
ORIGINAL RESEARCH PAPER

A competitive study of the pseudoflow algorithm for the minimum
s–t cut problem in vision applications

B. Fishbain • Dorit S. Hochbaum • Stefan Mueller

Received: 14 June 2012 / Accepted: 25 March 2013 / Published online: 11 April 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Rapid advances in image acquisition and stor-

age technology underline the need for real-time algorithms

that are capable of solving large-scale image processing

and computer-vision problems. The minimum s–t cut

problem, which is a classical combinatorial optimization

problem, is a prominent building block in many vision and

imaging algorithms such as video segmentation, co-seg-

mentation, stereo vision, multi-view reconstruction, and

surface fitting to name a few. That is why finding a real-

time algorithm which optimally solves this problem is of

great importance. In this paper, we introduce to computer

vision the Hochbaum’s pseudoflow (HPF) algorithm, which

optimally solves the minimum s–t cut problem. We com-

pare the performance of HPF, in terms of execution times

and memory utilization, with three leading published

algorithms: (1) Goldberg’s and Tarjan’s Push-Relabel; (2)

Boykov’s and Kolmogorov’s augmenting paths; and (3)

Goldberg’s partial augment-relabel. While the common

practice in computer-vision is to use either BK or PRF

algorithms for solving the problem, our results demonstrate

that, in general, HPF algorithm is more efficient and uti-

lizes less memory than these three algorithms. This

strongly suggests that HPF is a great option for many real-

time computer-vision problems that require solving the

minimum s–t cut problem.

Keywords Network flow algorithms � Maximum-flow �
Minimum-cut � Segmentation � Stereo vision � Multi-view

reconstruction � Surface fitting

1 Introduction

Rapid advances in image acquisition, processing and storage

technologies have increased the need for faster real-time

image processing and computer-vision algorithms that

require lesser memory while being capable of handling

large-scale imaging problems. The minimum s - t cut

problem, henceforth referred to as the min-cut problem, is a

classical combinatorial optimization problem with applica-

tions in numerous areas of science and engineering [2].

The min-cut problem, given a finite undirected graph

with nonnegative edge capacities and two nodes in the

graph s and t, consists of partitioning the graph into two

nonempty sets S and �S ¼ V n S such that the sum of the

capacities of edges connecting the two parts is minimum

among all possible partitions and s 2 S and t 2 �S: The

broad applicability of the min-cut problem has resulted in a

substantial amount of theoretical and experimental work on

the subject. Since the seminal work of Ford and Fulkerson

[18] defining the min-cut and its dual—the maximum-flow

(max-flow) problems, many algorithms have been sug-

gested for solving these problems. A cohort of these

algorithms achieve better performance by applying certain

assumptions on the problem such as a planar [8, 32] or

bipartite graph [6]. However, these assumptions are not

valid in most imaging and computer-vision applications.

B. Fishbain (&)

Technion-Israel Institute of Technology, 32000 Haifa, Israel

e-mail: fishbain@technion.ac.il

D. S. Hochbaum

University of California, Berkeley, CA, USA

e-mail: hochbaum@ieor.berkeley.edu

S. Mueller

Technische Universitaet Berlin, Berlin, Germany

e-mail: ste.mu@arcor.de

123

J Real-Time Image Proc (2016) 11:589–609

DOI 10.1007/s11554-013-0344-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-013-0344-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-013-0344-3&domain=pdf

In recent years, the min-cut problem has become a

prominent building block in many vision and imaging

algorithms. One can find examples of employing min-cut in

applications such as image and video segmentation (e.g.,

[24, 27, 41], co-segmentation (e.g, [30], stereo vision (e.g.,

[42], multi-view reconstruction, (e.g., [45, 47], and surface

fitting [50] to name a few.

In order to solve the min-cut problem in large instances,

while complying with real-time constraints, one often

employs a parallel implementation of the algorithm. The

parallel implementation involves breaking the problem into

a series of smaller sub-problems and solving in each sep-

arately the min-cut problem. Previous works utilized either

BK [37, 44, 51] or PRF [15, 44, 52] for solving the sub-

problems. The process is repeated until a threshold on the

permissible run-time is reached or a global optimal solution

is found. Typically, the runs end with a heuristic, or non-

optimal, solution. Thus, this process incurs an error with

respect to the original min-cut optimal solution. This error

increases as the number of sub-problems increases and

their sizes decrease. Therefore, the availability of a more

efficient min-cut algorithm, such as HPF demonstrated

here, has impact on such parallel algorithms. The avail-

ability of the extra efficient min-cut algorithm allows to

parallelize the problem by breaking it into fewer parts, as

compared to less efficient algorithms, and thus improve the

accuracy of the solution.

Among algorithms for solving the min-cut and the max-

flow problems without any assumptions in the problem, the

push-relabel algorithm, PRF, of Goldberg and Tarjan [21].

Several studies have shown push-relabel to be computa-

tionally very efficient (e.g., [1, 4, 13, 16]). Boykov’s and

Kolmogorov’s augmenting paths algorithm, BK, [10] for

solving the min-cut problem, attempts to improve on

standard augmenting path techniques on graphs in vision.

Similarly to Ford–Fulkerson’s algorithm [18], BK algo-

rithm’s complexity is only pseudo-polynomial. In this it

differs from the other algorithms studied here, all of which

have strongly polynomial time complexity. Despite that, it

has been demonstrated in [10] that in practice on a set of

vision problems, the algorithm works well. The Partial

Augment-Relabel algorithm, PAR, devised by Goldberg

[19], also searches for the shortest augmenting path, where

at each stage of the algorithm it finds augmenting path of

specific length.

We introduce here Hochbaum’s pseudoflow algorithm,

HPF [25], which optimally solves the min-cut problem, to

vision problems. HPF was shown to be fastest in practice

for general min-cut problems [12], however, its perfor-

mance has not been evaluated in the context of vision and

real-time vision problems and the practice has been that

BK and PRF are the choice methods for the special class of

vision problems. This motivates our study of comparing the

performance of HPF with these algorithms for vision

problems and real-time vision problems.

For evaluating the performance of HPF algorithm in

vision problems, we compare it with the three aforemen-

tioned algorithms, which constitute the state-of-the-art: (1)

the Push-Relabel, PRF, algorithm; (2) Boykov’s and Kol-

mogorov’s augmenting paths algorithm, BK, [10]; and (3)

Goldberg’s partial augment-relabel, PAR, algorithm [19]. The

study consists of a benchmark of an extensive data set which

includes four types of vision tasks: stereo vision, segmentation,

multi-view reconstruction; and surface fitting, [14, 49].

The comparison of these algorithms was reported in [5,

10, 19]. The first, [10], compared BK algorithm only to

PRF, and for a limited set of instances. The second report,

[19], used the same limited set of instances, and compared

PRF and PAR to HPF. The comparison provided by [19] to

HPF compared the running times of the various algorithms,

but excluded their initialization times. This invalidates the

results of this comparison as our experiments show that the

initialization times are significant with respect to the total

running times and are different between the algorithms.

The reason for this difference between the algorithms is

that the logic computed in the initialization stage by each

of the algorithms is different. The initialization process in

BK and HPF algorithms only reads the problem file and

initiates the corresponding graphs. The implementation of

PRF, however, incorporates an additional logic which sorts

the arcs of each node. Similar operations do exist in both

HPF and BK, but they are incorporated in the main algo-

rithm and are included in the running times reported in

[19]. This also invalidates the results reported in [5], as the

latter uses the times reported in [19] for comparison.

Here we provide, for the first time, a comprehensive

review of the BK, HPF, PRF and PAR algorithms and a

detailed comparison, including their memory usages and a

breakdown of the run-times for the different stages of the

algorithm (initialization, min-cut and max-flow). Note that

all these algorithms solve the min-cut problem optimally.

Thus, all produce the same optimal results and accuracy.

For the vast majority of computer-vision applications only

the min-cut solution is relevant (for recent examples see [3,

26, 27, 35, 45, 50]). Previous empirical studies made the

comparison on the basis of max-flow computation times.

For this reason, we report here the min-cut execution times

and also the time it takes to generate the max-flow. The

breakdown of the execution times, reported here, allows to

evaluate the performance of the algorithms for these rele-

vant computations by taking into account only the initial-

ization and min-cut times. The manuscript also provides

valuable practical information that should advance real-

time usage of the algorithms evaluated in the paper.

Our results demonstrate that, in general, HPF algorithm

is more efficient and utilizes less memory than BK, PRF

590 J Real-Time Image Proc (2016) 11:589–609

123

and PAR algorithms. In terms of memory utilization HPF is

a lot more efficient than BK and PRF, and with up to 25 %

less memory. In terms of computation times, our results

show that HPF is faster than both PRF and PAR for all

problem instances. BK runs slightly faster for stereo

problems (6 instances). HPF’s runtimes in these problems

are, however, less than a fraction of a second slower. For

the surface fitting problems (3 instances), which are of low

degree, BK runs faster, but HPF is at most 10 % slower.

Currently, BK and PRF are the common practice for

solving the min-cut problem in computer vision (e.g., [9,

15, 35, 42, 45, 47]). As HPF is faster in general and large

vision problems than all the other three algorithms, and its

performance is at par with BK on subclass of problems, we

believe that the introduction of HPF algorithm to real-time

image-processing problems removes some of the obstacles

of the road to real-time implementations of many com-

puter-vision tasks which consist of the solving the min-cut

problem.

The paper is organized as follows: Sect. 2 describes HPF

algorithm and the three algorithms it is compared to. The

experimental setup is presented in Sect. 3, followed by the

comparison results, which are detailed in Sect. 4. Section 5

concludes the paper.

1.1 A graph representation of a vision problem

One way to present a vision problem is on an undirected

graph G = (V, E), where V is the set of vertices repre-

senting pixels and E is the set of edges connecting pairs of

pixels that are considered neighbors according to a pre-

scribed adjacency rule. Each edge has a similarity weight

associated with it. For real-time vision application exam-

ples using such presentation see [7, 22, 33, 43]. Alterna-

tively, in order to reduce the size of the problems and

achieve shorter computation times, each node can represent

a group of pixels. Such grouping can be done by some

similarity measure [23, 40] or simply by dividing the image

to square blocks of non-overlapping pixels (i.e., macro-

blocks) [17, 38]. For regular grids, such as pixel-level or

macro-block representation, the 4-neighbor setup is a

commonly used adjacency rule with each pixel having 4

neighbors—two along the vertical axis and two along the

horizontal axis. This setup forms a planar grid graph. The

8-neighbor arrangement is another setup, in which the

planarity of the graph no longer holds, and consequently

the complexity of various algorithms increases, sometimes

significantly. Planarity also does not hold for 3-dimen-

sional images or video. In the most general case of vision

problems, no grid structure can be assumed and thus the

respective graphs are not planar. Indeed, the algorithms

presented here do not assume any specific property of the

graph G—they work for general graphs.

The edges in the graph G representing the image carry

similarity weights. There is a great deal of literature on

how to generate similarity weights, and we do not discuss

this issue here. We only use the fact that similarity is

inversely increasing with the difference in attribute values

between the pixels. In the graph G, each edge {i, j} is

assigned a similarity weight wij that increases as the two

pixels i and j are perceived to be more similar. Low values

of wij are interpreted as dissimilarity. In some contexts one

might want to generate dissimilarity weights indepen-

dently. In that case each edge has two weights, wij for

similarity, and ŵij for dissimilarity.

1.2 Definitions and notation

We introduce here formal definitions of cuts and flows in a

graph used in describing the algorithms in Sect. 2. The

min-cut and max-flow problems are defined on a directed

graph, G = (V, A) where V is the set of nodes and A is the

set of arcs connecting nodes in the graph. Using common

notation, n = |V| is the number of nodes and m = |A| is

the number of arcs in G. Each arc ði; jÞ 2 A has capacity uij.

The undirected graph G = (V, A) representing a vision

problem is converted to a directed graph,

G = (V, A), where there are two arcs, (i, j), (j, i) in A for

every edge i; j½ � 2 E: The similarity weight wij of edge

[i, j] is the capacity uij and uji of (i, j) and (j, i).

1.2.1 Cuts

A bipartition of the set of nodes of a graph S [�S ¼ V

(�S ¼ V n S), is associated with a set of arcs that go from S

to �S; S; �Sð Þ ¼ f i; jð Þ 2 A j i 2 S; j 2 �Sg: The set of arcs,

ðS; �SÞ; is called a cut. A schematic illustration of a cut is

given in Fig. 1. The capacity of a cut S; �Sð Þ is defined as the

sum of the capacities of cut arcs going from S to

Fig. 1 A schematic illustration of a cut. The cut partitions the node

set V into two disjoint sets: S and �S: The capacity C S; �Sð Þ of the cut is

the sum of the weights of the arcs that cross the cut, marked with a

dashed line here

J Real-Time Image Proc (2016) 11:589–609 591

123

�S;C S; �Sð Þ ¼
P

i2S;j2�S uij: In the illustration given in Fig. 1

these arcs are represented in dashed lines.

Consider a graph that contains two specified nodes—a

source node, s, and a sink node, t. This s, t-graph is

denoted by Gst = (Vst, Ast), where Vst = V [{s, t} and

Ast = A [As [At in which As and At are the source-

adjacent and sink-adjacent arcs, respectively. The minimum

s, t cut problem, referred to here as min-cut, is defined on

Gst, and it is to find a bipartition of the nodes Vst—one set

containing the source, s, and the other set containing the

sink, t—such that the sum of capacities of the respective

cut arcs, from the source set to the sink set, is minimized.

1.2.2 Flows

The maximum-flow, or max-flow, problem is defined on

Gst, a directed capacitated graph. The problem is to find a

feasible flow vector f ¼ ffijgði;jÞ2Ast
that maximizes the

amount of flow that can be sent from the source to the sink

while satisfying the following constraints:

1. Flow balance constraints: for each j 2 V;
P

ði;jÞ2Ast
fij ¼

P
ðj;kÞ2Ast

fjk [i.e., inflow(j) = outflow(j)], and

2. Capacity constraints: the flow value is between the

lower bound and upper bound capacity of the arc, i.e.,

‘ij B fij B uij. We denote the vector of the upper

bounds capacities of Gst by u ¼ fuijgði;jÞ2Ast
:

Without loss of generality one can assume that ‘ij = 0.

If not—one can apply a simple transformation setting f 0ij ¼
fij � ‘ij: The lower bound capacities in the transformed

network, ‘0ij; become zero, while the objective function

value changes by a constant that can be ignore when

solving the problem (for further details see [2] (Section 2.4,

p. 39).

The value of the flow, f is
P

ði;jÞ2Ast
fij and is denoted by |f|.

In 1956, Ford and Fulkerson [18] established the max-

flow min-cut theorem, which states that the value of a max-

flow in any network is equal to the value of a min-cut.

Given a capacity-feasible flow, hence a flow that satis-

fies (ii), an arc (i, j) is said to be a residual arc if ði; jÞ 2 Ast

and fij\ uij or ðj; iÞ 2 Ast and fji[0. For ði; jÞ 2 Ast; the

residual capacity of arc (i, j) with respect to the flow f is

uij
f = uij - fij, and the residual capacity of the reverse arc

(j, i) is uji
f = fij. Let Af denote the set of residual arcs with

respect to flow f in Gst which consists of all arcs or reverse

arcs with positive residual capacity.

A preflow is a relaxation of a flow that satisfies capacity

constraints, but inflow into a node is allowed to exceed the

outflow. The excess of a node v 2 V is the inflow into that

node minus the outflow denoted by eðvÞ ¼
P

ðu;vÞ2Ast
fuv �

P
ðv;wÞ2Ast

fvw: Thus a preflow must have nonnegative excess.

A pseudoflow is a flow vector that satisfies capacity

constraints, but may violate flow balance in either direction

(inflow into a node needs not to be equal outflow). A

negative excess is called a deficit.

2 Min-cut/max-flow algorithms

2.1 Hochbaum’s pseudoflow algorithm

Hochbaum’s pseudoflow algorithm (HPF), has a com-

plexity of Oðnm log n2

m
Þ [29]. The algorithm was shown to

be fast in theory [25] and in practice [12] for general

benchmark problems. The following definitions are used in

the description of HPF algorithm:

Current arc The set of current arcs in the graph,

fcurrent arcðw; vÞg 2 Af ; satisfies the following at the

beginning of each iteration of the algorithm:

Property 1 ([12, 25])

(a) The graph does not contain a cycle of current arcs.

(b) If e(v) = 0, then node v does not have a current arc.

Root node A root node is defined recursively as follows:

starting with node v, generate the sequence of nodes

fv; v1; v2; . . .; vrg defined by the current arcs

ðv1; vÞ; ðv2; v1Þ; . . .; ðvr; vr�1Þ until vr has no current arc.

Such root node vr always exists (otherwise a cycle is

formed, violating Property 1(a) [12, 25, 29]). Let the

unique root of node v be denoted by root(v). Note that if

node v has no current arc, then root(v) = v.

Distance label The algorithm associates each node v 2
V with a distance label d(v) with the following property:

Property 2 ([12, 25]) The node labels satisfy:

(a) For every arc ðw; vÞ 2 Af ; dðwÞ� dðvÞ þ 1:

(b) For every node v 2 V with strictly positive deficit,

d(v) = 0.

The above two properties imply that d(v) is a lower bound

on the distance (in terms of number of arcs) in the residual

network of node v from a node with strict deficit.

Admissible arc A residual arc (w, v) is said to be

admissible if d(w) = d(v) ? 1.

Admissible path Given an admissible arc (w, v) with

nodes w and v in different components, an admissible path

is the path from root(w) to root(v) along the set of arcs from

root(w) to w, the arc (w, v), and the set of arcs (in the

reverse direction) from v to root(v).

Active node A node is said to be active if it has strictly

positive excess.

HPF algorithm is initiated with any arbitrary initial

pseudoflow (i.e., flow vector that may violate flow balance

in either direction). Such initial pseudoflow can be

592 J Real-Time Image Proc (2016) 11:589–609

123

generated, for example, by saturating all source-adjacent

and sink-adjacent arcs, As [At, and setting all other arcs to

have zero flow. This creates a set of source-adjacent nodes

with excess, and a set of sink-adjacent nodes with deficit.

All other arcs have zero flow. This particular pseudoflow is

called simple initialization. The procedure generating the

simple initialization pseudoflow is called SimpleInit.

An iteration of HPF algorithm consists of choosing an

active component, with root node label \n and searching

for an admissible arc from a lowest labeled node w in this

component. Choosing a lowest labeled node for processing

ensures that an admissible arc is never between two nodes

of the same component.

By construction (see [25]), the root is the lowest labeled

node in a component and node labels are non-decreasing

with their distance from the root of the component. Thus, all

the lowest labeled nodes within a component form a sub-tree

rooted at the root of the component. Once an active com-

ponent is identified, all the lowest labeled nodes within the

component are examined for admissible arcs by performing a

depth-first-search in the sub-tree starting at the root.

If an admissible arc (w, v) is found, a merger operation

is performed. The merger operation consists of pushing the

entire excess of root(w) towards root(v) along the admis-

sible path and updating the excesses and the arcs in the

current forest. The pseudocode of the merger operation is

given in Fig. 2.

If no admissible arc is found, d(w) is increased by 1 unit

for all lowest label nodes w in the component.

The algorithm’s first phase terminates when there are no

active nodes with label \n. At termination all n labeled

nodes form the source set of the min-cut.

The active component to be processed in each iteration

can be selected arbitrarily. There are two variants of HPF:

(1) lowest label HPF, where an active component with the

lowest labeled root is processed at each iteration; and (2)

highest label HPF, where an active component with the

highest labeled root node is processed at each iteration. The

highest label HPF algorithm was found to be most efficient

and performs competitively with push-relabel on many

general problem instances [12].

The first phase of HPF terminates with the min-cut and a

pseudoflow. The second phase stage consists of flow

recovery, converting this pseudoflow to a maximum fea-

sible flow. This is done using flow decomposition in

O(m log n) running time [25]. Our experiments, like the

experiments in [12], indicate that the time spent in flow

recovery is small compared to the time required to find the

min-cut stage.

2.2 The push-relabel algorithm

The complexity of the push-relabel (PRF) algorithm is

O nm log n2

m

� �
; using the dynamic trees data structure of

Sleator and Tarjan [46]. In this section, we provide a sketch

of a straightforward implementation of the algorithm. For a

more detailed description, see [2, 21].

Goldberg’s and Tarjan’s [21] push-relabel algorithm,

PRF, works with preflows, where a node with strictly

positive excess is said to be active. Each node i is assigned

a label ‘(i) that satisfies (1) ‘(t) = 0, and (2)

‘(i) B ‘(j) ? 1 for all ði; jÞ 2 Af : A residual arc ði; jÞ 2 Af

is said to be admissible if ‘(i) = ‘(j) ? 1.

Initially, the source is assigned the label n, and all other

nodes are assigned the label 0. Since all source-adjacent

arcs are saturated, the set of source-adjacent nodes are all

active (all other nodes have zero or negative excess). An

Fig. 2 The min-cut stage of

HPF algorithm. At termination

all nodes in label-n components

are the source set of the min-cut

J Real-Time Image Proc (2016) 11:589–609 593

123

iteration of the algorithm consists of selecting an active

node in V, and attempting to push its excess to its neigh-

bors along admissible arcs. If no such arc exists, the node’s

label is increased by 1. The algorithm terminates with a

maximum preflow when there are no active nodes with

label less than n. The set of nodes of label n then forms the

source set of a min-cut and the current preflow is maximum

in that it sends as much flow into the sink node as possible.

This ends Phase 1 of the algorithm. In Phase 2, the algo-

rithm transforms the maximum preflow into a maximum

flow by pushing the excess back to s. The flow recovery

consists of transforming the maximum preflow into a

maximum feasible flow by pushing the excess back to

s. Similarly to HPF, the flow recovery is considerably

faster than computing the min-cut. A high-level description

of PRF algorithm is shown in Fig. 3.

In the highest label and lowest label variants of the

algorithm, an active node with highest and lowest labels,

respectively, are selected for processing at each iteration.

In the FIFO variant, the active nodes are maintained as a

queue in which nodes are added to the queue from the rear

and removed from the front for processing. The highest

level variant of PRF was found to have the best perfor-

mance in practice (see [2], p. 242, [13]). This variant of the

algorithm is also referred to in the literature as HI_PR. In

this paper, the highest label variant is used. Additionally,

two heuristics are employed in practice and significantly

improve the run-time of the algorithm: Gap relabeling and

Global relabeling (see [12, 21] for details).

2.3 Boykov’s and Kolmogorov’s augmenting paths

algorithm

For a maximum-flow vector f* the max-flow value is

denoted by jf �j ¼
P

s;jð Þ2As
f �sj: The theoretical complexity

of Boykov’s and Kolmogorov’s (BK) algorithm is given by

O(mn2|f*|). Note that this complexity is pseudo-polynomial,

in contrast to all other algorithms discussed here that have

strongly polynomial complexity. At heart of the BK’s

approach is the use of search trees for detecting augment-

ing paths from s to t. Two such trees, one from the source,

Ts, and the other from the sink, Tt are constructed, where

Ts \ Tt = [. The trees are constructed so that in Ts all

edges from each parent node to its children are non-satu-

rated and in Tt, edges from children to their parents are

non-saturated.

Nodes that are not associated with a tree are called free.

Nodes that are not free can be tagged as active or passive.

Active nodes have edges to at least one free node, while

passive nodes have no edges connecting them to a free

node. Thus, trees can grow only by connecting, through a

non-saturated edge, a free node to an active node of the

tree. An augmenting path is found when an active node in

either of the trees has a neighboring node found in the other

tree.

At the initialization stage the search tree, Ts contains

only the source node, s and the search tree Tt contains only

the sink node t. All other nodes are free.

Each iteration of the algorithm consists of the following

three stages:

Growth In this stage the search trees Ts and Tt expand.

For all active nodes in a tree, Ts or Tt, adjacent free nodes,

which are connected through non-saturated edge, are

searched. These free nodes become members of the cor-

responding search tree. The growth stage terminates when

the search for an active node from one tree, finds an

adjacent (active) node that belongs to the other tree. Thus,

an augmenting path from S to T was found.

Augmentation Upon finding the augmenting path, the

maximum flow possible is being pushed from s to t. This

implies that at least one edge will be saturated. Thus, for at

least one node in the trees Ts and Tt the edge connecting it

to its parent is no longer valid. The augmentation phase

may split the search trees Ts and Tt into forests. Nodes for

which the edges connecting them to their parent become

saturated are called orphans.

Fig. 3 High-level description

of Phase I of the generic push-

relabel algorithm. The nodes

with label equal to n at

termination form the source set

of the min-cut

594 J Real-Time Image Proc (2016) 11:589–609

123

Adoption In this stage the tree structure of Ts and Tt is

restored. For each orphan, created in the previous stage, the

algorithm tries to find a new valid parent. The new parent

should belong to the same set, Ts or Tt, as the orphan node

and has a non-saturated edge to the orphan node. If no

parent is found, then the orphan node and all its children

become free and the tree structure rooted in this orphan is

discarded. This stage terminates when all orphan nodes are

connected to a new parent or are free.

The algorithm terminates when there are no more active

nodes and the trees are separated by saturated edges. Thus,

the max-flow is achieved and the corresponding min-cut is

S = Ts and T = Tt.

2.4 The partial augment-relabel

The Partial Augment-Relabel algorithm, PAR, devised by

Goldberg [19], searches for the shortest augmenting path.

PAR is distinguished from PRF in that PAR consist of

pushing flows from active nodes along paths of length ‘.

These paths do not necessarily end at node t. PAR was

shown to have a complexity of Oðn2
ffiffiffiffi
m

p
Þ:

At each iteration during stage ‘ there is a DFS search,

from an active node, for an admissible path of length ‘.

Here, an arc (i, j) is admissible if the label of its associated

nodes is equal, d(i) = d(j). For a partial path, of length

\‘, from s to i 2 V; if i has an admissible arc, (i, j), and

j has not been visited as of yet, the path is extended to j. If

no such admissible arc is found, the algorithm shrinks the

path, making the predecessor of i on the path the current

node and increasing its label, d(i), by 1. At each iteration,

the search terminates either if j = t, or if the length of the

path reaches some predefined value, ‘, or if i, the current

node has no outgoing admissible arcs.

In order to achieve better performance in practice, the

same gap and global heuristics mentioned in Sect. 2.2, for

PRF, can be applied here for the PAR algorithm.

3 Experimental setup

PRF, HPF and BK algorithms are compared here by run-

ning them on the same problem instances and on the same

hardware setup. The run-times of the highest level variant

of PRF algorithm and of PAR are reported in [19] for a

subset of the problems used here. Since the source code for

the PAR implementation has not been made available,

PAR’s performance is evaluated here by normalizing the

run-times of the highest level variant of PRF by the

speedup factor of PAR compared to PRF reported in [19].

As suggested by Chandran and Hochbaum [12], we use

the highest label version for HPF algorithm. The latest

version of the code (version 3.23) is accessible at [28]. We

use the highest-level PRF implementation Version 3.5, [20]

since it was shown to be the best performance PRF variant

[13]. Note that the latest implementation of the Push-

Relabel method is denoted, in other papers, by HI_PR. We

refer to this variant here as PRF, and it is the same algo-

rithm which was reported in [13]. For BK algorithm, a

library implementation was used [34]. In order to utilize

the library for solving problems in DIMACS format, a

wrapping code, wrapper, was written. This wrapper reads

the DIMACS files and calls the library’s functions for

constructing and solving the problem. The part that reads

the DIMACS files, under the required changes, is similar to

the code used in the implementation of HPF. One should

note that the compilation’s setup and configuration of the

library have great effect on the actual running times of the

code. In our tests the shortest running times were achieved

using the following compilation line g?? -w -O4 -o

\output_file_name[-DNDEBUG -DBENCHMARK

graph.cpp maxflow.cpp \wrapper_implement-

ation_file[.

The run-times are reported here for the three different

stages of the algorithm: initialization, min-cut and max-

flow. Every problem instance was run three times for each

stage and the average run-time and the standard deviation

of the three runs were computed. The standard deviation

was then normalized by the average run-time for the

respected stage of the problem. The average of the nor-

malized standard deviation across all problem instances

and stages was 0.4 %, and the maximum value was 2 %.

Thus, the run-times are stable. As detailed in Sect. 1,

breaking down the run-times provides insight into the

algorithms’ performance and allows for better comparison.

Since for many computer-vision applications only the min-

cut solution is of importance, the most relevant evaluation

is of the sum of initialization and min-cut times.

3.1 Computing environments

Our experiments were conducted on a machine with

x86_64 Dual-Core AMD Opteron(tm) Processor at

2.4 GHz with 1024 KB level 2 cache and 32 GB RAM.

The operating system used was GNU/Linux kernel release

2.6.18-53.el. The code of all three algorithms, PRF, HPF

and BK, was compiled with gcc 4.1.2 with -O4 optimi-

zation flag.

One should note that the relatively large physical

memory of the machine allows one to avoid memory swaps

between the memory and the swap-file (on the disk)

throughout the execution of the algorithms. Swaps are

important to avoid since when the machine’s physical

memory is small with respect to the problem’s size, the

memory swap operation might take place very often. These

swapping times, the wait times for the swap to take place,

J Real-Time Image Proc (2016) 11:589–609 595

123

can accumulate to a considerably long run-times. Thus, in

these cases, the execution times are biased due to memory

constraints, rather than measuring the algorithms’ true

computational efficiency. Therefore, we chose large phys-

ical memory which allows for more accurate and unbiased

evaluation of the execution times.

3.2 Problem classes

The test sets used consist of problem instances that arise as

min-cut problems in computer vision, graphics, and bio-

medical image analysis. All instances were made available

from the Computer Vision Research Group at the Univer-

sity of Western Ontario [14]. The problem sets used are

classified into four types of vision tasks: stereo vision,

segmentation, multi-view reconstruction, and surface fit-

ting. These are detailed in Sects. 3.2.1–3.2.4. The number

of nodes n and the number of arcs m for each of the

problems are given in Appendix 1, Tables 6, 7, 8, 9.

3.2.1 Stereo vision

Stereo problems, as one of the classical vision problems,

have been extensively studied. The goal of stereo is to

compute the correspondence between pixels of two or more

images of the same scene. We use the Venus, Sawtooth [42]

and the Tsukuba [39] data sets. Each of the stereo prob-

lems, used in this study, consists of an image sequence,

where each image in the sequence is a slightly shifted

version of its preceding one. The Venus sequence consists

of 22 images, Sawtooth of 20 and the Tsukuba sequence

has 16 images. All images have the same size of

512 9 384 pixels. A corresponding frame for each

sequence is given in Fig. 4. The segmentation problems’

sizes are given in Table 6.

Often the best correspondence between the pixels of the

input images is determined by solving a min-cut problem

for each pair of images in the set. Thus in order to solve the

stereo problem, one has to solve a sequence of min-cut sub-

problems all of approximately the same size. Previously

reported run-times of these stereo problem [10, 19]

disclosed, for each problem, only the summation of the

run-times of its min-cut sub-problems. Presenting the

summation of the run-times of the sub-problems as the time

for solving the entire problem assumes linear asymptotic

behavior of the run-times with respect to the input size.

This assumption has not been justified. The run-times here,

for the stereo problems, are reported as the average time it

takes the algorithm to solve the min-cut sub-problem.

Each of the stereo min-cut sub-problems aims at

matching corresponding pixels in two images. The graphs

consist of two 4-neighborhood grids, one for each image.

Each node, on every grid, has arcs connecting it to a set of

nodes on the other grid. For each of the stereo problems

there are two types of instances. In one type, indicated by

KZ2 suffix, each node in one image is connected to at most

two nodes in the other image. In the second type, indicated

by BVZ suffix, each node in one image is connected to up

to five nodes in the second image.

3.2.2 Multi-view reconstruction

A 3D reconstruction is a fundamental problem in computer

vision with a significant number of applications (for recent

examples see [31, 45, 47]). Specifically, graph theory-based

algorithms for this problem were reported in [36, 48, 53]. The

input for the multi-view reconstruction problem is a set of 2D

images of the same scene taken from different perspectives.

The reconstruction problem is to construct a 3D image by

mapping pixels from the 2D images to voxels complex in the

3D space. The most intuitive example for such a complex

would be a rectangular grid, in which the space is divided

into cubes. In the examples used here a finer grid, where each

voxel (neighborhood, NBH) is divided into 24 tetrahedral by

six planes each passing through a pair of opposite cube edges,

is used (see [36] for details). Two sequences are used in this

class, Camel and Gargoyle. Each sequence was constructed

in three different sizes (referred to as small, middle and large)

[11]. The sizes here are of the inferred 3D grid size, thus the

output resolution. Representing frames are presented in

Fig. 5. Problems’ images and the grid sizes are detailed in

Table 7.

Fig. 4 Stereo test sequences

(Source [14])

596 J Real-Time Image Proc (2016) 11:589–609

123

3.2.3 Surface fitting

3D reconstruction of an object’s surface from sparse points

containing noise, outliers, and gaps is also one of the most

interesting problems in computer vision. The input is a set

of point cloud in 3D space and the output is a smooth

manifold which is close as possible to each of the points

while imposing some shape priors either on the volume or

the surface, such as spatial occupancy or surface area [35].

Under this class we present a single test instance,

‘‘Bunny’’ (see Fig. 6), constructed in three different sizes

(see Table 8) with six 3D connectivity scheme. Similarly to

the multi-view-reconstruction problem set, size here refers to

the size of the reconstructed 3D graph, hence the output 3D

resolution. The sequence is part of the Stanford Computer

Graphics Laboratory 3D Scanning Repository [49] and

consists of 362,272 scanned points. The ‘‘bunny’’ corre-

sponding graphs, on which the min-cut problem is solved, are

characterized by particularly short paths from s to t [35].

3.2.4 Segmentation

Under this group a set of four 3D test cases, referred to as

liver, adhead, babyface and bone are used. Each set

consists of similar instances which differ in the graph size,

neighborhood size, length of the path between s and

t, regional arc consistency (noise), and arc capacity mag-

nitude [9]. Liver problem instances have short s, t paths

(32–400 arcs), while adhead are characterized by long

s, t paths (several millions arcs). Babyface has noisy arcs

capacities, while bone presents a classic MRI image. For

all instances used in this group, the suffixes n and c repre-

sent the neighborhood type and maximum arc capacities,

respectively. For example, bone.n6.c10 and baby-

face.n26.c100, correspond to a 6 3D-neighborhood and a

maximum arc capacity of 10 U and a 26 3D-neighborhood

with maximum arc capacity of 100 U, respectively. The

different bone instances differ in the number of nodes. The

grid on the 3 axes x, y and z was made coarser by a factor of

2 on each, thus bone.xy, means that the original problem

(bone) was decimated along the x, y axes and it is 1/4 of its

original size; bone.xyz, means that the original problem

was decimated along the x, y and z axes and it is 1/8 of its

original size. The Segmentation problems’ sizes are listed

in Table 9.

4 Results

4.1 Run-times

In this study, the comparison of PRF’s, HPF’s and BK’s

run-times are indicated for the three stages of the algo-

rithms: (1) initialization, tinit; (2) min-cut, tminCut; and (3)

max-flow, tmaxflow. As these data are unknown for PAR, the

comparison of these three algorithms with respect to PAR

is addressed differently, by running PRF on our setup and

deducing PAR run-times by multiplying the measured PRF

time by the speedup factor reported in [19]. This is

explained in Sect. 4.2.

The relevant times for most computer-vision problems

are the times it takes each of the algorithms to complete the

computation of the min-cut, thus tinit ? tminCut. These are

graphically presented in Fig. 7 and detailed in Tables 1, 2,

3, 4. Note that the bar chart figures give the run-times for

multi-view, surface fitting and segmentation in logarithmic

scale. The Slowdown Factor, reported in these tables for

each algorithm, for every problem instance, is the ratio of

the time it takes the algorithm to complete the computation

of the min-cut divided by the minimum time it took any of

the algorithms to complete this computation.

Figure 7a (Table 1) presents the run-times for the stereo

vision problem sets. The input’s size, for these problems is

small, with respect the the other problem sets. For these

small problem instances, BK algorithm does better than

PRF (with average speedup factor of 2.86, which corre-

sponds to average difference in the running time of 2.0 s)

Fig. 5 Multi-view test sequences (source [14])

Fig. 6 Bunny problem instance—surface fitting (Source[49])

J Real-Time Image Proc (2016) 11:589–609 597

123

and slightly better than HPF (speedup factor of 1.24, which

corresponds to a running time difference of 0.24 s). For the

multi-view instances, presented in Fig. 7b (and Table 2)

HPF is faster than both PRF and BK with average speedup

factors of 1.46 with respect to BK and 3.19 with respect to

PRF. These correspond to differences in the running times

of 95 and 170 s, respectively. Figure 7c and Table 3 show

the run-times for the surface fitting instances. This

demonstrates that BK is faster for these instances due to

particularly short s, t paths (of 32–400 arcs) that charac-

terize these instances. In these instances, the slowdown

factors of HPF and PRF are 1.05 (correspond to an average

difference of 9 s) and 4.06 (454 s), respectively. The run-

ning times for the segmentation problems class are depic-

ted in Fig. 7d and Table 4. There are 36 segmentation

problems. In a subset of 5 segmentation problems BK

Fig. 7 Initialization and min-

cut run-times in seconds:

a stereo problems, b multi-view

problems, c surface fitting,

d segmentation

598 J Real-Time Image Proc (2016) 11:589–609

123

achieves faster running times. These instances are charac-

terized by short s, t paths [9, 10]. In this subset, BK’s

average speedup factors are 1.19 (9.24 s difference) and

2.62 (106 s difference in the running time) with respect to

HPF and PRF, respectively. For the remainder of the 31

segmentation problems, HPF is the fastest, with speedup

factors of 1.18 (14.22 s difference) compared to BK and

2.62 (101.39 s difference) compared to PRF.

As discussed in Sect. 1, the initialization run-times of

PRF are considerably longer than those or either BK or

HPF algorithms. The bar chart summarizing the

initialization times comparison is given in Fig. 8 and

detailed in Appendix 2, Tables 10, 11, 12, 13. Figure 8

shows that for all problem instances, PRF’s initialization

times (tinit) are 2–3 times longer than BK’s and HPF’s

respective initialization times. Although these times were

excluded from the total execution times reported in [10]

and [19], Fig. 8 strongly suggests that these initialization

times are significant with respect to the min-cut computa-

tion times (tminCut) and must not be disregarded.

Table 1 Stereo problems: combined Initialization and min-cut run-

times and their corresponding speedup factors

Stereo

Instance Run-times (S) Slowdown factor

PRF HPF BK PRF HPF BK

sawtoothBVZ 1.55 0.76 0.62 2.5 1.23 1

sawtoothKZ2 4.05 1.87 1.52 2.66 1.23 1

tsukubaBVZ 1.09 0.5 0.41 2.66 1.22 1

tsukubaKZ2 3.42 1.33 1.06 3.23 1.25 1

venusBVZ 1.93 0.82 0.66 2.92 1.24 1

venusKZ2 5.12 2.09 1.66 3.08 1.26 1

Each problem’s fastest run-time is set in boldface. The speedup factor

states how much an algorithm runs compared to the fastest algorithm

Table 2 Multi-view problems: combined initialization and min-cut

run-times and their corresponding speedup factors

Multi-view

Instance Run-times (s) Slowdown factor

PRF HPF BK PRF HPF BK

camel-lrg 558.65 143.96 225.53 3.88 1 1.57

camel-med 240.3 67.61 83.43 3.55 1 1.23

camel-sml 17.16 6.31 6.46 2.72 1 1.02

gargoyle-lrg 413.26 134.77 432.31 3.07 1 3.21

gargoyle-med 196.26 56.24 226.43 3.49 1 4.03

gargoyle-sml 12.26 5 13.86 2.45 1 2.77

Table 3 Surface fitting problems: initialization and min-cut run-

times and their corresponding speedup factors

Surface fitting

Instance Run-times (s) Slowdown factor

PRF HPF BK PRF HPF BK

bunny-lrg 1564.1 305.05 277.02 5.65 1.1 1

bunny-med 129.05 34.47 32.82 3.93 1.05 1

bunny-sml 10.89 4.12 4.03 2.7 1.02 1

Table 4 Segmentation problems: initialization and min-cut run-times

and their corresponding speedup factors

Segmentation

Instance Run-times (s) Slowdown factor

PRF HPF BK PRF HPF BK

adhead.n26c10 970.74 344.31 407.42 2.82 1 1.18

adhead.n26c100 971.2 362.49 476.04 2.68 1 1.31

adhead.n6c10 219.14 90.17 90.38 2.43 1 1

adhead.n6c100 242.43 103.03 123.22 2.35 1 1.2

babyface.n26c10 333.91 245.1 250.15 1.36 1 1.02

babyface.n26c100 378.94 272.26 321.2 1.39 1 1.18

babyface.n6c10 103.27 48.3 35.3 2.93 1.37 1

babyface.n6c100 126.28 58.77 43.89 2.88 1.34 1

bone.n26c10 451.35 160.73 196.26 2.81 1 1.22

bone.n26c100 472.34 168.09 198.73 2.81 1 1.18

bone.n6c10 119.76 41.02 47.79 2.92 1 1.17

bone.n6c100 132.06 43.56 51.88 3.03 1 1.19

bone.x.n26c10 209.03 79.7 100.23 2.62 1 1.26

bone.x.n26c100 218.57 81.79 107.43 2.67 1 1.31

bone.x.n6c10 64.17 20.89 26.57 3.07 1 1.27

bone.x.n6c100 61.18 22.06 30.29 2.77 1 1.37

bone.xy.n26c10 99.59 39.51 48.25 2.52 1 1.22

bone.xy.n26c100 101.13 40 51.04 2.53 1 1.28

bone.xy.n6c10 27.22 10.04 12.09 2.71 1 1.2

bone.xy.n6c100 27.66 10.56 13.62 2.62 1 1.29

bone.xyz.n26c10 48.07 18.89 23.69 2.54 1 1.25

bone.xyz.n26c100 48.83 19.39 25.41 2.52 1 1.31

bone.xyz.n6c10 11.95 4.85 5.95 2.46 1 1.23

bone.xyz.n6c100 12.05 5.14 6.54 2.34 1 1.27

bone.xyz.x.n26c10 22.96 9.36 11.27 2.45 1 1.2

bone.xyz.x.n26c100 23.55 9.52 11.55 2.47 1 1.21

bone.xyz.x.n6c10 5.47 2.37 2.75 2.31 1 1.16

bone.xyz.x.n6c100 5.56 2.47 2.89 2.25 1 1.17

bone.xyz.xy.n26c10 10.99 4.63 5.6 2.37 1 1.21

bone.xyz.xy.n26c100 11.06 4.74 5.79 2.33 1 1.22

bone.xyz.xy.n6c10 2.55 1.14 1.34 2.24 1 1.18

liver.n26c10 272.63 123.61 112.4 2.43 1.1 1

liver.n26c100 297.88 132.48 128.6 2.32 1.03 1

liver.n6c10 82.11 35.24 32.02 2.56 1.1 1

liver.n6c100 96.38 40.36 43.6 2.39 1 1.08

J Real-Time Image Proc (2016) 11:589–609 599

123

The solution to the max-flow problem is of lesser sig-

nificance in solving computer-vision problems. Yet, for the

sake of completeness, the max-flow computation times of

the algorithms (tinit ? tminCut ? tmaxFlow) are reported in

Fig. 9 and in Tables 14, 15, 16,17.

4.2 Comparison to partial augment-relabel

The PAR run-times, on our hardware setup, are deduced

from the average speedup factor of PAR compared to the

highest level variant of PRF for each problem instance

reported in [19]. That paper reported only the summation

of the min-cut and max-flow run-times, tminCut ? tmax-

Flow, omitting the initialization times. Our results, given

next, demonstrate that even when omitting the initialization

times, both PRF and the faster version PAR, still have

worse performance than HPF.

Let tPAR
G (I) and tPRF

G (I) be the run-times reported in [19]

for PAR and PRF algorithms, respectively, for instance I.

The estimated run-times of PAR in instance (I), t̂PARðIÞ; on

our hardware is:

t̂PARðIÞ ¼ tG
PARðIÞ
tG
PRFðIÞ

tPRF
minCutðIÞ þ tPRF

maxFlowðIÞ
� �

where tminCut
PRF (I) and tmaxFlow

PRF (I) are the corresponding run-

times of PRF algorithm measured on the hardware used in

this study.

Fig. 8 Initialization run-times

in seconds: a stereo problems;

b multi-view problems;

c surface fitting; d segmentation

600 J Real-Time Image Proc (2016) 11:589–609

123

The comparison results for the sum of the min-cut and

max-flow run-times given in Fig. 10, for all problem

instances reported in [19], demonstrate that HPF outper-

forms PAR for all problem instances. It is noted that

although this comparison excludes the initialization times,

PAR’s performance is still inferior to that of HPF. If one

were to add the initialization times (see Tables 10, 11, 12,

13), then the relative performance of PAR as compared to

HPF would be much worse since PRF’s initialization times

are significantly longer than HPF’s as shown in Fig. 8. In

terms of comparing PAR to BK, Fig. 10 shows that PAR is

inferior to BK for small problem instances, but performs

better for larger instances.

4.3 Memory utilization

Measuring the actual memory utilization of different

algorithms is of growing importance, as advances in

acquisition systems and sensors allow higher image reso-

lution, thus larger problem sizes and more significant use of

memory. The memory usage was read directly out of the/

proc/[process]/statm file for each implementation and for

Fig. 9 Initialization, min-cut

and max-flow run-times in

seconds: a stereo problems;

b multi-view problems;

c surface fitting; d segmentation

J Real-Time Image Proc (2016) 11:589–609 601

123

each problem instance. The granularity of the readings is a

page-file size, thus 4,096 Bytes, which is 0.005 % of the

total memory consumption of the smallest problem. These

readings include the actual machine instructions (text sec-

tion), all initialized variables declared in the program (data

section) and the dynamic data which is allocated only at

runtime. The text and data sections are the same for all runs

and are given in Table 5.

Figure 11 summarizes the results of the memory utiliza-

tion for BK (green dashed line), HPF (dotted red) and PRF

(blue solid) algorithms. These are detailed in ‘‘Appendix 3’’,

Tables 18, 19, 20, 21. The X axis in Fig. 11 is the input size.

A Problem’s input size is the number of nodes, n plus the

number of arcs, m, in the problem’s corresponding graph:

input size = n ? m. The number of nodes, n, and the

number of arcs, m, for each of the problems are given in

Tables 6, 7, 8, 9. The Y axis is the memory utilization in

mega-bytes. The graph also shows how memory utilization

increases as a function of problem size.

Both BK and PRF algorithms use on average 10 % more

memory than HPF algorithm. For problem instances with

large number of arcs, PRF and BK require 25 % more

memory. This becomes critical when the problem size is

considerably large, with respect to the machine’s physical

memory. In these cases the execution of the algorithms

requires a significant amount of swapping memory pages

between the physical memory and the disk, resulting in

longer execution times.

The differences in memory utilization between the

algorithms may be attributed to two factors: (1) data

Fig. 10 Min-cut and max-flow

run-times in seconds for PAR,

PRF, HPF and BK: a stereo

problems; b multi-view

problems; c segmentation

Table 5 Executables memory utilization

Algorithm Text Data Total

BK 13,549 708 14,305

PRF 13,963 620 14,903

HPF 9,433 600 10,145

Fig. 11 Memory utilization vs. input size

602 J Real-Time Image Proc (2016) 11:589–609

123

structures each algorithm maintains; and (2) dynamic

memory allocation. BK’s data structures are more com-

plex and require more memory than HPF (see Table 5).

For example, both HPF and BK algorithms, in con-

junction with the graph topology information, must

maintain a flow vector f. Additionally, BK maintains a

list of active nodes and a list of all orphans (see Sect.

2.3). HPF algorithm, on the other hand, adds only three

features (or fields) to each node (‘‘is it a root node?’’

boolean flag, the node’s excess/deficit and the node’s

current arc), which does not increase significantly the

memory required to describe the graph topology. This in

itself, however, is not sufficient to determine memory

utilization as dynamic allocation must be evaluated

empirically. It is important to note that neither factors

grow linearly with the data.

5 Conclusions

This paper introduces Hochbaum’s pseudoflow algorithm

(HPF), that solves optimally the s, t min-cut and max-flow

problems, to the field of computer vision. A comprehensive

computational study is presented here, comparing HPF with

the three leading algorithms: (1) Goldberg’s and Tarjan’s

Push-Relabel (PRF); (2) Boykov’s and Kolmogorov’s

augmenting paths (BK); and (3) Goldberg’s partial augment-

relabel (PAR).

A total of 51 computer-vision problem instances were

tested within the scope of this study. In all problem instances

both BK and HPF were faster than PAR and PRF. In 37

instances (out of the 51) HPF had the best running times. In

the remaining 14 cases, HPF was slightly slower than BK.

Six out of the 14 instances were small, with an average

problem size for this group of 1.5 million graph elements,

whereas the remaining problems had average problem sizes

that were 50 times larger. The remaining 8 instances out of

the 14 had shorter length s, t paths (consisting of up to 400

arcs) than other problem instance (which had s, t paths that

are tens of thousands arcs long).

Indeed for problem instances with either small problem

size or with extremely short s, t paths one may choose BK

algorithm. For all other types of instances HPF should be

the algorithm of choice. Furthermore, HPF algorithm’s

source code is readily available [28]. This makes HPF the

perfect tool for the growing number of computer-vision

applications that incorporate the min-cut problem as a sub-

routine. Our results are significant since they contrast the

widely accepted belief that both BK and PRF algorithms

were the fastest algorithms in practice for the min-cut

problem. This was shown not to hold in general [12], and

here for computer vision in particular.

The first author was partially funded by the New York Metro-
politan and the Technion’s Security Science and Technology
research funds, The German-Israeli Foundation for Scientific
Research and Development (GIF) Young Scientist Program, the
Technion Center of Excellence in Exposure Science and Envi-
ronmental Health and the CITI-SENSE project of the 7th Euro-
pean Framework Program (FP7), ENV.2012.6.5-1. The second
author was supported in part by NSF awards No. CMMI-1200592
and CBET-0736232.

Appendix1: Problem sizes

See Tables 6, 7, 8, 9

Table 6 Problems’ sizes: stereo problems

Stereo

Name Image size Frames Nodes Arcs

sawtoothBVZ 512 9 384 16 173,602 838,635

sawtoothKZ2 512 9 384 16 310,459 2,059,153

tsukubaBVZ 512 9 384 16 117,967 547,699

tsukubaKZ2 512 9 384 16 213,144 1,430,508

venusBVZ 512 9 384 16 174,139 833,168

venusKZ2 512 9 384 16 315,972 2,122,772

Table 7 Problems’ sizes—multi-view problems

Multi-view

Name Image size Views Grid NBH Nodes Arcs

camel-lrg 189 9 220 20 100 9 75 9 105 24 18,900,002 93,749,846

camel-med 189 9 220 20 80 9 60 9 84 24 9,676,802 47,933,324

camel-sml 189 9 220 20 40 9 30 9 42 24 1,209,602 5,963,582

gargoyle-lrg 486 9 720 16 80 9 112 9 80 24 17,203,202 86,175,090

gargoyle-med 486 9 720 16 64 9 90 9 64 24 8,847,362 44,398,548

gargoyle-sml 486 9 720 16 32 9 45 9 32 24 1,105,922 5,604,568

Views is the number of different views taken for the 3D reconstruction. grid is the size of the reconstructed 3D grid, NBH is the oriented

neighborhood around each pixel (see [36])

J Real-Time Image Proc (2016) 11:589–609 603

123

Appendix2: Run-times

See Tables 10, 11, 12, 13, 14, 15, 16, 17

Table 8 Problems’ sizes: surface fitting problems

Surface fitting

Name Points Grid Conn Nodes Arcs

bunny-lrg 362,272 401 9 396 9 312 6 49,544,354 300,838,741

bunny-med 362,272 401 9 396 9 312 6 6,311,088 38,739,041

bunny-sml 362,272 401 9 396 9 312 6 805,802 5,040,834

Points is the number of scanned points. grid is the size of the reconstructed 3D grid, Conn is the 3D connectivity scheme used

Table 9 Segmentation problems’ sizes

Segmentation

Name 3D Image size Nodes Arcs

adhead.n26c10 256 9 256 9 192 12,582,914 327,484,556

adhead.n26c100 256 9 256 9 192 12,582,914 327,484,556

adhead.n6c10 256 9 256 9 192 12,582,914 75,826,316

adhead.n6c100 256 9 256 9 192 12,582,914 75,826,316

babyface.n26c10 250 9 250 9 81 5,062,502 131,636,370

babyface.n26c100 250 9 250 9 81 5,062,502 131,636,370

babyface.n6c10 250 9 250 9 81 5,062,502 30,386,370

babyface.n6c100 250 9 250 9 81 5,062,502 30,386,370

bone.n26c10 256 9 256 9 119 7,798,786 202,895,861

bone.n26c100 256 9 256 9 119 7,798,786 202,895,861

bone.n6c10 256 9 256 9 119 7,798,786 46,920,181

bone.n6c100 256 9 256 9 119 7,798,786 46,920,181

bone.x.n26c10 128 9 256 9 119 3,899,394 101,476,818

bone.x.n26c100 128 9 256 9 119 3,899,394 101,476,818

bone.x.n6c10 128 9 256 9 119 3,899,394 23,488,978

bone.x.n6c100 128 9 256 9 119 3,899,394 23,488,978

bone.xy.n26c10 128 9 128 9 119 1,949,698 50,753,434

bone.xy.n26c100 128 9 128 9 119 1,949,698 50,753,434

bone.xy.n6c10 128 9 128 9 119 1,949,698 11,759,514

bone.xy.n6c100 128 9 128 9 119 1,949,698 11,759,514

bone.xyz.n26c10 128 9 128 9 60 983,042 25,590,293

bone.xyz.n26c100 128 9 128 9 60 983,042 25,590,293

bone.xyz.n6c10 128 9 128 9 60 983,042 5,929,493

bone.xyz.n6c100 128 9 128 9 60 983,042 5,929,493

bone.xyz.x.n26c10 64 9 128 9 60 491,522 12,802,789

bone.xyz.x.n26c100 64 9 128 9 60 491,522 12,802,789

bone.xyz.x.n6c10 64 9 128 9 60 491,522 2,972,389

bone.xyz.x.n6c100 64 9 128 9 60 491,522 2,972,389

bone.xyz.xy.n26c10 64 9 64 9 60 245,762 6,405,104

bone.xyz.xy.n26c100 64 9 64 9 60 245,762 6,405,104

bone.xyz.xy.n6c10 64 9 64 9 60 245,762 1,489,904

bone.xyz.xy.n6c100 64 9 64 9 60 245,762 1,489,904

liver.n26c10 128 9 128 9 119 4,161,602 108,370,821

liver.n26c100 128 9 128 9 119 4,161,602 108,370,821

liver.n6c10 128 9 128 9 119 4,161,602 25,138,821

liver.n6c100 128 9 128 9 119 4,161,602 25,138,821

Table 10 Initialization stage run-times: Stereo Vision problems

Stereo

Instance PRF HPF BK

sawtoothBVZ 1.02 0.57 0.53

sawtoothKZ2 2.69 1.40 1.32

tsukubaBVZ 0.65 0.37 0.34

tsukubaKZ2 1.79 0.96 0.90

venusBVZ 1.02 0.57 0.53

venusKZ2 2.79 1.45 1.36

Average 1.66 0.89 0.83

Table 11 Initialization stage run-times: Multi-View problems

Multi-view

Instance PRF HPF BK

camel-lrg 155.25 76.97 70.22

camel-med 76.40 38.44 35.15

camel-sml 8.66 4.65 4.23

gargoyle-lrg 141.81 68.79 63.50

gargoyle-med 70.79 34.97 32.33

gargoyle-sml 8.11 4.33 3.94

Average 76.84 38.02 34.89

Table 12 Initialization stage run-times: Surface Fitting problems

Surface fitting

Instance PRF HPF BK

bunny-lrg 687.01 230.81 219.08

bunny-med 70.87 29.25 27.95

bunny-sml 7.99 3.70 3.47

Average 255.29 87.92 83.50

604 J Real-Time Image Proc (2016) 11:589–609

123

Table 13 Initialization stage run-times: Segmentation problems

Segmentation

Instance PRF HPF BK

adhead.n26c10 697.57 238.71 233.34

adhead.n26c100 702.45 242.09 239.02

adhead.n6c10 144.05 58.00 55.12

adhead.n6c100 146.12 59.82 56.47

babyface.n26c10 180.35 94.24 92.50

babyface.n26c100 182.76 95.88 94.62

babyface.n6c10 44.31 22.77 21.71

babyface.n6c100 44.85 23.37 22.35

bone.n26c10 381.60 146.00 144.64

bone.n26c100 382.59 149.93 145.70

bone.n6c10 85.74 35.58 33.66

bone.n6c100 86.26 36.68 34.72

bone.x.n26c10 182.47 72.52 71.59

bone.x.n26c100 183.88 73.70 72.54

bone.x.n6c10 41.02 17.62 16.78

bone.x.n6c100 41.46 18.18 17.28

bone.xy.n26c10 87.33 36.05 35.32

bone.xy.n26c100 88.08 36.37 35.89

bone.xy.n6c10 19.62 8.73 8.26

bone.xy.n6c100 19.77 8.99 8.60

bone.xyz.n26c10 41.91 17.60 17.31

bone.xyz.n26c100 42.26 17.93 17.74

bone.xyz.n6c10 9.26 4.28 4.10

bone.xyz.n6c100 9.29 4.46 4.21

bone.xyz.x.n26c10 20.24 8.80 8.66

bone.xyz.x.n26c100 20.47 8.93 8.76

bone.xyz.x.n6c10 4.32 2.16 2.05

bone.xyz.x.n6c100 4.39 2.23 2.10

bone.xyz.xy.n26c10 9.63 4.38 4.30

bone.xyz.xy.n26c100 9.68 4.47 4.34

bone.xyz.xy.n6c10 2.05 1.06 1.02

bone.xyz.xy.n6c100 2.08 1.11 1.05

liver.n26c10 200.28 76.43 75.65

liver.n26c100 200.64 77.25 76.02

liver.n6c10 44.58 18.68 17.90

liver.n6c100 44.76 18.91 17.99

Average 122.45 48.44 47.31

Table 14 Total run-times of the initialization and min-cut and max-

flow stages: Stereo Vision problems

Stereo

Instance PRF HPF BK

sawtoothBVZ 1.64 0.88 0.62

sawtoothKZ2 4.26 2.02 1.52

tsukubaBVZ 1.15 0.57 0.41

tsukubaKZ2 3.55 1.42 1.06

venusBVZ 2.02 0.94 0.66

venusKZ2 5.32 2.22 1.66

Average 2.99 1.34 0.99

Table 15 Total run-times of the initialization and min-cut and

max-flow stages: Multi-View problems

Multi-view

Instance PRF HPF BK

camel-lrg 563.52 180.57 225.53

camel-med 242.74 80.56 83.43

camel-sml 17.44 6.92 6.46

gargoyle-lrg 417.75 154.40 432.31

gargoyle-med 198.56 66.66 226.43

gargoyle-sml 12.54 5.61 13.86

Average 242.09 82.45 164.67

Table 16 Total run-times of the initialization and min-cut and

max-flow stages: Surface Fitting problems

Surface fitting

Instance PRF HPF BK

bunny-lrg 1595.21 440.59 277.02

bunny-med 131.78 43.50 32.82

bunny-sml 11.18 4.74 4.03

Average 579.39 162.94 104.62

J Real-Time Image Proc (2016) 11:589–609 605

123

Appendix3: Memory utilization

See Tables 18, 19, 20, 21

Table 17 Total run-times of the initialization and min-cut and max-

flow stages: Segmentation problems

Segmentation

Instance PRF HPF BK

adhead.n26c10 982.98 356.07 407.42

adhead.n26c100 985.39 383.55 476.04

adhead.n6c10 223.30 94.54 90.38

adhead.n6c100 248.06 110.58 123.22

babyface.n26c10 341.32 264.41 250.15

babyface.n26c100 392.62 325.34 321.20

babyface.n6c10 105.48 52.74 35.30

babyface.n6c100 129.39 72.35 43.89

bone.n26c10 456.03 163.58 196.26

bone.n26c100 477.26 174.07 198.73

bone.n6c10 121.31 42.74 47.79

bone.n6c100 133.96 47.02 51.88

bone_subx.n26c10 211.19 80.94 100.23

bone_subx.n26c100 220.91 83.42 107.43

bone_subx.n6c10 64.91 21.41 26.57

bone_subx.n6c100 62.00 22.52 30.29

bone_subxy.n26c10 100.65 40.13 48.25

bone_subxy.n26c100 102.25 40.87 51.04

bone_subxy.n6c10 27.58 10.30 12.09

bone_subxy.n6c100 28.05 10.83 13.62

bone_subxyz.n26c10 48.60 19.15 23.69

bone_subxyz.n26c100 49.39 19.71 25.41

bone_subxyz.n6c10 12.13 4.98 5.95

bone_subxyz.n6c100 12.24 5.28 6.54

bone_subxyz_subx.n26c10 23.23 9.48 11.27

bone_subxyz_subx.n26c100 23.82 9.68 11.55

bone_subxyz_subx.n6c10 5.56 2.43 2.75

bone_subxyz_subx.n6c100 5.65 2.54 2.89

bone_subxyz_subxy.n26c10 11.12 4.67 5.60

bone_subxyz_subxy.n26c100 11.20 4.80 5.79

bone_subxyz_subxy.n6c10 2.60 1.16 1.34

bone_subxyz_subxy.n6c100 2.64 1.24 1.39

liver.n26c10 275.68 126.03 112.40

liver.n26c100 301.11 135.20 128.60

liver.n6c10 83.42 36.99 32.02

liver.n6c100 97.88 42.30 43.60

Average 177.25 78.42 84.79

Table 18 Memory utilization in (MBytes) for Stereo problems

Stereo

Instance PRF HPF BK

sawtoothBVZ 62.28 58.50 69.27

sawtoothKZ2 141.08 125.81 147.55

tsukubaBVZ 41.62 39.55 48.79

tsukubaKZ2 97.72 87.12 104.57

venusBVZ 62.27 58.65 69.24

venusKZ2 145.76 129.76 152.22

Table 19 Memory utilization in (MBytes) for multi-view problems

Multi-view

Instance PRF HPF BK

camel-lrg 6,879.30 6,392.60 6,814.80

camel-med 3,519.90 3,272.50 3,490.60

camel-sml 441.50 411.30 444.50

gargoyle-lrg 6,313.40 5,851.80 6,255.40

gargoyle-med 3,253.60 3,015.00 3,227.40

gargoyle-sml 413.30 382.52 416.60

Table 20 Memory utilization in (MBytes) for Surface Fitting

problems

Surface fitting

Instance PRF HPF BK

bunny-lrg 21,389.40 19,600.30 21,208.00

bunny-med 2,753.30 2,515.00 2,736.80

bunny-sml 360.50 327.70 365.10

606 J Real-Time Image Proc (2016) 11:589–609

123

References

1. Ahuja, R.K., Kodialam, M., Mishra, A.K., Orlin, J.B.: Compu-

tational investigations of maximum flow algorithms. Eur. J. Oper.

Res. 97(3), 509–542 (1997)

2. Ahuja, R.K., Magnanti T.L., Orlin J.B.: Network flows: theory,

algorithms, and applications. Prentice-Hall, Englewood Cliffs

(1993)

3. Ali, S., Shah, M.: Human action recognition in videos using

kinematic features and multiple instance learning. IEEE Trans

Pattern Anal. Mach. Intell. 32(2), 288–303 (2010)

4. Anderson, R.J., Setubal, J.C: Goldberg’s algorithm for maximum

flow in perspective: a computational study. In: Network flows and

matching: First DIMACS Implementation Challenge. DIMACS

Series in Discrete Mathematics and Theoretical Computer Sci-

ence, vol. 12, pp. 123–133 (1991)

5. Arora, C., Banerjee, S., Kalra, P., Maheshwari, S.: An efficient

graph cut algorithm for computer vision problems. In: Kostas, D.,

Petros, M., Nikos P., (eds.) Computer Vision ECCV 2010. Lec-

ture Notes in Computer Science, vol 6313, pp. 552–565.

Springer, Heidelberg (2010)

6. Azar, Y., Madry, A., Moscibroda, T., Panigrahi, D., Srinivasan,

A.: Maximum bipartite flow in networks with adaptive channel

width. Theor. Comput. Sci. 412(24), 2577–2587 (2011)

7. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust

video object cutout using localized classifiers. ACM Trans.

Graph. 28(3), 70:1–70:11 (2009)

8. Borradaile, G., Klein, P.: An o(n log n) algorithm for maximum

st-flow in a directed planar graph. J. ACM 56(2), 9:1–9:30 (2009)

9. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image

segmentation. Int. J. Comput. Vis. 70(2), 109131 (2006)

10. Boykov, Y., Kolmogorov, V.: An experimental comparison of

min-cut/max-flow algorithms for energy minimization in vision.

IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

11. Boykov, Y., Lempitsky, V.: From photohulls to photoflux opti-

mization. In: British Machine Vision Conference (BMVC), vol.

III, pp. 1149–1158 (2006)

12. Chandran, B.G., Hochbaum, D.S.: A computational study of the

pseudoflow and push-relabel algorithms for the maximum flow

problem. Oper. Res. 57(2), 358–376 (2009)

13. Cherkassky, B.V., Goldberg A.V.: On implementing the push—

relabel method for the maximum flow problem. Algorithmica

19(4), 390–410 (1997)

14. Computer Vision Research Group. Max-flow problem instances

in vision. Technical report, University of Western Ontario.

http://vision.csd.uwo.ca (2009). Accessed Oct 2009.

15. Delong, A., Boykov, Y.: A scalable graph-cut algorithm for n-d

grids. In: IEEE computer society conference on computer vision

and pattern recognition, pp. 1–8 (2008)

16. Derigs, U., Meier, W.: Implementing Goldberg’s max-flow-

algorithm a computational investigation. Math. Methods Oper.

Res. 33(6), 383–403 (1989)

17. Fishbain, B., Hochbaum, D.S., Yang, Y.T.: Graph-cuts target

tracking in videos through joint utilization of color and coarse

motion data. UC Berkeley Manuscript (2012)

18. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network.

Can. J. Math. 8(3), 339–404 (1956)

19. Goldberg, A.V.: The partial augment–relabel algorithm for the

maximum flow problem. Algorithms-ESA 2008, pp. 466–477

(2008)

20. Goldberg, A.V.: Hi-level variant of the push-relabel (ver. 3.5)

(2010). Accessed Jan 2010

21. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-

flow problem. J. ACM 35(4), 921–940 (1988)

22. Gracias, N., Mahoor, M., Negahdaripour, S., Gleason, A.: Fast

image blending using watersheds and graph cuts. Image Vis.

Comput. 27(5), 597–607 (2009) [The 17th British Machine

Vision Conference (BMVC 2006)]

23. Grundmann, M., Kwatra, V., Mei Han, and Essa, I.: Efficient

hierarchical graph-based video segmentation. In: 2010 IEEE

conference on computer vision and pattern recognition (CVPR),

pp. 2141–2148 (2010)

24. Hochbaum D.S.: An efficient algorithm for image segmentation,

markov random fields and related problems. J. ACM 48(4),

686–701 (2001)

25. Hochbaum, D.S.: The pseudoflow algorithm: a new algorithm for

the maximum-flow problem. Oper. Res. 56(4), 992–1009 (2008)

Table 21 Memory utilization in (MBytes) for Segmentation

problems

Segmentation

Instance PRF HPF BK

adhead.n26c10 20,759.80 16,480.20 20,719.40

adhead.n26c100 20,759.80 16,480.20 20,719.40

adhead.n6c10 5,399.80 4,960.20 5,359.40

adhead.n6c100 5,399.80 4,960.20 5,359.40

babyface.n26c10 8,347.10 6,628.00 8,335.40

babyface.n26c100 8,347.10 6,628.00 8,335.40

babyface.n6c10 2,167.30 1,993.20 2,155.60

babyface.n6c100 2,167.30 1,993.20 2,155.60

bone.n26c10 12,863.50 10,212.70 12,841.30

bone.n26c100 12,863.50 10,212.70 12,841.30

bone.n6c10 3,343.50 3,072.70 3,321.30

bone.n6c100 3,343.50 3,072.70 3,321.30

bone.x.n26c10 6,435.30 5,109.30 6,428.10

bone.x.n26c100 6,435.30 5,109.30 6,428.10

bone.x.n6c10 1,675.30 1,539.30 1,668.10

bone.x.n6c100 1,675.30 1,539.30 1,668.10

bone.xy.n26c10 3,220.40 2,557.04 3,220.60

bone.xy.n26c100 3,220.40 2,557.06 3,220.60

bone.xy.n6c10 840.40 772.00 840.60

bone.xy.n6c100 840.40 772.00 840.60

bone.xyz.n26c10 1,625.60 1,291.00 1,629.40

bone.xyz.n26c100 1,625.60 1,291.00 1,629.40

bone.xyz.n6c10 425.60 391.10 429.40

bone.xyz.n6c100 425.60 391.10 429.40

bone.xyz.x.n26c10 815.10 647.60 820.80

bone.xyz.x.n26c100 815.10 647.60 820.80

bone.xyz.x.n6c10 215.10 197.70 220.80

bone.xyz.x.n6c100 215.10 197.70 220.80

bone.xyz.xy.n26c10 409.60 325.80 416.30

bone.xyz.xy.n26c100 409.60 325.80 416.30

bone.xyz.xy.n6c10 109.60 100.80 116.30

bone.xyz.xy.n6c100 109.60 100.80 116.30

liver.n26c10 6,872.10 5,455.20 6,863.80

liver.n26c100 6,872.10 5,455.20 6,863.80

liver.n6c10 1,792.00 1,645.20 1,783.80

liver.n6c100 1,792.00 1,645.20 1,783.80

J Real-Time Image Proc (2016) 11:589–609 607

123

http://vision.csd.uwo.ca

26. Hochbaum, D.S.: Efficient and effective image segmentation

interactive tool. In: BIOSIGNALS 2009-international conference

on bio-inspired systems and signal processing, pp. 459–461

(2009)

27. Hochbaum, D.S.: Polynomial time algorithms for ratio regions

and a variant of normalized cut. IEEE Trans. Pattern Recognit.

Mach. Intell. 32(5), 889–898 (2009)

28. Hochbaum, D.S.: HPF Implementation Ver. 3.3. (2010). Accessed

Jan 2010

29. Hochbaum, D.S., Orlin J.B.: Simplifications and speedups of the

pseudoflow algorithm. Networks (2012, to appear)

30. Hochbaum, D.S., Singh, V.: An efficient algorithm for co-seg-

mentation. In: International conference on computer vision

(ICCV) (2009)

31. Ideses, I., Yaroslavsky, L., Fishbain, B.: Real-time 2d to 3d video

conversion. J. Real Time Image Process. 2(1), 3–9 (2007)

32. Italiano, G.F., Nussbaum, Y., Sankowski, P., and Wulff-Nilsen, C.:

Improved algorithms for min cut and max flow in undirected planar

graphs. In: Proceedings of the 43rd annual ACM symposium on

theory of computing, STOC ’11, pp. 313–322. ACM, New York

(2011)

33. Kalarot, R., Morris J.: Comparison of fpga and gpu implemen-

tations of real-time stereo vision. In: 2010 IEEE computer society

conference on computer vision and pattern recognition work-

shops (CVPRW), pp. 9 –15 (2010)

34. Kolmogorov, V.: An implementation of the maxflow algorithm.

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html (2010).

Accessed Jan 2010

35. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting.

In: Proceedings of IEEE conference on computer vision and

pattern recognition CVPR ’07, pp. 1–8 (2007)

36. Lempitsky, V., Boykov, Y., Ivanov, D.: Oriented visibility for

multiview reconstruction. In: Leonardis, A, Bischof, H., Pinz, A.

(eds.) Computer Vision ECCV 2006. Lecture Notes in Computer

Science, vol. 3953, pp. 226–238. Springer, Heidelberg (2006)

37. Liu, J., Sun, J.: Parallel graph-cuts by adaptive bottom-up

merging. In: 2010 IEEE conference on computer vision and

pattern recognition (CVPR), pp. 2181–2188 (2010)

38. Mu, Y., Zhang, H., Wang, H., Zuo, W.: Automatic video object seg-

mentation using graph cut. In: IEEE international conference on image

processing, 2007 (ICIP 2007), vol. 3, pp. III–377–III–380 (2007)

39. Nakamura Y., Matsuura T., Satoh K., and Ohta Y. (1996) Occlusion

detectable stereo—occlusion patterns in camera matrix. In: IEEE

computer society conference on computer vision and pattern rec-

ognition 0:371

40. Ngo, C.-W., Ma, Y.-F., Zhang, H.-J.: Video summarization and

scene detection by graph modeling. IEEE Trans. Circuits Syst.

Video Technol. 15(2),. 296–305 (2005)

41. Qranfal, J., Hochbaum, D.S., Tanoh, G.: Experimental analysis of

the mrf algorithm for segmentation of noisy medical images.

Algorithmic Oper. Res. 6(2) (2012)

42. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation

of dense two-frame stereo correspondence algorithms. In: Proc.

IEEE workshop on stereo and multi-baseline vision (SMBV 2001),

pp. 131–140 (2001)

43. Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hier-

archy and adaptivity in segmenting visual scenes. Nature

442(7104), 810–813 (2006)

44. Shekhovtsov, A., Hlavac V.: A distributed mincut/maxflow

algorithm combining path augmentation and push-relabel. In:

Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F., (eds.) Energy

Minimization Methods in Computer Vision and Pattern Recog-

nition. Lecture Notes in Computer Science, vol. 6819, pp. 1–16.

Springer, Heidelberg (2011)

45. Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys,

M.: Interactive 3d architectural modeling from unordered photo

collections. In: SIGGRAPH Asia ’08: ACM SIGGRAPH Asia

2008 papers, pp. 1–10. ACM, New York (2008)

46. Sleator, D.D., Tarjan R.E.: A data structure for dynamic trees. In:

Proceedings of the thirteenth annual ACM symposium on Theory

of computing (STOC ’81) pp. 114–122. ACM, New York (1981)

47. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring

photo collections in 3d. ACM Trans. Graphics 25(3) (2006)

48. Snow, D., Viola, P., Zabih, R.: Exact voxel occupancy with graph

cuts. In: Proceedings of IEEE conference on computer vision and

pattern recognition, vol. 1, pp. 345–352 (2000)

49. Stanford Computer Graphics Laboratory. ‘‘the stanford 3d scanning

repository’’. Technical report, Stanford, Palo-Alto, CA, USA,

http://graphics.stanford.edu/data/3Dscanrep/ (2009). Accessed Oct

2009

50. Starck, J., Hilton, A.: Surface capture for performance-based

animation. IEEE Comput. Graphics Appl. 27(3), 21–31 (2007)

51. Strandmark, P., Kahl, F.: Parallel and distributed graph cuts by

dual decomposition. In: 2010 IEEE conference on computer

vision and pattern recognition (CVPR), pp. 2085–2092 (2010)

52. Vineet, V., Narayanan, P.J.: Cuda cuts: Fast graph cuts on the

gpu. In: IEEE computer society conference on computer vision

and pattern recognition workshops, 2008. CVPRW ’08. pp. 1–8

(2008)

53. Vogiatzis, G., Torr, P.H.S., Cipolla, R.: Multi-view stereo via

volumetric graph-cuts. In: Computer Vision and Pattern Recog-

nition (CVPR), vol. 2, pp. 391–398 (2005)

Author Biographies

Barak Fishbain is an assistant

Professor at the Environmental,

Water and Agricultural Engi-

neering Division, Faculty of

Civil & Environmental Engi-

neering in the Technion-Israel

Institute of Technology Haifa,

Israel. Prior to his arrival to the

Technion, Professor Fishbain

served as an associate director at

the Integrated Media Systems

Center (IMSC), Viterbi school

of engineering, University of

Southern California (USC) and

did his post-doctoral studies at

the department of Industrial Engineering and Operations Research

(IEOR) in University of California at Berkeley. Professor Fishbain’s

research focuses on Enviromatics, a new research field which aims at

devising mathematical programming methods for machine under-

standing of trends and behaviors of built and natural environments.

This includes environmental distributed sensing (i.e., distributed air

and water quality monitoring), road safety and traffic data realization

and structural sensory networks.

608 J Real-Time Image Proc (2016) 11:589–609

123

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
http://graphics.stanford.edu/data/3Dscanrep/

Dorit S. Hochbaum is a full

professor and Chancellor chair

at the University of California at

Berkeley in the department of

Industrial Engineering and

Operations Research (IEOR).

Her research interests are in the

areas of approximation algo-

rithms and design and analysis

of computer algorithms and

discrete and continuous optimi-

zation. Her recent work focuses

on efficient techniques for net-

work flow related problems,

ranking, data mining and image

segmentation problems. Professor Hochbaum is the author of over

140 papers that appeared in the Operations Research, Management

Science and Theoretical Computer Science literature. Professor

Hochbaum was named in 2004 an honorary doctorate of Sciences of

the University of Copenhagen, for her work on approximation algo-

rithms. Professor Hochbaum was awarded in 2005 the title of

INFORMS fellow. She is the winner of the 2001 INFORMS Com-

puting Society prize for best paper dealing with the Operations

Research/Computer Science interface.

Stefan Mueller studied Math-

ematics at the Technische Uni-

versität Berlin and at University

of California, Berkeley. His

main interests are Combinato-

rial Optimization and Geome-

try. In 2011 he finished his

master’s thesis on ‘‘Confluent

Network flows’’.

J Real-Time Image Proc (2016) 11:589–609 609

123

	A competitive study of the pseudoflow algorithm for the minimum s--t cut problem in vision applications
	Abstract
	Introduction
	A graph representation of a vision problem
	Definitions and notation
	Cuts
	Flows

	Min-cut/max-flow algorithms
	Hochbaum’s pseudoflow algorithm
	The push-relabel algorithm
	Boykov’s and Kolmogorov’s augmenting paths algorithm
	The partial augment-relabel

	Experimental setup
	Computing environments
	Problem classes
	Stereo vision
	Multi-view reconstruction
	Surface fitting
	Segmentation

	Results
	Run-times
	Comparison to partial augment-relabel
	Memory utilization

	Conclusions
	Appendix1: Problem sizes
	Appendix2: Run-times
	Appendix3: Memory utilization
	References

