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The pseudoflow algorithm for solving the maximum flow
and minimum cut problems was devised in Hochbaum
(2008). The complexity of the algorithm was shown
in (2008) to be O(nm log n). Chandran and Hochbaum,
(2009) demonstrated that the pseudoflow algorithm is
very efficient in practice, and that the highest label ver-
sion of the algorithm tends to perform best. Here, we
improve the running time of the highest label pseudoflow
algorithm to O(n3) using simple data structures and to
O(nm log(n2/m)) using the dynamic trees data structure.
Both these algorithms use a new form of Depth-First-
Search implementation that is likely to be fast in practice
as well. In addition, we give a new simpler descrip-
tion of the pseudoflow algorithm by relating it to the
simplex algorithm as applied to the maximum preflow
problem defined here. The interpretation of the generic
pseudoflow algorithm as a simplex-like algorithm for
the maximum preflow problem motivates the pseudoflow
algorithm and highlights differences between the pseud-
oflow algorithm and the preflow-push algorithm of Gold-
berg and Tarjan. © 2012 Wiley Periodicals, Inc. NETWORKS,
Vol. 61(1), 40–57 2013
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1. INTRODUCTION

The maximum s-t flow or max-flow problem on a directed
capacitated graph with two distinguished nodes—a source
and a sink—is to find the maximum amount of flow that
can be sent from the source to the sink while satisfying flow
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balance constraints (flow into each node other than the source
and the sink equals the flow out of it) and capacity constraints
(the flow on each arc does not exceed its capacity).

The minimum s-t cut problem, henceforth referred to as
the “min-cut” problem, defined on the above graph, is to find
a bipartition of nodes—one containing the source and the
other containing the sink—such that the sum of capacities of
arcs from the source set to the sink set is minimized. Ford
and Fulkerson, in a seminal study [9], established that the
maximum flow value is equal to the minimum cut capacity
and demonstrated a primal-dual relationship between the two
problems.

The literature on maximum flow algorithms includes
numerous algorithms. Most notable for efficiency among
feasible flow (primal) algorithms is Dinic’s algorithm [7],
which has a running time complexity O(n2m), where n is
the number of nodes and m is the number of arcs. Karzanov
[14] and Malhotra et al. [16] independently improved the
running time of Dinic’s algorithm to O(n3). Goldberg and
Rao [12] based their algorithm on an extension of Dinic’s
algorithm for unit capacity networks with run time of
O(min{n2/3, m1/2}m log(n2/m) log U), where U is the largest
capacity of an arc. This algorithm currently has the best
weakly polynomial running time for the maximum flow prob-
lem. Goldberg and Tarjan’s push-relabel algorithm works
with preflows, that is, flows that permit excesses. (In princi-
ple, it could also be implemented to work with pseudoflows,
which are flows that permit both excesses and deficits.) The
push-relabel algorithm with dynamic trees implementation
[17] has complexity of O(mn log n2

m ), [11]. Using a different
approach King et al. [15] devised an algorithm of complex-
ity O(mn logm/(n log n) n). Currently, this algorithm has the
best strongly polynomial running time for the maximum flow
problem.

Hochbaum [13] developed the pseudoflow algorithm for
solving the maximum flow and minimum cut problems. As
indicated by its name, the algorithm maintained pseudoflows
at each iteration. However, in this article, the pseudoflow
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algorithm always maintains a preflow. The complexity of
the pseudoflow algorithm was shown in Ref. [13] to be
O(nm log n) using the dynamic trees data structure [17]. A
highest label version of the algorithm was shown to have the
same complexity in Ref. [13].

Goldberg and Tarjan’s push-relabel algorithm has been
considered extremely efficient in practice on standard bench-
mark instances (see Ref. [1,3,6,10]). The highest level variant
of the push-relabel algorithm was found to have the best per-
formance in practice at the time (see Ref. [10] and page 242
of Ref. [2]).

In Ref. [5], Chandran and Hochbaum showed that their
best implementation of the pseudoflow algorithm is approx-
imately a factor two faster than the best implementation
of push-relabel on the standard benchmark instances. The
highest label version of the pseudoflow algorithm performed
best in practice. Boykov and Kolmogorov’s algorithm was
reported in Ref. [4] to perform better than the push-relabel
algorithm for benchmark instances of vision problems. More
recently, Fishbain et al. [8] presented an extensive study of
the performance of various max-flow min-cut algorithms
for vision problems, and demonstrated that Hochbaum’s
pseudoflow algorithm (HPF) is faster in practice than both
Boykov and Kolmogorov’s algorithm and the push-relabel
algorithm [8].

We show here that a highest label-DFS (Depth-First-
Search) version of the pseudoflow algorithm runs in O(n3)

time. Moreover, the running time of the algorithm can be
improved to O(nm log(n2/m)) using the dynamic trees data
structure. We refer to these two algorithms as the DFS
algorithm and the DT algorithm, respectively.

In addition to new complexity bounds, we give here a
new and simpler description of the pseudoflow algorithm.
We define the “maximum preflow problem,” which is to find
a feasible preflow that maximizes that total amount reaching
the sink of the graph. We then relate the pseudoflow algo-
rithm’s tree structure, maintained at each iteration, to a basic
feasible solution maintained by a simplex algorithm applied
to the maximum preflow problem. This description simplifies
the presentation of the pseudoflow algorithm while simulta-
neously highlighting the distinctions between the pseudoflow
algorithm and two other fundamental algorithms: the sim-
plex algorithm for linear programming and the preflow-push
algorithm of Goldberg and Tarjan [11].

In Section 2, we give definitions and preliminaries and
properties of the maximum preflow problem. In Section 3,
we present the pseudoflow algorithm by describing it as a
simplex-like algorithm for the maximum preflow problem in
that it moves from one basic solution to another (but not nec-
essarily an adjacent basic solution). In Section 4, we show
how to speed up the highest label push version of the pseudo-
flow algorithm so that it runs in O(n3) time. In Section 5,
we show how to further modify the highest label push vari-
ant of Section 4 using the dynamic trees data structure so
that it runs in O(nm log(n2/m)) time, thus matching the run-
ning time of the preflow-push algorithm of Goldberg and
Tarjan [11].

2. DEFINITIONS AND PRELIMINARIES

Let G be a graph (V , A), where the node set V has n nodes
and the arc set A has m arcs. Let t be a designated sink
node. We will define later the maximum preflow problem
on G where for each node i ∈ V \ {t} there is an associ-
ated nonnegative supply b(i). For each arc (i, j) ∈ A, there
is an associated finite capacity uij on arc flows. We assume
without loss of generality that there is a directed path from
each node to node t. Otherwise, nodes from which there is no
path to t are deleted along with their incident arcs. We also
assume that for every pair of nodes i and j, at most one of the
arcs (i, j) and (j, i) is in A – that is, no antiparallel arcs. This
assumption is used to simplify the description of the residual
network (which is defined later) and to simplify the notation
in the article. However, the algorithms and analysis all extend
to the case in which (i, j) and (j, i) are both permitted to be
present.

An undirected path between nodes i and j is often denoted
by P(i, j). A path P(i1, ik) is represented by its sequence
of nodes (i1, i2, . . . , ik) so that for j = 1, . . . , k − 1 either
(ij, ij+1) ∈ A or (ij+1, ij) ∈ A.

A rooted forest of G is a subgraph that has no undi-
rected cycles, and where each component of the forest has
a designated node referred to as the root node. We make
no assumptions on the directions of the arcs in a rooted
forest.

We refer to each component of a rooted forest as a branch.
Each branch of a rooted forest F has exactly one root node.
Let root(i) denote the root node in the same branch of F as
node i. If nodes i and j are in the same branch of F, we let
PF(i, j) be the unique path in F from i to j. If nodes i and
j are in different branches, then PF(i, j) is undefined. If i is
not a root node, then the parent of node i is the node j that
immediately follows node i on PT (i, root(i)). We also write
j = p(i). If j is the parent of node i, then node i is a child of
node j. We use ch(j) to denote the ordered list of children of
node j. Its order is from “left” to “right”. For each root node
i, p(i) = ∅.

We will often use the notation T for a rooted forest. The
motivation for this slightly misleading notation is that the
forest may be transformed into a tree by adding a super-
root node rs connected to all the root nodes of T . In fact,
the rooted forests in the maximum preflow problem (defined
soon) correspond to trees in the maximum flow problem.

For a rooted forest T , let Tk be the rooted subtree induced
by node k that consists of node k and all of its descendants
in the same branch. We observe that if k is not the root, then
Tk is not a branch. Suppose that each node has a label. (We
will define the labels later.) A subtree of Tk that is rooted at
a node k that has label d and that is restricted to only contain
nodes of label d is denoted by Td

k .
For D1, D2 ⊆ V the set of arcs going from D1 to D2 is

denoted by (D1, D2). The sum of the capacities on the arcs
from D1 to D2 is denoted as: C(D1, D2) = ∑

i∈D1,j∈D2
uij.

A special case is the bipartition of V into S and S̄ where
C(S, S̄) = ∑

i,j:i∈S,j∈S̄ uij. In general, S̄ denotes the set V\S.

NETWORKS—2013—DOI 10.1002/net 41



A flow vector f = {fij}(i,j)∈A is said to be feasible if it
satisfies

i. flow balance constraints: for each j ∈ V\{t},∑
(i,j)∈A fij = ∑

(j,k)∈A fjk (i.e., inflow(j) = outflow(j)),
and

ii. capacity constraints: for all (i, j) ∈ A, the flow value is
between the lower bound and upper bound capacity of
the arc, that is, 0 ≤ fij ≤ uij .

For a flow vector f = {fij}(i,j)∈A, we let f (D1, D2) =∑
i∈D1,j∈D2

fij.
To define the maximum preflow problem on a graph G =

(V , A) where the set of nodes V contains a sink node t we
introduce the concepts of excess of supply: For a given flow
vector x = {xij}(i,j)∈A, satisfying the capacity constraints, the
excess at node i ∈ V \ {t} is

e(i) = ex(i) = b(i) +
∑

(j,i)∈A

xji −
∑

(i,j)∈A

xij

that is, the excess of i with respect to flow x is b(i) + inflow(i)
− outflow(i). We will omit the reference to x whenever it is
self evident.

A flow vector is said to be a feasible preflow if it satisfies
the capacity constraints, but could violate the flow balance
constraints with inflow(j) ≥ outflow(j). A preflow of 0 on all
arcs is therefore a feasible solution for the maximum preflow
problem.

The maximum preflow problem is to find a feasible
preflow x that maximizes the flow into node t, that is,∑

(i,t)∈A xit .
Given a feasible preflow, an arc (i, j) ∈ A is said to be

saturated if xij = uij. An arc (i, j) is said to be a residual arc
if (i, j) ∈ A and xij < uij or if (j, i) ∈ A and xji > 0. For
(i, j) ∈ A, the residual capacity of arc (i, j) with respect to
the flow x is ux

ij = uij − xij, and the residual capacity of the
reverse arc (j, i) is ux

ji = xij. We will also denote the residual
capacity of arc (i, j) as rx(i, j) = ux

ij. Let Ax denote the set of
residual arcs for flow x in G, which are all arcs or reverse arcs
with positive residual capacity. Let Gx = (V , Ax) denote the
residual network with respect to x.

The maximum preflow (max-preflow) problem is closely
related to the well-studied maximum flow (max-flow) prob-
lem. In the max-flow problem, the objective is to send as
much flow as possible from a source node s to node t while
keeping flow at all other nodes balanced. The value of the
maximum flow is then the amount of flow along any cut
(B, B̄) for {s} ⊆ B ⊆ V \ {t}, and in particular it is equal
to e(t) = f (V \ {t}, {t}). There are reasons that the maximum
preflow problem merits separate attention.

i. The max-flow problem on a graph G = (V , A) containing
a source node s and a sink node t can be solved by solv-
ing two maximum preflow problems. In the first problem,
b(s) is set to a large value, such as b(s) = ∑

(s,j)∈A usj .
The solution to this problem determines a maximum
preflow x∗ of value f ∗ = ∑

(i,t)∈A x∗
it , reaching into t.

The maximum flow value can then be at most f ∗. Then
the max-preflow problem can be solved again with b(s)
replaced by f ∗ and b(i) = 0 for all i ∈ V \ {s, t} achiev-
ing a feasible balanced flow of value f ∗. (Theorem 2.1
below establishes the correctness of this approach.) An
alternative second problem is to replace b(i) by e(i) for
all i ∈ V \{s, t}, make s the sink node rather than t, and set
b(t) = 0. Then solve the preflow problem of maximizing
the excess of s along the arcs of the residual graph Gx∗

.
(The correctness of this approach follows from the algo-
rithm of Goldberg and Tarjan [11].) A third possibility is
to attain a feasible balanced flow which is also the maxi-
mum flow by employing flow decomposition for sending
the excesses of all nodes of V \ {s, t} back to the source
(see e.g., [13] for a description of flow decomposition in
this context.)

ii. The feasibility problem for the minimum cost flow prob-
lem can be represented by a single max-preflow problem.
This is done by adding a sink node t and arcs from all
demand nodes j going to t with capacity ujt = −b(j). The
original problem is feasible if there is a max-preflow in
the transformed problem that saturates the arcs adjacent
to node t.

The reader is referred to Ref. [2] Chapter 7 for additional
algorithms that rely on solving a max-preflow problem first.

A t-cut is a partition of the node set V into subsets S and
S̄, where t ∈ S̄. We define the preflow capacity of the t-cut
(S, S̄) to be C(S, S̄) + ∑

j∈S̄ b(j).
The following theorem is a consequence of the Max-flow

Min-cut Theorem of Ford and Fulkerson for the maximum
flow problem [9] as well as in Goldberg and Tarjan [11]. To
establish the correctness of the max-preflow min-cut theorem
on the graph G = (V , A), we construct a corresponding graph
Gs = (V ∪{s}, As) for the max-flow problem. This is done by
adding to G a source node s, adding arcs from s to all nodes
i ∈ {j ∈ V | b(j) > 0} of capacity usi = b(i) and setting all
supplies to be 0.

Theorem 2.1. The maximum value of a preflow is equal
to the minimum capacity of a t-cut for the maximum preflow
problem.

Proof. Let G = (V , A) be a network for the max-preflow
problem and let Gs = (V ∪{s}, As) be the respective network
for the max-flow problem constructed as above. We say that
a preflow x in Gs is s-saturating if every arc out of s is sat-
urated. It is easy to see that there is a 1:1 correspondence
between s-saturating preflows in Gs and preflows in G. (The
correspondence is obtained by deleting node s and its inci-
dent arcs from Gs.) This correspondence maintains the value
of the flow into node t.

There is also a 1:1 correspondence between s-t cuts in Gs

and t-cuts in G. If (S, S̄) is an s-t cut in Gs, then (S\{s}, S̄) is
the corresponding t-cut in G. Moreover, the capacity of the s-t
cut in Gs is equal to the preflow capacity of the corresponding
t-cut in G.

We are now ready to establish the theorem. Suppose that
a preflow x∗ in Gs is s-saturating and it maximizes the flow
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v∗ into node t. Goldberg and Tarjan [11] proved that v∗ is
the capacity of some s-t cut (S∗\{s}, S̄∗). (It is the cut that is
induced at the end of Phase 1 of their algorithm.)

Let x′ be the preflow in G corresponding to x∗. Then its
flow into node t is v∗. Moreover, the correspondence between
cuts shows that the capacity of (S∗, S̄∗) is equal to the preflow
capacity of (S∗\{s}, S̄∗). This completes the proof. ■

3. THE PSEUDOFLOW ALGORITHM FOR THE
MAXIMUM PREFLOW PROBLEM

In this section, we present the pseudoflow algorithm in
a manner that closely parallels the simplex algorithm for
the maximum preflow problem. In particular, the algorithm
moves from one basic solution to another basic solution by
modifying flows on paths. But the iterations do not corre-
spond to single pivots, and the basic solution following an
iteration is not adjacent in the polytope to the basic solu-
tion at the beginning of an iteration. The generic pseudoflow
algorithm runs in O(nm) iterations and in O(n2m) total time.

In this section, we describe first the basic solution con-
struction. We then present the generic pseudoflow algorithm
as in Ref. [13] and prove its correctness and complexity.
We then present a version in which the order of the oper-
ations is modified slightly and show that it is equivalent to
the generic version. This modified version is the basis of the
more efficient algorithms presented in the following sections.

3.1. Basic Preflows

A basis of the max-preflow problem consists of a 4-tuple
(T , L, U, R), where (T , L, U) is a partition of the arc set A,
and R is a subset of V . The subset T is a spanning forest; that
is, it contains no cycles (in the undirected sense), and each
node either has an endpoint in the arc set T or is considered
a singleton in the forest; L is a subset of arcs whose flows are
at their lower bounds, that is, 0; U is a subset of arcs whose
flows are at their upper bounds; and R is the subset of root
nodes, which contains node t and which has exactly one node
per component of T .

The basic preflow induced by basis (T , L, U, R) is the
unique arc flow vector x such that

i. xij = 0 for (i, j) ∈ L,
ii. xij = uij for (i, j) ∈ U, and

iii. e(i) = 0 for i /∈ R.

A basic preflow is feasible if it satisfies 0 ≤ xij ≤ uij for
all (i, j) ∈ T and if e(i) ≥ 0 for all i ∈ R.

Each component of T in a given basis 4-tuple (T , L, U, R)

is a branch that contains a unique root node. Singleton com-
ponents are branches that consist of the root of the branch
only.

The algorithm will initialize with the basic feasible pre-
flow constructed by letting T = ∅, L = A, U = ∅, and
R = V . In this initial preflow, all branches are singletons,
and e(i) = b(i) for each i ∈ V\{t}.

3.2. The Generic Pseudoflow Algorithm

An elementary procedure for sending flow on an arc (i, j)
is Push(x, i, j). This operation applies to arcs in T and to an
out-of-tree arc that will serve as a “merger arc.” Let x be the
current flow vector on network G.

procedure Push(x, i, j)
begin

send q := min{e(i), rx(i, j)} units of flow on (i, j);
{update excess and the flow vector}:

e(i) := e(i) − q, e(j) := e(j) + q;
if ((i, j) ∈ A) thenxij := xij + q;
else xij := xij − q;
end if

if (q = rx(i, j)) then
delete (i, j) from T ; {split i and j}
add node i to R;
return saturating;

else return nonsaturating;
end if

end

If the flow q sent on (i, j) is rx(i, j), we say that the push
is saturating. Otherwise, we say that it is nonsaturating. In
the generic algorithm, if Push(x, i, j) is saturating, then i
becomes a root of a branch.

Let x be a basic feasible preflow. For each node i ∈ V ,
there is a distance label d(i) satisfying the following:

Distance conditions:

i. d(t) = 0;
ii. for all (i, j) ∈ Ax, d(i) ≤ d(j) + 1;

iii. if i /∈ R, then d(i) ≥ d(p(i)) (referred to as monotonic-
ity).

Because of the monotonicity, for each branch rooted at
i ∈ R, the set of nodes in Ti of label d = d(i) form a con-
nected subtree in Ti, which is denoted by Td

i . To see that Td
i

is connected, note that otherwise there is a path from i to a
descendant j of label d with an intermediate node of distance
label greater than d. However, this violates the monotonicity
along such path that requires that labels can only go up with
the distance from i.

An arc (i, j) ∈ T is called neutral if d(i) = d(j). A path in
T is called neutral if every arc on the path is neutral. When-
ever we refer to a neutral arc, we are referring to an arc of
T . An arc (i, j) ∈ Ax is called admissible if d(i) = d(j) + 1.
A node i is called active if i 
= t, e(i) > 0, and d(i) < n.
We say that an arc (i, j) is scanned if it has been checked for
admissibility, that is, for whether d(i) = d(j) + 1, since the
last time that the distance label of node i was increased. We
say that a node i is scanned if all residual arcs that originate
at i are scanned. A node i of label d is said to be d-visited
if i has been scanned and it is determined that there is no
admissible arc originating at i.

Let i be an active root node. An arc (j, j′) /∈ T is called a
merger arc with respect to node i if the following are true:
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i. root(j) = i;
ii. the path PT (j, i) is neutral;

iii. (j, j′) is admissible; we denote the set of merger arcs with
respect to node i as WRT(i).

We are now prepared to describe the generic Pseudoflow
Algorithm. Let x = {xij}(i,j)∈A denote the flow vector in the
network.

The Generic Pseudoflow Algorithm
begin

{initialize with a basic feasible preflow}:
∀(i, j) ∈ A, xij = 0;
T = ∅, L = A, U = ∅, R = V ;
{In the following (T , L, U, R) will be maintained implicitly}
set d(t) = 0 and d(i) = 1 for all i ∈ V \ {t};

while (there is an active root node) do
select an active root node i;
if (WRT(i) = ∅) then{there is no merger arc with respect to node i}

let Td(i)
i be the set of nodes connected to node i by a neutral path in Ti;

{relabel}:
for (all j in Td(i)

i ) do
d(j) := d(j) + 1;

end for
else {there is a merger arc with respect to node i}

let (j, j′) ∈ WRT(i);
{invert}:

for (each residual arc (v, w) on the path from rj := root(j) to j) do
p(v) := w;

end for
{merge} p(j) := j′; {add (j, j′) to T}
{now root(j) = root(j′)}
{PushPath}:

for (each residual arc (v, w) on the path from rj to root(j′)) do
isSaturating := Push(x, v, w);
if (isSaturating = saturating) then

p(v) = ∅; {set node v as a root}
end if

end for
end if

end while
output x as a feasible basic preflow and its corresponding basis (T , L, U, R);

end

In Figure 1, the major operations of merger, inversion,
PushPath with Push(x, v, w) saturating, are illustrated. In (b),
j becomes the ancestor of all nodes of Trj in (a), w is the parent
of v, and rj is the descendant of v, w and j. Trj in (a) is now
part of Tr′

j
in (b) rooted at rj′ . In (b), the unique path from j

to rj is given in three sections: the path pw from j to w, arc
(w, v) and the path pv from v to rj.

3.3. Correctness and Complexity of the Generic
Pseudoflow Algorithm

Theorem 3.1. The generic pseudoflow algorithm solves the
maximum preflow problem in O(nm) iterations and O(n2m)

total time.

Proof. To verify correctness, we claim first that the dis-
tance conditions are satisfied after each call to PushPath. The
distance conditions may be affected by the inversion pro-
cess and by relabeling. The inversion procedure maintains
the validity of the distance labels since the section of the path
that is inverted consists of neutral arcs (of equal labels). After
merger with the arc (j, j′), p(j) = j′ and d(j) = d(j′) + 1. In
particular, monotonicity is retained.

Relabeling occurs if there are no merger arcs with respect
to node i. In that case, there are no admissible arcs out of Td(i)

i ,
and the distance conditions are satisfied after the relabeling.

When the algorithm terminates, there are no active nodes,
although it is possible that there are nodes at level n that have
excess. Let S = ∪{i|e(i)>0}Ti. Then by Ref. [13], the set S is
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FIG. 1. (a) Branches prior to merger on arc (j, j′), (b) the invert process, and (c) pushing flow along the path
from rj to r′

j where Push(x, v, w) is saturating.

the source set of a minimum cut and the preflow is therefore
maximum. (It is further shown in Ref. [13] that S is also a
minimal source set of a minimum cut.) To establish this in
a self-contained proof, we use the construction in Theorem
2.1 of the graph Gs. Nodes that have positive excess in G,
V+ = {i | e(i) > 0}, have in the graph Gs positive flows on
the respective arcs from s, ({s}, V+). Therefore, all residual
arcs in (V+, {s})have positive residual capacity, and the nodes
in V+ ∩ S can send their excess back to s along these arcs.
This leaves the flow on the cut arcs (S, S̄) unchanged and thus
still saturated. Also, the amount of flow reaching t does not
change. From Theorem 2.1, the cut (S, S̄) is minimum in G
and thus the preflow corresponding to it is maximum.

To establish the complexity, we show that the work to find
merger arcs, across all iterations, is O(nm); that the complex-
ity of relabeling, across all iterations, is O(n2); and finally,
that the number of iterations is O(nm) and the pushing flow
work per iteration is O(n).

The complexity of finding merger arcs per node is the
work for scanning the node’s neighbor list. Per given label of a
node, this complexity is the number of outgoing arcs from the
node, that is, the outdegree of the node, in the residual graph.
As the sum of outdegrees of all nodes is O(m) and the number
of possible labels is O(n), it follows that the complexity of
finding merger arcs is O(nm).

As labels of nodes can only increase and labels are
bounded by n, each node can be relabeled O(n) times and
the complexity of relabeling is O(n2).

In every while-iteration, there is exactly one merger exe-
cution. We will show that each arc (u, v) can become a merger
arc O(n) times, at most one time for every distance label that
u can have. To evaluate the number of merger iterations, we
recall that if (u, v) is a merger arc, then it is admissible and
k = d(u) = d(v)+ 1. There are two cases to consider: one is
when the push on the merger arc is saturating and the second
when it is nonsaturating.

1. Push(x, u, v) saturating: Arc (u, v) then becomes out-
of-tree and residual in the direction (v, u). Once the arc

left the tree it can join again only as a merger arc in
the direction that has positive residual capacity. In order
for (v, u) to become a merger arc, it must be true that
d(v) = d(u) + 1 ≥ k + 1. Therefore the label of v must
increase by at least two units, from k − 1 to k + 1 before
(v, u) can serve as merger arc.

2. Push(x, u, v) nonsaturating: Arc (u, v) is then in the tree
T following the merger, and needs to leave the tree before
it can serve as merger arc again. Thus there must be a
saturating push on (u, v) before it can leave the tree. This
is then the case of Push(x, u, v) saturating.

We conclude that (u, v) can only serve as merger arc at
most O(n) times and the total number of merger iterations is
O(nm).

During each iteration, the call to invert and PushPath can
be carried out in O(n) time, for a total running time of O(n2m).
All other steps are bounded in time by O(nm). Thus the
complexity of the algorithm is O(n2m) as claimed. ■

At a microlevel, the pseudoflow algorithm would be a spe-
cial case of the preflow-push algorithm of Goldberg-Tarjan
except for one important detail. The pseudoflow algorithm
sends flow on the arcs in PT (rj, root(j′)), and many of these
arcs are neutral. In the preflow-push algorithm, all flow is sent
only on (non-neutral) arcs (i, j) in which d(i) = d(j) + 1.

Chandran and Hochbaum [5] showed that the pseudoflow
algorithm is faster empirically than the preflow-push algo-
rithm. We conjecture that the flexibility to send flow on
neutral arcs is important, and leads to an overall speedup
of the algorithm.

3.4. An Equivalent Down-Up Version of the Generic
Algorithm

A minor variant in the generic algorithm is to delay the
inversion until either the push on the admissible path is com-
plete, or else there is a saturating push. This means that for
a merger arc (j, j′) the process of pushing on the path from
rj = root(j) to j is in the down direction in the branch Trj ,
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FIG. 2. (a) Branches before merger on arc (j, j′), (b) PushPath-down on the path from rj to j encounters first
saturating push, Push(v, w) saturating, and (c) v becomes a root node and the path section pv from rj to v is
inverted. Pushing flow continues from w.

whereas the push on the portion from j to j′ and subsequently
to rj′ = root(j′) is done in the up direction. The reason for
noting that this down-up version is equivalent to the generic
algorithm is that it makes a difference in the DFS variant
of the algorithm, by preserving the “down” direction. In the
DFS, variant subsequent pushes are executed in the down
direction only, while delaying the pushes in the up direction
to the end of a “phase.”

The down-up generic algorithm is illustrated in Figure 2.
In (b), J indicates all descendants of v other than Tw, that is,
J = (Tv \ {v}) \ Tw. The complexity of this down-up version
is the same as that of the generic algorithm.

4. A SPEED-UP FOR THE HIGHEST LABEL DFS
VARIANT—THE DFS ALGORITHM

In this section, we consider the variant of the pseudoflow
algorithm in which we always select an active node whose
distance label is maximum. If implemented in a straightfor-
ward manner, this variant has a worst case running time of
O(n2m), which is the same as the generic pseudoflow algo-
rithm. To speed it up to O(n3), we make several changes to the
down-up generic algorithm. One change is that we skip the
inversion following a saturating push resulting in excess at

intermediate stages being stored at nonroot nodes. A second
change is a modification of the down-up generic algorithm
in which PushPath-down is executed repeatedly (and with-
out inverting) while postponing the process of pushing the
flow further, PushPath-up in the generic algorithm. This post-
ponement is called delayed normalization in Ref. [13]. In this
implementation, at intermediate stages, the set of arcs T may
not correspond to the basic arcs of a basic preflow. Further
changes are in the implementation of the search for merger
arcs and the pushing of the flow jointly within a DFS process.
These are described below in detail.

A “phase” consists of a series of pushes, where pushes
originate from active nodes at the highest distance label (also
referred to as level), which we denote here as d′. A phase
ends when the highest level of an active node is no longer d′.
A phase d′ consists of two parts.

The first part of phase d′ is called PushDown(d′). We seek
out merger arcs (j, j′) where root(j) is an active node at level
d′ and j is at level d′ as well. When locating a merger arc (j, j′),
we push flow from root(j) to j and then push flow on (j, j′).
Unlike the generic down-up algorithm, Push(x, v, w) saturat-
ing is not followed by inversion of the component containing
v, and consequently v has positive excess while being a non-
root node (Fig. 3c). Second, we do not push flow from node

FIG. 3. (a) Branches prior to merger on arc (j, j′), (b) PushPath on the path from rj to j encounters first saturating
push, Push(v, w) saturating, and (c) DFS continues from node w and v is a nonroot with excess. w is now root(j)
and it has positive excess.
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j′ to its root rj′ until the next part of the phase. This possibly
leaves j′ as a nonroot node with positive excess. We continue
PushDown(d′) until there are no more merger arcs originat-
ing at level d′. At termination of PushDown(d′), there are
two types of nodes that are nonroot nodes with excess. The
level of one type of nodes is d′. All these d′-level nodes were
relabeled at termination of PushDown(d′). The other type
of nodes are all at level d′ − 1. All these (d′ − 1)-level nodes
were heads of merger arcs during PushDown(d′). The algo-
rithm is illustrated in Figure 3, where J in Figure 3c indicates
the descendants of v other than Tw.

The second part of phase d′ is called FinalPush(d′). Dur-
ing FinalPush(d′), we push flow from nonroot nodes (at level
d′ − 1) with positive excess until all excess resides entirely
at root nodes.

In PushDown(d′), we use DFS order while searching for
a merger arc. However, once a node has been d′-visited, we
immediately push flow to its child, even if a merger arc is
ultimately not found in that subtree. Likewise, the process of
backtracking is accompanied by pushing excess back from a
node to its parent. The relabeling of nodes is integrated with
the DFS process.

We are now ready to describe the detailed implementation
of DFS in PushDown(d′) for d′ the highest label of an active
(root) node. Let the set of active root nodes of highest label
d′ be {r1, . . . , r�}. We arrange this set in a DFS list in LIFO
order as List = (r1, . . . , r�), where r1 is the top element in
List.

Let V(d′) be the set of nodes that are labeled d′ and that
are active or have as root an active node of label d′. Let T(d′)
be the set of the neutral arcs within V(d′). Thus T(d′) forms
a forest that contains subtrees of all the active branches with
roots of label d′. For any node j, we use chd′(j) ⊆ ch(j)
to denote the ordered list of child node i of j such that
(j, i) ∈ T(d′). Although T(d′) remains a forest throughout

phase d′, the set of nodes in V(d′) is shrinking as nodes get
relabeled. A node can get relabeled only if it is a leaf of
the forest T(d′). A leaf node that has been d′-visited and
has children only of label d′ + 1 is relabeled. This restric-
tion on relabels ensures that the monotonicity of the distance
labels is satisfied throughout the algorithm, and the intersec-
tion of each branch of T with the forest T(d′) is a connected
component.

Let N(j) be a pointer to the next unscanned out-of-tree
arc originating at j. If all such arcs have been scanned, then
N(j) = ∅ and j is d′-visited. In this case, there is no need to
scan node j again while its label is still d′. The value of N(j)
is reset to the first neighbor on the list whenever node j is
relabeled.

During PushDown(d′), for Push(x, v, w) saturating it is
w that is becoming a root node in R, as in Figure 3c, unlike
the generic algorithm. That leaves node v with non-negative
excess as a nonroot node, and v remains on List if its excess
is positive and w is added to List in the first position. That is,
w serves as next node to be processed in the DFS procedure.

The only inversion that takes place in the DFS algorithm is
when there is a nonsaturating push on a merger arc (j, j′) and
the nodes in the branch containing j join the branch rooted at
root(j′). In that case, the path between node j and root(j) is
inverted.

Throughout the algorithm, List contains all active nodes of
V(d′)–that is, all positive excess nodes of label d′ are in List.
Operation TopL(List) picks the top node on List but does not
remove it from List, while operation PopL(List) picks the top
node on List and removes it from List. Operation PushL(i)
adds node i to the top on List (LIFO order). Before the first
call to phase d′ all nodes j ∈ V(d′) satisfy N(j) 
= ∅ (they
are d′-unvisited at this phase).

Let List:= (r1, . . . , r�) initially. List is a global data
structure throughout the procedure.

NETWORKS—2013—DOI 10.1002/net 47

procedure PushDown(d′)
begin

if (List 
= ∅) then
j := TopL(List); {excess e(j) > 0}
if (N(j) 
= ∅ and there is a merger arc (j, j′) originating at j) then

isSaturating := Push(x, j, j′);
if (isSaturating = saturating and e(j) > 0) then
{do nothing, node j is still on List and node j′ is a nonroot node with excess}
else

PopL(List); {remove node j from List}
{invert}:

for (each residual arc (v, w) on the path from root(j) to j) do
p(v) := w;

end for
{merge} p(j) := j′; {add (j, j′) to T}

end if
PushDown(d′);

else {j is d′-visited and excess is pushed down to a descendant of j}
for (each child of j: i ∈ chd′(j)) do



isSaturating := Push(x, j, i);
if (e(j) = 0) then

PopL(List); {remove node j from List}
end if
PushL(i); {add node i on List}
if (isSaturating = saturating) then

p(i) := ∅; {set node i as a root}
end if
PushDown(d′);

end for
{backtracking}:

{relabel}:
d(j) := d(j) + 1;
if (j = TopL(List)) then

PopL(List); {remove node j from List}
end if

{return excess to parent}:
if (p(j) 
= ∅) then

isSaturating := Push(x, j, p(j));
PushL(p(j)); {add node p(j) on List}
if (isSaturating = saturating) then

p(j) := ∅; {set node j as a root}
end if

end if
end if

end if
end

When PushDown(d′) terminates, there are some active
nodes of label d′ + 1 but no merger arcs with respect to these
nodes; there are no active nodes of label d′; and there are
nonroot nodes with excess that have label d′ − 1.

We note that in every call to PushDown(d′), we process
each arc of T(d′) at most twice: Once in the forward DFS
involving a push in the downward direction from a node to its
child; the second time an arc is processed is in the backtrack
process where the excess is pushed back to the node’s parent
(unless the node is a root). The backtrack push from node i
to p(i) is associated with node i being relabeled d′ + 1 and
consequently removed from V(d′). Once the invert process
takes place, all these relabeled nodes, and their subtrees in
T(d′) have been removed from V(d′) as they are no longer
in a subtree rooted in an excess node of label d′.

In the procedure, FinalPush(d′) excess is pushed from the
nonroot nodes with excess, each of which necessarily has the
label d′ − 1, to their respective roots. We are interested in the
subtrees of T in which all the leaves are nonroot nodes with
positive excess. The set of these subtrees is W(d′−1) = {v : v
is in a branch containing an active nonroot node j′ of label
d′ −1 and v is on the path from j′ to root(j′)}. We note that for
all v ∈ W(d′−1), d(v) ≤ d′−1 because of the monotonicity.

In this procedure, we refer to “reverse topological order”
in a rooted tree as the topological order that enforces a label
of a node v to be less than that of its parent p(v):

procedure FinalPush(d′)
begin

order the nodes of W(d′ − 1) in reverse topological
order;

for (each node v in W(d′ − 1) (taken in the reverse
order) such that v /∈ R) do

isSaturating := Push(x, v, p(v));
if (isSaturating = saturating) then

p(v) := ∅; {set node v as a root}
end if

end for
end

We now describe the O(n3) version of the pseudoflow
algorithm.

Algorithm Highest Label DFS Pseudoflow
begin

Initialize();
while (there are any active nodes) do

let d′ be the highest label of an active node;
{let r1, . . . , r� be the initial active d′-labeled

root nodes}
initialize List as List := (r1, . . . , r�);
for (each node j ∈ V ) do
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set N(j) to the first unscanned out-of-tree
arc originating at j;

end for
PushDown(d′);
FinalPush(d′);

end while
end

The procedure Initialize() creates the initial data structures
as well as the initial basis. This includes setting the preflow
values to be equal to 0 on all arcs. The branches are then all
singletons and each node is a root of its own branch. The
nodes with excess are those that have positive supply. The
distance labels of nodes in V\{t} are set to 1.

Theorem 4.1. The highest label DFS pseudoflow algorithm
solves the maximum preflow problem in O(n3) time.

Proof. As in the generic pseudoflow algorithm and the
proof of Theorem 3.1, the procedure highest label DFS
pseudoflow terminates when there are no active nodes, that
is, all nodes in V\{t} with positive excess have a distance
label of n. In this case, it ends with a maximum preflow and
a minimum cut.

To establish the complexity, we first bound the number of
phases, as was done in Ref. [11]. We separate phases into
increasing phases, in which the maximum distance label d′
increases after the phase, and decreasing phases, in which
d′ decreases after the phase. The latter happens when all
branches with active roots labeled d′ were merged into other
branches (no split occurred in the final Pushdown phase.) The
number of increasing phases is O(n2), and the total increase
in d′ following these phases is also O(n2). Thus, the total
decrease in d′ subsequent to decreasing phases is O(n2), and
so the number of such phases is O(n2). Thus the number of
phases is O(n2).

We next bound the time spent in each phase.
FinalPush(d′) consists of O(n) pushes and runs in O(n) time.
Thus, the total time spent in all phases on FinalPush is O(n3).

As before the total time spent in all phases on finding
merger arcs is at most O(mn). Also, similar to the complex-
ity of relabeling in the generic algorithm, there are up to n
values for d′. Therefore the total time spent in all phases on
relabel is O(n2). All we need to show now is that the time for
PushDown(d′) is O(n) per phase. ■

Claim 4.1. The complexity of PushDown(d′), excluding
finding merger arcs, is O(n) per phase. More precisely:

i. Each arc gets excess pushed from parent to child at most
once per phase;

ii. Each arc gets excess returned to parent from child at
most once per phase;

iii. Each arc is inverted at most once per phase;
iv. Each node is relabeled at most once.

Proof. During PushDown(d′), an arc (j, i) can be vis-
ited at most twice in the DFS process and once in the invert

process. The first time, j is selected as an active node on List
and i is the next child of j in chd′(j). In that case the push
is in the downwards direction. If the push is saturated, then
arc (j, i) is removed from T and from T(d′) and will not be
included in any subsequent T(d′).

The second time that arc (j, i) is visited is in the backtrack
process where node i is a leaf in the DFS tree (indicated by
having no children in T(d′)). In that case node i gets relabeled
and then returns its excess to its parent, j = p(i). The arc (j, i)
therefore cannot participate again in T(d′) in any subsequent
phase - the label of i is d′ + 1 and hence (j, i) is no longer
neutral for d′.

The only other form of processing arcs is in the invert
process. This happens when a merger arc (j, j′) is found and
r(j, j′) ≥ e(j). In that case, the entire branch rooted at root(j)
joins the branch rooted at root(j′) and no longer participates
in this phase’s PushDown(d′). ■

With the claim, we thus established that the total run time
of the highest label DFS algorithm consists of:

O(n3) for all calls to FinalPush,
O(nm) for finding mergers in all calls to PushDown,
O(n2) for all calls to Relabel, and
O(n3) for all calls to PushDown, excluding finding

mergers.
The total is, therefore, O(n3) as claimed.

5. AN O(nm LOG(n2/m)) IMPLEMENTATION OF
THE DFS ALGORITHM—THE DT ALGORITHM

In this section, we describe a dynamic tree implementa-
tion of the DFS algorithm of the previous section that runs
in O(nm log(n2/m)) time. We call this algorithm the DT
algorithm, where DT stands for Dynamic Trees.

The dynamic trees data structure was developed by Sleator
and Tarjan [17]. They used this data structure to develop an
O(nm log n) algorithm for the maximum flow problem. Gold-
berg and Tarjan [11] showed how to use the dynamic trees
data structure to speed up the preflow-push algorithm for
the maximum flow problem to O(nm log(n2/m)) time. Our
approach follows similar reasoning; however, as is typical
with dynamic tree algorithms, there are a number of techni-
cal details that need to be worked out in order to achieve this
running time.

Dynamic trees rely on partitioning the arcs of a tree into
subtrees. To clearly differentiate the subtrees of dynamic trees
from branches, we will refer to them as D-trees. Each D-tree
has a special node called the D-root. In our implementation
of the dynamic trees data structure, each root node of T will
be a D-root of a dynamic tree, but the converse is not true. All
nodes in one D-tree are required to have the same label. We
let D-root(j) denote the root of the D-tree containing node j.
Each D-tree is a connected subgraph of T .

With the dynamic trees implementation, the main distinc-
tion compared to the DFS algorithm is that we keep track of
d′-visited nodes throughout all phase calls with label d′ so
they are skipped over. This is done with the help of a flag,
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which is set to 0 initially, and to 1 when N(j) = ∅ (d′-visited).
In the DFS algorithm d′-visited nodes can be visited again
in subsequent calls to phase d′ only to verify that they are
d′-visited. This can result in additional run time of O(n) per
phase. In contrast, the DT algorithm skips over such nodes.
The skip is triggered once the top node on List is found to be
flagged as d′-visited. In that case, the skip operation is to pro-
ceed from node i to unvisitedd′(i), defined to be a left-most
descendant of i that has flagd′ value 0 and hence has not been
visited.

The total work for PushDown is O(mn) for pushing down
on arcs and backtracking and scanning for all merger arcs.
Each D-tree will have at most q nodes. We refer to a D-tree
as large if it has at least q/2 nodes, and refer to it as small
otherwise. Thus, there are at most 2m/n large D-trees at any
time. With the push-down and backtrack operations, we will
also include an update of the dynamic trees to ensure that
most of them are large, and that will require a complexity of
O(log q) per operation. This, plus the complexity of the skips
and the inversions will be shown to have total complexity of
O(mn log q).

For FinalPush, the main challenge in adapting the DFS
version to the DT version is in the reverse topological order in
which the nonroot excess nodes are processed. This requires
setting the topological order on D-roots of the respective D-
trees.

For each node j of the D-tree that is not a D-root, we let
Value-up(j) be the residual capacity rx(j, p(j)). If node j is
a D-root, then Value-up(j) = ∞. Similarly, we let Value-
down(j, i) (i ∈ ch(j)) be the residual capacity rx(j, i). Note
that Value-up(j) is associated with a node j and its unique path
to an ancestor, while Value-down(j, i) is associated with the
arc from a node j to one of its children i. If node j is a leaf of a
D-tree, then Value-down(j, ∅) = ∞. For each node j, we let
size(j) denote the number of nodes in the D-tree containing
node j. For each node j, we have a second value, flagd′(j),
which assumes the value 0 if node j has not completely been
scanned for admissible arcs at phase d′, that is, N(j) 
= ∅,
and the value 1 if node j is d′-visited, that is, N(j) = ∅. Each
node j has the value, flag-DTd′(j), which is 0 if node j has
a descendant i (i can be equal to j), contained in the same
D-tree, with flagd′(i) = 0. Thus flag-DTd′(D-root) = 1 if
all nodes in the D-tree rooted at D-root have been d′-visited,
and equals 0 otherwise. One more label value associated with
each node is unvisitedd′(j). This is a label of node j with
flag-DTd′(j) = 0 indicating a descendant i of node j that
is the closest to j in the same D-tree with flagd′(i) = 0.
If flagd′(j) = 0, then this label is j; else, it is a left-most
descendant i of j such that all nodes on the path from p(i)
to j have flag value 1 and flagd′(i) = 0. It is shown in the
Appendix that this label is maintained with constant number
of dynamic tree operations per update.

Dynamic trees support various operations. We adapt these
operations and present them in the context used here. One
basic operation, find-minvalue(j), finds the minimum value
of a node on the path in T from j to D-root(j). This operation
is omitted from the list of operations as it is not used here. On

the other hand, operations such as find-first-down(i, w, val)
do not appear explicitly on the list of basic operations, but can
be shown (as was shown, e.g., in Ref. [13]) to be a dynamic
tree operation that can be implemented, on a D-tree of size
q, in O(log q) complexity. All of the operations below are
either part of the original dynamic trees data structure, or can
be implemented in a straightforward manner using dynamic
trees.

i. D-root(j). Finds the D-root of the D-tree containing node
j.

ii. Find-first-up(i, w, val). Finds a node j on the path from i
to w (that could be its D-root(i)) that is closest to node i
and such that Value-up(j) ≤ val, or returns w otherwise.

iii. Find-first-down(i, w, val). Finds the node j on the path
from i to w in D-tree(i) that is closest to node i and such
that Value-down(j, c(j)) ≤ val, where c(j) is the unique
child of j on the path, or returns w otherwise.

iv. FindSize(j). Returns size(j).
v. AddValue(i, w, val). Adds the real number val to the

flows of all residual arcs (j, j′) on the path in T from
node i to node w, and updates Value-up and Value-down
for all internal nodes of the path by subtracting or adding
the value of val: If i is a descendant of w, then Value-up of
i and all internal nodes is reduced by val and Value-down
of arc (w, c(w)) and of all the internal arcs is increased by
val. The subroutine simultaneously decreases e(i) by val
and increases e(w) by val. The case when i is an ancestor
of w is analogous.

vi. Link(i, j). This operation assumes that i and j belong to
two different D-trees. It merges the D-tree containing
node i with the D-tree containing node j, lets p(i) = j,
and sets the root of the merged tree to D-root(j). It sets
Value-up(i) to rx(i, j).

vii. Cut(j). This operation breaks the D-tree containing node
j into two D-trees by deleting the arc (j, p(j)). Node j
becomes the D-root of its tree.

viii. Invert(j). This operation takes the D-tree rooted at D-
root(j), and roots it at j instead. Consequently, the
parent-child relationship on the path from D-root(j) to j
is inverted.

The dynamic trees data structure stores the residual capac-
ities of arcs in the D-trees implicitly. However, if nodes i
and j are in different D-trees, then rx(i, j) is explicitly main-
tained. The following theorem was proved by Sleator and
Tarjan [17].

Theorem 5.1. For D-trees of size O(q), the running time
of each D-tree operation is O(log q) in an amortized sense.
That is, over a sequence of K > n consecutive operations on
the D-trees, the running time is O(K log q).

During the DFS process of scanning for merger arcs,
there are no dynamic tree operations involved. Thus each
arc (p(j), j) traversed during the DFS search operation will
be cut by calling for Cut(j) prior to pushing flow on it. After
node j has been fully scanned, it is assigned the flag value
of 1; in addition, there will be a Link(j, p(j)) operation if the
sum of the sizes of the two D-trees containing j and p(j) is
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less than or equal to q. During the backtrack operation from j
to p(j), the arc (j, p(j)) is cut from the D-tree, with operation
Cut(j). Node j then has a label of d′+1 whereas d(p(j)) = d′.
If node j then has a child in T and if its left-most child i is in a
different D-tree from j, then Link(i, j) is run if the sum of their
respective sizes is less than or equal to q. These dynamic tree
operations during the DFS process add O(log q) steps each.
Since each arc is traversed down at most once in DFS and at
most once in backtrack per label d′ (see Claim 4.1), the total
complexity added is O(n log q) per arc, or O(mn log q) for all
arcs.

The operations that directly involve the dynamic trees are,
first in PushDown(d′): the invert operation once a merger
has been identified; the skip subroutine that skips all d′-
visited nodes along the downwards DFS search path and
pushes the flow down from j to the next unvisited node,
unvisitedd′(j). In FinalPush(d′) the operation is that of
pushing up flows from nonroot nodes with excess to their
respective roots. All these operations are analogous in the
sense that they use, along the path, only the D-roots of the
respective D-trees encountered, except possibly for the first
one, which may not be a D-root.

To implement the FinalPush(d′) operations in reverse
topological order, we demonstrate how to construct a
so-called auxiliary graph, which represents the tree T but
which involves as nodes only D-roots.

In the remainder of this section, we explain how to modify
PushDown(d′) and FinalPush(d′) so that their running time
is O(nm log q) over all iterations.

We first show how to modify PushDown(d′) using the
dynamic trees data structure. We then provide full details on
how to modify FinalPush(d′).

5.1. Modifying PushDown(d′)

The major operations of PushDown(d′) involve pushing
flow from a parent to child, or returning excess from a child
to a parent. These operations are implemented simply on an
arc (p(j), j) by cutting it first and then performing the push,
and then, if no split, merging again the two D-trees subject
to size restriction. In the backtrack to parent, the child node
j is relabeled and the arc (j, p(j)) is cut, with Cut(j).

When we reach a d′-visited node j in the DFS process, we
use the skip operation to proceed to unvisitedd′(j), a descen-
dant of j that has not been fully scanned yet, and push the
flow on the path from j to unvisitedd′(j). In the next lemma
we prove that such a descendant always exists. In fact, every
leaf node is such a descendant.

Lemma 5.1. All leaf nodes in T(d′) are d′-unvisited.

Proof. Consider the DFS algorithm without skips. Once
the DFS algorithm reaches a d′-visited node j (no merger arc
from j), it scans the children of j. It then either continues the
DFS process to one of the children of label d′, or else relabels
j, removes it from T(d′) and V(d′), and backs up to a parent.
Therefore, a node that is d′-visited cannot be a leaf node. ■

We add the operation combine(i, j) for arc (i, j) ∈ T when
nodes i, j do not belong to the same D-tree (tested by com-
paring their respective D-roots). This operation checks if
size(i) + size(j) ≤ q and if so, it calls Link(i, j).

We later show that each D-tree operation, applied to a
path of length P, requires no more than O((P/q) log q) steps,
plus an additional complexity of O(mn log q) throughout the
algorithm, for all operations. We first present the DT version
of PushDown. Recall that List := (r1, . . . , r�) initially.
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procedure DT-PushDown(d′)
begin

if (List 
= ∅) then
j := TopL(List); {excess e(j) > 0}
if (flagd′(j) = 1) then

D-Push-down(j, unvisitedd′(j), e(j));
DT-PushDown(d′);

else
if (there is a merger arc (j, j′) originating at j) then

isSaturating := Push(x, j, j′);
if (isSaturating = saturating and e(j) > 0) then
{do nothing, node j is still on List and node j′ is a nonroot node with excess}
else

PopL(List); {remove node j from List}
{invert} invert path from root(j) to j;
{merge} p(j) := j′; {add (j, j′) to T} combine(j, j′);

end if
DT-PushDown(d′);

else {j is d′-visited and excess is pushed down to a descendant of j}
flagd′(j) := 1;
for (each child of j: i ∈ chd′(j)) do



if (j and i are in the same D-tree) then
Cut(i);

end if
isSaturating := Push(x, j, i);
if (e(j) = 0) then

PopL(List); {remove node j from List}
end if
PushL(i); {add node i on List}
if (isSaturating = saturating) then

p(i) := ∅; {set node i as a root}
else

combine(j, i);
end if
DT-PushDown(d′);

end for
{backtracking}:

{relabel}:
d(j) := d(j) + 1;
if (j = TopL(List)) then

PopL(List); {remove node j from List}
end if

{return excess to parent}:
if (p(j) 
= ∅) then

isSaturating := Push(x, j, p(j));
PushL(p(j)); {add node p(j) on List}
if (isSaturating = saturating and e(j) > 0) then

p(j) := ∅; {set node j as a root}
end if

end if
end if

end if
end if

end

An important pair of routines push flow from a node
j with a positive excess e(j), up to a node (usually an
ancestor root node) w along a path in T (implemented
as D-Push-up(j, w, e(j)) in the following), or down to a
descendant node w along a path in T (implemented as
D-Push-down(j, w, e(j)) in the following).

procedure D-Push-down(j, w, e(j))
begin

if (j 
= w and j has a child in T and e(j) > 0) then
k := Find-first-down(j, w, e(j));
if (k = w) then

AddValue(j, w, e(j));
PopL(List); {remove node j from List}
PushL(w); {add node w on List}

else {rx(k, c(k)) ≤ e(j)}
PopL(List); {remove node j from List}
AddValue(j, k, e(j));
Push(x, k, c(k));

p(c(k)) := ∅; {set node c(k) as a root}
{k has excess e(k) = e(j) − rx(k, c(k))}
if (e(k) > 0) then

PushL(k); {add node k on List}
end if
Cut(c(k));
e(c(k)) := rx(k, c(k));
D-Push-down(c(k), w, e(c(k)));

end if
end if

end

The next procedure is used only in FinalPush(d′)
(next section), but its structure is similar to that of
D-Push-down(j, w, e(j)) and is therefore placed here.

procedure D-Push-up(j, w, e(j))
begin

if (j 
= w and j is not a root of T and e(j) > 0) then
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k :=Find-first-up(j, w, e(j));
if (k = w) then

AddValue(j, w, e(j));
else {rx(k, p(k)) ≤ e(j)}

AddValue(j, k, e(k));
Push(x, k, p(k));
p(k) := ∅; {set node k as a root}
{k has excess e(k) = e(j) − rx(k, p(k))}
Cut(k);
e(p(k)) := rx(k, p(k));
D-Push-up(p(k), w, e(p(k)));

end if
end if

end

Throughout the algorithm, all calls to D-Push-down or
D-Push-up can create up to O(mn) new D-trees that are
potentially small, that is, of size < q/2. All such created D-
trees must have, by construction, a D-root that belongs to R,
the set of roots in T .

The procedures Find-first-up(j, w, e(j)), Find-first-
down(j, w, e(j)), AddValue(j, w, e(j)), and invert(j) are all
built on the respective basic operations on D-trees. We
explain next how to construct these operations along
paths that include multiple D-trees. This is shown for
AddValue(j, w, e(j)) (in the up direction) where for the others
the implementation is analogous. In the procedure AddValue,
we use the name AddValue-D for the AddValue operation
used within a single D-tree. Every time an out of D-tree arc is
processed, from a D-root to its parent, the combine operation
is invoked as well.

procedure AddValue(j, w, e(j))
begin

while (j and w are not in the same D-tree) do
AddValue-D(j,D-root(j), e(j));
i := p(D-root(j));
Push(x, D-root(j), i);
combine(D-root(j), i);
j := i;

end while
AddValue-D(j, w, e(j));

end

The significance of using combine is that it results in a pro-
cessed part of the tree T that has on all paths large D-trees at
least on every alternate level. The number of additional small
D-trees that are created at the root level is O(mn) throughout
the algorithm. The additional D-trees are created only when
there is a split and a node becomes a D-root. As throughout
the algorithm there are at most O(mn) splits, the number of
small D-trees is at most O(mn).

An analogous argument applies for the invert path oper-
ation, the AddValue operation and the find-first-down/up
operations. All these take a path of length P that contains
at most O(P/q) D-trees. Each such operation thus runs in at
most O((P/q) log q) time per path. This argument is made

formal in the next lemma. For unvisitedd′(j) and, therefore,
the skip operation, it is shown in the Appendix that the same
complexity applies also.

Lemma 5.2. The complexity of invert, AddValue and the
other operations is O(mn log q) throughout the algorithm.

Proof. We first consider the application of these oper-
ations to a single path of length P. Because combine() is
integrated into all these operations, it follows that along a
path of length P there are at most O(1 + P/q) D-trees, and
this results in O((1 + P/q) log q) time.

Each arc (j, i) has flow sent on it O(1) times when it
has a label of d′, thus O(n) times in total. Thus the sum
of the lengths of all paths on which the operations apply
is O(nm), and the number of paths is O(nm). Summing
O((1 + P/q) log q) over the lengths of all paths results in
a total running time of O(nm log q). ■

Theorem 5.1. The complexity of DT-PushDown through-
out the algorithm is O(mn log(n2/m)).

Proof. For a label d′, each arc is processed at most
once in the pushing down of flow and at most once in
the backtracking. As there are up to n labels the process-
ing of arcs requires O(mn) throughout. Since we use the
Cut and combine operations, these contribute O(mn log q)

complexity.
In each phase, each arc can participate at most once in

the skip or invert operations, and thus at most once in the
AddValue and Find-first-down operations. That is because
the skip operation is part of the DFS process during a phase,
and once the search has gone down the tree with the skip
operation, the same arcs cannot be skipped again but only
backtracked on, as already accounted for above. For the invert
operation, all arcs on the path that is inverted are then removed
from T(d′) and are no longer processed in the current phase.
Thus the total lengths of the paths processed by skip and
invert, per phase, is at most O(n).

The skip operation and the other operations can also be
invoked at most O(n) times per phase, and possibly on very
short paths. If the paths are of length P > q, then the com-
plexity per skip is O((P/q) log q). Otherwise the complexity
per operation is O(log q).

Since there are O(n2) phases, and the skip and invert
operations can process multiple paths of total length at
most n arcs per phase, the total work of these operations is
O((n3/q) log q). Having chosen q = n2/m, this complexity
is O(mn log(n2/m)) throughout the entire algorithm.

Adding the complexity of all these operations and that of
the pushing down and backtracking on an arc the complex-
ity is O(mn log(n2/m)). Finding all mergers throughout the
algorithm adds only O(mn) steps. ■

5.2. Modifying FinalPush(d′)

The key in constructing the DT analogue of FinalPush(d′)
is to process the topological order final push on D-roots
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FIG. 4. (a) A branch of T after preprocessing. (b) The auxiliary graph
for a.

only. In a preprocessing step of DT-FinalPush, all nonroot
nodes with excess (and of label d′ − 1) send their excess to
their respective D-roots. For each such node j′, this is done
using D-Push-up(j′,D-root(j′), e(j′)). Since nonroot nodes
with excess are created only as result of mergers, and there
are O(mn) mergers throughout the algorithm, this process
takes O(mn log q) throughout the algorithm.

We can thus assume that all nonroot nodes with excess are
D-roots. We next construct the auxiliary graph induced on
D-root nodes only that contain the D-root nodes with excess,
and all their D-root ancestors. This is the graph on which the
reverse topological push will be processed.

Figure 4a is one branch of T after the preprocessing step.
The thick black arcs are in the dynamic tree. The gray arcs
are arcs of T that are not in the dynamic tree. Nodes with
no black arc leaving are D-roots. The gray nodes are active.
Note that all active nodes are D-roots. The only D-roots that
are not active in the branch are nodes 6 and 9. The only nodes
that are not D-roots are nodes 2, 3 and 7.

We let the set of active D-root nodes created at the pre-
processing step be called ActiveSet. We will be interested
in those active D-roots that do not belong to R. We denote
S = ActiveSet \ R. The auxiliary graph is the graph of the
nodes of S and their D-root ancestors, on which the reverse
topological order is defined.

procedure AuxiliaryGraph(S)

begin
V ′ := S, A := ∅;
for (each node i of S) do

v := i;
while (v is not a root node of T ) do

w :=D-root(p(v));
V ′ := V ′ ⋃ {w};
A′ := A′ ⋃ {(v, w)};
v := w;

end while
end for

end

The graph G′ = (V ′, A′) is the auxiliary graph. The auxil-
iary graph output for the graph given in Figure 4a is depicted
in Figure 4b. In this particular graph only D-roots are present.

5.2.1. DT-FinalPush(d′) and Its Complexity We are
now ready to present the procedure FinalPush with dynamic
trees. Here ActiveSet is the set of nonroot nodes that are
active at the beginning of DT-FinalPush and DRootSet is the
set of all D-roots.

procedure DT-FinalPush(d′)
begin

{Preprocessing}:
for (each node j′ ∈ ActiveSet \ DRootSet) do

D-Push-up(j′, D-root(j′), e(j′));
{update ActiveSet} ActiveSet:=

ActiveSet\{j′} ⋃
{D-root(j′)};

end for
S := ActiveSet \ R;
let G′ = (V ′, A′) be created by AuxiliaryGraph(S);
order the nodes of V ′ in reverse topological

order in G′;
for (node j′ ∈ V ′ \ R in the reverse topological

order) do
Push(x, j′, p(j′));
D-Push-up(p(j′), D-root(p(j′)), e(p(j′)));
combine(j′, p(j′));

end for
end

Theorem 5.2. The complexity of DT-FinalPush throughout
the algorithm is O(nm log q).

Proof. As discussed above, the preprocessing step takes
O(nm log q) time. The complexity of the remainder of the
algorithm is determined by the number of nodes in V ′. This
is because the creation of the reverse topological order takes
O(|V ′|) time, and the Push and D-Push-up operations take
O(log q) per node of V ′.

Because the operation combine is invoked throughout the
DT-FinalPush procedure, for every two consecutive D-trees
on a path in T from a node to its root, at least one of the D-trees
is large. Equivalently, in the auxiliary graph G′, for every two
consecutive nodes on a path from a node to a root node, at
least one of these two nodes represents a large D-tree, which
is of size at least q/2. Hence, the number of large D-trees in
G′ is at most 2n/q and the size of |V ′| is at most the number
of leaves in G′ plus 4n/q.

Every leaf node of G′ is created from a nonroot active node,
which is created, in turn, by a merger operation. Therefore,
throughout the algorithm, the total number of leaf nodes in
all auxiliary graphs created is at most O(mn).

Hence, throughout the algorithm and all calls to DT-
FinalPush, the total number of nodes in all auxiliary graphs
is at most n2 · 4n/q + mn. Since we choose q = n2/m,
this number is O(mn). The statement of the theorem thus
follows. ■
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Now we can describe the complete DT-algorithm.

DT-algorithm
begin

Initialize();
for (each label d ∈ {1, . . . , n}) do

for (each node j ∈ V ) do
flagd(j) := 0; DT-flagd(j) := 0;

unvisitedd(j) := j;
end for

end for
while (there are any active nodes) do

let d′ be the highest label of an active node;
{let r1, . . . , r� be the initial active d′-labeled root

nodes.}
initialize List as List:= (r1, . . . , r�);
DT-PushDown(d′);
DT-FinalPush(d′);

end while
end

We thus conclude that:

Theorem 5.3. The pseudoflow algorithm using dynamic
trees, the DT-algorithm, solves the maximum preflow problem
in O(nm log(n2/m)) time.

6. CONCLUSIONS

We provide here a unique and new perspective on the
pseudoflow algorithm. Two variants of the algorithm, the
DFS variant and the dynamic trees variant, devised here, have
complexities of O(n3) and O(nm log(n2/m)), respectively,
improving on previous complexity bounds for the algorithm.
We believe that the algorithmic concepts introduced here
will lead to improvements in running time of maximum flow
algorithms not only in theory, but in practice as well.
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APPENDIX: DYNAMIC TREES MAINTENANCE OF
FLAGd ′(j ), DT-FLAGd ′(j ) AND UNVISITEDd ′(j )
LABELS

Overview

The purpose of the unvisitedd′(j) label is to identify a left-
most descendant of node j, which has not been d′-visited, in
the same D-tree, and that is closest to j, or indicate that such
a node does not exist.

The unvisitedd′(j) label is a pointer to a left-most descen-
dant i of node j with flag-DTd′(j) = 0 and flagd′(i) = 0 that is
“closest” to j in the same D-tree among all descendant nodes
with flagd′ value equal to 0. More precisely, if flagd′(j) = 0,

then this operation returns j; else, it returns a left-most descen-
dant i of j, in the same D-tree, such that all nodes on the path
from p(i) to j have flagd′ value 1 and flagd′(i) = 0. We will
show that for each label d′, the overhead for maintaining the
labels unvisitedd′(), flagd′() and DT-flagd′() is at most O(m).
We also show that the labels are correctly updated and main-
tained for each of the following operations occurring during
the DFS process:

1. link
2. invert
3. update associated with a node having been d′-visited
4. cut.

Furthermore, the complexity of invert and update operations
is dominated by the complexity of the DT algorithm; and
the link and cut operations, that are performed on D-trees,
have complexity O(log q) for D-trees on q nodes. Therefore
throughout the algorithm their complexity does not increase
the overall complexity of the DT algorithm.

Notations. DT will be used here as an abbreviation of D-
tree. The value flagd′(j) = 1 indicates that node j has been
d′-visited; DT-flagd′(j) = 1 if node j has no descendant in
the same DT that is d′-unvisited; unvisitedd′(j) is the closest
d′-unvisited left-most descendant of j in the same DT. The
value of this label is equal to “nil” if DT-flagd′(j)=1.

The invariant that we maintain during the DFS process
is that in each DT, the children of each node get the label
DT-flagd′(i) = 1 from left to right. That is, the list of the chil-
dren of node j, in left-to-right order, have the DT-flagd′ labels’
sequence (1, . . . , 1, 0, . . . , 0), where the left-most child with
the label DT-flagd′(i) = 0 is termed the current-child. Notice
that some children of nodes in a DT may belong to other DTs.

The current child of node j in the same DT is denoted by
ccd′(j). The child that is next to (to the right of) ccd′(j) and
in the same DT, is denoted by cc+

d′(j). If cc+
d′(j) = nil, then

ccd′(j) is the right-most, and last, child of j in the same DT.
The main DT operation used here is analogous to,

and somewhat simpler than, AddValue(i, w, val). It is
ReplaceUnvisited(i, index, d′) (the node w here is always the
D-root(i)). It replaces the unvisitedd′ label by index in all
unvisitedd′ labels for all nodes v on the path in T from node
i to D-root(i).

A second, and similar, DT operation is ReplaceDT-flag
(i, val, d′). It replaces the DT-flagd′ labels of all nodes v on
the path in T from node i to D-root(i) by val.

Link

When two DTs are merged along arc (j, i), it is between
a node j in one DT and the D-root i of the other, so that i
becomes a child of j. This is illustrated in Figure 5 where
the black nodes are those that have been d′-visited, with
DT-flagd′ value 1, for which all descendants in the same DT
tree have flagd′ value 1 (have been d′-visited). Thus, for black
nodes, the unvisitedd′ label value is “nil”. The other nodes still
have d′-unvisited descendants. With the link operation, node i
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FIG. 5. A link operation.

becomes a child of j positioned to the left of the current-child
of j, ccd′(j), (the left-most child of j with DT-flagd′ value 0).

The update of the visited related labels depends on the
values of the flagd′ and the DT-flagd′ labels of j and i as
follows:

Case (a): DT-flagd′(i) = 1. Here no update is needed and
ccd′(j) remains the current child of j.

Case (b): DT-flagd′(i) = 0. Then ccd′(j) := i.
(b1) If DT-flagd′(j) = 0 and flagd′(j) = 0 (so

unvisitedd′(j) = j), then there is no further update.
(b2) If flagd′(j) = 1 (in which case unvisitedd′(j) 
= j),

then ReplaceUnvisited(j, unvisitedd′(i)).
(b3) If DT-flagd′(j) = 1 (and then flagd′(j) = 1), then

ReplaceDT-flag(j, 0, d′).
Each of the DT operations in (b2) and (b3) takes O(log q)

steps for a dynamic tree on q nodes.

Invert

The invert operation occurs during the algorithm only
along a path between a node j and D-root(j). When invert
occurs, then all nodes on the path [D-root(j), . . . , p(j)] must
have been d′-visited and have flagd′ values equal to 1. After
the invert, node p(j) becomes a child of j. Node p(j) is inserted
to the left of the current child of j. Also, after the invert oper-
ation, D-root(D-root(j)) = j. Note that before the invert, the
current child of j may not belong to the same DT as j.

Let w = ccd′(D-root(j)) prior to the invert operation and
w′ = cc+

d′(D-root(j)) the next child of D-root(j) (the one
to the right of w). After the invert, w becomes the parent
of D-root(j) and w′ becomes the current child of D-root(j),
as illustrated in Figure 6. Node p(j) is inserted as left-most
d′-unvisited child of j after the invert, so ccd′(j) := p(j).

The formal update procedure occurring after a inversion is:

procedure update-invert
begin

if (w′ 
= nil) then{DT-flagd′(w′) = 0}
ReplaceUnvisited(D-root(j), w′, d′);
{for all i along the path [D-root(j), . . . , j],

unvisitedd′(i) := w′}
else

backtrack([D-root(j), . . . , j]);
end if

end

The purpose of backtrack([D-root(j), . . . , j]) is to shift
the current child pointer of each node on the inverted path
[D-root(j), . . . , j] to the next child on its right.

procedure backtrack([u, . . . , D-root(u)])
begin

v := u
while (v 
= ∅ and cc+

d′(v) = nil) do
DT-flagd′(v) := 1;
v := p(v);

end while
if (v 
= ∅) then

v′ := cc+
d′(v);

ReplaceUnvisited(v, v′, d′); {for all z on [v, . . . ,
D-root(u)], unvisitedd′(z) := v′}

end if
end

The complexity of the backtrack subroutine appears to be
linear in the length of the path for each invert and thus poten-
tially of high complexity throughout the algorithm (for the
O(mn) inverts that occur throughout the algorithm, it would
be O(mn2) complexity). However, this operation is charged
to the backtracking of the DFS process and for every label d′,
each arc can be visited at most once in the backtrack process.
Thus the total charge for the backtracking is O(m) per label
value, and O(mn) for the entire algorithm.

Update associated with a node having been d′-visited

A node has been d′-visited when all its neighbors adja-
cent to admissible arcs haven been scanned. In this case,
flagd′(j) := 1.

procedure update-visited(j)
begin

if (ccd′(j) = nil) then
DT-flagd′(j) := 1;

FIG. 6. The invert operation.
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unvisitedd′(j) := nil;
backtrack([j, . . . , D-root(j)]);

else
ReplaceUnvisited(j, ccd′(j), d′);

end if
end

Cut

A cut is the partition of a DT obtained by removing arc
(i, j), where j = p(i), from the DT. The following procedure
shows how to update the labels of j and its ancestors when arc
(i, j) is removed and i is no longer a child of j in the same DT.

procedure update-cut(i)
begin

if (i 
= ccd′(j)) then
remove i from the list of children of j in the DT;

else {i = ccd′(j)}
w′ := cc+

d′(j);
if (w′ = nil) then

DT-flagd′(j) := 1;
unvisitedd′(j) := nil;
backtrack([j, . . . , D-root(j)]);

else
ccd′(j) := w′;
ReplaceUnvisited(j, w′, d′);
remove i from the list of children of

j in the DT;
end if

end if
end

As before, if the D-tree containing node i is of size q, then
the complexity of update-cut is O(log q).

This completes the proof that the labels can be maintained
in time dominated by the complexity of the main algorithm,
O(mn log n2

m ).
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