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We present an algorithm for solving the minimum-cut
problem on closure graphs without maintaining flow
values. The algorithm is based on an optimization al-
gorithm for the open-pit mining problem that was pre-
sented in 1964 (and published in 1965) by Lerchs and
Grossmann. The Lerchs–Grossmann algorithm (LG al-
gorithm) solves the maximum closure which is equiva-
lent to the minimum-cut problem. Yet, it appears sub-
stantially different from other algorithms known for
solving the minimum-cut problem and does not employ
any concept of flow. Instead, it works with sets of nodes
that have a natural interpretation in the context of maxi-
mum closure in that they have positive total weight and
are closed with respect to some subgraph. We describe
the LG algorithm and study its features and the new in-
sights it reveals for the maximum-closure problem and
the maximum- flow problem. Specifically, we devise a
linear time procedure that evaluates a feasible flow cor-
responding to any iteration of the algorithm. We show
that while the LG algorithm is pseudopolynomial, our
variant algorithms have complexity of OOO(mnmnmn log nnn), where
nnn is the number of nodes and mmm is the number of arcs in
the graph . Modifications of the algorithm allow for ef-
ficient sensitivity and parametric analysis also running
in time OOO(mnmnmn log nnn). © 2001 John Wiley & Sons, Inc.
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1. INTRODUCTION

We introduce here a new algorithm for solving
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the maximum-closure problem, which solves also the
minimum-cut and the maximum-flow problems on the
associated “closure graph.” Closure graphs are a spe-
cial class of digraphs that include a source and a sink
in which only source adjacent arcs and sink adjacent
arcs have finite capacities. All other arcs have infinite
capacity.

The new algorithm is based on an algorithm devised
in 1964 by Lerchs and Grossmann (LG) [49]. The LG
algorithm is of great deal of interest for a number of
reasons: It has been used by the mining industry for the
past three decades; it does not employ any concept of
flow, but solves a problem that is identical to the min-
imum s, t-cut problem1; the complexity of the LG al-
gorithm has never been analyzed (although there is a
convergence, or finiteness, proof in [49]), and the ideas
employed in the LG algorithm are dramatically differ-
ent from those used for any known minimum-cut (or
maximum-closure) algorithms. Indeed, our investigation
presented here indicates that the LG algorithm is fun-
damentally different from existing minimum-cut algo-
rithms and that it leads to new approaches for solving the
maximum-flow problem on closure graphs. Our more re-
cent work that evolved from this research demonstrated
a new algorithm that solves maximum flow on general
graphs and which has a practical run time substantially
faster than any other known algorithm for several classes
of graphs.

This paper has a dual purpose: It introduces a new
approach for solving maximum flow on closure graphs
and it addresses the need of the mining industry to solve
effectively and efficiently the open-pit mining problem,
using an algorithm that is widely familiar and in common
use in the industry.
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Our study of the mining problem was motivated by
being consulted in 1990 about the mining industry’s
computational difficulties with planning operations in
terms of the running time of commercial software. This
sentiment was, and still is, manifested in the considerable
attention to computational efficiency in the mining litera-
ture. Although heuristic approaches and artificial intelli-
gence techniques are usually reserved for NP-hard prob-
lems, such approaches are commonplace in promotional
materials for mining commercial software [12, 61]. One
typical statement [6] reads

A number of optimization techniques are avail-
able for determining this optimal contour. Unfor-
tunately, direct applications of these techniques to
large ore bodies cause considerable computational
difficulties.

Still, the mining problem is known to be equivalent to
the minimum-cut problem which is known to be solvable
in polynomial time. (For the proof of this equivalence,
the reader is referred to Section 2.2.)

Another aspect of concern to the mining industry is
that planning calls for sensitivity analysis of different
scenarios under different parameters values such as the
value of the commodity. Yet, known efficient paramet-
ric analysis network flow techniques are not utilized. In-
stead, the common approach for addressing the sensi-
tivity analysis, as described in the literature, is to call
repeatedly for the optimization algorithm.

We now describe briefly the mining problem ad-
dressed here: Open-pit mining is a surface mining op-
eration in which blocks of earth are extracted from the
surface to retrieve the ore contained in them. During the
mining process, the surface of the land is being contin-
uously excavated and a deeper and deeper pit is formed
until the operation terminates. The final contour of this
pit mine is determined before the mining operation be-
gins. To design the optimal pit—one that maximizes
profit—the entire area is divided into a 3-dimensional
grid of blocks and the value of the ore in each block

is estimated using geological information obtained from
drill cores. Each block has a weight associated with it,
representing the value of the ore in it, minus the cost in-
volved in removing the block. While trying to maximize
the total weight of the blocks to be extracted, there are
also contour constraints that have to be observed. These
constraints specify the slope requirements of the pit and
precedence constraints that prevent blocks from being
mined before others in a layer on top of them. Subject
to these constraints, the objective is to mine the most
profitable set of blocks.

The mining problem can be modeled on a directed
graph G = (V, A). Each block i corresponds to a node
with a weight bi representing the net value of the in-
dividual block. This net value is the assessed value of
the ore in that block, from which the cost of extracting
that block (alone) is deducted. There is a directed arc
from node i to node j if block i cannot be extracted be-
fore block j, which is in a layer right above block i. This
precedence relationship (which is the reverse of the stan-
dard direction for precedence constraints) is determined
by the “engineering slope requirements.” Suppose that
block i cannot be extracted before block j and block j
cannot be extracted before block k. By transitivity, this
implies that block i cannot be extracted before block k.
We chose in this presentation not to include the arc from
i to k in the graph and the existence of a directed path
from i to k implies the precedence relation. Including
only arcs from immediate predecessors reduces the total
number of arcs in the graph compared to the alternative
approach. This issue is further discussed in Section 2.5.

The decision on which blocks to extract to maximize
profit is equivalent to finding a maximum-weight closed
set of nodes, where a set of nodes is closed if it con-
tains all successors of the nodes in the set. Such a set
is called a maximum closure of G. The mining prob-
lem is also known as the open-pit mining, the optimal
contour, optimal pit problem, or the maximum-closure
problem.

Problem Name: Maximum-closure Problem
Instance: Given a directed graph G = (V, A) and node weights (positive or negative) bi for all i ∈ V.
Optimization Problem: Find a closed subset of nodes V′ ⊆ V such that

∑
i∈V′ bi is maximum.

As noted earlier (and shown in detail in the next sec-
tion), the open-pit mining problem is solvable by max-
imum flow on an associated graph. The most efficient
maximum-flow algorithms known to date are variants of
the push-relabel algorithm described in [24] and [45],
of complexities O(mn log n2

m ) and O(mn + n2+ε) for any
ε > 0, respectively, for m and n representing the number
of arcs and nodes in the graph. In another paper [34],
we verified empirically that for mining problem data
the push-relabel algorithm is substantially more efficient
than the (original) LG algorithm.

Our contributions here include: A presentation of the
LG algorithm with insights into the mechanisms that
make it work; linking the algorithm’s certificate of op-
timality to a feasible flow; a complexity analysis of the
LG algorithm demonstrating it is pseudopolynomial (pre-
sented as a convergence or finiteness proof in [49]); ap-
plying scaling techniques and other variants that improve
the algorithm’s performance; a strongly polynomial time
variant of the algorithm; a parametric version of the LG
algorithm that has the same complexity as a single run;
and practical implementation suggestions.
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The paper is organized as follows: We start with
preliminaries that include the formulation of the open-
pit mining problem as a maximum-closure problem and
then, equivalently, as a minimum-cut problem. We de-
scribe the relationship between maximum flow and min-
imum cut and between flow in closure graphs and in
general graphs. A literature review focusing on the LG
algorithm and the open-pit mining problem is given in
Section 3. We then describe the LG algorithm and ana-
lyze its correctness, complexity, and some distinguishing
properties. In Section 5, we describe an algorithm that
takes the output of the LG algorithm and assigns flows
to the arcs of the closure graph in linear time. We also
comment on the relationship between the LG algorithm
and the push-relabel algorithm for maximum flow.

Next, we propose in Section 6 complexity improve-
ments of the LG algorithm and two variants. One variant
runs in polynomial time that depends on the value of the
largest node weight, ||b||, and the other is strongly poly-
nomial, of complexities O(mn log2 ||b||) and O(mn log n),
respectively. Section 7 describes several variants of the
LG algorithm for parametric analysis of the maximum-
flow problem on closure graphs.

2. THE MAXIMUM-CLOSURE AND
MINIMUM-CUT PROBLEMS

2.1. Notation

For P, Q ⊂ V, the set of arcs going from P to Q is
denoted by, (P, Q) = {(u, v) ∈ A|u ∈ P and v ∈ Q}. Let
the capacity of arc (u, v) be denoted by cuv or c(u, v). For
P, Q ⊂ V, P∩Q =∅, the capacity of the cut separating
P from Q is, C(P, Q) =

∑
(u,v)∈(P,Q) cuv. For S ⊆ V, let

S̄ = V \ S.
For a graph G = (V, A), we denote the number of arcs

by m = |A| and the number of nodes by n = |V|.
A graph that includes distinguished source and sink

nodes is referred to as an s, t graph.
An arc (u, v) of an unspecified direction is referred

to as edge [u, v]. Let (v1, v2, . . . , vk) denote a directed
path from v1 to vk, that is, (v1, v2), . . . , (vk−1, vk) ∈ A.
Let [v1, v2, . . . , vk] denote an undirected path from v1 to
vk, that is, [v1, v2], . . . , [vk−1, vk] ∈ A.

Each node v ∈ V has a weight bv (benefit, mass) asso-
ciated with it, which could be any integer (possibly neg-
ative). (Our strongly polynomial algorithms apply also
when the node weights are real.) For P ⊆ V, the total
weight of the set P is b(P) =

∑
v∈P bv. The set of nodes

with positive weights is denoted by V+, and the set of
nodes with negative weights, by V−. The total sum of
positive weights in the graph is M+ = b(V+) and the
total sum of negative weights is M− = b(V−).

A successor of a node v is a node u such that there is
a directed path from v to u. An immediate successor of
a node v is a node u such that (v, u) ∈ A.

2.2. Reduction of Open-pit Mining to the
Minimum-cut Problem

In formulating the open-pit mining problem, each
block is represented by a node in a graph and the slope
requirements are represented by precedence relation-
ships described by the set of arcs A in the graph. The
integer programming formulation of the problem reveals
its minimum-cut structure: Let xj be a binary variable
that is 1 if node j is in the closure and 0 otherwise. Let
bj be the weight of the node or the net benefit derived
from the corresponding block.

Max
∑

j∈V bj · xj

subject to xj − xi ≥ 0 ∀(i, j) ∈ A
0 Ú xj Ú 1 integer j ∈ V.

Each row of the constraint matrix has one 1 and one
−1, a structure indicating that the matrix is totally uni-
modular. More specifically, it indicates that the problem
is a dual of a flow problem.

LG noted in passing that the maximum-closure prob-
lem “can be transformed into a network flow problem”
(p. 19). Johnson [40] was the first to recognize formally
the relationship between the maximum-closure problem
and the maximum-flow problem. This he did by reducing
the closure problem to another closure problem on bipar-
tite graphs which was, in turn, solved as a transportation
problem. This bipartition reduction involves placing an
arc between two nodes of positive and negative weight
if and only if there is a directed path leading from the
positive-weight node to the negative-weight node. John-
son observed that this latter problem, frequently referred
to as the selection problem, can be solved as a transporta-
tion problem. In fact, the problem is equivalent to decid-
ing the feasibility of a transportation problem, which is
an easier problem than is optimally solving the trans-
portation problem. The bipartite closure problem was
independently shown to be solvable by a minimum-cut
algorithm by Rhys [56] and Balinski [3]. Other aspects
of the bipartition reduction are reviewed in Section 2.5.

Picard [54] demonstrated formally that a minimum-
cut algorithm on a related s, t graph solves the maximum-
closure problem. The related graph Gst is constructed by
adding source and sink nodes, s and t, Vst = V∪ {s, t}.
Let V+ = {j ∈ V|bj > 0}, and V− = {j ∈ V|bj < 0}.
The set of arcs in the related graph, Ast, is the set A
appended by arcs {(s, v)|v ∈ V+} ∪ {(v, t)|v ∈ V−}. The
capacity of all arcs in A is set to infinity, and the capacity
of all arcs adjacent to the source or sink is |bv|:

c(u, v) =



∞ (u, v) ∈ A
bv u = s, v ∈ V+

−bu u ∈ V−, v = t.

In the related graph, the source set of a minimum-
cut separating s from t, excluding s, is also a maximum
closure in the graph G. The proof of this fact is repeated
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here for completeness. The source set is obviously closed
as the cut must be finite and thus cannot include any arcs
of A. Now, let ({s}∪S, {t}∪S̄) be a finite cut in the graph
Gst = (Vst, Ast). The capacity of the cut C({s}∪S, {t}∪S̄)
is

∑
j∈V−∩S

|bj|+
∑

j∈V+∩S̄

bj =
∑

j∈V−∩S

− bj +
∑
j∈V+

bj

−
∑

j∈V+∩S

bj = b(V+)−
∑
j∈S

bj.

Thus, the capacity of the cut is equal to a constant,
b(V+) —the sum of all positive weights—minus the sum
of weights of the nodes in the set S, which is closed.
Hence, minimizing the cut capacity is equivalent to max-
imizing the total sum of weights of nodes in the source
set of the cut. An example of a closure graph related to a
maximum-closure problem, where the source set of the
minimum-cut defines a maximum closed set, is depicted
in Figure 1.

2.3. Max Flow Versus Min Cut

In 1957, Ford and Fulkerson [17] established that the
value of the maximum flow in a graph is equal to the
value of the minimum s, t-cut. These two problems are
linear programming duals of each other, yet there are dif-
ferences in terms of “information content.” Whereas the
minimum cut specifies only a partition of the nodes into
two subsets, the maximum flow assigns flow to each arc.
(For another perspective on the same issue, note that the
minimum-cut formulation as the dual of maximum flow
is highly degenerate.) The only method known to date
for solving the minimum-cut problem requires finding a
maximum flow first and then recovering the cut partition
by finding the set of nodes reachable from the source in
the residual graph (or reachable from the sink in the re-
verse residual graph). That set is the source set of the
cut, and the recovery can be done in linear time in the
number of arcs.

On the other hand, given a minimum-cut, there is no
efficient way of recovering the flow values on each arc

FIG. 1. A maximum closure and minimum cut in closure graphs.

other than utilizing a process equivalent to solving the
maximum-flow problem from scratch. The only infor-
mation given by the minimum cut is the value of the
maximum flow and the fact that the arcs on the cut are
saturated.

Remark. The problem that we refer to here as the
minimum-cut problem is the minimum s, t-cut problem.
In terms of the close link to maximum flow, the minimum
s, t-cut problem differs from the minimum 2-cut problem.
In fact, the latter problem is only “easier” than the for-
mer. To see that, observe that given an oracle solving the
minimum s, t-cut problem a solution to the minimum 2-
cut is obtained by making a polynomial number of calls
to the oracle. The opposite is not known to be the case.
For further evidence, consider the problem of finding a
partition into three (3) nonempty subsets so as to mini-
mize the cut separating the 3 subsets, the minimum 3-cut
problem, versus the minimum t1, t2, t3-cut problem where
each subset in the partition must contain one of the speci-
fied nodes t1, t2, or t3. Whereas the minimum 3-cut prob-
lem is solvable in polynomial time [27], the minimum
t1, t2, t3-cut problem is NP-hard [11].

As evidence that the 2-cut problem may be easier than
is the s, t-cut problem, there are algorithms that solve
the minimum 2-cut problem on undirected graphs more
efficiently than do any maximum-flow algorithm. Such
algorithms were devised by Nagamochi and Ibaraki [51],
by Stoer and Wagner [60], and by Karger and Stein [42].
In this paper, the minimum-cut problem is the minimum
s, t-cut problem.

The asymmetry between solving the maximum-flow
and the minimum-cut problems implies that it may be
easier to solve the minimum-cut problem than to solve
the maximum-flow problem. Yet, known minimum-cut
algorithms either compute first the maximum flow or,
more rarely, compute a certificate of optimality different
from the flow that can be used for both the minimum-
cut and the maximum flow. An example of the latter is
the minimum-cut in s, t-planar graphs. These are planar
graphs where both source node s and sink node t lie on
the exterior face. For this problem, the minimum-cut can
be derived by finding the shortest paths in the dual graph
from the exterior face to itself. The shortest path labels
serve as a certificate of optimality for the cut. Hassin
showed, in [30], that the shortest path labels can also
be used to compute the maximum flow, in linear time.
Thus, the shortest path distance labels form a certificate
of optimality for both maximum flow and minimum cut.

This discussion raises an interesting question about
the LG algorithm, which solves only the minimum-cut
problem: As we show, the structure used at each iter-
ation (called a normalized tree and defined in Section
4.3), contains sufficient information to make it possible
to derive the flow in linear time (Section 5). Conversely,
given a feasible flow, we found in [32] that it is possible
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to construct a corresponding normalized tree in linear
time. (The sense in which the tree corresponds to the
flow is not entirely evident from the discussion in this
paper, although it is fully explained in [32].)

Yet another still outstanding question is whether,
when given a cut, one can construct the corresponding
normalized tree? This would result in the construction of
flow from cut information with the running time required
to construct the tree.

2.4. Applications of Maximum Flow Minimum
Cut on Closure Graphs

There are numerous applications of maximum clo-
sure in addition to the open-pit mining problem. Among
the obvious applications are the determination of the
value of a maximum-flow problem and, thus, the fea-
sibility as well. Another application is the feasibility of
a transportation problem. That condition for feasibility
was stated, for instance, by Gale [19] for transportation
problems with the sum of supplies equal to the sum of
demands: For every set of supply nodes S, and all the de-
mand nodes N(S) reachable from them (which are also
neighbors and immediate successors), the total demand
of N(S) is at least as great as the supply of S:

b(S) Ú |b(N(S))|.
We note first that the set S ∪ N(S) is a closed set in

the bipartite transportation graph, and, conversely, ev-
ery closed set in this graph is of the form S∪ N(S) for
some set of supply nodes S. We next assign a weight
to each node equal to its supply (negative for demand).
The maximum-closure problem optimal value in the re-
sulting node weighted graph has to be of value 0 for the
condition to be satisfied.

The maximum-closure problem can also be used to
solve the feasibility of the minimum-cost network-flow
problem in a general graph. To see that, notice that for
a network with supplies, demands, and finite capacities
there is a well-known transformation setting all the ca-
pacity lower bounds to 0 and the upper bounds to infinity
(see, e.g., [1]). With this transformation, we get a graph
with node weights (supplies/demands) and infinite ca-
pacity arcs. The feasibility necessary and sufficient con-
dition is that for any (closed) subset of nodes, D, the
net supply in D does not exceed the capacity of the cut
separating the set D from the rest of the graph:

b(D) Ú C(D, D̄).

That cut is of value 0 for a closed-set D (and infinite
otherwise). So the problem is to demonstrate that the
value of the maximum closed set is 0, a value that is
achieved for the empty set and for the set of all nodes.

For a glimpse at the range of applications unique to
closure graphs, we provide the following (partial) list:

1. Optimal policies for setting repair kits and spare ma-
chines [50].

2. Scheduling of fabrication and assembly operations
under due dates in a job shop [16].

3. Optimal weapon allocation against layered defenses
[52].

4. Tournament team elimination [58, 38].
5. Storing large database records in two storage levels

[15].
6. Maximum-density subgraph, which is a subgraph of

a maximum ratio of edges to nodes [22].
7. The strength of a network, defined as the minimum

ratio of a cut capacity to the number of connected
components it creates (which is the total number of
components minus 1) [10].

8. Bipartite matching, independent set on bipartite
graphs, and vertex cover on bipartite graphs [48].

9. Optimization of nonlinear polynomial functions over
box constraints, when the polynomials have the “bi-
partition property” [31] or when they are “unate”
functions [29].

10. Solving monotone integer programs with two vari-
ables per inequality [36].

11. 2-approximations for problems with two variables per
inequality [37, 33].

For additional discussion of minimum-cut applica-
tions, the reader is referred to a classic paper by Picard
and Queyranne [55].

2.5. Bipartite Implementation

Any closure graph has a corresponding bipartite graph
on which the solution to the maximum-closure prob-
lem is identical to the solution on the original closure
graph. Indeed, the maximum closure problem can be
equivalently stated with a set of arcs going only be-
tween V+ and V−. Specifically, it suffices to solve the
maximum-closure problem in the bipartite graph BG =
(V+ ∪ V−, A+/−), where

A+/− = {(i, j)|i ∈ V+, j ∈ V−,

and there is a directed path from i to j in (V, A)}.
The equivalence of the general graph version of the

problem and the bipartite closure is proved next:

Lemma 1. The optimal solution to a maximum-closure
problem in G has the same value as that of the optimal
maximum-closure solution on the corresponding bipartite
graph BG.

Proof. Consider an optimal closed-set D in the graph
G. Let D+ be the set of nodes in D with positive weight,
D+ = D∩V+. D+∪N(D+) is a closed set in the bipartite
graph BG. We claim that b(D+ ∪ N(D+)) = b(D). First,
D+ ∪ N(D+) ⊆ D since N(D+) is clearly in the closure
of D+. If the containment is strict, then there exists a
node v ∈ D \ {D+∪N(D+)}. Obviously, v /∈ V+, else D
could not be optimal, so the weight of v is either negative
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or 0. If b(v) < 0, then it cannot belong to a maximum
closed set in G, since it is not a successor of any node
of positive weight in D and thus can be removed along
with its predecessors, leaving a set that is closed and
of strictly larger weight in G. Therefore, b(v) = 0 and
b(D) = b(D+ ∪N(D+)).

Now, let D1∪D2 be an optimal closed set in BG with
D1 ⊆ V+ and D2 ⊆ V−. Then, because the set is closed,
D2 ⊆ N(D1), and due to the optimality, D2 = N(D1). If
there are positive weight nodes in the closure of D1 in
G that are not included in D1, then these could be added
while strictly increasing the weight of D1 ∪ D2 in BG,
contradicting the optimality of this set. Thus, D1∪D2 is
also a closed set in G.

Note that the optimal closed sets in G and BG may
differ if there are zero-weight nodes. To recover those,
we find the closure of the maximum closed set in BG in
the graph G.

The advantage of the bipartite representation of the
closure problem is that problems on bipartite graphs may
be solved more efficiently than are problems of the same
size on general graphs, (e.g., [28]). On the negative side,
the bipartite graph contains more arcs than does the cor-
responding general graph, as there is an arc between a
node and all its negative-weight successors, even if not
immediate successors. This trade-off appears to tip in fa-
vor of the nonbipartite formulation in the empirical study
of the LG algorithm and several push-relabel algorithm
implementations [34].

3. LITERATURE REVIEW

We assume that the readers are familiar with the vast
literature on maximum-flow algorithms. The review here
focuses only on the literature directly related to the LG
algorithm and the open-pit mining problem. Even with
this limited focus, the body of literature is extensive. We
provided an expanded review of the literature in [34].

A number of algorithms have been developed over
the years to solve the open-pit mining problem. These
include the algorithms by Lerchs and Grossmann [49],
Johnson and Sharp [41], Robinson and Prenn [57],
Koborov [46], Koenigsberg [47], Dowd and Onur [13],
Zhao and Kim [65], and Huttagosol and Cameron [39].
Among these, only the LG algorithm and the network
simplex solve the problem optimally. The other algo-
rithms are either variants of the LG algorithm or heuris-
tic algorithms that do not guarantee an optimal solu-
tion. With Picard’s proof that maximum-closure prob-
lems are reducible to the minimum-cut problem (Sec-
tion 2.2), it is possible to apply any of the known effi-
cient maximum-flow algorithms. Still, in the mining lit-
erature, there were relatively few studies of optimizing
algorithms other than the LG algorithm until recently.

Until the early 1980s, heuristic algorithms were
widely used in the mining industry because they exe-

cute faster and are conceptually simpler than are opti-
mizing algorithms (which deliver an optimal solution).
With advances in computer technology, optimizing algo-
rithms became commonplace. Whittle Programming Pty.
Ltd.’s commercial open-pit optimization package Lerchs
and Grossman 3-D, which uses the LG algorithm, has
become the most popular package in the mining indus-
try, with a 4-D version to support sensitivity analysis.
Other commercial packages include MULTIPIT, which
uses Francois-Bongarcon and Guibal’s algorithm [18],
and PITOPTIM, which uses a maximum-flow algorithm
[21].

As Whittle pointed out in [64], the difference in value
between an open-pit design based on an optimal pit and
one based on a pit obtained from a heuristic algorithm
can be several percent, representing millions of dollars
for a typical mine. An actual example given in [64]
showed that the difference was 5%. The heuristics that
were used for the example were not specified.

3.1. Heuristic Algorithms

Most heuristic algorithms consider cones—formed by
a “base” block and all its successor blocks above it. The
moving cone method (described, e.g., in [53]) is to search
for cones in which the total weight of all the blocks
in the cone is positive. These cones are added to the
already generated pit. The algorithm terminates when no
more cones can be added. It is easy to devise an example
where no such cone exists while there still is an optimal
solution of arbitrarily high value, thus proving that such
an algorithm is not optimal.

Robinson and Prenn’s algorithm [57] checks, in turn,
each cone that has an ore block at its base. If the to-
tal weight of all the nodes in the cone is positive, then
the nodes are removed from the graph. All the removed
nodes together form the final pit. As noted above, such an
algorithm may deliver a nonoptimal solution. Koborov’s
algorithm [46] is a variant of this idea. Dowd and Onur
[13] developed a modified version of Koborov’s algo-
rithm that is claimed to find an optimal pit. Their com-
putational experiments show that it is faster than is their
implementation of the LG algorithm.

Other heuristic algorithms include the dynamic pro-
gramming methods of Johnson and Sharp [41] and
Koenigsberg [47]. Several additional heuristic algorithms
were discussed by Kim [43] and Koenigsberg [47].

3.2. Optimizing Algorithms

One variant of the LG algorithm was developed by
Zhao and Kim [65]. As in the LG algorithm, the blocks
in the model are partitioned into subsets. The main dif-
ference between the two algorithms is in the way that the
blocks are regrouped after it has been discovered that a
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block in a profitable set lies beneath a block in a unprof-
itable set. The complexity of Zhao and Kim’s algorithm
has never been analyzed, and there is no indication that
this algorithm’s method of regrouping the blocks is more
efficient than is LG’s algorithm. No direct computational
comparison between the two algorithms is provided in
the paper.

Vallet [62] proposed an interesting variant of the LG
algorithm. Rather than partitioning the nodes into strong
and weak (which are sets of nodes of total positive
weight and negative weight, respectively—see Section
4 for definitions), Vallet classifies the sets based on the
ratio B/V, where B is the total weight, and V, the volume
of the set. He referred to this ratio as the strength. If a
block in a set with higher strength lies beneath a block
in a set with lower strength, then the two sets are merged
and possibly regrouped.

Other researchers made use of maximum-flow algo-
rithms to solve the open-pit mining problem. Giannini
et al. [21] developed the software package PITOPTIM
which uses Dinic’s maximum-flow algorithm for com-
puting the optimal pit contour. Computation times for
their implementation are given in [21], but there are no
comparisons with other algorithms.

Huttagosol and Cameron [39] formulated the open-
pit mining problem as a transportation problem. This
is effectively the bipartite reduction described earlier in
Section 2.5. Huttagosol and Cameron proposed using the
network simplex method for solving the problem. Their
computational experiments showed that the network sim-
plex is slower than is the LG algorithm. This is the only
reported computational comparison of LG to the network
simplex that we know of.

3.3. Parametric Analysis

Parametric analysis is often called for in the process
of planning in the mining industry. Typical parameters
include the unit sale price of the processed ore or the
unit cost per processing capacity. To perform paramet-
ric analysis, the common approach is to run the LG al-
gorithm for a monotone sequence of parameter values,
while contracting the maximum closed set found up to
that point and restarting the algorithm on the contracted
graph. (The correctness of such a procedure follows from
the monotonicity of the closed set, as discussed in more
detail in Section 7.) We studied in [34] the performance
of such an algorithm as compared to a parametric analy-
sis implementation which maintains the certificate of op-
timality computed for one parameter value as a starting
point for the computation for the next parameter value.
The result of this experimentation, reported in [34], is
that avoiding the restart leads to considerably better run-

ning time. This and additional literature on parametric
analysis in open-pit mining were reported in [34].

The concept of parameterization is frequently used
by the mining industry. This concept, although not im-
mediately formulated as standard parametric analysis, is
shown in Section 7.2.3. to be derived as a by-product of
such an analysis.

Let B1 denote the total benefit of all the blocks in
pit P1, V1 denote the volume of pit P1, and Bi and Vi

denote the total benefit and volume, respectively, of pit
(Pi \ Pi−1), i = 2, . . . , q. In other words, pit P1 has the
highest benefit-to-volume ratio, while Pq has the lowest
benefit-to-volume ratio.

Definition. The computation of a series of nested pits
P1, P2, . . . , Pq such that B1/V1 > B2/V2 > · · · > Bq/Vq,
is called parameterization.

The rationale for parameterization is that mining the
most valuable ore rock as early as possible would max-
imize the net present value (NPV). Therefore, the out-
come of the parameterization is used to generate a min-
ing schedule.

Additional literature on open-pit mining algorithms,
on preprocessing techniques, and on experimental studies
was reviewed in [34].

4. THE LG ALGORITHM

4.1. The Extended Network and Additional
Definitions

Let G = (V, A) be a node-weighted graph, and let Gst

be the related closure graph (defined in Section 2.2).
Given a rooted tree, T, Tv is the subtree suspended

from node v that contains all the descendants of v in
T. T[v,p(v)] = Tv is the subtree suspended from the edge
[v, p(v)] (we use the wording edge to emphasize that the
direction of the arc is immaterial to the discussion). An
immediate descendant of a node v, a child of v, is denoted
by ch(v), and the unique immediate ancestor of a node
v, the parent of v, is denoted by p(v).

A node is said to be at level ` in a rooted tree if it is
at a distance of ` edges (arcs) from the root.

We define a graph called the extended network, Gext.
The extended network is the graph G appended by a root
node r and with arcs going from r to all nodes of V,
Gext = (V∪ {r}, Aext). Note that a tree in the extended
graph is a forest in G = (V, A).

Given a spanning tree in the extended graph rooted
at r, a child v of r in r defines a subtree, Tv, in G to
which we refer as a branch. That child of r, v, is the
root of that respective branch. See Figure 2 for such a
tree, where r1, r2, r3 are roots of branches.

Let e = [p, q] be an edge (the arc (p, q) or (q, p)) in a
tree such that p = p(q) is the parent of q. The edge e is
said to define Tq, the subtree rooted at q, and to support

NETWORKS–2001 177



FIG. 2. A normalized tree with three branches. Each ri is a root of a
branch.

its mass, which is the sum of weights of nodes in Tq,
b(Tq), also denoted by Mq.

Let Me denote the mass of an edge e, and with some
ambiguity, we also denote the mass supported by a node
k by Mk. Note that the mass supported by a node is not
the same as its weight (or benefit). The mass supported
by a node depends on the particular tree structure, as it
is the sum of weights of all nodes in the subtree rooted
at the node.

4.2. Overview

As will be shown, the LG algorithm is a dual algo-
rithm for the maximum-closure problem that works with
a superoptimal solution to obtain feasibility. Its relation-
ship to maximum flow is thus rather roundabout—it is a
dual algorithm for the maximum-closure problem, which
is itself a complement of the minimum-cut problem (its
objective value plus the cut capacity add up to a constant,
M+). The minimum-cut problem is, in turn, the dual of
the maximum-flow problem.

One interpretation of the LG algorithm is that it iden-
tifies in the closure graph a spanning forest with two
types of trees: One type is the strong trees which are
trees with a set of nodes spanned, D, such that the sum
of positive weights (which are also the capacity of the cut
C({s}, D)) is greater than the sum of the absolute values
of the negative weights, C({s}, D) > C(D, {t}) or have
total node weight that is positive. The other trees in the
forest are called weak. The strong trees form a candidate
set for the source set of the cut. That set is not necessar-
ily closed, but its total weight can only exceed the value
of the maximum closure—a superoptimal solution. (See
Lemma 2 for a proof of the superoptimality property.)

4.3. Normalized Trees

At each iteration, the LG algorithm creates a spanning
tree rooted at r in the extended graph, called a normal-

ized tree, with the property that a maximum closed set
in the tree is easily identifiable.

An arc of a spanning tree rooted at r in the extended
graph either points toward the root (upward) or points
away from the root (downward). To distinguish the ori-
entation of the arcs with respect to the root in a par-
ticular tree, [49] used the notation of a p-edge and an
m-edge, where p and m stand for plus and minus. We
choose the more intuitive terminology of downward and
upward with respect to the root position at the top of the
tree, as in Figure 2.

Definition. A downward arc is strong if it supports a
mass that is strictly positive. An upward arc is strong if
it supports a mass that is zero or negative. Arcs that are
not strong are said to be weak.

Definition. A branch is strong if the arc that links it to
r is strong; otherwise, it is weak. The nodes of a strong
(weak) branch are strong (weak) nodes.

Since all arcs adjacent to the root point away from
the root, such arcs are downward arcs. They are strong if
the corresponding mass—or total weight—of the branch
supported by that arc is positive and weak otherwise.

Definition. A spanning tree rooted in r in the extended
graph is normalized if the only strong arcs it contains
are adjacent to the root r.

A normalized tree always exists. For instance, a stan-
dard normalized tree for a graph Gext with set of weights
b is T = T0(G, b) = (V∪{r}, A(T)) for A(T) = {(r, j)|j ∈
V}, M(r,j) = bj. This normalized tree has no arcs that are
not adjacent to the root and is thus obviously strong.

Let a normalized tree be T = (V∪ {r}, A(T)), and let
AT = A ∩ A(T) denote the arcs of the tree in G that
exclude the root adjacent arcs.

With a slight abuse of terminology, we also refer to
the forest (V, AT) in G as a normalized tree.

To prove the validity of the algorithm, LG showed that
the set of strong nodes of a normalized tree is its max-
imum closed set. This proof, however, is not necessary
here for proving the correctness of the algorithm since
we establish the existence of a feasible flow associated
with each iteration of the LG algorithm (see Section 5).
That flow value is equal to the value of the cut defined by
the closed set at the termination of the algorithm, thus
proving that it is a minimum cut. The lemma is nev-
ertheless useful in enhancing the understanding of the
properties of normalized trees.

Let S be the set of all strong nodes.

Lemma 2. Given a normalized tree, (V, AT),
(i) The union of the strong branches S is a maximum
closed set in (V, AT),
(ii) The weight of the strong nodes can be only greater
than the maximum-closure value in G = (V, A).
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Proof.
(i) Every single branch, and, in particular, the union of
strong branches, is obviously a closed set in (V, AT) as
the tree contains no arcs of A between the branches.

We now show that any proper subset of a strong
branch must be included in a maximum closed set and
that any subset of a weak branch cannot increase the
weight of a closed set in (V, AT).

We first prove that eliminating any proper subset of a
strong branch from S can only reduce the weight of the
closure. A proper subset of a branch may either contain
the root of the branch or contain all descendants of a
node in the branch, or it may be obtained by removing
from the branch a sequence of subsets, each a subtree
rooted at some node of the branch, and at most one con-
taining the root of the branch. It is therefore sufficient to
show that removing a proper subset containing the root
or a proper subset containing all descendants of a cer-
tain node will only reduce the weight value of the strong
nodes.

Let a strong branch B be partitioned into B1 and B2

with the root of the branch contained in B1, and B2 is
a subtree rooted in an arc a connecting B1 to B2. The
mass of B is equal to the sum of the masses of B1 and
B2, b(B) = b(B1) + b(B2).

Consider the four cases when B1 is removed or B2

is removed and for each one of these cases when a is
directed downward or directed upward. Figure 3 depicts
this schematic partition.

Suppose that a is directed downward: Arc a then must
support nonpositive mass (else it is strong). We cannot
remove B2 although its mass is nonpositive, since that
will violate the closure of B1. Removing B1 can only
reduce the total weight of the set since B has positive
mass and B2 has negative mass.

Suppose that a is directed upward: Then, a must sup-
port a positive mass. Removing B1 will violate the clo-
sure of B2 and removing B2 will strictly decrease the
weight of the branch by the mass of a.

Similarly, it is argued that no subset of a weak branch
would contribute to the weight of the closure and can
only decrease it. A weak subset of nodes can have a 0
contribution to the total weight of the closure. Thus, the
set of strong nodes S is a minimal source set among all
minimum-cuts.
(ii) The weight of a maximum closed set in a graph can
only go up as arcs are being removed from the graph.
That is so since the removal of arcs relaxes some of the
precedence constraints. Therefore, a maximum closed set
in (V, AT) can be only of greater value than the maximum
closure in (V, A), as AT ⊆ A.

Corollary 1. Any proper subset of the strong nodes is
not a maximum closure in (V, AT).

As a result, at optimum, the set of strong nodes is a
minimal maximum-closure set.

FIG. 3. Branch partition.

4.4. The Description of the LG Algorithm

Each iteration of the algorithm consists of identifying
an infeasibility in the form of an arc from a strong node
s to a weak node w. (Note that the algorithm works in
a graph without source and sink, thus, we can use the
notation of s for a strong node without risk of ambiguity.)
When such an arc is found, the strong and weak branches
containing s and w, S and W, are merged. The tree is
normalized by “splitting” or “renormalizing” arcs that
have become strong as a result of the merger.

An iteration involves the operations:
Merger—Adding an arc (s, w) from a strong branch S to
a weak branch W and removing the arc from the root
of the branch S to the root r. Consequently, the strong
branch becomes suspended from the strong node s and
the masses supported by arcs along the path from the root
of the strong branch to the merger node s are exactly the
masses of the complement set of nodes to the ones pre-
viously supported. The status of the two branches before
and after a merger is depicted in Figure 4.
Mass updates—Only masses of arcs along the merger
path are modified. Arcs along the section of the path
within S now support the complement mass within S—
that is, the mass of the set of nodes in S complementing
the set supported prior to the merger; the merger arc
now supports the total weight of the strong branch, and
within the weak branch, each arc along the path from
the weak node w to the root of W supports, in addition
to the previous mass, also the mass of the nodes of the
strong branch.
Renormalization—With the update of the masses, some
arcs become strong. Such arcs are removed and their sub-
trees are reattached to r as separate strong branches. A
fact that will be shown in Lemma 3 is that only down-
ward arcs can become strong. We will use this property
in the algorithm’s statement.

We let the generic merger arc be (s, w), where s is a
strong node. The input to the algorithm is a graph and
an initial (normalized) tree.
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Procedure LG [G = (V, A), bj ∀j ∈ V, T]
V

(T)
S = {v ∈ V|v is strong in T}.

While (V(T)
S , V \ V

(T)
S ) /=∅, do

select (s, w) ∈ (V(T)
S , V \ V

(T)
S ).

Let rs be the root of the branch containing s
and rw be the root of the branch containing w.
{Merger} T ← T \ (r, rs)∪ (s, w).
{Mass update and renormalization}
Let e = [a, b], b = p(a), be the next arc
encountered on the path [rs, . . . , s, w, . . . , rw].
(i) If e is on the path [rs, . . . , s], Do
If e is a downward arc and Mrs −Me > 0,
call Renormalize edge (T, bj ∀j ∈ V,[a, b]).
Set M(r,a) = Mrs −Me. Set Mrs ←Me.
Else, Me ←Mrs −Me.
(ii) If e = (s, w), M(s,w) ←Mrs .
(iii) If e is on the path [w, . . . , rw], Do
If e is downward arc and Mrs + Me > 0,
call Renormalize edge (T, bj ∀j ∈ V,[a, b]).
Set M(r,a) = Mrs + Me. Set Mrs ← −Me.
Else, Me ←Mrs −Me.

end
Return “V

(T)
S is a maximum closed set.”

Procedure Renormalize edge (T, bj ∀j ∈ V, [a, b])
Replace [a, b] by (r, a): T ← T \ [a, b]∪ (r, a).
{a and the subtree rooted at a form a separate branch.}
Return T.
end

An example illustrating the procedure LG is given in
Figure 5 of the next section.

Prior to proceeding with the complexity analysis of
the algorithm, we repeat here Property 3 from [49] which
states that when considering removal of strong arcs from
the merged tree upward arcs never need to be considered.
As it turns out, this property is of interest, but has no
effect on the complexity analysis of the algorithm.

Lemma 3. After a merger, an upward arc is never strong.
Proof. Note that throughout the algorithm the value

of Mrs remains nonnegative.
Consider first an upward arc e on the section of the

path [rs, . . . , s]. Then, prior to the merger, e was a down-
ward arc with mass Me Ú 0. After the merger, the mass
of e is Mrs −Me = Mrs + |Me| > 0, and, thus, e is a
weak arc.

Consider now an upward arc e on the section of the
path [w, . . . , rw]. Prior to the merger, it was a weak arc
with mass Me > 0. After the merger, the mass of e is
Mrs + Me > 0, and, therefore, it is a weak arc.

As a result of the merger, either some nonempty set of
strong nodes becomes weak or a nonempty set of weak
nodes becomes strong, but not both:

Lemma 4. After a merger of a strong branch S with a
weak branch W, exactly one of the following two possi-
bilities must occur: Either
(i) Some strong nodes become weak or
(ii) Some weak nodes become strong,
but not both.

Proof. Consider the position of the last strong arc
encountered. If it is on the strong section of the path
[rs, . . . , s], then node s, Ts, and possibly some other
strong nodes become weak. If the last strong arc is on
the weak section of the path [rw, . . . , w], then some weak
nodes become strong, including w and Tw.

Note that to incur no change, the arc (s, w) must be
strong. But that arc supports the capacity of S which
is positive and is directed toward the root; hence, it is
a weak upward arc. (Or using the previous lemma, it
cannot be strong as an upward arc.)

The complexity of the algorithm now follows: It is
of interest to note that this proof was given in [49] as a
proof of the “’finiteness” of the algorithm.

Theorem 1. Given a node-weighted graph G = (V, A),
with bi the weight of node i ∈ V. The number of iterations
of the LG algorithm is bounded by O(|V|∑i∈V+ bi), and
the complexity per iteration is O(m).

Proof. We show that when some strong nodes become
weak the total weight of the strong nodes strictly de-
creases, and when some weak nodes become strong, then
the weight of the strong nodes does not increase but the
number of weak nodes strictly decreases. This implies
that between two consecutive decreases of the weight
of strong nodes there can be, at most, n iterations with-
out a decrease. As a result, the number of iterations is
bounded by the total weight of positive weight nodes
times n = |V|.

Consider a partition of the strong branch S into two
components: the subtree Ts rooted at s and the remainder,
Trs = S\Ts. Similarly, consider a partition of W into Tw

and Trw = W \ Tw as in Figure 4.
(i) Strong nodes become weak: In this case, all of Ts and
some of Trs must become weak. Let edge [a, b] be the
last on the path [rs, . . . , s] to become strong (downward
arc) after the merger. (If no arc has become strong, then
Tb =∅.) Now, b(S) = b(Tb)+b(S \ Tb). Since [a, b] was
a weak upward arc prior to the merger, it supported the
positive mass b(S \ Tb). Hence, the mass of strong nodes
went strictly down from b(S) to b(Tb).
(ii) Weak nodes become strong: A downward arc e on
[w, . . . , rw] must become strong due to the merger. Let
M̄e be the (nonpositive) mass e supported prior to the
merger and Me afterward. Then, Me = M̄e + MS′ > 0,
where S′ is a portion of the strong branch that is in the
created strong branch with the weak nodes supported by
e. Hence, Me ÚMS′ and the total weight of strong nodes
after the merger has not increased. It is possible, how-
ever, that the weight has not changed. In that case, note
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FIG. 4. Before and after merger.

that at least one node— and, in fact, the entire subtree
Tw rooted at w—switched status from weak to strong.
Hence, there is a strict decrease in the number of weak
nodes as required.

The work per iteration consists of finding an arc from
a strong node to a weak one and then updating the status
of arcs on the path and the status of the nodes in the
branch. Finding an arc can be done using, say, breadth-
first-search, in O(m). Inverting the strong branch S re-
quires only the reversal of the parent–child relationship
along the strong section of the merger path, which takes
O(1) operations per arc. Performing mass updates while
scanning the merger path for arcs to be renormalized (or
split) is accomplished in total time of O(n) (one arith-
metic operation of subtraction or addition per each arc
on the merger path). Another operation is to maintain the
status label of nodes as weak or strong. If implemented
in a straightforward manner, this operation requires rela-
beling all nodes that change their status. The work here
would be O(n) per iteration. The total work per iteration
is thus O(m).

Remark. The choice of the arc (s, w) in the select

step of the algorithm is arbitrary. Variations of the algo-
rithm could be based on restricting the choice to some
nodes, in particular branches or in some particular or-
der. Two such variations were proposed by [65] and [62].
Our strongly polynomial variant, described in Section
6.4, is based on one specific selection mechanism.

Remark. Corollary 2 implies that the set of strong
nodes V

(T)
S is minimal in the sense that omitting any

subset of strong nodes can only strictly reduce the total
weight or violate closure feasibility.

4.5. Normalizing a Given Tree

For the initial normalized tree in procedure LG, we
used the “trivial” tree with each branch consisting of a
single node. However, any guess of a subset of nodes for
a maximum closure can be easily converted into a nor-

malized tree. A collection of disjoint cones, or a good
feasible solution (or pit contour), for instance, can be
normalized. In fact, any tree in Gext can be normalized
using the procedure Normalize. The procedure takes as
input a spanning tree T in Gext and outputs T as nor-
malized. At any iteration, T′ is a subtree of T (pruned
and sharing the same root with T) that has not yet been
normalized. The procedure works in linear time O(n).

procedure Normalize (T)
begin Mv = 0 ∀v ∈ T. T′ = T.
While there exists a leaf node which is not a child of r

Do
Select a leaf node in T′ which is not a child of r.
{Compute Mv:} Mv ←Mv + bv.
{Update Mp(v):}

For Mv > 0: If (v, p(v)) is an upward arc,
Mp(v) ←Mp(v) + Mv.
Else, Renormalize edge (T, bj ∀j ∈ V,[v, p(v)]).
For Mv Ú 0: If (p(v), v) is a downward arc,
Mp(v) ←Mp(v) + Mv.
Else, Renormalize edge (T, bj ∀j ∈ V,[v, p(v)]).

{Remove [v, p(v)]:} T′ ← T′ \ [v, p(v)].
end.

To see that at termination the tree T is normalized,
observe that at each iteration T \ T′ induces a collection
of branches (trees) that is normalized. This is established
by using induction on the size of T \ T′ and noting that
any arc that is strong is renormalized (and thus removed).

5. FLOW ASSIGNMENT: GENERATING
A FEASIBLE FLOW ASSOCIATED WITH
A NORMALIZED TREE

Given a maximum-closure problem on a graph G =
(V, A), we describe here a procedure that takes a normal-
ized tree T = (V, AT) as input and outputs a feasible flow
in the related graph Gst. The only arcs that get nonzero
flow assigned are the arcs of AT and the arcs adjacent to
the source and sink. The assigned flow has the property
that it is maximum among flows restricted to the arcs
of the normalized tree and source, sink adjacent arcs, as
will be proved in Corollary 4.

Although all arcs of AT have infinite capacity, we shall
say in this section that an arc is saturated if the flow
on the arc is equal to the absolute value of the mass
that it supports in the normalized tree T. We call the
absolute value of the mass supported by an arc the mass-
capacity of the arc. This definition is different from the
standard interpretation of saturation that occurs when a
flow on an arc meets the capacity upper bound. The flow
construction is such that all root adjacent arcs, which are
not in the graph G, are not assigned any flow.

NETWORKS–2001 181



FIG. 5. An example: the dashed line separates the strong branches on the right from the weak ones on the left.

In strong branches, the algorithm saturates all down-
ward arcs not adjacent to the root with their masses
(or rather the absolute value of the masses, since down-
ward arcs support nonpositive mass). All negative weight
nodes have their entire weight sent as flow to the sink. In
weak branches, the algorithm saturates all upward arcs
with their masses and all arcs from the source to the
positive-weight nodes. The flow has the property that
every arc in AT is assigned flow not exceeding the (ab-
solute value of the) mass it supports.

The idea is to show that this initial setting of flows
can be completed to a feasible flow that satisfies flow-
balance constraints, that is, let f(i, j) be the flow value

assigned to arc (i, j), where f(s, v) Ú bv for v ∈ V+ and
f(v, t) Ú −bv for v ∈ V−; then, for each node v ∈ V+,

inflow(v) =
∑

(i,v)∈AT

f(i, v) + f(s, v)

=
∑

(v,i)∈AT

f(v, i) = outflow(v),

and for each node v ∈ V−,

inflow(v) =
∑

(i,v)∈AT

f(i, v)

=
∑

(v,i)∈AT

f(v, i) + f(v, t) = outflow(v).
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FIG. 6. Flow assignment: (a,b) in strong branches; (c,d) in weak
branches.

The proof of the following theorem is constructive
and demonstrates how to construct a feasible flow cor-
responding to a normalized tree in O(n) steps:

Theorem 2. Every normalized tree has a feasible flow
associated with it in the related graph Gst. That flow
uses only arcs of AT in addition to source and sink ad-
jacent arcs and saturates the source-adjacent arcs in
weak branches and the sink-adjacent arcs in the strong
branches.

Proof. All root adjacent arcs get a flow of value zero
preassigned. The assignment of flows for the other arcs
is such that no flow exceeds the (absolute value of the)
mass capacity of the arc. The constructive procedure is
described first for arcs in strong branches and next for
arcs in weak branches.

Strong branch: First, all downward arcs are mass-
saturated. Next, flows are assigned recursively to upward
arcs one level at a time, starting from arcs adjacent to
level 1 nodes. Assume that all flows at levels 1, . . . , `−1
have been assigned.

Consider a node v at level ` that has an upward arc
connecting it to its parent [Fig. 6 (a)]. That arc supports
a positive mass M and a flow of M̄ assigned to it, where
0 Ú M̄ Ú M. A node at level 1— adjacent to r—falls
in this category with M̄ = 0 assigned to the arc from
its parent r (although it is not technically an upward arc,
the same discussion applies). Let Mout be the sum of
masses of downward arcs from v to its children. Since
these are negative, the amount of flow that was assigned
already to all these arcs is −Mout.

Let Min be the sum of masses of upward arcs from the
children of v to v. These arcs have not yet been assigned
flows. Because of the way masses are calculated,

Min − |Mout|+ bv = M > 0.

Hence, the dynamic value of the imbalance satisfies
outflow(v)− inflow(v) = M̄+ |Mout| ÚMin +bv. There-
fore, Min + bv has sufficient mass capacity to balance

the gap between outflow and inflow: Specifically, if bv

is negative, then f(v, t) = −bv. It is then possible to
assign flows to the incoming arcs in an arbitrary fash-
ion up to their mass capacity until outflow(v) equals in-
flow(v) (possibly saturating one arc’s mass prior to as-
signing positive flow to the next). If bv is positive, then
assign in an arbitrary fashion flows to the incoming arcs
(up to their mass capacity) and up to bv units of flow to
the arc (s, v). There is sufficient capacity in these arcs to
balance the flow.

Consider now a node v that has a downward arc lead-
ing to it from its parent. The mass of that arc is M < 0
and the flow is −M [Fig. 6 (b)]. Now, the dynamic im-
balance between inflow and outflow is

outflow(v)− inflow(v) = |Mout|+ M = Min + bv.

If bv > 0, then f(s, v) = bv. If bv < 0, then
f(v, t) = −bv. In either case, all remaining incoming arcs
are saturated with their masses in order to balance the
flow.

Weak branch: Here, all upward arcs are set saturated
with their (positive) mass. Consider a node v at level `
after all the arcs adjacent to its ancestors were assigned
flows. Consider, first, such a node with a downward arc
of mass M (nonpositive) connecting it to its parent and a
flow of M̄ Ú |M| assigned to that arc [Fig. 6 (c)]. Then,

Min − |Mout|+ bv = −|M|.
With this partial assignment, the node has the dynamic

imbalance of

inflow(v)− outflow(v) = Min + M̄ ÚMin + |M|
= |Mout| − bv.

Hence, |Mout| has sufficient mass capacity to balance
the gap between inflow and outflow: If bv > 0, then
f(s, v) = bv and the rest is balanced with the outgoing
arcs to level ` + 1. If bv < 0, then f(v, t) is set Ú −bv

and the balance of the flow is distributed arbitrarily (say,
saturating one arc at a time for its absolute mass capacity
and leaving the last assigned arc possibly unsaturated)
among the outgoing arcs. The case of a level 1 node
applies here with M̄ = 0.

Consider now a node v with an upward arc of positive
mass M connecting it to its parent [Fig. 6 (d)]. Then,

Min − |Mout|+ bv = M.

The imbalance at v is Min − M = |Mout| − bv. If
bv > 0, then f(s, v) = bv and we saturate all outgoing
arcs to their mass capacity. If bv < 0, then f(v, t) is
set Ú −bv and the balance of the flow is distributed
arbitrarily among the outgoing arcs.

As for the complexity, note that each arc in the tree
is considered once without backtracking. There are only
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O(n) arcs in the tree; hence, the complexity of the flow
assignment is O(n).

Corollary 2. The feasible flow constructed is a maximum
flow in the related graph Gst.

Proof. A strong branch S has the property that
C({s}, S) > C(S, {t}) as its total mass or sum of weights is
positive. The maximum amount of flow possible through
S is, thus, C(S, {t}) = min{C({s}, S), C(S, {t}). The flow
constructed in Theorem 4 is equal to C(S, {t}) (it sat-
urates all sink-adjacent arcs in the strong branch) and,
thus, is maximum.

Similarly, for a weak branch W, C({s}, W) Ú
C(W, {t}), and the flow constructed is of value C({s}, W)
and, thus, is maximum.

Let a tree network be an s, t graph so that when s and
t are removed the remaining arcs form a forest, or an
(undirected) acyclic graph.

Corollary 3. The maximum flow on a tree network in a
closure graph can be found in linear time.

Example: Consider a strong branch of mass 3 displayed
in Figure 7. It includes nodes {a, b, c, d, e, f} of weights
{2,−3,−1, 2, 4,−1}, respectively. The sink adjacent arcs
from nodes b, c, f are saturated and so are the downward
arcs in the branch (a, c), (c, f). Flows are then assigned
to the remaining arcs adjacent to a and then to those ad-
jacent to b and to c. Finally, flows are assigned to the
arcs adjacent to the leaves d and e (f has no unassigned
arc adjacent to it). The flows on the arcs that are per-
mitted to be unsaturated are displayed next to their mass
capacity in Figure 7.

Remark. It can be shown that the set of nodes reach-
able from the source in the residual graph with respect to
the constructed feasible flow is precisely the set of strong
nodes. Therefore, at optimality, this set forms the minimal
source set of a minimum cut.

5.1. The Monotonicity of the Constructed
Feasible Flow

The changes in the feasible flow constructed mimic
the changes in the total weight of the strong nodes, but in
the opposite direction. More precisely, we establish that
the strong mass can only go down through consecutive
iterations, while the value of the corresponding feasible
flow constructed goes up by the same increment:

Lemma 5. Consider two normalized trees T1 and T2

with sets of strong nodes S1 and S2 and weak nodes
W1 and W2, respectively. Then, the corresponding con-
structed flows f1 and f2 satisfy

|f1| − |f2| = b(S2)− b(S1).

FIG. 7. The construction of feasible flow.

Proof. The value of the flow in T1 is C(S1, {t}) +
C({s}, W1). In the strong branches, this flow value is
C(S1, {t}) = C({s}, S1)−b(S1), since b(S1) = C({s}, S1)−
C(S1, {t}). The total flow is thus |f1| = C({s}, V)−b(S1).
Similarly, for the tree T2, |f2| = C({s}, V)− b(S2). The
statement of the lemma thus follows.

5.2. Relationship of LG to Push-Relabel and
Network Simplex

Since the time this paper was first written in 1996,
we were able to extend the algorithm described here to
general graphs. The algorithm that solves the maximum-
flow problem on general graphs works, instead of with
masses, with pseudoflows. A pseudoflow on a network
satisfies capacity constraints, but may violate flow bal-
ance constraints by creating deficits and excesses at
nodes. The relationship of the pseudoflow algorithm to
push-relabel and network simplex is clearer than that of
the LG algorithm. We use those insights to comment
on the major differences between LG and other known
maximum-flow algorithms.

A normalized tree is reminiscent of the basic arcs sim-
plex tree and, as such, raises the possibility that the LG
algorithm may be a simplex algorithm. Indeed, both al-
gorithms work with a tree, and an iteration amounts to
adding an arc to the tree and removing arcs from the cre-
ated cycle. On that point it is clear that the LG algorithm
cannot be a simplex algorithm: It adds a merger arc but
may remove an arbitrary number of arcs (or edge splits).
In [32], we constructed a simplex algorithm that works
with a normalized tree, but the outcome of each iteration
is different from that of LG. Moreover, we discovered in
a recent empirical study (by Anderson and Hochbaum)
that the performance of this simplex algorithm is inferior
to that of the LG algorithm in terms of running time on
several classes of graphs.

The push-relabel algorithm works with preflows—
that is, flow values that satisfy capacity constraints but
violate flow-balance constraints in creating excesses. Ex-
cess happens when inflow is greater than outflow. The
push-relabel algorithm amounts to dispatching flow from
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nodes with excess to those closer to the sink, as measured
by distance labels. In contrast, the LG algorithm works
with sets of nodes—the branches which can accumulate
either excesses or deficits. This feature of dealing with
sets of nodes, rather than with individual nodes, distin-
guishes LG from push-relabel. Here, again, the empirical
study mentioned above shows that the pseudoflow algo-
rithm, extending the LG algorithm, is substantially faster
than is the push-relabel algorithm or Dinic’s algorithm
(implemented by Cherkassky and Goldberg [7]).

6. COMPLEXITY IMPROVEMENTS

6.1. Reverse Graphs

Since the maximum-closure problem is equivalent to
the minimum-cut problem, it is possible to substitute
finding a minimum cut in the related graph by finding
a minimum cut in the reverse graph, where the roles of
source and sink are reversed and all arcs are reversed.

Using reverse graphs is advantageous when M+ =∑
i∈V+ bi >

∑
i∈V− |bi| = M−. In mining applications,

the sum of positive-weight nodes is typically larger than
that of negative-weight nodes. This occurs since the vol-
ume of soil considered is presumed to be relatively rich
in ore; else, that location would not have been considered
in the first place. We found that reversing the graph is in-
deed of considerable benefit in speeding up performance
[34].

The complexity of the LG algorithm is thus O(mn ·
min{M+, M−}).

6.2. 0-Mass Branches

Inspecting closely the proof of the complexity bound
of the LG algorithm, it is evident that the factor of
|V| = n in the number of iterations results from merg-
ers with a total weight of strong nodes that remains un-
changed. This happens in case (ii) of Theorem 4 where a
downward arc that supported 0 mass prior to the merger
supports the mass MS afterward. This happens only in
cases where a part of the weak branch contains a subtree
of 0 total weight. We shall call such a subtree a 0-mass
branch.

To ensure that the weight of strong nodes goes strictly
down at each iteration, we refine the partition of the
weak branches into negative mass branches and 0-mass
branches. We thus partition the nodes in V for a given
normalized tree T = (V, AT) into three types of sets: V

(T)
S ,

V
(T)
W , and V

(T)
0 , which are strong; weak and in branches of

negative mass; and weak and in branches of zero mass,
respectively.

The algorithm is now modified so that a merger is
either due to an arc in (V(T)

S , V
(T)
W ) or to a path that starts at

a strong node s ∈ V
(T)
S and ends at a weak node w ∈ V

(T)
W .

Such a path is of the form

[s, v1, . . . , v′1, v2, . . . , v′2, . . . , vk, . . . , v′k, w],

where (s, v1), (v′1, v2), . . . , (v′i , vi+1), . . . , (v′k, w) are all di-
rected arcs and [vi, . . . , v

′
i ] is an undirected path contained

entirely in some 0-mass branch T
(0)
i , for i = 1, . . . , k. We

call such a path a path via 0-mass.
In the statement of improved LG, we only detail the

adjusted merger process. The mass updates and renor-
malization are modified in an obvious way.

Procedure improved LG (G = (V, A), bj ∀j ∈ V, T)
V

(T)
S = {v ∈ V|v is strong in T}.

While there is a path via 0-mass
[s, v1, . . . , v′1, v2, . . . , v′2, . . . , vk, . . . , v′k, w]

from s ∈ V
(T)
S to w ∈ V

(T)
W do

For rv the root of the branch containing v:
{Merger} T ← T \ {(r, rs), (r, rv1 ), . . . , (r, rvk )}
∪{(s, v1), (v′1, v2), . . . , (v′k, w)}.
{Mass updates and renormalization}

end
Output “V

(T)
S is a maximum closed set.”

Remark. To find multiple optima, we check in the while
loop also for arcs from s ∈ V

(T)
S ∪ V

(T)
0 to w ∈ V

(T)
W

to ensure that the 0-mass branches are also closed at
termination. Then, the strong nodes along with any subset
of the 0-mass branches constitute an alternative optimal
solution. In fact, V

(T)
S ∪ V

(T)
0 is a maximal maximum-

closure set.

Complexity: The number of iterations in improved LG
is O(M+). At each iteration, the work to find a path and
to remove strong and 0-mass arcs is O(m). Hence, the
complexity of the improved algorithm is O(mM+).

With both adjustments, for reverse graphs and 0-
mass mergers, the complexity of the algorithm is
O(m min{M+, M−}). This complexity, while improved, is
still pseudopolynomial.

6.2.1. Complexity Tightness

To see that the complexity expression is attainable,
we use the 9-node example in Figure 5. In this example,
the number of iterations is precisely M+ =

∑
i∈V+ bi.

By generating a family of graphs in which this 9-node
graph repeats arbitrarily many times, we conclude that
the complexity of improved LG is met, namely, that the
mass of strong nodes decreases by one unit at each iter-
ation.

For a sharper complexity estimate, we replace the
value M+ by the gap between the initial mass of strong
nodes and their mass at termination. In the example of
Figure 5, the mass of the optimal closed set is 0, so the
gap is equal to M+ = 20. The optimal solution in this
graph is the empty set or any closed set of total value

NETWORKS–2001 185



0. Figure 5 illustrates iterations 0–4 and 17–20 where at
each iteration the mass of strong nodes decreases by 1.

6.3. A Polynomial Scaling Algorithm

To improve the complexity of the algorithm further,
we speed up the closing of the “gap” between the ini-
tial guessed value M+ and the optimal value of the
maximum-closure. One standard method of achieving
such an outcome is by using a scaling technique which
dates back to the fundamental work of Edmonds and
Karp [14]:

Procedure scaled LG (G = (V, A), bj ∀j ∈ V)
Let p = dlog2(maxj{bj})e − 1. For all j ∈ V, b̄j ←
b bj

2p c.
Let T = (V∪ {r}, A(T)) for A(T) = {(r, j)|j ∈ V}.
For all j ∈ V, M(r,j) = b̄j.

V
(T)
S = {v ∈ V|v is strong in T}.

Until p = 0, do
Set b̄j ← b bj

2p c, for all j ∈ V.
Update masses of nodes and arcs in T.
Call Renormalize tree (T, b̄j ∀j ∈ V).
Call improved LG( G = (V, A), b̄j ∀j ∈ V, T).
Return optimal normalized tree T.
p ← p− 1.

end
Output “V

(T)
S is a maximum closed set.”

Complexity: The value of the maximum closure at each
iteration multiplied by 2p can only be a lower bound
on the value of the maximum closure with the weights
bj. After the rescaling, the weights of all nodes increase
by at most 1 additional unit each. The gap between the
weight of the strong nodes and the lower bound is then
at most n.

The work per call to improved LG is thus O(mn). Let
||b|| = min{maxj∈V+ bj, maxj∈V− |bj|}. We use the re-
verse graph if the second term is the minimum. With this
feature, the complexity of scaled LG is O(mn log2 ||b||).
This complexity is polynomial but not strongly polyno-
mial.

6.4. A Strongly Polynomial Variant: The
Lowest Label Rule

Procedure LG selects at each iteration any merger arc
(s, w) from a strong to a weak node (select step). We
call such an arc an active arc. This section shows that
restricting the choice of the active arc leads to a strongly

polynomial algorithm. The choice of the arc depends on
the labeling of the nodes.

The lowest label rule was motivated by the distance
labels introduced by Goldberg [23]. Similar rules were
used by Goldfarb and Hao [25, 26].

The labeling scheme is described recursively. Initially,
all nodes are assigned the label 1, `v = 1, ∀v ∈ V. At
each iteration, an arc (s, w) is selected so that w is a
lowest label weak node among all possible active arcs in
(S, W).

Upon a merger, using the arc (s, w), the label of the
strong node s becomes the label of w plus 1 and all nodes
of the strong branch with labels smaller than that of s
are updated to be equal to the label of s. Formally, we
replace the statement “select (s, w) ∈ (V(T)

S , V \ V
(T)
S )”

by

“ select (s, w) ∈ (V(T)
S , V \ V

(T)
S ) so that `w is

minimum; `s ← `w + 1
∀v ∈ S, `v ← max{`v, `s}.”

Let level(v) be the distance of node v, in terms of
the number of arcs in the path, to the root of the tree
r. The labels satisfy the following invariant properties
throughout the execution of the algorithm:
Invariant 1: For every arc [u, v] so that (u, v) ∈ AT and
every arc (u, v) ∈ A, `u Ú `v + 1. (This means that |`u−
`v| Ú 1 for (u, v) ∈ AT.)
Invariant 2: [Monotonicity]. On any path in a branch
from the root down, labels of nodes are nondecreasing.
Invariant 3: For weak nodes, `v Ú level(v).
Invariant 4: Labels of nodes are nondecreasing over the
execution of the algorithm.

Let `u, `v be the labels prior to the relabeling at iter-
ation k + 1 and `′u, `′v be the labels after the relabeling
is complete at iteration k + 1.
Proof of Invariant 1. Assume by induction that the in-
variant holds through iteration k, and prove that it holds
through iteration k + 1 as well. Obviously, the invariant
is satisfied at the outset, when all labels are equal to 1.
Consider an arc (u, v) after the relabeling at iteration k+1
and let arc (s, w) be the merger arc in this iteration. We
sort out the different cases according to the status of the
nodes at the beginning of iteration k + 1.
u strong, v weak: At iteration k + 1, only node u could
have changed labels as weak nodes are not relabeled.
Since `v ≥ `w and w is a lowest label weak merger
node,

`′u = max{`u, `w + 1} Ú `v + 1 = `′v + 1.

u strong, v strong: Suppose that the label of u has in-
creased, then `′u = `w + 1. If the label of v has not like-
wise increased, then `v ≥ `w + 1 and `′v ≥ `′u and the
inequality is satisfied. Otherwise, the two nodes have the
same label, `′v = `′u .
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u weak, v strong: Only the label of v could have been
updated and then only upward.
u weak, v weak: Weak nodes do not get relabeled, so the
inequality that was satisfied at iteration k is still satisfied
at the end of iteration k + 1.

Note that the only arc that is out-of-tree at iteration k
and in-tree at iteration k + 1 is the arc (s, w). Because of
the update of the label of s, |`′s − `′w| Ú 1.
Proof of Invariant 2. Assume by induction that mono-
tonicity is satisfied through iteration k. The operations
that might affect monotonicity at iteration k+1 are rela-
beling and splitting of branches. As a result of relabeling,
the nodes on the section of the path [rs, . . . , s] are all la-
beled with the label `w+1, since, previously, all the labels
of these nodes were Ú `s by the inductive assumption
of monotonicity. After the merger, the roles of parents
and children are reversed along the path, but since they
all have the same label, the monotonicity still holds. It
also holds for all subtrees that are suspended from the
merger path nodes since parent/child relationships are
not modified for the subtrees and, thus, `u Ú `v implies
that `′u Ú `′v.
Proof of Invariant 3. The roots of weak branches are al-
ways labeled 1 since no weak branch is created through-
out the algorithm. From the monotonicity and Invariant
1, all weak branches satisfy that the labels of nodes are
less than or equal to their level.

Proof of Invariant 4. From Invariant 1, `s Ú `w + 1,
and, thus, the label of s can only increase. The method
of labeling all other nodes implies that their label can
only increase.

Lemma 6. Between two consecutive mergers using
merger arc (s, w), the labels of s and w must increase
by at least 1 each.

Proof. Upon the first merger using (s, w), let the initial
label of w be `w = L. After the merger’s relabeling,
`s ≥ L + 1. Before (s, w) can serve again as a merger
arc, both nodes must become strong and subsequently
have the arc between them renormalized so that w is
weak and s remains strong. This can happen if either

• w is above s in a strong branch and the merger node is
s or a descendant of s. Because of the monotonicity
of labels, after such a merger, the label of w must
satisfy `w ≥ L + 1. Or,

• (w, s) serves as a merger arc. But, then, w is relabeled
to be at least `s + 1 and `w ≥ `s + 1 ≥ L + 2.

In either case, w is relabeled so that `w ≥ L+1. Upon
repeated use of (s, w) as merger arc, `s ≥ `w +1 ≥ L+2.
Thus, the labels of s and w have increased by at least 1
each between the consecutive mergers.

Corollary 4. The number of iterations in the “lowest
label” variant is at most O(mn).

Proof. Invariant 3 implies that the weak labels are
bounded by n (or, rather, by the number of weak nodes).
But according to the labeling method (the label of a
weak node +1), no strong node can ever be labeled more
than n. By Invariant 4, labels are nondecreasing. Conse-
quently, the same arc can be used in mergers at most n
times.

Arguments identical to those used in Lemma 6
demonstrate that between two consecutive edge renor-
malizations of an arc the labels of each of its endpoints
must increase by at least 1. Thus, the number of edge
“slices” or renormalization operations is at most n times
per arc. A different argument leading to the same con-
clusion begins with the observation that the number of
strong branches can never exceed n. At each iteration, ei-
ther the number of strong branches decreases by 1 (when
all the nodes of the merged strong branch become weak)
or it increases by a nonnegative increment. Since we can
“accumulate” at most an mn deficit in the number of
strong branches, the total increase throughout the algo-
rithm in the number of strong branches is no more than
n + mn. We conclude

Corollary 5. The number of edge normalizations in the
“lowest label” variant is at most O(mn).

With O(m) work per iteration, the total complexity is
O(m2n). We present a more careful analysis demonstrat-
ing O(mn log n) complexity.

Theorem 3. The complexity of the lowest label algorithm
is O(mn log n).

Proof. As before, an arc (u, v) is active if u is strong
and v is weak. Each iteration requires one to
1. Identify an active arc of smallest label `v;
2. Merge the strong and weak branches and update the
masses of arcs along the merger paths;
3. Renormalize, by identifying recursively a positive
downward arc on the merger path;
4. Remove the tree that is supported by that arc as a new
strong branch.

We take advantage of the invariant properties of the
labels to identify easily an active arc of lowest label.
To find an active arc of weak label `, there must be a
strong node of label ` − 1, ` or ` + 1. Because of the
monotonicity, it suffices to search strong branches with
roots that have label no larger than ` + 1.

We now search for an active arc or lowest label ` by
scanning a strong branch in a depth first search manner
for arcs adjacent to strong nodes of labels no more than
` + 1.

For each strong node, either a merger arc is found or
its entire adjacency list has been scanned and the node
will no longer be visited until its label is incremented.
Since there are at most n labels, the total scanning per
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label value for all nodes has complexity of O(m) for a
total of O(mn) throughout the algorithm.

For the update of the masses and the maintenance of
the merged and inverted trees, we rely on Sleator and
Tarjan’s dynamic trees data structure [59]. In this data
structure, the operations of merger, rerooting of trees,
finding the minimum or maximum weight arc on the path
from a node to the root of the tree, and adding a constant
to the weight of arcs along such paths all have amortized
complexity of O(log n) per operation. Here, we first per-
form the mass update and later the renormalization—
that is, finding first positive mass arc on the merger path.
Once this is found, the quantity added to the remaining
arcs along the path is adjusted by a constant and the pro-
cess calls again for finding the first nonnegative mass arc
on the merger path. We now show that Sleator and Tar-
jan’s procedure of finding maximum-weight arc can be
modified to find a first nonnegative mass arc.

The concept of dynamic trees is to extend operations
that are efficiently implemented on paths to be imple-
mented on trees with the same complexity. For the dy-
namic trees data structure, a path of length k is repre-
sented as a binary tree of depth O(log k) whose nodes
in symmetric order are the vertices of the path. Let the
leftmost node be the root of the (weak) branch and the
rightmost node be the endpoint of the path. In this tree,
each node v is labeled by the maximum value of a cer-
tain quantity associated with the section of the path from
that node to the endpoint, max(v). In this context, the
quantity is the maximum value of downward arc masses
from the endpoint of the path to the node v. Or, in the
binary tree, it is the maximum value of the nodes that
are descendants of the right child of v. The procedure
FIND-FIRST identifies the first node that is adjacent to
a downward arc with mass ≥ 0 on the path from v to
the root rw:

procedure FIND-FIRST(v)
Until v = rw, do:
If max(v) < 0, then v ← parent(v)
Else u = left − child(v).

While max(u) < 0, u = left − child(u).
Otherwise, (max(u) ≥ 0), if u is a leaf
of the binary tree then output u, and stop,
else u = right − child(u).
end

end
Output “no strong edge on path.”

If the procedure outputs the value v, then (ch(v), v)
is the first downward arc on the merger path with mass
≥ 0.

The complexity of this procedure for a tree of height
h is at most 3h, since it involves going up the tree at most
once per node along a path to the root, going down to the

right at most h nodes, and going down to the left at most
h nodes. A path is of length n at most; thus, h is at most
O(log n). Thus, the overall complexity is O(mn log n).

7. PARAMETRIC AND SENSITIVITY
ANALYSIS

Currently2, sensitivity analysis in the mining indus-
try is performed by repeated applications of an algo-
rithm that computes a single optimal pit for a given set
of parameter values. For example, to see the effect of
commodity price on the optimal pit, a series of runs is
performed where the commodity price is varied.

We call the analysis for a given set of values, sensi-
tivity analysis for given parameter values. The paramet-
ric algorithms that we propose are more efficient than
are the (repeated application) methods currently in use,
which resolve the problem for each parameter value.

An alternative to sensitivity analysis for given param-
eter values is a parametric analysis generating all possi-
ble values—breakpoints—of a relevant parameter where
the contour of the pit (or the cut) is affected. This anal-
ysis provides more information than does the sensitivity
analysis, since for each given parameter value, it is only
necessary to find the interval of the breakpoints where
the parameter value falls. This type of analysis is re-
ferred to as complete parametric analysis. This type of
analysis has never been performed in the industry as it
is viewed as computationally “intractable.”3

When performing sensitivity analysis, one of the el-
ements in the block value formula is identified as the
parameter of interest, and its effect on the optimal pit
is analyzed. This parameter could be the ore commod-
ity value or the processing cost per block. Let λ denote
this parameter. The block weight can then be expressed
as bi(λ) = ci + λdi, where ci represents the terms that
are independent of λ and di represents the terms that are
dependent on λ. The open-pit graph G = (V, A), with
the weights bi(λ) associated with the nodes, is denoted
by Gλ.

It will be assumed, without loss of generality, in the
discussion hereafter that the values of di are nonnegative.

7.1. Sensitivity Analysis for Given Parameter
Values

Here, we are given a set of parameter values, arranged
in a monotone increasing order, λ1 < λ2 < · · · < λq.

Let Sλ be a minimal maximum closure in the graph
Gλ. It is well known that as λ increases so does the set
Sλ. Gallo et al. [20] proved this fact using the properties
of the push-relabel algorithm. An alternative proof uses
the properties of the LG algorithm.
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Lemma 7. For a sequence of parameter values, λ1 <
λ2 < · · · < λq, the corresponding minimal optimal clo-
sures satisfy

Sλ1 ⊆ Sλ2 ⊆ · · · ⊆ Sλq .

Proof. As λ increases from λi to λi+1, the masses of
all branches increase. As a result, the mass of the closed
set of strong branches Sλi in the normalized tree is going
up, so the set remains strong. Some weak branches may
become strong and require extra processing, by merging
with weak branches, to guarantee closure. Yet, none of
the strong nodes in Sλi change their status from strong to
weak in the process. Thus, the closed set corresponding
to the new value of the parameter, Sλi+1 , must contain
Sλi .

In the interest of brevity, we defer the detailed imple-
mentation of the LG algorithm and its polynomial scaling
variant to the Appendix. We only note that at the start
of the computation for a new parameter value the opti-
mal tree from the previous parameter value is maintained
without retracting any prior merger. In particular, for the
strongly polynomial variant of sensitivity LG, the invari-
ant properties of the labels are preserved. Some weak
branches may become strong and may require renormal-
ization, but the labels may be preserved without change
between consecutive calls and no merger needs to be re-
tracted. The running time is therefore O(mn log n).

7.2. Complete Parametric Analysis

Gallo et al. [20] devised a complete parametric analy-
sis algorithm based on the push-relabel algorithm. Their
algorithm is described for arc capacities of source and
sink adjacent arcs that are linear in the parameter λ. For
our graphs, the capacities of the arcs are monotone piece-
wise linear:
c(s, v) = max{0, cv + λdv}

and c(v, t) = −min{0, cv + λdv}.
For these particular parametric functions, a large

enough constant is added to all capacities C({s}, V) and
C(V, {t}) so that no capacity function crosses zero for
the range of interest. It is noted in [20] that the mini-
mum cuts are preserved when adding a constant to the
source and sink adjacent capacities, and, therefore, their
algorithm for linear capacities applies.

Note that the algorithm for complete parametric anal-
ysis can be applied for arbitrary monotone nondecreas-
ing source adjacent arcs’ capacities and monotone non-
increasing sink adjacent arcs’s capacities. A detailed de-
scription is provided in [32].

The parametric algorithm in an interval where all ca-
pacities are linear works by comparing the total benefit
(or mass) of a minimal maximum closed set at the left
endpoint of the interval to that of a maximal maximum
closed set at the right endpoint of the interval. If these are

two identical functions of λ, then there is no breakpoint
in between. Otherwise, there is at least one breakpoint,
and we bisect the interval at the intersection point of the
two lines, searching further for such a breakpoint.

7.2.1. A Complete Parametric Analysis Using Push-
Relabel We sketch here briefly how the algorithm of
Gallo et al. [20] can be adapted to the LG algorithm. For
a given interval where we search for breakpoints, we run
the algorithm twice: from the lower endpoint of the in-
terval where the maximal source set of the cut obtained
at that value shrunk into the source and from the highest
endpoint of the interval where the maximal sink set of
the cut is shrunk into the sink. The runs proceed for the
graph and reverse graph until the first one is done. The
newly found cut subdivides the graph into a source set
and a sink set, one of which is smaller in terms of the
number of nodes n1 Ú 1

2 n. In that smaller interval, two
new runs are initiated from both endpoints. In the larger
interval, however, we continue the previous runs using
two properties:

• Reflectivity: The complexity of the algorithm remains
the same whether running it on the graph or reverse
graph.

• Monotonicity: Running the algorithm on a monotone
sequence of parameter values has the same complex-
ity as that of a single run.

Under these assumptions, one run is “reflected” to the
opposite endpoint and thus viewed as monotone contin-
uation and the other continues as a monotone continua-
tion.

An essential ingredient in the algorithm is the avail-
ability of maximal and minimal maximum closed sets.
The LG algorithm provides a minimal maximum closed
set, and in Remark 6.2, we discuss how to derive a max-
imal one as well.

We denote a maximal maximum closed set by Smax

and a minimal maximum closed set by Smin. Let bλ(D) =∑
j∈D[cj + λdj] for D ⊆ V. We assume, henceforth, that

the LG algorithm and its variants deliver as output both
Smin and Smax. As a corollary of Lemma 7, we get the fol-
lowing result that is used to contract nodes in the graph
and reduce its size: A contraction of a set of nodes means
replacing the set by a single node that has as incoming
and outgoing arcs, all the incoming and outgoing arcs
incident with the set.

Lemma 8 Contraction Lemma. For λ ∈ (λ1, λ2), a
maximum closed set Sλ in the graph Gλ in which the
set Sλ1 is contracted with the source and S̄λ2 − Sλ1 is
contracted with the sink, is also a maximum closed set
in Gλ.

A contraction procedure was also used in [20], but
with a minor error. There, the set contracted with the sink
is S̄λ2 , which renders the contraction invalid as explained
in [35], Remark 2.
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7.2.2. A Complete Parametric Analysis for LG For a
given interval (λ1, λ2) where arc capacities are linear, we
can find all breakpoints by using the procedure paramet-
ric linear-LG. The procedure is initialized with values
of λ1, λ2 as in [20]. Here, “variant LG” stands for “im-
proved LG,” “scaled LG,” or “lowest label LG.”

Procedure parametric linear-LG (λ1, λ2, G = (V, A),
cj, dj ∀j ∈ V, Smax

λ1 , Smin
λ2 )

S1 = Smax
λ1 , S2 = Smin

λ2 .
Contract: s ← s∪ S1, t ← t∪ S̄2 − S1. If V = {s, t},
halt and output “no breakpoints.”
If the two functions bλ(S1) and bλ(S2) are not identical,
find λ∗ such that bλ∗ (S1) = bλ∗ (S2). Else, halt and output
“no breakpoints.”
Call variant LG(Gλ∗ , bj(λ∗) = cj + λ∗dj ∀j ∈ V,
T0(Gλ∗ , b(λ∗))) for the output Smin

λ∗ , Smax
λ∗

If λ∗ is a breakpoint, output λ∗. Else continue,
Call parametric linear-LG

(λ1, λ∗, G = (V, A), cj, dj ∀j ∈ V, Smax
λ1 , Smin

λ∗ )
Call parametric linear-LG

(λ∗, λ2, G = (V, A), cj, dj ∀j ∈ V, Smax
λ∗ , Smin

λ2 )
end

It remains to describe how to verify that λ∗ is a break-
point. Observe that for a breakpoint the right derivative
of the function bλ at λ∗ is strictly smaller than the left
derivative of bλ at λ∗. To verify that, pick a small ε > 0.
λ∗ is a breakpoint if

bλ∗+ε(S
max
λ∗ )− bλ∗ (Smax

λ∗ ) > bλ∗ (Smin
λ∗ )− bλ∗−ε(S

min
λ∗ ).

Alternatively, compare the two functions of λ:
bλ(Smax

λ∗ ) and bλ(Smin
λ∗ ).

As for the complexity of the procedure for LG with
improved LG implementation or the lowest label, we use
arguments similar to those used in [20]: Let m1+m2 Ú m,
n1 + n2 Ú n and n1 Ú 1

2 n. The running time T(m, n, M)
for a graph on m arcs, n nodes, and total (positive) weight
M satisfies for a constant Q the recursion

T(m, n, M) = T(m1, n1, M1) + T(m2, n2, M2)

+ 2Qm1(M1 + M2)

Hence, T(m, n, M) = QmM = O(mM).
For the lowest label implementation, T(m, n) is the

running time on a graph with m arcs and n nodes:

T(m, n) = T(m1, n1) + T(m2, n2) + 2Qm1n1 log n.

The solution is T(m, n) = O(mn log n).

7.2.3. Use of Complete Parametric Analysis in Mine
Scheduling As discussed in the literature review, the
notion of parameterization with a series of nested pits

that have increasing benefit (or metal content) per block
is used in mine scheduling. We show here that such se-
ries can be generated using complete parametric analy-
sis, when the term that is independent of the parameter
is constant for all blocks. That is, bj = c + λdj. This
structure occurs when processing costs, c, are identical
for all blocks.

This information enables one to schedule the sequence
of pits to be mined so as to maximize NPV (net present
value).

Defining S0 = ∅, the parametric analysis provides a
series of q nested pits,

S1 ⊂ S2 ⊂ · · · ⊂ Sq.

Recall the notation b(S) =
∑

j∈S bj.

Lemma 9. The nested pits generated by complete para-
metric analysis satisfy

b(S \ Si−1)
|Si \ Si−1| ≥

b(Si+1 \ Si)
|Si+1 \ Si|

for i = 1, . . . , q− 1.
Proof. Since Si is an optimum closed set for λi, the

benefit of the set Si+1 \ Si is nonpositive,
∑

j∈Si+1\Si
[c +

λidj] Ú 0. Yet, Si is a minimal maximum closed set and
it is nonempty, so

∑
j∈Si\Si−1

[c + λidj] > 0. Hence,

c + λi

∑
j∈Si+1\Si

dj

|Si+1 \ Si| Ú 0 < c + λi

∑
j∈Si\Si−1

dj

|Si \ Si−1| .

Thus,

b(Si \ Si−1)
|Si \ Si−1| =

c|Si \ Si−1|+ λ
∑

j∈Si\Si−1
dj

|Si \ Si−1|
>

c|Si+1 \ Si|+ λ
∑

j∈Si+1\Si
dj

|Si+1 \ Si| =
b(Si+1 \ Si)
|Si+1 \ Si| .

8. CONCLUSIONS

The LG algorithm investigated in this paper is of
a great deal of interest for its different perspective on
the minimum-cut problem in closure graphs. We investi-
gate here the LG algorithm and provide insights into the
maximum-flow problem from the perspective of this new
algorithm. We study the complexity of the algorithm and
proposed variants of the algorithm that have polynomial
and strongly polynomial time complexities. By-products
of this complexity study include useful guidelines for
efficient implementations.

Our study fills in the missing link between the solu-
tion delivered by the LG algorithm and the maximum-
flow problem. The work here may thus be viewed as a
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new algorithm for the maximum-flow problem on clo-
sure graphs. That new algorithm is shown to have at-
tractive features that permit efficient parametric analysis
implementation.

Since the approach of the algorithm is dramatically
different from those of other algorithms for maximum
flow, we view the introduction of the LG algorithm as
an important contribution to the set of tools available for
the maximum-flow problem. It is noted that in follow-
up work we were able to devise a new algorithm for
maximum flow on general graphs that appears to per-
form more efficiently in practice than other known algo-
rithms. Moreover, that algorithm has parametric analysis
and flexibility features that are valuable in the context of
sensitivity analysis. These permit us to solve the prob-
lem with changed capacities, even on arcs that are not
adjacent to source and sink, using a so-called “warm-
start,” which effectively makes use of the optimal solu-
tion to the previous instance solved. This capability is
not shared by any other maximum-flow algorithm and is
thus of substantial practical use.
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APPENDIX

Adapting LG to Sensitivity Analysis

The following procedure generates a series of optimal
pits or closures corresponding to the values of the given
parameter.

Procedure sensitivity LG (λ1 < λ2 < · · · < λq,
G = (V, A), cj, dj ∀j ∈ V)

T = (V∪ {r}, A′) for A′ = {(r, j)|j ∈ V}.
i = q.
Until i = 0 do

λ = λi.
Call improved LG (Gλ, cj + λdj ∀j ∈ V, T).
Output the closed set Sλi .
i ← i− 1.

end

The complexity of sensitivity LG is easy to establish.
When we start, the total weight of the positive weight
nodes is as large as possible, M+(λq) =

∑
j∈V+(λq)[cj +

λqdj]. This mass is going down with the first call to im-
proved LG. When the tree T is returned, the total mass

of strong nodes is only smaller. Substituting for these
nodes, the smaller weights for the smaller value of λ
can only reduce further the strong nodes’ mass (or total
weight). Now, some of the strong branches become weak
and the new set of strong branches is no longer closed
and LG applies several merger steps. Hence, throughout,
the mass of strong nodes is monotonically decreasing.
The complexity is thus O(mM+(λq) + qn), where the qn
factor is required for the renormalization at each call.
This is again possible to improve by using the reverse
graph and the ascending ordering of the parameter, for an
improved running time of O(m min{M+(λq), M−(λ1)} +
qn).

A Polynomial Variant of Sensitivity LG

Repeated calls to scaled LG may replace the calls
to improved LG. In that case, the complexity is
O(mnq log ||b||), where ||b|| = min{maxj∈V+ cj +
λkdj, maxj∈V− |cj + λ1dj|}.

It is possible, however, to further improve this running
time and replace q by log q by using a form of bisection,
along with contraction. Prior to calling this procedure,
we need to find the maximum closed set for the lowest
and highest values of λ in the set of parameters.

Procedure sensitivity scaled-LG (λ1 < · · · < λq,
G = (V, A), cj, dj ∀j ∈ V, Sλ1 , Sλq )

low = 1, high = q.

med = d low+high
2 e.

λ = λmed.
Contract: s ← s∪ Sλlow, t ← t∪ S̄λhigh − Sλlow.

While high− low ≥ 3 do
Call scaled LG
(Gλ, cj + λdj ∀j ∈ V).
Output the closed set Sλ.
Call sensitivity scaled-LG
(λlow < · · · < λ, G = (V, A), cj, dj

∀j ∈ V, Sλlow, Sλ) .
Call sensitivity scaled-LG
(λ < · · · < λhigh, G = (V, A), cj, dj

∀j ∈ V, Sλ, Sλhigh) .

end

With each bisection of the interval (λlow, λhigh) that
has in the graph m arcs and n nodes, the contracted
graphs corresponding to the subintervals (λmed, λhigh)
and (λlow, λmed) have m1, n1 and m2, n2 arcs and nodes,
respectively, where m1 + m2 Ú m and n1 + n2 Ú n. The
complexity of sensitivity scaled-LG for k parameter val-
ues, Tk(m, n, ||b||), thus satisfies

Tq(m, n, ||b||) = T q
2
(m1, n1, ||b||)
+ T q

2
(m2, n2, ||b||) + O(mn log ||b||).
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A solution to this recursive equation is Tq(m, n, ||b||) =
O(mn log q log ||b||+ nq).

Notice that when q exceeds n it is always more effi-
cient to run the complete parametric analysis of Section
7.2, from which one can deduce any sensitivity analysis
information for any prescribed set of parameter values.

Notes

1. The minimum s, t-cut problem is distinguished from the minimum
2-cut problem in that it seeks a partition of the nodes of the graph
into two nonempty subsets that must contain the specified nodes
s in one and t in the other. The distinction between these two
problems is further discussed in Section 2.3, Remark 2.3.

2. This statement is based on the open literature. Proprietary software
may possibly use more advanced concepts.

3. This assessment was offered by industry practitioners in private
communication with the author.
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