a single change we mean the difference
between the value of a variable in L and L2. We denote by 7) the set of all minimal differences
in 79

A maximal chain in a lattice is a chain of consecutive elements that starts at B and ends at
T. An interesting property of distributive lattices is that each maximal chain contains all the
minimal differences. The minimal differences appear on each maximal chain in some order
and each minimal difference appears exactly once.

We can now define the partial order (T (), __%). Let D, D2 7); then D < D2 if and
only if D1 precedes D2 on every maximal chain in 7. We are now ready for the next theorem,
whose proof follows from [7, Thm. 2.4.4] and which relates the partial orders I (Z) and T (/2).

THEOREM 3.9. There is a one-to-one correspondence between the closed subsets of I
and T (E.).

In fact, the partial order T() is very similar to G(). Let ’i denote the set of integer
feasible values of variable xi. Notice that the elements of 9 do not necessarily form a
consecutive interval, in contrast to the fractional case, where all values k such thatxi" < k <

xi
ma" are feasible. Notice that T (E) is the structure we obtain if we follow the definition of

G() except that the set Vi is replaced by ’i. For example, if i 1, 5, 6}, then there is an
arc from the vertex corresponding to "1" to the vertex corresponding to "5", and an arc from
the vertex corresponding to "5" to the vertex corresponding to "6."

The difficulty in constructing the partial order T() is that we need to generate the elements
of the sets V one by one, since they are not necessarily sets of consecutive integers. This
can be done in pseudo-polynomial time; however, T (/2) does not have a succinct description
which motivates the construction of G(E).

4. Identifying fat polytopes. This section presents an application ofthe Fourier-Motzkin
algorithm for identifyingfat polytopes.

Even though it is NP-hard to decide whether a set of inequalities has an integer feasible
solution, one can use a fast preprocessing stage to compute an integer feasible solution in
certain cases. This preprocessing stage runs in strongly polynomial time for the case of linear
programs with two variables per inequality. It checks whether the polytope isfat, i.e., whether

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 191

it contains a sphere circumscribing a unit hypercube. Since a unit hypercube must contain at
least one integer lattice point, an integer feasible point is found by rounding the coordinates
of the center of the sphere to the nearest integer. This procedure is a heuristic for finding a
feasible integer point, since there may exist a feasible integer point in the polytope, yet the
polytope does not contain a large enough sphere. Lenstra [12] uses a similar procedure that
works in polynomial time and may identify a feasible integer point; however, in his procedure
the running time depends on the ellipsoid method and is therefore not strongly polynomial.

The idea of the procedure is to shift all constraints by a distance of r. Any feasible point
in the resulting set of inequalities is at a distance of r from all the faces of the polytope, and
hence a sphere of radius r around any such feasible point is contained in the polytope. In order
to obtain a sphere large enough to contain a unit hypercube, we need to set r c/2.

Shifting a constraint by a distance r is done as follows. Given an inequality ’-i--1 aixi < ,
the shifted inequality is 7= aixi < ’, where

c c ai.

i=l a i=1

In the case of two variables per inequality, the sum includes at most two terms. The new set
of inequalities, each with a constant c substituted by i, is also a set of inequalities with two
variables per inequality, and hence is solvable in the running time reported in 2. Consequently,
we can test whether a polytope is fat and find an integer feasible point in O (mn2 log m) time.

Although the running time is polynomial, the procedure involves the manipulation of
square roots, which may be difficult in practice. Since this algorithm only finds a feasible
integer point in a special case, it is satisfactory for this purpose to truncate g to a small number
of accuracy bits, where the small number depends on the machine word length or on other
implementation considerations.

An interesting related problem is to find the largest sphere contained in a polytope. For this
we need to maximize the value of r such that the system still has a feasible solution. Although
such a problem has three variables per inequality, it is still solvable in strongly polynomial
time. This follows from the results of [3] and [13], where it is shown that a problem can be
solved in strongly polynomial time if, by deleting a constant number of columns (in this case
the constant is equal to one), it can be converted to a problem which is solvable in strongly
polynomial time. Since treating r as a variable adds only one more variable to the problem,
the problem of finding a largest sphere in the polytope defined by a set of inequalities with
two variables per inequality is solvable in strongly polynomial time.

Adnowledgments. We thank the two anonymous referees for clarifying the presentation
ofthe paper. We thank Arik Tamir for pointing out that the running time ofthe integer feasibility
algorithm is pseudo-polynomial only in the case where the variables are bounded. We would
also like to thank Edith Cohen for helpful remarks. Many thanks to Yossi Friedman for his
help in making the figures.

REFERENCES

B. ASPVALL ArqD Y. SHILOACH, Polynomial time algorithm for solving systems of linear inequalities with two
variables per inequality, SIAM J. Comput., 9 (1980), pp. 827-845.

[2] E. COHErq, Combinatorial Algorithms For Optimization Problems, Ph.D. thesis, Stanford Technical Report,
STAN-CS-91-1366, June 1991.

[3] E. COHEN AND N. MEGIDDO, Strongly polynomial time and NC algorithns for detecting cycles in periodic
graphs, J. Assoc. Comput. Mach., 40 (1993), pp. 791-830.

1192 DORIT S. HOCHBAUM AND JOSEPH NAOR

[4] E. COHEN AND N. MEGIDDO, hnproved algorithms for linear inequalities with two variables per inequali.
Proceedings of the Twenty Third Symposium on Theory of Computing, New Orleans, 1991, pp. 145-
155. SIAM J. Comput., this issue, pp. 1313-1347.

[5] H. EDELSBRUNNER, G. ROTE. AND E. WELZL, Testing the necklace condition for shortest tours and optimal

factors in the plane, Theoret. Comput. Sci., 66 (1989), pp. 157-180.
[6] G. GRATZER, Lattice Theory: First Concepts and Distributive Lattices, W. H. Freeman and Company, San

Francisco, 1971.
[7] D. GUSFIELD AND R. W. IRVING, The Stable Marriage Problem, MIT Press, Cambridge, MA, 1989.
[8] A.V. GOLDBERG AND R. E. TARJAN, A new approach to the maximumflow problem, J. Assoc. Comput. Mach.,

35 (1988), pp. 921-940.
[9] M. Ira, Structural theoryfor the combinatorial systems characterized by submodularfunctions, in Progress in

Combinatorial Optimization, Academic Press, New York, 1984, pp. 197-219.
10] S. KULLER, J. NAOR, AND P. N. KLEIN, The lattice structure offlow in planar graphs, SIAM J. Disc. Math., 6

(1993), pp. 477-490.
[11] J. C. LAGARIAS, The computational complexity of simultaneous diophantine approximation problems, SIAM

J. Comput., 14 (1985), pp. 196-209.
[12] H.W. LENSTRA JR., Integer programming with afixed number of variables, Math. of Oper. Res., 8 (1983), pp.

538-548.
[13] C. HAIBT-NORTON, S. PLOTKIN, AND E. TARDOS, Using separation algorithns in fixed ditnension, Proceedings

of the First Symposium On Discrete Algorithms, San Francisco, 1990, pp. 377-387.
14] N. MEGIDDO, Towards a genuinelypolynomial algorithmfor linearprogramming, SIAM J. Comput., 12 (1983),

pp. 347-353.
15] C.G. NELSON, An nlg algorithmfor the two-variable-per-constraint linearprogramming satisfiability prob-

lem, Technical Report AIM-319, Stanford University, 1978.
[16] J. C. PCARD, Maximal closure ofa graph and applications to combinatorial problems, Management Sci., 22

(1976), pp. 1268-1272.
17] A. SCHRIJVER, Theory ofLinear and btteger Programming, John Wiley, New York, 1986.

[18] R. SHOSTAK, Deciding linear inequalities by computing loop residues, J. Assoc. Comput. Mach., 28 (1981),
pp. 769-779.

[19] D. TOPKS, Minimizing a sltbmodularfunction on a lattice, Oper. Res., 26 (1978), pp. 305-321.
[20] A. F. VEINOTT, Representation of general and polyhedral subsemilattices and sublattices ofproduct spaces,

Linear Algebra Appl., 114/115 (1989), pp. 681-704.

