
A Breakpoints Based Method for the Maximum Diversity and Dispersion
Problems

Dorit S. Hochbaum∗ Zhihao Liu† Olivier Goldschmidt‡

Abstract

The maximum diversity, or dispersion, problem (MDP), is

to select from a given set a subset of elements of given

cardinality (budget), so that the sum of pairwise distances,

or utilities, between the selected elements is maximized. We

introduce here a method, called the Breakpoints (BP)

algorithm, based on a technique proposed in Hochbaum

(2009), to generate the concave piecewise linear envelope

of the solutions to the relaxation of the problem for all

values of the budget. The breakpoints in this envelope are

provably optimal for the respective budgets and are attained

using a parametric cut procedure that is very efficient. The

performance of the parametric cut is further enhanced by a

newly introduced compact formulation of the problem. The

problem is then solved, for any given value of the budget, by

applying a greedy-like method to add or subtract nodes from

adjacent breakpoints. This greedy solution may be improved

using Tabu Search. the BPTS algorithm. This method

works well if for the given budget there are breakpoints that

are “close”. However, for many data sets and budgets this is

not the case, and the breakpoints are sparse. We introduce a

perturbation technique applied to the utility values in cases

where there is paucity of breakpoints, and show that this

results in denser collections of breakpoints. Furthermore,

each optimal perturbed solution is quite close to an optimal

non-perturbed solution. We compare the performance of

our breakpoints algorithm to leading methods for these

problems: The metaheuristic OBMA–that was recently

shown to outperform GRASP, Neighborhood search and

Tabu Search–and Gurobi, an integer programming software.

It is demonstrated that our method dominates, dramatically,

the performance of these methods in terms of computation

speed and in comparable or better solution quality. This is

the first time that the properties of the concave envelope and

the breakpoints are used in a practically tested algorithm.

This implies the potential of this method for more general

submodular maximization problems.

∗Department of IEOR, UC Berkeley, CA,
dhochbaum@berkeley.edu

†Department of IEOR, UC Berkeley, CA, zhi-
hao liu@berkeley.edu

‡Riverside County Office of Education, Riverside, CA, goldo-
liv@gmail.com

1 Introduction.

We address here the maximum diversity problem
(MDP), also known as the maximum dispersion prob-
lem. MDP is to select a subset of elements of bounded
size, from a given set, so that the sum of pairwise dis-
tances, or utilities, between the selected elements is
maximized. This problem is NP-hard since it gener-
alizes the maximum clique problem.

The maximum diversity problem (MDP) arose in
many different applications such as genetic engineering,
transportation system control and alternative energy
options [11]. One of its applications that has received a
lot of attention recently is the team formation problem
in social networks. In this scenario, the cardinality
constraint is the maximum headcount budgets and the
pairwise distance is the utility of collaboration between
each pair of people. The goal is to select people to form
a team maximizing the total utility of the team.

The problem can be formalized as a graph problem.
Given a graph G = (V,E) with non-negative edge
weights uij for every edge [i, j] ∈ E and a budget B, the
problem is to find a subset S ⊂ V so that the cardinality
of S does not exceed B and so that the sum of weights
of edges within S is maximum. Our study here applies
to a generalized form of the problem where each node
i ∈ V has a cost qi, which is permitted to be negative,
and the total cost of the set S must satisfy

∑
i∈S qi ≤ B.

We will refer to it as weighted MDP.
Since the maximum diversity problem is considered

for qi = 1 the discussion and experimentation here will
be presented for this case only. But, as noted above,
the algorithmic method applies for the weighted MDP
as well. In the sequel we will refer to the number of
elements |V | as n and the number of pairwise utilities,
|E|, as m.

MDP is often formulated as a quadratic binary
optimization problem. Let xi be a binary variable which

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited189

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

is equal to 1 if node i is selected in S and 0 otherwise.

(MDP)max
∑

[i,j]∈E

uijxixj

s.t.
∑
i∈V

xi ≤ B

0 ≤ xi ≤ 1 integer ∀ i ∈ V,

As noted above the problem is NP-hard and there-
fore challenging to solve optimally within reasonable
amount of time. We consider here the relaxation of the
problem’s budget constraint for a Lagrange multiplier
λ:

(λ-MDP) max
∑

[i,j]∈E

uijxixj − λ
∑
i∈V

xi

s.t. 0 ≤ xi ≤ 1 integer ∀ i ∈ V,

As explained next, this relaxed problem λ-MDP is
polynomial time solvable, and moreover, one can get the
concave envelope describing the solutions for all values
of λ in polynomial time [15]. Furthermore, it was shown
in [15] that this entire collection of solutions, for all
values of λ, is derived in the running time required to
solve a minimum cut on an associated graph, using the
parametric minimum cut procedure of [14,16,17].

Figure 1 illustrates, for each budget the optimal
value of the objective function. Obviously, as the budget
increases, the value of the optimum can only go up.
We then consider a collection of lines that lie above all
these points. It suffices to consider the line segment
starting at the origin and has lowest slope while still
lying above all the points. The lower envelope, which is
the minimum of this collection of lines that lie above
the collection of these points, for each segment, is
then known to be concave. Any point where the line
segment changes, and the slope becomes lower, is called
a breakpoint. We call the slope of the first line segment
λ1, the second λ2, which is lower in value, etc., for a
total of ℓ breakpoints.

It is proved in [15] that the first breakpoint is at
the densest subgraph, and λ1 is the maximum density
value.

The statement that we can derive the solutions for
all values of λ appears surprising at first glance since the
domain of λ values is infinite. As shown in [15], there
are at most n different solution sets for all values of λ
and they are furthermore nested as the values of λ go
down, so all can be represented in O(n) space and time.
Details are provided in Section 5.

The concave piecewise linear function that maps all
possible budgets to an upper bound on the optimal
solution for each respective budget is referred to as
the concave envelope. The dynamic evolution problem

studied in [15] addresses how the solution to MDP
evolves as the budget increases. The properties of the
concave envelope include:
1. At the breakpoints of this envelope the solutions

are optimal.
2. The breakpoints correspond to solutions that are

nested- the set corresponding to the solution in one
breakpoint is a subset of the solutions for larger
budgets breakpoints.

3. The number of breakpoints is at most n, the
number of elements, or nodes, in the graph G.

4. The envelope describes an upper bound on the
optimal value at any level of the budget.

5. If there are optimal solutions that lie on the line
segments of the envelope, a method, described in
[15], generates such solutions, in constant time per
solution.

Total
Benefit

Budget

λ1

λ2
λ2 < λ < λ1

Figure 1: The optimal solutions for each budget, indi-
cated as circles, the concave envelope, in red, and the
breakpoints, indicated as squares.

If a breakpoint exists for a given budget value
then the problem is solved optimally. In general,
however, there are few breakpoints, and, for some
problem instances, there could be no breakpoints at all.
We develop here insights into the conditions that tend
to increase the number of breakpoints, specifically, the
larger variety of values from which uij are generated, the
larger is the number of breakpoints. We then develop
a perturbation technique that increases the number
of breakpoints and also affect their distribution. We
further show, empirically, that the solutions generated
from the perturbed weights are close to the optimal
solutions for the non-perturbed weights. Finally, we
show that with the breakpoints of the envelope we can
compute close to optimal solutions and at much faster
running time than state-of-the-art approaches.

Another important contribution here is a new for-
mulation of λ-MDP where the parametric minimum cut
is solved on an associated directed graph that is of the
same size as G. The associated graph has n + 2 nodes

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited190

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

and 2m+n arcs. This is in contrast to the known tech-
nique that formulates this problem as a selection prob-
lem on a graph with O(m) nodes and O(m) edges. The
difference is computationally significant for the larger
datasets.

The paper is organized as follows. We review the
relevant literature on MDP in Section 2. Section 3
presents a new compact formulation of λ-MDP and re-
lated problems, such as the maximum density subgraph
problem. In Section 4 we discuss how to solve λ-MDP
for all values of λ in the complexity of a single minimum
cut procedure. The BP algorithm that uses a greedy
procedure, and its variant BPTS, that is enhanced with
Tabu Search, are described in Section 5. Next, the per-
turbation technique is introduced in Section 6. Our ex-
perimental study is using real datasets, existing bench-
marks and newly introduced synthetic datasets, that are
described in Section 7. The performance of the paramet-
ric cut procedure on all the data instances is provided in
Section 8, as well as the discussion of the perturbation
techniques used for some of the datasets. The empirical
study comparing the performance of our algorithm(s)
to that of OBMA and Gurobi is presented in Section 9.
We conclude with several comments in Section 10.

2 Literature review.

Early applications of MDP arose in the facility loca-
tion field. Kuby [21] considered maximizing the aver-
age distance between selected facilities in the network,
calling the problem the maximum dispersion problem.
Kincaid [20] proposed two metaheuristic algorithms for
MDP including simulated annealing and Tabu Search
respectively. Kuo et al. [22] proved that MDP is NP-
hard even when the distances can assume negative val-
ues. They also developed four heuristics: C1, C2, D1
and D2 as the foundation for specialized situations [11].
These heuristics start from an empty set and select one
node from unselected nodes at each iterations or start
from the collection of all nodes and remove one node
at each iterations. Compared to C2 and D2, Ağca et
al. [1] proposed a Lagrangian method for MDP and the
experimental results in small size data sets (maximum
size=100) showed this Lagrangian method had superi-
ority in accuracy but inferiority in the running time.

A different type of application of weighted MDP to
text summarization, was discussed by [23]. The authors
proposed to use a simple greedy algorithm for the
problem, without using information derived from the
breakpoints. Our procedure here applies for this text
summarization problem with potential improvement of
quality of solutions and running times.

Other recent algorithms for MDP have been de-
vised based on the use of Greedy Randomized Adaptive

Search Procedure (GRASP) [30,31], Variable Neighbor-
hood Search (VNS) [2, 4, 31] and Memetic Algorithm
(MA) [6,34,36]. All these algorithms construct feasible
solutions and then try to improve on them by conduct-
ing local search for better solutions. Tabu Search [12]
is the most widely used local search method for MDP:
Palubeck [26] proposed the Iterated Tabu Search (ITS)
method in which some elements of the current solution
are randomly replaced with unselected elements at each
iteration and Tabu Search is then applied. Aringhieri
et al. [3] presented the eXploring Tabu Search (XTS)
method that maintain, in long-term memory, several
solutions in addition to the best incumbent,in order to
retain a diverse collection of solutions. Wang et al. [33]
proposed a learnable Tabu Search by combining Tabu
Search with the Estimation of Distribution Algorithm
(EDA). The novelty in this algorithm is the use of a
knowledge model called clustered EDA to store histor-
ical solutions and extract information to guide Tabu
Search.

Currently, memetic algorithms tend to outperform
other metaheuristics. A memetic algorithm is a com-
bination of population-based search framework and
neighborhood-based local search framework. Wang et
al. [34] proposed a Tabu memetic algorithm (TS-MA)
that in a first stage, applies Tabu search to improve a
randomly generated feasible solution. This feasible so-
lution generation is used a number of times, until the
collection of improved feasible solutions satisfy a certain
quality requirements. This collection of resulting solu-
tions serves as the initial population for the second stage
of the algorithm, which applies Tabu search to improve
the quality of the solutions. De Freitas et al. [6] devel-
oped a memetic self-adaptive evolution strategy (MSES)
which mainly applies self-adaptive mutation parame-
ters to generate offspring solutions. Zhou [36] proposed
an opposition-based memetic algorithm for MDP called
OBMA. Compared to TS-MA, this algorithm searches
from both candidate solutions and its opposite solu-
tion, and uses a rank-based quality-and-distance pool
to guarantee the diversity of solutions in the popula-
tion. As a result, it is also one of the best performing
algorithms so far according to a recently published re-
view [25].

While the majority of algorithms for MDP are
heuristics and metaheuristics, there are approaches
based on network flow. Witzgall and Saunders [35] ad-
dressed this problem in the context of locating postal
facilities at maximum dispersion. There the utility of
choosing a pair of facilities is the pairwise distance,
and there is a cost for each selected facility that is
not necessarily equal to 1 (as in MDP). Witzgall and
Saunders studied the properties of the concave enve-

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited191

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

lope and gave a non-polynomial algorithm to find the
breakpoints. Hochbaum [15] generalized and substan-
tially improved their work both in terms of providing
a strongly polynomial parametric cut procedure and in
terms of identifying additional structural properties.

3 Compact formulation of λ-MDP

One way of solving the λ-MDP problem is to view it as
a selection problem. In a selection problem there is a set
of elements and a collection of subsets. Each subset is
associated with a benefit value, and each element has a
cost. The objective is to find a collection of subsets that
maximize the net benefit of the subsets minus the cost
of the elements in the union of subsets. Here the sets are
the edges, each of which is a subset of two elements–its
endpoints. And each node is an element associated with
a cost. The selection problem is presented as a bipartite
graph B = (V1 ∪ V2), E) with V1 a set of nodes for each
edge in E, and V2 a set of nodes for each node in V .
The bipartite graph B has n+m nodes and each edge-
node is connected to its two endpoints nodes for a total
of 2m arcs. The selection problem is then solved by
finding a minimum cut on the {s, t} bipartite network
constructed by adding to B a source node s connected
to each node, ij in V1, with capacity uij , and a sink
node t that has an arc of capacity λ from each node in
V2. Each arc from V1 to V2 has capacity∞. The source
set of a minimum cut consists of the nodes and edges
of the subgraph maximizing the objective function of
λ-MDP. This graph has m+n+2 nodes, and O(m+n)
arcs. This graph is illustrated in Figure 2.

We introduce here a compact formulation for solv-
ing the λ-MDP problem as a minimum cut on a graph
with n + 2 nodes and O(m) arcs, resulting in a more
efficient method.

For a graph G = (V,E), non-negative edge weights
uij , node weights qi, and two subsets of nodes, D1, D2 ⊆
V , we Let C(D1, D2) =

∑
i∈D1,j∈D2 , [i,j]∈E uij . With

this notation, (a generalization of) the λ-MDP problem
is to find a subset of nodes S so that C(S, S)−λ

∑
i∈S qi

is maximized, where C(S, S) =
∑

i,j∈S and [i,j]∈E uij .
Next we set qi = 1 although the Lemma applies for
general node weights. We denote by di the weighted
degree of node i in G: di =

∑
j|[i,j]∈E uij .

Lemma 3.1. The λ-MDP problem is equivalent to

(3.1) max
S⊆V

∑
i∈S

(
1

2
di − λ · 1)− 1

2
C(S, S̄).

Proof. For any subset of nodes S ⊂ V ,

d(S) = 2C(S, S) + C(S, S̄)).

Therefore,

C(S, S)−
∑
i∈S

λ · 1 =
1

2
(d(S)− C(S, S̄))−

∑
i∈S

λ · 1.

Maximizing this expression is equivalent to maximizing
(3.1).

The problem (3.1) is an instance of the s-excess
problem, solved as a minimum cut on a graph of the
size of G [14]. The general s-excess problem is defined
on a directed graph G = (V,A) with non-negative arc
capacities and with node weights wi that can be positive
or negative:

(s-excess) max
S⊆V

∑
i∈S

wi − C(S, S̄).

Figure 2: The “selection” graph for λ-MDP

Figure 3: The “s-excess” graph for λ-MDP

Here wi = di−2λ. The s-excess problem is a binary
special case of a monotone IP3: An integer program
with at most three variables per inequality, where two
of the variables appear with opposite signs and the
third variable appear in one constraint at most. It was
shown in [13] and [18] that IP3 problems are solved
in polynomial time as a minimum cut problem on a
respective graph. To show that for our case here, let
zij = 1 if xi ∈ S and xj ∈ S, and 0 otherwise. With
this notation the formulation of 3.1 is,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited192

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

max
∑
i∈V

wixi −
∑

[i,j]∈A

uijzij

s.t. xi − xj ≤ zij ∀ (i, j) ∈ A

0 ≤ xi ≤ 1 ∀ i ∈ V

0 ≤ zij ≤ 1 ∀ (i, j) ∈ A

xi, zij integer

To solve this problem we construct an s, t-graph
Gst = (V ∪ {s, t}, A ∪ As ∪ At) as follows: The set
of arcs A consists of a pair of opposing directed arcs
arcs (i, j), (j, i) for each edge [i, j] ∈ E. Both of these
arcs carry the same weight, uij . The set of arcs As go
from the source node s to nodes i with wi > 0 and
have capacity us,i = wi. The sink adjacent arcs At go
from nodes j with wj < 0 to the sink, with capacity
uj,t = |wj | = −wj . The equivalent problem to λ-MDP,
(multiplying 3.1 by 2) is

max
S⊆V

∑
i∈S

(di − 2λ)− C(S, S̄).

All nodes are connected to the source, s, with capacity
max{di − 2λ, 0}, and connected to the sink t, with
capacity −min{di − 2λ, 0}.

Lemma 3.2. S∗ is an optimal solution to λ-MDP de-
fined on graph G if and only if S∗ is the source set of a
minimum cut in Gst.

Proof. Let V + ≡ {i ∈ V |wi > 0}, and let V − ≡ {j ∈
V |wj < 0}. Let (s ∪ S, t ∪ T) be a minimum s, t cut on
Gst. Then the capacity of this cut is given by

C (s ∪ S, t ∪ T)

=
∑

(s,i)∈As,i∈T

us,i +
∑

(j,t)∈At,j∈S

uj,t +
∑

i∈S,j∈T

uij

=
∑

i∈T∩V +

wi +
∑

j ∈S∩V −

−wj +
∑

i∈S, j∈T

uij

=
∑
i∈V +

wi −
∑

i∈S∩V +

wi +
∑

j∈S∩V −

−wj +
∑

i∈S,j∈T

uij

= W+ −
∑
j∈S

wj +
∑

i∈S, j∈T

uij

WhereW+ is the sum of all positive weights in G, which
is a constant. Therefore, minimizing C (s ∪ S, t ∪ T) is
equivalent to maximizing

∑
j∈S wj−

∑
i∈S, j∈T uij , and

we conclude that the source set of a minimum s, t cut
on Gst is also a maximum s-excess set of G.

4 Solving λ-MDP for all values of λ: The
parametric cut

Solving λ-MDP for all values of λ requires to solve
the minimum cut problem in Figure 3 for all values
of λ. The flow network in Figure 3 is a parametric
flow network in that the arcs adjacent to the source
are monotone non-increasing in the value of λ and the
arcs adjacent to the sink are monotone non-decreasing
in the value of λ. For a flow network with this property,
the maximum flows and minimum cuts for all values of λ
can be solved with a parametric cut (or parametric flow)
procedure in the same complexity as a single minimum
cut (or maximum flow). (This is true for parametric
functions that are linear, as is the case here, whereas
for general monotone parametric functions there is an
unavoidable additive factor of n logU where U is the
range for the values of λ). There are only two such
parametric cut procedures known. One is based on the
push-relabel method [9], and the other is based on the
HPF method (Hochbaum’s PseudoFlow), in [5, 14,17].

Let the source set of the minimum cut solving λ-
MDP be denoted by Sλ. Then for λ1 > λ2 it is known
that Sλ1 ⊆ Sλ2 - the nestedness property. There are at
most n, the number of nodes in the graph, values of λ
where Sλ changes. Each value of λ in which the solution
changes, say λj , is called a breakpoint and the solution
Sλj

is optimal for λj-MDP for budget Bj = |Sλj
|.

Plotting the values of the total utility of Sλ as a function
of the cardinality of Sλ, B = |Sλ|, generates a concave
piecewise linear monotone increasing function referred
to as the concave envelope of the solutions, see Figure 1.

5 The BP algorithm and the concave envelope

We use the guidelines proposed in Hochbaum [15], for
utilizing the concave envelope to generate a feasible
solution, that is often close to the optimum, for a
given budget B. If B corresponds to a breakpoint in
the concave envelope, then it is an optimal solution.
Otherwise one applies a heuristic, for instance the
greedy algorithm, to generate a feasible solution for
budget B using the optimal solution at an adjacent
breakpoint.

To solve MDP for a budget value B, that does not
correspond to a breakpoint the BP algorithm identifies
the two adjacent breakpoints to B. That is, let Bℓ <
Bℓ+1, be the budgets of two consecutive breakpoints
such that Bℓ < B < Bℓ+1. The corresponding node
sets associated with these breakpoints are Sℓ ⊂ Sℓ+1.
Let the closest breakpoint to B, in terms of the budget
value, be, say, Bℓ. The greedy algorithm initializes
the solutions set S to be equal to Sℓ. Until |S| = B
the following greedy step is repeated. For each node
i in Sℓ+1 \ S we calculate the increment of utility

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited193

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

(a) IMDB (b) DBLP

(c) Bibsonomy (d) StackOverFlow

Figure 4: The concave envelopes for the team formation
datasets (without perturbation).

∆i =
∑

j∈S uij that would result by adding node i to S
and choose the one imax that maximizes the value of this
increment. For imax = argmaxj∈Sℓ+1\S ∆j , we update
the set S to S ← S ∪ imax.

Similarly, if the closest breakpoint is on the right,
Bℓ+1, we remove nodes, one at a time, that minimize
the loss of utility if removed from the set Sℓ+1.

The BPTS algorithm enhances the greedy fea-
sible solution found by the BP algorithm by applying
Tabu Search for several iterations until convergence is
achieved.

6 The perturbation technique.

Unlike the example in Figure 4, there are datasets for
which there are too few breakpoints, or none at all.
This happens if the number of different utility values
is small. For instance, if we were to use MDP to solve
the maximum clique problem, the utilities would take
values of 1 or 0, and in general for such graphs there
would be very few breakpoints. This is also the case
for some of the datasets we use, that have utility values
selected as very small number of integers. To address
this, we introduce a perturbation technique. The
exponential perturbation (see equation 6.2) magnifies
the differences between utility values. This perturbation
maps the original utility values to the interval (0, 1]
while maintaining the monotonicity: if one edge utility
is greater than another edge’s utility, the perturbed
utility of the first is greater than the perturbed utility
of the second. The larger the value of utility, the
closer the mapped value is to 1 while the smaller the

(a) α = 0.8 (b) α = 1.0

(c) α = 1.2

Figure 5: Examples of the breakpoint distribution of
the perturbed graph for GKD-c 1 n500 dataset with
different values of α.

value of utility, the closer the mapped value is to
0. The coefficient α, as it is getting smaller, further
magnifies the differences between transformed utility
values. Of course the breakpoints generated for the
perturbed data are not necessarily optimal for the
original utilities. However, we found that in practice,
the “pertubed” envelope breakpoints are very close
to the actual optimal sets for the original utilities.
Examples of the breakpoints distribution for different
values of α are shown in Figure 5.

(6.2) uexp
ij = e−α(umax−uij)

where umax is the maximu m utility value.
For datasets with utilities assuming small number

of integer values, the exponential perturbation is not
sufficient. This is the case for the SOM-b datasets
(discussed in Section 7). To address that we introduce
the additive perturbation that modifies the utility values
by adding a random number selected uniformly in (0, 1),
as in equation 6.3.

(6.3) uadd
ij = uij + r; r ∼ (0, 1).

When the additive perturbation is used, it is used
first to modify the utility values to uadd

ij followed by the
exponential perturbation.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited194

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

7 Datasets

The MDPLIB library is a collection of synthetic datasets
for maximum diversity problem which are widely used
in relevant papers, Mart́ı et al. [24]. We use most of
these datasets, excluding those of small size less than
100 nodes. Another benchmark we are using were origi-
nally devised for the team formation problem, discussed
below. In addition, we introduce here two new bench-
marks. One benchmark mimics the maximum diversity
datasets, based on real world customer locations in Los
Angeles (LA). This benchmark is distinguished in the
sizes of the datasets, ranging from 2000 to 6000 nodes,
which are much larger than the MDPLIB datasets. A
second benchmark introduced here is a collection of
ten synthetic datasets designed, as described below, to
mimic the team formation datasets. All the parameters
of the datasets used are provided in Table 1.

Dataset #
nodes

#
edges

#I∗ Utility
type

GKD-c n500 500 124750 20
Euclidean
distance

GKD-d n500 500 124750 10
GKD-d n1000 1000 499500 10
GKD-d n2000 2000 1999000 10
MDG-b n500 500 124750 20 Reals

∼U(0,1000)MDG-b n2000 2000 1999000 20
SOM-b n100 100 4950 4

Integers
∼U[0,9]

SOM-b n200 200 19900 4
SOM-b n300 300 44850 4
SOM-b n400 400 79800 4
SOM-b n500 500 124750 4
LA n2000 2000 64845 1

Euclidean
distance

LA n3000 3000 139645 1
LA n5000 5000 366301 1
LA n6000 6000 564617 1
IMDB 1021 22448 1

Jaccard
Similarity

DBLP 7159 30562 1
Bibsonomy 9271 61422 1
StackOverFlow 8834 124554 1
SyntheticTF 7000 36525.8

(mean)
10

Table 1: The datasets details.
∗ #I is the number of instances.

The MDPLIB datasets are of three types: GKD,
MDG and SOM. They are all complete graphs, that
is for each pair of nodes there is an edge with positive
utility. They differ in the way the utilities are computed.

The LA datasets were generated by randomly se-
lecting locations from over a million addresses in Los
Angeles (for details, see [29]). The pairwise-utilities for
these datasets are the Euclidean distances between the
respective pairs of locations. Due to the large sizes of

these datasets, 2000, 3000, 4000, 5000, and 6000 nodes
respectively, we retain only the largest 5% of the utili-
ties.

The team formation datasets are four real data
sets used as benchmark to test methods for the team
formation problem: IMDB, DBLP, Bibsonomy and
StackOverFlow. The team formation problem is to
find a team of experts maximizing the collaboration
potential of the team while satisfying extra constraints
on required skills. The input to the team formation
problem is a set of participants, each associated with
projects they worked on, and the projects on which they
collaborated with others in the past. Let Pi denote the
set of person i’s projects, Pj denote the set of person j’s
projects, then the communication between a pair i and
j is evaluated by the Jaccard similarity: (see e.g. [8,32])

J(i, j) =
|Pi∩Pj |
|Pi∪Pj | . The studied team formation problem

has additional constraints that require to include a
coverage of a set of skills by the team. Without this
requirement, which we relax, we attain MDP problem
instances.

We generate a benchmark of synthetic datasets,
syntheticTF, that mimics the construction of the team
formation benchmark. The datasets are generated
as follows: The input parameters are the number of
participants, the number of projects, and the mean and
standard deviation of a lognormal distribution. With
these parameters the construction of syntheticTF is as
follows:
1. The set of projects is partitioned into subsets,the

cardinality of which is randomly generated, one by
one, from the lognormal distribution. For the last
subset, if the lognormal value is greater than the
remaining number of projects then its size is the
remaining number.

2. A number of projects ni to associate with each
participant i is randomly selected from the same
lognormal distribution as above.

3. For each participant, choose randomly and uni-
formly one of the subsets in the partition. If the
size of this subset is less than or equal ni, then
choose randomly and uniformly ni projects from
the selected subset. Otherwise, assign the entire
subset of projects to participant i and add addi-
tional projects to complete the number to ni by
choosing randomly and uniformly among all the re-
maining projects.

4. The pairwise utility for each pair of participants is
computed using the Jaccard similarity.

In total, we generated ten syntheticTF datasets with
7, 000 participants, 70, 000 projects, and a lognormal
distribution with mean equal to 4 and standard devia-
tion equal to 1.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited195

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Setting budget values. Most empirical results for
the MDP problem are run on data instances with one
specific budget value. In general, the problem is easier
for larger budget values than it is for small budget
values. We provide, for each instance, a collection of
budget values that depend on the size of the instance.
For all instances, other than syntheticTF, we set the
largest budget value equal to 40% of the total number
of nodes in the instance. Then we set the smallest
budget value and increments as follows: For GKD-
c and GKD-d data sets with 500 nodes, we set the
budget values starting at 20 and increment them by
20; For GKD-d and LA datasets with more than 500
nodes, we set the smallest budget value to 50 with
increments of 50; The IMDB dataset has the same
budget settings as GKD-c and GKD-d datasets; The
other team formation instances have smallest budget
set to 100 and increments of 100.

8 The parametric cut and perturbation

In order to identify the concave envelope and respective
breakpoints we run the parametric cut algorithm that
is based on the HPF (Hochbaum’s PseudoFlow) algo-
rithm, [16, 17]. The average running time per instance
of each benchmark is provided in Table 2. Even for the
largest instances, the running time is below 2 seconds.

Dataset
(# instances)

para
CPU

Dataset
(# instances)

para
CPU

IMDB(1) 0.17 GKD-c n500(20) 0.26
DBLP(1) 1.15 GKD-d n500(10) 0.22
Bibsonomy(1) 1.53 GKD-d n1000(10) 0.6
StackOverFlow(1) 1.48 GKD-d n2000(10) 1.76
SyntheticTF(10) 1.7 MDG-b n500(20) 0.22
LA n2000(1) 0.4 MDG-b n2000(20) 1.83
LA n3000(1) 0.64 SOM-b n100(4) 0.03
LA n4000(1) 0.93 SOM-b n200(4) 0.08
LA n5000(1) 1.17 SOM-b n300(4) 0.12
LA n6000(1) 1.52 SOM-b n400(4) 0.16

SOM-b n500(4) 0.21

Table 2: The parametric cut (para) average CPU time
(sec) per instance.

The next issue to determine is the use of the
perturbation. A priori there is no information about
whether to use perturbation, and if so, which value
of α to select in the exponential perturbation. Our
experience indicates that smaller values of α increase
the overall number of breakpoints, yet larger values of
α provide a better spread of the breakpoints for low
budgets. An example illustrating this effect is shown
in Figure 5 for an instance of the GKD dataset. Some

datasets require no perturbation. This is the case for all
the team formation datasets including the syntheticTF
datasets. The breakpoints graph for the four team
formation datasets are shown in Figure 4.

Recall that the datasets SOM-b have utility weights
that assume an integer value in [0, 9]. This is particu-
larly challenging for the use of the breakpoints since typ-
ically there would be no breakpoint other than the two
corresponding to the empty set and the entire graph.
For these datasets we utilize first the additive pertur-
bation, followed by the exponential perturbation. This
perturbation is successful in terms of the quality of the
results provided by the BPTS algorithm, and discussed
in detail in Subsection 9.

9 Experimental results

We compare the performance of our breakpoints algo-
rithm to leading methods for these problems: The meta-
heuristic OBMA, that was shown recently to perform
better than GRASP, Neighborhood search and Tabu
Search, and Gurobi–an integer programming software.

We measure the performance of each algorithm in
terms of the value of the objective function derived
and the CPU running time. For Gurobi we gave a
time limit of 20 seconds for all instances. Comparing
running times with OBMA is not quite reflective of
the actual work since OBMA is compiled in C++
whereas the greedy and Tabu Search parts of the
BPTS code are compiled in Python. To make the
comparison between BPTS and OBMA fair, we compare
the count of the number of Tabu Search iterations
used by both algorithms. Although the running time
of BPTS algorithm includes the greedy procedure in
addition to the Tabu Search, this portion of the running
time is trivial–considerably less than a fraction of a
second, even on large data sets. These running times
are provided in Table 3 for all datasets except for team
formation instances. For the team formation instances,
including the syntheticTF datasets, our algorithm is BP
which does not employ Tabu Search. For these instances
we provide the actual running times comparisons in
Figure 7 and Table 5.

Dataset
(# instances)

BP
CPU

Dataset
(# instances)

BP
CPU

GKD-c-500(20) 0.055 GKD-d-500(10) 0.038
GKD-d-1000(10) 0.054 GKD-d-2000(10) 0.086
MDG-b-n500(20) 0.062 MDG-b-2000(20) 0.082
SOM-b(20) 0.014 LA(5) 0.072

Table 3: Average CPU time (sec) per instance and per
budget for BP(Greedy)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited196

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

The comparison of the number of iterations of the
Tabu search procedure used by OBMA and by BPTS
is shown in Figure 6. Note that we apply the same
stopping rule in both algorithms: Twenty consecutive
iterations without improvement in the value of the
solution lead to termination.

Figure 6: The average number of Tabu Search iterations
per budget in BPTS and OBMA.

Objective value comparisons.
To compare the performance of the algorithms we con-
sider the objective value (total utility) of the solutions
obtained. Recall that MDP is a maximization prob-
lem. Therefore we consider the difference between the
objective value of the BPTS solution (or in some of the
datasets we run only the BP algorithm) to that deliv-
ered by OBMA and by Gurobi. With some abuse of
notation, we write “BPTS-OBMA Gap (%)” the incre-
mental difference of the value of the BPTS compared to
OBMA, divided by the value of OBMA, and then mul-
tiply by 100 to express this difference as a percentage.
The same formula is applied for “BPTS-Gurobi Gap
(%)”. Positive percentages imply that BPTS (or BP) is
better whereas negative indicate it is doing worse.

In Table 4 we summarize the relative performance
of BPTS (for the first five instances we ran BP) versus
that of OBMA and Gurobi.

We first discuss the comparison with OBMA.
OBMA is doing extremely badly on all team formation
instances. It only offers a small improvement, a fraction
of a percent, as compared to BPTS for the two MDG
benchmarks, and the instances of SOM. Recall that the
utility values of the SOM instances are particularly chal-
lenging for the BP algorithm, as they assume an integer
value in [0, 9] and yet BPTS’s performance is compa-
rable to that of OBMA. In terms of running times, as
discussed above, we either compare the number of Tabu
Search iterations, in Figure 6, or show the actual run-
ning times for the syntheticTF instances, in Table 5.

Dataset (#B, #I)∗ BPTS-
OBMA
Gap
(%)

BPTS-
Gurobi
Gap
(%)

IMDB∗∗ (8,1) 0.69 -0.09
DBLP∗∗ (60,1) 117.71 -0.11
Bibsonomy∗∗ (80,1) 108.27 -0.06
StackOverFlow∗∗ (64,1) 138.26 0.13
SyntheticTF∗∗ (20,1) 7.36 -0.05
LA n2000 (16,1) 0 0
LA n3000 (24,1) 0 0.05
LA n4000 (32,1) 0 0.29
LA n5000 (20,1) 0 0.24
LA n6000 (24,1) 0 0.41
GKD-c n500 (10,20) 0 0.13
GKD-d n500 (10,10) 0 0.25
GKD-d n1000 (20,10) 0 1.23
GKD-d n2000 (16,10) 0 29.2
MDG-b n500 (10,20) -0.48 0.87
MDG-b n2000 (16,20) -0.28 7.62
SOM-b n100 (2, 4) -0.10 0.32
SOM-b n200 (4, 4) -0.08 0.83
SOM-b n300 (6, 4) -0.18 1.21
SOM-b n400 (8, 4) -0.15 1.91
SOM-b n500 (10, 4) -0.17 2.23

Table 4: The average per instance and per budget gaps
(%) between BPTS objective value and that of OBMA,
and Gurobi. Positive percentage means that BPTS
performs better.
∗ #B is the number of budget values for each instance
of the given data set; #I is the number of instances of
the given data set.
∗∗ The gaps are for BP, not BPTS, versus OBMA and
Gurobi.

These results indicate that the running times of OBMA
are overwhelmingly larger than those of BPTS, or BP.

We next discuss the comparison with Gurobi. In
terms of the objective values attained by the Gurobi,
these are slightly better than those of BPTS (or BP)
for the team formation datasets, but by less than
0.11%. On the other datasets BPTS is doing better
and for some instances a lot better. In terms of running
time of Gurobi compared to BPTS or BP, we show in
Figure 7 the running times of Gurobi versus BP for each
budget value of the team formation instances. As can
be seen in that figure, the running time of Gurobi is
very erratic and varies a lot between different budget
values. Furthermore, the running times of Gurobi are
dramatically larger than those of BP. Table 6 shows
the average running time of Gurobi for the datasets

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited197

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

other than the team formation. Recall that Gurobi has
a running time limit of 20 seconds for every dataset
and every budget which explains why the running times
reported in Table 6 are at most 20+ seconds.

Budget Average
BP-
OBMA
Gap(%)

Average
BP-
Gurobi
Gap(%)

Average
BP
CPU

Average
OBMA
CPU

Average
Gurobi
CPU

50 20.11 -0.25 0.00 6.93 1.04
100 48.33 -0.36 0.00 10.00 1.02
150 64.89 -0.13 0.00 10.15 1.12
200 69.95 -0.14 0.01 10.31 1.33
250 70.42 -0.14 0.01 10.45 1.31
300 75.61 -0.04 0.02 10.59 1.32
350 70.40 -0.07 0.02 10.75 1.43
400 65.87 -0.07 0.03 10.93 1.44
450 63.57 -0.02 0.04 11.11 1.55
500 63.71 -0.02 0.05 11.29 1.93
550 55.56 -0.04 0.06 11.49 2.38
600 52.60 -0.01 0.07 11.72 2.38
650 58.85 -0.02 0.08 11.95 2.42
700 67.89 -0.04 0.10 12.21 2.76
750 69.46 -0.02 0.11 12.48 3.48
800 84.01 -0.01 0.12 12.71 3.22
850 84.22 -0.01 0.14 13.02 3.92
900 103.72 0.00 0.16 13.34 3.99
950 107.56 -0.01 0.18 13.59 4.20
1000 113.31 -0.01 0.20 14.01 4.11

Table 5: Comparison of BP, OBMA, and Gurobi on the
ten syntheticTF instances. The average gap and CPU
are per instance.

(a) IMDB (b) DBLP

(c) Bibsonomy (d) StackOverFlow

Figure 7: Runtime comparison of BP and Gurobi on
team formation data sets for all budgets.

Dataset
(# instances)

Guro
CPU

Dataset
(# instances)

Guro
CPU

GKD-c-500(20) 20.04 GKD-d-500(10) 20.04
GKD-d-1000(10) 20.19 GKD-d-2000(10) 20.94
MDG-b-n500(20) 20.04 MDG-b-2000(20) 20.40
SOM-b(20) 10.02 LA(5) 13.08

Table 6: Gurobi’s (Guro) average CPU time (sec) per
instance and per budget.

10 Conclusions

We introduce here, for the first time, an algorithm that
uses the breakpoints in the concave envelope of solutions
to the parametric relaxation of the problem. This algo-
rithm’s performance is illustrated here for solving the
maximum diversity problem, MDP, but it also applies
for more general problems, including the weighted MDP.
The breakpoints are attained efficiently by a parametric
cut procedure, on a compact formulation of the prob-
lem, introduced here. That formulation reduces the size
of the graph from quadratic number of nodes, in the size
of the dataset, to a linear number of nodes. A further
novelty here is the employment of a perturbation tech-
nique on the utility values that results in generating a
denser distribution of breakpoints.

An empirical study comparing our algorithm to the
leading algorithms OBMA and Gurobi, demonstrates
that it provides give comparable or higher quality
solutions to the MDP problem in significantly faster
running times. Future research includes applying the
breakpoints based algorithm to more general problems
such as the weighted MDP for text summarization.

Acknowledgement

The first author was supported in part by AI institute
NSF award 2112533.

References

[1] Ş. Ağca, B. Eksioglu, and J. B. Ghosh, Lagrangian
solution of maximum dispersion problems, Naval Re-
search Logistics (NRL), 47 (2000), pp. 97–114.

[2] R. Aringhieri and R. Cordone, Comparing local
search metaheuristics for the maximum diversity prob-
lem, Journal of the Operational research Society, 62
(2011), pp. 266–280.

[3] R. Aringhieri, R. Cordone, and Y. Melzani, Tabu
search versus grasp for the maximum diversity problem,
4OR, 6 (2008), pp. 45–60.

[4] J. Brimberg, N. Mladenović, D. Urošević, and
E. Ngai, Variable neighborhood search for the heaviest
k-subgraph, Computers & Operations Research, 36
(2009), pp. 2885–2891.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited198

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

[5] B. G. Chandran and D. S. Hochbaum, A compu-
tational study of the pseudoflow and push-relabel al-
gorithms for the maximum flow problem, Operations
research, 57 (2009), pp. 358–376.

[6] A. R. R. de Freitas, F. G. Guimarães, R. C.
Pedrosa Silva, and M. J. F. Souza, Memetic
self-adaptive evolution strategies applied to the maxi-
mum diversity problem, Optimization Letters, 8 (2014),
pp. 705–714.

[7] A. Duarte and R. Mart́ı, Tabu search and grasp for
the maximum diversity problem, European Journal of
Operational Research, 178 (2007), pp. 71–84.

[8] S. H. Farnoush Farhadi, Maryam Sorkhi and
A. Hamzeh, An effective expert team formation in so-
cial networks based on skill grading, in 2011 IEEE 11th
International Conference on Data Mining Workshops,
IEEE, 2011.

[9] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, A
fast parametric maximum flow algorithm and applica-
tions, SIAM Journal on Computing, 18 (1989), pp. 30–
55.

[10] J. B. Ghosh, Computational aspects of the maxi-
mum diversity problem, Operations research letters, 19
(1996), pp. 175–181.

[11] F. Glover, C.-C. Kuo, and K. S. Dhir, Heuristic
algorithms for the maximum diversity problem, Journal
of information and Optimization Sciences, 19 (1998),
pp. 109–132.

[12] F. Glover and M. Laguna, Tabu search, in Hand-
book of combinatorial optimization, Springer, 1998,
pp. 2093–2229.

[13] D. S. Hochbaum, Solving integer programs over mono-
tone inequalities in three variables: A framework for
half integrality and good approximations, European
Journal of Operational Research, 140 (2002), pp. 291–
321.

[14] , The pseudoflow algorithm: A new algorithm for
the maximum-flow problem, Operations research, 56
(2008), pp. 992–1009.

[15] , Dynamic evolution of economically preferred
facilities, European Journal of Operational Research,
193 (2009), pp. 649–659.

[16] , Hpf-hochbaum’s pseudoflow,
2020. Accessed: May 28, 2022,
https://riot.ieor.berkeley.edu/Applications/
Pseudoflow/maxflow.html.

[17] , Pseudoflow parametric maximum flow solver
version 1.0, 2020. Accessed: May 28, 2022,
https://riot.ieor.berkeley.edu/Applications/
Pseudoflow/parametric.html.

[18] , Applications and efficient algorithms for integer
programming problems on monotone constraints, Net-
works, 77 (2021), pp. 21–49.

[19] D. S. Hochbaum and A. Pathria, Analysis of the
greedy approach in problems of maximum k-coverage,
Naval Research Logistics (NRL), 45 (1998), pp. 615–
627.

[20] R. K. Kincaid, Good solutions to discrete noxious lo-

cation problems via metaheuristics, Annals of Opera-
tions Research, 40 (1992), pp. 265–281.

[21] M. J. Kuby, Programming models for facility disper-
sion: The p-dispersion and maxisum dispersion prob-
lems, Geographical Analysis, 19 (1987), pp. 315–329.

[22] C.-C. Kuo, F. Glover, and K. S. Dhir, Analyz-
ing and modeling the maximum diversity problem by
zero-one programming, Decision Sciences, 24 (1993),
pp. 1171–1185.

[23] H. Lin and J. Bilmes, Multi-document summarization
via budgeted maximization of submodular functions, in
Human Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics, 2010, pp. 912–920.

[24] D. Mart́ı and Mart́ınez-Gavara, The mdplib
2.0 library of benchmark instances for diversity
problems, 2021. Accessed: October 25, 2022,
https://www.uv.es/rmarti/paper/mdp.html.

[25] R. Mart́ı, A. Mart́ınez-Gavara, S. Pérez-Peló,
and J. Sánchez-Oro, A review on discrete diversity
and dispersion maximization from an or perspective,
European Journal of Operational Research, (2021).

[26] G. Palubeckis, Iterated tabu search for the maximum
diversity problem, Applied Mathematics and Compu-
tation, 189 (2007), pp. 371–383.

[27] F. Parreño, R. Álvarez-Valdés, and R. Mart́ı,
Measuring diversity. a review and an empirical anal-
ysis, European Journal of Operational Research, 289
(2021), pp. 515–532.

[28] J. Peiró, I. Jiménez, J. Laguardia, and R. Mart́ı,
Heuristics for the capacitated dispersion problem, In-
ternational transactions in operational research, 28
(2021), pp. 119–141.

[29] D. S. H. Roberto Aśın-Achá, Olivier Gold-
schmidt and I. I. Huerta, Fast algorithms for the ca-
pacitated vehicle routing problem using machine learn-
ing selection of algorithm’s parameters, in Proceedings
of the 14th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowl-
edge Management, 2022, pp. 29–39.

[30] G. C. Silva, M. R. De Andrade, L. S. Ochi, S. L.
Martins, and A. Plastino, New heuristics for the
maximum diversity problem, Journal of Heuristics, 13
(2007), pp. 315–336.

[31] G. C. Silva, L. S. Ochi, and S. L. Martins, Ex-
perimental comparison of greedy randomized adaptive
search procedures for the maximum diversity problem,
in International Workshop on Experimental and Effi-
cient Algorithms, Springer, 2004, pp. 498–512.

[32] G. Süer and M. Ortega, A machine level based-
similarity coefficient for forming manufacturing cells,
Computers Industrial Engineering, 1–4 (1994), pp. 67–
70.

[33] J. Wang, Y. Zhou, Y. Cai, and J. Yin, Learn-
able tabu search guided by estimation of distribution
for maximum diversity problems, Soft Computing, 16
(2012), pp. 711–728.

[34] Y. Wang, J.-K. Hao, F. Glover, and Z. Lü, A tabu

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited199

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

search based memetic algorithm for the maximum di-
versity problem, Engineering Applications of Artificial
Intelligence, 27 (2014), pp. 103–114.

[35] D. Witzgall and R. Saunders, Electronic mail
and the “locator’s” dilemma, Applications of discrete
mathematics, 33 (1988), pp. 65–84.

[36] Y. Zhou, J.-K. Hao, and B. Duval, Opposition-
based memetic search for the maximum diversity prob-
lem, IEEE Transactions on Evolutionary Computation,
21 (2017), pp. 731–745.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited200

D
ow

nl
oa

de
d

06
/0

6/
23

 to
 2

3.
93

.6
7.

18
3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction.
	Literature review.
	Compact formulation of -MDP
	Solving -MDP for all values of : The parametric cut
	The BP algorithm and the concave envelope
	The perturbation technique.
	Datasets
	The parametric cut and perturbation
	Experimental results
	Conclusions

