
Efficient Algorithms for the Inverse Spanning-Tree Problem
Author(s): Dorit S. Hochbaum
Reviewed work(s):
Source: Operations Research, Vol. 51, No. 5 (Sep. - Oct., 2003), pp. 785-797
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/4132438 .
Accessed: 13/06/2012 20:53

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Operations Research.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/4132438?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp

EFFICIENT ALGORITHMS FOR THE INVERSE
SPANNING-TREE PROBLEM

DORIT S. HOCHBAUM
Department of Industrial Engineering and Operations Research, Walter A. Haas School of Business,

University of California, Berkeley, California 94720, hochbaum@ieor.berkeley.edu

The inverse spanning-tree problem is to modify edge weights in a graph so that a given tree T is a minimum spanning tree. The objective
is to minimize the cost of the deviation. The cost of deviation is typically a convex function. We propose algorithms here that are faster
than all known algorithms for the problem. Our algorithm's run time for any convex inverse spanning-tree problem is O(nm log2 n) for
a graph on n nodes and m edges plus the time required to find the minima of the n convex deviation functions. This not only improves
on the complexity of previously known algorithms for the general problem, but also for algorithms devised for special cases. For the case
when the objective is weighted absolute deviation, Sokkalingam et al. (1999) devised an algorithm with run time O(n2mlog(nC)) for C
the maximum edge weight. For the sum of absolute deviations our algorithm runs in time O(n2 log n), matching the run time of a recent
(Ahuja and Orlin 2000) improvement for this case. A new algorithm for bipartite matching in path graphs is reported here with complexity
of O(n'5 log n). This leads to a second algorithm for the sum of absolute deviations running in O(n'5 log n log C) steps.

Received August 2001; revision received October 2002; accepted November 2002.

Subject classifications: Programming: integer, algorithms, optimization in integers. Network/graphs: flow algorithms, parametric minimum
cut. Mathematics: convexity, convex optimization problem.

Area of review: Optimization.

1. INTRODUCTION
The inverse spanning-tree problem is a problem in the
class of "inverse optimization" problems. Inverse problem
theory is a subject extensively studied in the context of
tomographic studies, seismic wave propagation, and in a
wide range of statistical inference with priors problems
(Tarantola 1987, Barlow et al. 1972). In an inverse opti-
mization problem a candidate-feasible solution is given,
and the goal is to modify the cost parameters so that
the given solution is optimal. The objective function is to
modify the costs so as to minimize the penalty incurred
by the modification of the cost parameters. In the inverse

spanning-tree problem there is a given spanning tree T
in an edge-weighted graph. The problem is to modify the
edge weights so that the given tree is a minimum spanning
tree and so that the cost of the deviation from the original
weights is minimum. The penalty cost function is typically
a convex function of the magnitude of the deviation.

The inverse minimum spanning-tree problem is defined
on an undirected graph GT = (N', E) with edge weights ce
for all e E E and a spanning tree T. We let IN'I = n and

I E = m. A subgraph (N', T) for T C E is said to be a
spanning tree if it is connected and acyclic.

A necessary and sufficient condition for a tree to be a
minimum spanning tree is that each out-of-tree edge i E
E\T must have a weight ci greater than or equal to each
of the weights of the edges in the tree on the unique path
between its endpoints.

DEFINITION 1. For a spanning tree T let {a, b} e E\T be
an out-of-tree edge. Then, the unique path Pab(T) between
a and b in T is said to be the path induced by {a, b}.

If T is not a minimum spanning tree, then the rank order
constraints, ci > cj for i E E\T, j E Pi(T), are violated for
at least one pair (i, j). To ensure that the constraints are
satisfied, the edge weights must be modified. The penal-
ties for deviating from the given weights of the edges are
convex functions of the type fe (x, - Ce) for e E E that are
minimized for xe = ce. Let 1 = minjEE cI and u = maxjEE Cj.
Our formulation of the inverse spanning-tree problem (IST)
is thus:

(IST) Min Zfj(xj
-

cj) jEE

subject to xi > x V iE\T, je Pi(T),

1 <x,
•

u VjE.

We restrict the discussion to the problem in integer vari-
ables. The technique, with slight modifications, is also
shown to be applicable to the continuous optimization prob-
lem, in ?7.

The number of variables in this formulation is m and
the number of constraints is the sum of the induced paths
lengths, •~iE\T Pi(T)l, which is O(mn). We refer here-
after to the number of variables and constraints in the IST
formulation as N, M, respectively.

1.1. Prior Research
Prior research in the field of inverse optimization problems
has addressed, in terms of solution approaches, only a lim-
ited collection of penalty functions. These are restricted to
the norms L1 (sum of absolute deviations), L2 (quadratic
deviations), L, (minimizing maximum absolute deviation),
and a variant of L,, the weighted sum of absolute deviations.

0030-364X/03/5105-0785
1526-5463 electronic ISSN 785

Operations Research ? 2003 INFORMS
Vol. 51, No. 5, September-October 2003, pp. 785-797

786 / HOCHBAUM

The most efficient algorithms for IST were developed
recently by Sokkalingam et al. (1999) and by Ahuja
and Orlin (2000). Sokkalingam et al. (1999) studied the
problem for three specific convex penalty functions: sum
of absolute deviations where fi(xi) = Ixi - ci, I weighted
sum of absolute deviations where fi(xi) = Wilxi - cil,
and maximum absolute deviation that seeks to minimize

maxiE lxi - ci. The run times for these three cases are

O(n3), O(n2mlog(nC)), and O(n2), respectively. Ahuja
and Orlin (2000) further improved the algorithm for the
objective function of the sum of absolute deviations, L,,
improving the complexity from O(n3) to O(n2 log n). This
improvement was achieved by considering a modified path
graph, which we call the reformulation. This reformulation,
with some adjustments, is important in achieving faster run
times for the algorithms reported here as well.

Other efficient algorithms for the problem have been
devised for problems that generalize IST. These algo-
rithms were not devised specifically for the convex IST, but
rather for the convex dual of minimum cost network flow,
(DMCNF). In this dual formulation the dual variables of
the flow balance constraints, xj, and the dual variables of
the capacity constraints, zij, in a graph G' = (V', A') appear
with convex cost functions fj() and e1j() in the objective:

(DMCNF) Min Lfj(xj)+ L ej(zj)
jEV' (i,j)eA'

subject to xi - xj ?z, for (i, j) e A',

uj > xj > lj, j E V',

z >0, (i, j) A'.

Obviously, IST is a DMCNF problem with zij = 0.
Two different polynomial time algorithms were devised

for the convex dual of minimum cost network flow
in articles by Ahuja et al. (1999a, b). The algorithm
reported in Ahuja et al. (1999a) has a running time of

O(MNlog(N2/M)log(NU)), where N = IV', M = IA'l,
and U = maxjEv, {uj - lj. The algorithm reported in Ahuja
et al. (1999b) has the running time of solving the minimum
s, t-cut problem log U times. We refer to these algorithms
as AHOa and AHOb, respectively.

When zij = 0, the minimum s, t-cut problem in the
AHOb algorithm is solved on a graph with O(N) nodes and

O(M) arcs for a total run time of O(MN log(N2/M) log U)
using, e.g., the algorithm of Goldberg and Tarjan (1988) as
the minimum cut algorithm.

Part of the contribution here is to consider the prop-
erties of the graph in which the minimum cut' is solved
and derive better run times for this algorithm. Denoting
by T(n, m, L) the complexity of solving the minimum cut

problem on a graph with n nodes, m arcs, and maximum
label or distance from source to sink L, the complexity of
the AHOb algorithm is O(log U - T(N, M, L)).

The convex inverse spanning-tree problem is also a spe-
cial case of the convex cost-closure problem (CCC) studied

by Hochbaum and Queyranne (2003). For a set of variables

V' and a set of ordered pairs A', the formulation of the
problem is

(CCC) Min E f(xj)
jEV'

subject to xi - xj0> 0 V (i, j) eA',

ij < xj < uj, j E V'.

The algorithm of Hochbaum and Queyranne has the
complexity of a (parametric) minimum cut on a graph
associated with the formulation, TP(n', m', L), plus the
complexity of finding the minima of the convex func-
tions that form the penalty functions, O(TP(n', m', L) +
n'log U). Note that finding the minima of n weighted
deviation functions or of quadratic deviation functions can
be accomplished in O(n). The most efficient algorithms
reported here for the convex IST problem use the CCC
algorithm of Hochbaum and Queyranne (2003).

1.2. Main Contributions
The formulation of IST introduced here is different from
the one previously used in Sokkalingam et al. (1999) and
Ahuja and Orlin (2000). That formulation is a dual of the
assignment problem. We believe that our formulation is par-
ticularly amenable to efficient algorithms in that it makes
the role of the minimum cut structure of the problem trans-
parent. Our results exploit the special structure of the graph
associated with the formulation. That graph, called the path
graph, is bipartite with TI and IE\TI nodes in the two
parts of the bipartition, respectively, and an edge between
each node representing an out-of-tree edge j and the nodes

representing in-tree edges on the induced path Pj(T) (see
Figure 1 for illustration). We use the fact that the graph is
bipartite and then reformulate the problem with fewer con-
straints to obtain further improvements. Our major contri-
butions here are:

1. For any convex deviation function an algorithm of
complexity O(mn log n log(n/ log n) + n log C). This algo-
rithm improves on the run time of the algorithm of Ahuja

Figure 1. The path graph for the tree in Figure 2.

E\T T

bc

•

bd

dc Ode Pbc

0ec

0

HOCHBAUM / 787

et al. (1999a), O(m2n log(m/n) log nC). The algorithm
here is, furthermore, a uniform algorithm regardless of the

type of objective function.
2. For the weighted absolute deviation function or for

quadratic deviation function (as well as other easily mini-
mized convex functions), the run time of the algorithm is

O(mn log n log(n/log n)). It matches the bound of Ahuja
and Orlin (2000) for unit weight deviations (L, norm) of

O(n2 logn). A second algorithm we propose for the L,
norm has complexity of O(n'5 log n log C), which is the
best run time when C < 2,.

3. For the min max deviation case (L, norm), the com-

plexity is O(m log n). This improves on the O(n2) bound
of Sokkalingam et al. (1999) for nondense graphs.

4. We introduce a new algorithm for bipartite matching
in path graphs of complexity O(n'5 log n). This improves
by a factor of /n_ on the result of Ahuja and Orlin (2000)
for node-weighted bipartite matching on path graphs when
the node weights are all equal.

In Table 1 we show the complexity of algorithms solving
the problem here and in prior papers. Run times preceded
by a * appeared previously in the literature, whereas the
others are developed here. The best run times are indicated
with the symbol >. The results on each line of the table
indicate the reference to the algorithm adapted. On the right
column the algorithms are used with the reformulation. All
run times reported are for solving the problem in integer
variables. Solving the problem in continuous variables with
accuracy E is equivalent to solving in integers on a grid of
size E. The only required adjustment is to replace C, in the

run times that include it, by C/E. (This issue is discussed
in detail in ?7.)

The structure of the paper is as follows. We first
describe the closure graph associated with the formulation
of IST. We then describe the reformulation that has only
O(mlog n) constraints and O(m) variables and establish
a couple of important properties bounding the maximum
distance label in the graph associated with the reformu-
lation and characterizing the paths in the residual graph.
These properties are summarized in lemmas that are used
in the implementation described in later sections. We then
describe the algorithms using the cut-based algorithm of
Ahuja et al. (1999b) and the related subroutine solving min-
imum cut on "almost bipartite" graphs. We detail the neces-
sary adaptations and properties needed to improve the run
time complexity for the general convex problem and for
the L1 norm. We show how to adapt a variant of Dinic's
(1970) algorithm for the L, norm and consequently gener-
ate an algorithm that solves the maximum bipartite match-
ing in path graphs in O(n5s log n). Next, the algorithm of
Hochbaum and Queyranne (2003) for CCC is sketched with
the description of the adaptations to the special structure of
the IST path graph. We introduce in ?6.2 a new algorithm
for the L, norm, based on the reformulation. Finally, we
comment about the problem in continuous variables and
about convex quadratic penalty functions.

2. PRELIMINARIES

The inverse spanning-tree problem is defined for an undi-
rected graph G' = (N', E) with edge weights ce for all

Table 1. Complexity of algorithms for the inverse spanning-tree problem.

Penalty Function Best Results and Their Adaptations Reformulation Improvements

Convex * O(mn log n log nC) = O(m2n log n log nC) AHOa
O(log C - TB(n, m)) = O(log C - mn2)1 AHOb O(log C - mn log n log(n/ log n))3
O(T '(n, m) + n log C) = O(mn2 + n log C)2 HQ >O(mn log n log(n/ log n) + n log C)3

Weighted absolute *O(mn2 log nC) SAO
deviation O(mn2 log C)' AHOb O(mn log n log(n/ log n) log C)

O(mn2) HQ r>O(mn log n log(n/ log n))

Absolute deviation *O(n3) SAO >O(n2 log n) AO
O(n2 log n) HQ

O(n2.5 log C)4 AHOb >O(n'5 log n log C)
Maximum absolute >O(n2) SAO t>O(m log n)

deviation

Notes. TB(nl, n2) denotes the complexity of solving the minimum s, t-cut problem on a bipartite network with n, and n2
nodes on each side of the bipartition. TB (n,, n2) denotes the complexity of solving the parametric minimum s, t-cut problem
on a bipartite network with n, and n2 nodes on each side of the bipartition. The algorithm of Hochbaum and Queyranne
(2003) is denoted by HQ, the algorithm of Sokkalingam et al. (1999) is denoted by SAO. The algorithm of Ahuja and Orlin
(2000) is denoted by AO.

'Although the associated graph is not bipartite, it is "almost bipartite". As shown in ?5, a slight adaptation of bipartite
network-flow algorithms such as that of Gusfield et al. (1987) or the FIFO push-relabel of Goldberg and Tarjan (1988) give
the stated run time.

2This is based on the parametric implementation of FIFO push-relabel in bipartite graphs (Goldberg and Tarjan 1988,
Gallo et al. 1989).

3Using Goldberg and Tarjan's algorithm with dynamic trees for a graph with maximum label value n and mlog n arcs
(Goldberg and Tarjan 1988).

4Using Dinic's algorithm in "almost" simple "almost" bipartite networks with maximum flow value <n (?5).

788 / HOCHBAUM

e e E and a spanning tree T. The graph GT with a spanning
tree T has an associated digraph, G, corresponding to the
CCC problem. The graph G has one node for each variable
and one arc (i, j) for each constraint xi > xj. This directed
graph G = (V, A) is referred to as the closure graph. The
number of nodes in this graph is denoted by I V I = N and
the number of edges by AI = M.

Let (B, D) be the collection of arcs with tails at B and
heads at D. The corresponding sum of capacities of these
arcs is denoted by C(B, D), C(B, D) =

EiEB, jED Cij where

c1i is the capacity of arc (i, j).
An s, t-graph is a directed graph that contains a source

node s and a sink node t. The minimum cut (or s, t-cut)
problem is to partition the graph into two subsets S and S
so that s e S, tE S and C(S, S) is minimum.

In a node-weighted graph with the weight of node j
equal to wj, we let the weight of a subset of nodes D c V
be denoted by w(D) = EjED WjI

A path from v, to v2 in G = (V, A) is an ordered

sequence [v , ui, i2
... Uik, v2]

where (v1, ui,), (ui,, v2),
(uij_,, uit) are all arcs in A for j = 2, ..., k. The nodes

uil, ui2, ..., uik are said to be the internal nodes of the path.
An s, t-path is a path from s to t in an s, t-graph.

The concept of residual graph is essential for maximum
flow and minimum cut algorithms. For a graph G = (V, A)
with arc capacities constraints lij < fi <, u1j and a feasible
flow f, the residual graph with respect to f is Gr = (V, A')
with (i, j) e Ar if either

f, < u,j (i, j) E A, or

fji

>
lji, (j, i)

ZA.
An augmenting path is an s, t-path in the residual graph.

Given a graph with feasible flow, f, that flow is maximum
if and only if the residual graph contains no augmenting
path. If there is an augmenting path, then the flow can
be incremented by the bottleneck residual capacity of the

augmenting path.
The residual flow is the maximum flow in a residual

graph.
We define the throughput of a node to be the maxi-

mum amount of flow that can be sent through that node.
The throughput is bounded by the minimum between the
total capacity of the incoming and outgoing arcs; i.e.,

min{{E(i, k)EA Cik, E(k, j)EA
Ckj}" The maximum length of a shortest path in the resid-

ual graph is significant in determining the complexity of
a number of algorithms for minimum cut (and maximum

flow). In the residual graph an arc can appear in the oppo-
site direction to the direction it appears in the original net-
work. The maximum label of a node in the residual graph
is the maximum length of a simple shortest path over all

possible orientations of the arcs in the graph.
A bipartite graph on the bipartition N, U N2 is denoted by

G = (N1 UN2, A) with IN, I =
nl

and IN21 = n2. A bipartite
graph is said to be unbalanced if n2 > n1 or n >> n2. A
network is bipartite if it is a bipartite s, t-graph with a

source s and a sink t, where s is adjacent only to nodes in

N1 and t is adjacent only to nodes in N2.
A set of nodes D C V in a directed graph G = (V, A)

is said to be closed if all predecessor nodes of D are also
included in D; i.e., if j E D and (i, j) e A, then i E D.
Equivalently, D is said to be closed if there are no incoming
arcs into D.

3. THE CLOSURE GRAPH ASSOCIATED WITH
A FORMULATION OF IST

Consider the minimum closure problem, a special case of
CCC when the range of the variables is restricted to binary
variables. The minimum closure problem is solved by find-
ing a minimum s, t-cut problem on a certain graph which
will be called the associated graph of the CCC problem.
Because IST is a CCC problem, the graph that defines its
binary version minimum closure problem is its associated
graph.

(Minimum Closure)

Min , wj
.x

jEV

subject to xi-xj >, O V(i,j) eA,

0<xj ,1 integerje V.

The minimum closure problem is to find a closed set D so
that w(D) is of minimum weight.

Picard (1976) demonstrated that the minimum closure
problem can be solved using a minimum cut procedure on
the associated graph. The sink set of a minimum cut is a
minimum closed set. The associated graph is an s, t-graph
that has a node j for each variable xj and an arc of infinite

capacity (i, j) for each constraint xi > xj. If the weight of
the variable wj is positive, then node j has an arc from
the source into it with capacity wj. If the node has weight
wj, which is negative, then there is an arc from j to t with

capacity -wj. Let V+ be the set of nodes with positive
weights, and V- the set of nodes with negative weights.

To see that the sink set of a minimum cut is a minimum
closed set, consider any finite s, t-cut in the graph that par-
titions the set of nodes to two subsets {s} U S and {t} U S.
It is easy to see that S is a closed set because there are no
infinite capacity arcs from S to S (else the cut is not finite).

Let a cut ({s}US, SU {t}) be finite:

min[C({s} U S, STU{t})]

=min E wj+ E (-wj)
jESnv+ jEsnV-

= in E

wj-

E
wi-

E

wli

scv.
j*Env+

\iEv-
iE•snv-

= min E wj - w(V-).
ScV jEY jes

In the last expression the term w(V-) is a constant. Thus,
the closed set S of minimum weight is also the sink set of

HOCHBAUM I 789

a minimum cut and vice versa-the sink set of a minimum
cut (which has to be finite) also minimizes the weight of
the closure.

Similarly, we map the IST's graph G' to the associated

graph G: The set of variables and nodes of the digraph
G, V, corresponds to the set of edges E of GT. For each
i E\T and je Pi(T) there is an arc (i, j) E A. The

graph G = (V, A) is bipartite with V = N, U N2 where

N, = E\T and N2 = T. Note that such a bipartite graph
is typically unbalanced for graphs that are not sparse, with
n- 1 = 1N21 < IN, I = m- n + 1. We adapt the terminology
of Sokkalingam et al. (1999), referring to such graphs as

path graphs. In Figure 1 we show part of the path graph
associated with the tree given in Figure 2 showing the path
induced by the out-of-tree edge (b, c), Pbc.

Even though the graph G is bipartite, it is not obvious
that the associated s, t-graph on which the minimum cut

problem is solved is also bipartite. In order for that to hap-
pen, all nodes in N, must have weights that are nonnegative
(nonpositive) and all nodes in N2 must have weights that
are nonpositive (nonnegative). (The sign of each set does
not matter as long as these are opposites.) We show next
that this is indeed the case for IST.

So far we have not commented on how the weights wj
derive from the convex objective. While these depend on
the algorithm and whether the problem is on integer or con-
tinuous variable, the weights in every case are some form
of derivatives of f () or subgradients-finite differences of
the form [fj(x + h) - fj(x)]/h. Recall that the functions

fj () are convex with a minimum value 0 at cj for all j E E
and, thus, monotone nonincreasing for x < cj and mono-
tone nondecreasing for x > cj. We next show that the values
of xi for i E T can be restricted to xi < ci and the values of

xj for j E E\T can be restricted to xi > cj.
LEMMA 3.1. There exists an optimal solution x* so that for
each i E T, x* < ci andfor each j E E\T, x* > cj.
PROOF. Suppose that x* > ci for some i E T. The func-
tion fi(xi - ci) is monotone nondecreasing for x< > ci, thus

setting xi = ci can only decrease the value of the optimal
solution and retain the feasibility of all constraints involv-

ing xi which are of the form x, ' xi.
Similarly, if x < cj for some j E\T, the increase of

the value of xj to cj retains feasibility of all constraints

involving xj and can only reduce the value of the function

fj (x). o
As a consequence of the lemma, the formulation can

either incorporate the modified upper and lower bounds on
the variables or, alternatively, redefine the functions fi()
for i e T:

Jfi(xi) if xi < ci,
fi(xi) = i0c.

Thus, the subgradient or derivative of fi(), if it exists, is

nonpositive. Similarly, for j E E\T:

fJ(x)=
(fj(xj) iif xj >

cj.

Thus, the subgradient or derivative of fj(), if it exists,
is nonnegative.

In these ranges the finite differences of the convex
functions are nonnegative and nonpositive, respectively.
Therefore, wj > 0 for j E N1 and wi < 0 for i E N2 and the
associated s, t-graph for the IST problem is bipartite.

4. THE REFORMULATION AND CONSTRUCTION
OF THE AUXILIARY GRAPH

The straightforward formulation of IST has

M= L IPj(T)I
jEE\T

constraints. Because path Pj(T) can be O(n) in length, the
number of arcs M in the associated bipartite graph can be
as large as O(mn). We present here an alternative formula-
tion with O(m log n) constraints and maximum label in the
associated graph O(n). Note that the reformulation is to be
used only if M > m log n.

As motivation for the construction used next, consider the
case where the IST graph is a complete bipartite graph (also
known as biclique) with all arcs present. Then, although
many out-of-tree edges correspond to paths of length O(n),
the formulation can be drastically reduced in size.

All out-of-tree edges x[2] that induce paths of length 2
are set as before, with two inequalities. However, now each

path of length 3, x[3], can be represented with two inequal-
ities only, one constraint that sets it to be larger than or

equal to the weight of the path of length 2 it contains,
x[3] [2], and the other for the third edge on the induced

path. For any path of length k, the appropriate inequalities
are captured with only two inequalities, one with respect
to a path of length k - 1 contained in the k-path and the
second an inequality with the remaining single edge.

Note that in this example the number of variables/edges
has not changed, but the number of inequalities is only
twice the number of edges. The corresponding graph thus
has m nodes and O(m) edges. However, the associated

graph is no longer bipartite-there are arcs between the
nodes of E\T.

Suppose we now have an associated graph which is not

complete. Then, we could add all the "missing" edges
as auxiliary variables to reduce the number of inequali-
ties in the formulation. This approach entails adding edges
that were not originally in the graph, for a total of O(n2)
edges/variables and twice as many O(n2) inequalities. We
call the edges added auxiliary edges and the resulting clo-
sure graph the auxiliary graph. The auxiliary variables
have no costs and the associated penalty function is zero.

Although the number of arcs (inequalities) in the auxiliary
graph is relatively small, the number of nodes can be quite
significantly larger than in the original associated graph.

For relatively sparse graphs this approach is not effective.
For such graphs we show another construction, introduced
by Ahuja and Orlin (2000), that adds only O(n) auxiliary
edges and reduces the number of inequalities to no more
than O(log n) per variable/edge for a total of O(m) vari-
ables and O(m log n) constraints. A crucial property of the

790 / HOCHBAUM

associated graph is that the maximum label is still only
O(n) even though the graph is no longer bipartite.

Ahuja and Orlin showed how to solve the inverse
spanning tree with the absolute deviation function,
EjeE Ixj-- cj. They reduced the problem to a form of a
node-weighted bipartite matching problem and proposed a
construction that modifies the graph and reduces the num-
ber of arcs. We found that their construction is useful in
the general case of IST and used it here to improve the run
time of the algorithms for several cases. For the sake of
completeness we sketch the construction that is using the
dynamic tree data structure of Sleator and Tarjan (1983).
Our construction is not identical to that of Ahuja and Orlin
(2000)-it is a minor variant that has the property proved
in Lemma 4.3 that is not shared by their construction.

We use the common terminology for a rooted tree where
an ancestor of a node is any node on the path between the
node and the root, and the descendant of a node i is any
node for which i is an ancestor. A parent of a node is an
immediate (adjacent) ancestor and a child of a node is an
immediate descendent.

We root the tree T at an arbitrarily selected node, say
node 1. We then partition the edges of the tree into heavy
and light edges, where a heavy edge leads from a node
to its descendant that carries at least half of the nodes in
the induced subtree, and light edges are all the others. A
consecutive sequence of heavy edges encountered on a path
from a node to the root is called a heavy path. A rooted tree
depicting heavy edges in thick lines is given in Figure 2.
The out-of-tree edges are described with dotted lines.

LEMMA 4.1 (SLEATOR AND TARJAN 1983). On any path
from a node to the root there are no more than log n light
edges and no more than log n heavy paths.

PROOF. Each time that the path from a node to the root
traverses a light edge, then the number of descendants of
the node reached is doubled. Therefore, there cannot be
more than log n light edges on the path. Because any pair
of consecutive heavy paths is separated by at least one light
edge, then the number of heavy paths traversed is at most

log n as well. O-

Figure 2. The heavy and light edges in the tree.

root

d

b e

c

a((--

:
o

""

,,
...................?'

??.

Consider the path induced by an out-of-tree edge [a, b].
The path induced is formed of two sections: The two sec-
tions of the paths from a and from b to their lowest com-
mon ancestor. (One of these two sections can be empty if
a is an ancestor of b or vice versa.) The common ancestor
that separates the induced path into two sections is called
the apex of the induced path. As an example, consider the
induced paths P[a,b] and P[b,c] in Figure 2 which have the
root of the tree and node d as apex, respectively.

Define a root of a heavy path to be the node on the heavy
path closest to the root of the tree.

Consider the section of the induced path P[a,b] (we omit
(T) from the notation as T will remain fixed throughout
this discussion) from a to the apex of the path. This section
traverses light edges and heavy paths where each heavy
path included is traversed from some internal point on the
heavy path (which could be the endpoint of the heavy path)
to the root of the heavy path. There is at most one heavy
path, the one adjacent to the apex, that is not traversed all
the way to its root, but rather between two internal points
of the path. For example, in Figure 2, P[b, c] traverses the
section [e, d] of a heavy path where both e and b are inter-
nal nodes to this heavy path.

We now present the set of inequalities that will ensure
that X[a, b] assumes a value at least as large as all edges
along P[a, b] Each new auxiliary variable introduced will be
indicated with the superscript corresponding to the section
of the path it represents (that is, it is greater or equal to all
edge variables for the edges on the path).

Let a generic heavy path be [vI, ..., Vr] with root Vr
and length b. Let x[k r] be an auxiliary variable associated
with the section of the path [vk, ..., Vr]. We partition the

edges of Iv1, ..., Vr] into sections of length 2 each (starting
with r). Each section of length 2 has an auxiliary variable
defined by two inequalities:

x[k,
,k1,

k+2]
X[kk+l]

x[k, k+1, k+2] >
Xtk+l,k+21

Then, recursively partition the path of length p into sec-
tions of length 2q for q = 2, ..., log p:

X[1v v2q] X[v1 ,...,29-1

X[I
.,.V2q]

.

X[V2q-l+1....2q]

For a heavy path of length p we add at most p/2 aux-

iliary variables corresponding to sections of length 2; p/4
auxiliary variables corresponding to sections of length 4;
and p/2q auxiliary variables corresponding to sections of

length 2q, for q = 2, ..., log p. The total number of vari-
ables added per heavy path is no more than

Z.g
(p/2q)

< p. Thus, the total number of auxiliary variables added in
this fashion is no more than n.

All heavy paths, except possibly the one adjacent to the
apex, are traversed from some internal point to the root r.
To represent these sections of heavy paths compactly, we
define a collection of p - 1 auxiliary variables for each

HOCHBAUM / 791

heavy path of length p, x[k r] for k = v1, ..., v, (there are

p edges in the path and thus p + 1 nodes including the
node r) as follows: We take the longest power-of-2-long
section contained in [k, r], s1, and then the longest sec-
tion contained in the remainder of the path, s2, and so on.
It is easy to see that there are altogether no more than

O(log p - ki) sections required to partition and cover the

path. For each of these sections s, we add the inequality

x[k, r] XSp.

Each variable x[k' r] thus requires up to log(p - k) such

inequalities that correspond to the binary representation of
its length. The total number of variables x[k, r] is no more
than n for all the heavy paths in the graph.

Now, with the possible exception of the heavy path adja-
cent to the apex, we represent the set of inequalities for

P[a,b] as inequalities for each light edge on the path e,

X[a, b]
-

Xe,

and for each heavy path on the induced path traversed from
an internal point k to its root r as

X[a, b] X[k'

Altogether, this requires O(log n) inequalities.
We finally address the representation of the heavy path

[v1 - - -
. k, 1 ... k2, ... Vr] for which the section that is

adjacent to the apex of Pa, b is traversed between two inter-
nal points, [vk, ..., Vk2]. Here, we do not introduce a new

auxiliary variable corresponding to these sections of heavy
paths, as there could be as many as O(m) such sections,
one for each induced path. Instead, we take the longest
power-of-2-long section contained in this path, s1, and then
the longest section contained in the remainder of the path,
s2, and so on. It is easy to see that there are altogether
no more than O(log jk2 - k1 j) sections required to partition
and cover the path. For each of these sections s, we write
the inequality

X[a,b]
Xsp.

Note that there is only one internal nodes section for
each induced path, so these inequalities add only O(log n)
inequalities to the representation of each induced path.

Because all heavy paths have no more than n edges
jointly, the number of auxiliary variables representing dis-

joint sections of length 2 is at most n/2 and the number of

auxiliary variables representing disjoint sections of length
2q is at most n/2q. The total number of auxiliary variables

corresponding to these sections for all paths is at most n.
To summarize, to enforce that the value of [a, b] is

greater or equal to the weight of all edges along the induced

path, the reformulation includes:

O(log n) inequalities for heavy paths traversed from an
internal point to their root,

O(log n) inequalities for light edges, and

O(log n) inequalities for at most one heavy path adjacent
to the apex that is not traversed all the way to its root.

We thus have a total of O(logn) inequalities for each
out-of-tree edge, O(log n) inequalities for each heavy path
section [k, r], and 0(1) inequalities for all other auxiliary
variables. The total number of auxiliary variables is O(n)
and the total number of inequalities is O(m log n). This is
instead of the O(ELiE\T jPi(T)) inequalities in the original
formulation of IST.

Consider the associated graph with the new formulation.
Let the set of auxiliary variables be denoted by N3. N1 and

N2 are defined as before and are both independent sets with
m - n + 1 and n - 1 nodes, respectively. Let the auxiliary
closure graph be (N1 U N2 UN3, A) with n1 nodes adjacent
to the source, n2 nodes adjacent to the sink, and n3 trans-

shipment nodes adjacent to neither source nor sink. Next,
we show that maximum length of a simple path from source
to sink is O(n) at most.

LEMMA 4.2. If the set of nodes N1 is independent in the

graph (N U N2 UN3, A), then any path to sink is of length
O(n2 ? n3) at most.

PROOF. Any path visits nodes of N2 U N3 at most once.
Between two consecutive visits of nodes of N1, a path must
visit a node of N2 UN3. Therefore, the length of a path can-
not exceed 2(n2 + n3) + 1.

Consequently, the maximum distance label in the refor-
mulation graph is O(n) as required.

LEMMA 4.3. In a residual graph defined for a feasible flow
on the graph (N1 U N2 U N3, A), the shortest path from a
node of N1 to N2 or from N2 to N1 is of length O(log n)
at most.

PROOF. Every node of N1 is either adjacent to a node of N2
(if the latter represents a light edge) or to some auxiliary
node representing a heavy path section. All heavy path sec-
tions are represented by "binary representation" of depth
not exceeding O(log n). Thus, the number of nodes in the

path between a node of N1 and N2 is O(log n). O

5. ADAPTING THE CUT-BASED ALGORITHM
FOR DMCNF

The cut-based algorithm of Ahuja et al. (1999b) for
DMCNF is based on the proximity-scaling framework
for convex separable optimization of Hochbaum and
Shanthikumar (1990). Briefly, this entails the piecewise lin-
ear approximation of the convex objective with "small"
number of breakpoints on a grid of size s that is determined
by the relevant proximity theorem. The algorithm repeats
solving a scaled problem in binary variables for progres-
sively smaller grid size. The problem solved at each itera-
tion is a minimum closure problem, as shown next.

Let the variables be contained in the range [1, u] and C =

u-1I. The scaled problem for a scaling unit s and k = [C/s]
is defined as follows: Each variable xi is replaced by k
binary variables

x!p, p = 1 ..., k such that xi =

,p=l Xi

792 / HOCHBAUM

Each binary variable is assigned a weight that is its incre-
mental contribution to the objective function according to
the following recursive procedure:

w O) =fi(l),

w(P) = f.(1l+ ps) - fj(l+ (p - 1)s) for p = 1, ..., k.

The following (s-IST) is a piecewise linear approximation
of the problem on a grid of unit size s. The objective differs
from that of IST by the constant j 0IE W(0)>

k

(s-IST) Min E ()x
P)

jEE p=4

subject to x)) x"(P) for i~ E\T, jEPi(T)

and p= 1,..., k,

x('< xp-1) for jEE and p = 1,... ,k,

x(P) binary for jEE and p= 1,...,k. X "?

Note that s-IST is a minimum closure problem and
denote its optimal solution by x(S). The proximity theo-
rem for the distance between an optimal solution x* to IST
and the scaled problem's optimal solution x(s) is at most
one scaled unit. This is the "strong proximity theorem" of
Ahuja et al. (1999b) for homogeneous constraints,

I)x* - X(S) 1 s. S.

The proximity-scaling procedure starts with an interval
of length 4s and k = 4. In each iteration the optimal solu-
tion of s-IST, x(s), serves as a center to a contracted inter-
val containing the optimal solution [x(s) - s, x(s) + s]. The

length of this interval is 2s, half the length of the interval
in which the variables were restricted in the problem s-IST.
Using a new scaling unit of s/2, the problem s/2-IST has
again no more than 4 binary variables per variable xi. The
scaled problem is repeatedly solved, each time for half as
large a value of s, until s < 1 (in which case it is set to

1). The solution to 1-IST is the optimal solution to the

problem. Thus, the proximity-scaling procedure calls for

O(log C) solutions of a scaled problem s-IST.
The corresponding closure graph construction for s-IST

has a 4-node sequence for each node in the associated

graph, each representing a value in the range 1, 2, 3, 4.
There is an arc of infinite capacity between a node rep-
resenting value v - 1 to a node representing value v, as
illustrated in Figure 3. We call such graphs that are derived

by replacing nodes in a bipartite graph by subgraphs of
bounded size, "almost bipartite" graphs.

The substitution of each node in the associated bipartite
graph by a "chain" of 4 nodes implies that the structure of
an associated graph as a bipartite graph is not preserved.
It is thus not obvious that algorithms that are particularly
efficient for bipartite graphs (Ahuja et al. 1994) would still
be compatible with the almost bipartite associated graph.

The efficiency of most algorithms for bipartite graphs is
derived from the length of the distance of a path between

Figure 3. The "almost bipartite" graph.

(4)
Wi

(3)
Wi00

(2)
Wi

(1)
Wi

(4) w.

(3)

00 (2) w.

Wi

any node and the sink. This distance is a bound on the node
labels in the push-relabel algorithm (Goldberg and Tarjan
1988) and the pseudoflow algorithm (Hochbaum 1997). In
Dinic's (1970) algorithm, the number of stages is bounded,
where at each stage there are augmentations along shortest
paths of prescribed length in the residual graph. We show
that in "almost bipartite" graphs the distance label is still
no more than twice the smallest side of the bipartition.

Let each node in a bipartite graph (NI, N2, A) be sub-
stituted by an arbitrary subgraph with the number of
nodes bounded by q. Denote the resulting "almost bipar-
tite" graph by (NI, N2, A). Other than arcs within each
subgraph, there are only arcs between nodes that are in
subgraphs of N1 and nodes that are in subgraphs of N2. In
the case of the graph associated with s-IST, the subgraphs
are chains of 4 nodes and q = 4.

LEMMA 5.1. The longest-path distance between source and
sink in a residual graph of (N1, N, A) for any flow f is
bounded by 2q min {n, n2 }.
PROOF. Let n2 < n1. Every residual path between source
and sink alternates between subgraphs of N1 and subgraphs
of N2. Between any two visits to N1 there is at least one
node of N2. Each visit to N1 includes a sequence of q nodes
at most. Therefore, a path cannot include more than qn2
visits of subgraphs of N1 and of subgraphs of N2. The

length of any path to the sink t is therefore bounded by
2qn2. D

We conclude that the running time of solving each scaled

problem is O(nzn), the same as the running time for
a bipartite graph as in the algorithms of Gusfield et al.

(1987) or as the FIFO implementation of the push-relabel
algorithm (Goldberg and Tarjan 1988). The total run time
required to solve IST with the proximity-scaling algorithm
is thus O(n2m log C).

HOCHBAUM / 793

Now consider solving the minimum cut problem s-IST
on the reformulation graph. In that graph, the maximum
distance label is O(n), as proved in Lemma 4.2, and the
number of arcs is O(m log n). In this case it is possible
to implement the dynamic trees push-relabel algorithm in
run time O(mn log n log(n/ log n)). This leads to a total run
time of O(mn log n log(n/ log n) log C).

The running times of these algorithms for the convex IST
problem are always dominated by the respective ones gen-
erated from adapting the algorithm for CCC of Hochbaum
and Queyranne (2003). For the L, norm, however, the cut-
based algorithm using an implementation of Dinic's (1970)
algorithm yields an algorithm that is fastest for C < 2/,
as we show next.

5.1. The Absolute Deviation Objective Function
Let the "almost bipartite" graph associated with s-IST be

(N1, N2, A). For the objective function of absolute devia-
tions, EeEE Xe

-
Ce , the differences w) are all one scaling

unit s and -s for j E N1 and j E N2, respectively. Thus,
the capacities of all arcs adjacent to source and sink in the
associated network are 1.

For convenience, we prefer to work with the "reverse

graph" CV, V2, AR) which is derived from the graph
(NI, N2, A) by setting V, = N2, V2 = N reversing the direc-
tions of all arcs set with same capacities and reversing the
roles of the source and sink. The maximum flow and min-
imum cut in the reverse graph are equal to the maximum
flow and minimum cut in the original graph. In this reverse
graph the set adjacent to source is of size 4n and each node
has an incoming arc from the source of capacity 1.

Dinic's algorithm (1970) can be implemented particu-
larly efficiently for simple networks. These are networks
where each node's throughput is 1. That is, each node has
either a single incoming arc of capacity 1 or a single out-

going arc of capacity 1. For simple networks, Even and

Tarjan (1975) showed that Dinic's algorithm can be imple-
mented to run in time O(V/7m'), where n', m' are the
number of nodes and arcs, respectively, in the simple net-
work. Although our network is not simple we can never-
theless mimic some features of the procedure for s-IST and
achieve the run time of O(n25) or, with the reformulation,
O(n1S log n).

Dinic's algorithm works in stages, where at stage 1 there
is an augmentation of flow along all shortest paths of length
I until the flow is blocking (meaning until there is no
further augmentation along a path of length I or, equiva-
lently, in a forward direction only). The residual graph con-
structed at each stage when the shortest path is of length
1 is a graph with 1 layers of nodes. It is referred to as the
i-layered network. In general, the number of stages does
not exceed the number of nodes. Here the number of stages
is no more than O(1N2), or O(I V1 I), because this is a bound
on the maximum distance to the sink, as was shown in
Lemma 5.1.

We replace the residual graph Gr by a construction of
the V1-residual graph, G;1. This is a residual graph that

involves, in addition to source and sink, only nodes of

V,, and it has the property that the maximum flow in the

VI-residual graph G', is of the same value and corresponds
to a maximum residual flow in G'.

The VI-residual graph is defined as follows. Given the

graph (VI, V2, A), a feasible flow f, and the residual graph
Gr, the graph Gr, is obtained from Gr by contracting the
vertices of V2. This is equivalent to adding arcs between

any pair of nodes u1, u2 in {s, t, V1, } that have a directed

path between them in Gr, [u1, Uil,
uik, u2], where all

the internal nodes of the path ui, ..., uik are in V2. Note
that in our case k (4 as any path alternates between nodes
of a 4-chain in V1 and nodes of a 4-chain in V2. It follows
that any path from source to sink in

G,
is at least 1/5 of

the length of a corresponding path in Gr.

LEMMA 5.2. In an 1-layered network of the residual graph
Gr for the almost bipartite graph (VI, V2, A), the maxi-
mum residual flow is at most O(n/l).

PROOF. The 1-layered network includes only nodes of V1 in
I layers, V V(2)

....,
V().

Each node in V1 has through-
put of at most 4. (More precisely, each chain of 4 nodes
has throughput of, at most, 4.) The flow in this layered net-
work is thus at most

4. min IVi (P) 4. I1 O -().i p=l,.,l 1 \l

The implementation of the algorithm works as follows.
In a first phase we find the blocking flow in the 1-layered
network until 1 >

•/•.
This requires up to -/n consecu-

tive stages. When done running these stages, the remain-

ing residual flow is no more than
O(•Jn),

as proved in
the lemma above. We then apply a second phase in which
the maximum flow is found using an augmenting-paths
algorithm.

Consider the complexity of a single stage consisting of
generating the layered network and pushing the blocking
augmenting flows through. First, consider what it takes to
generate the residual graph G', and the layered network. A
node of a 4-chain of V2 can be internal to a path between
two nodes of V1 in the residual graph only if at least one
of the nodes of the 4-chain has incoming flow from a node
of V1. Consequently, there could be at most O(I V) such
nodes of V2. Thus, the residual graph G, has at most

O(n2) arcs that can be searched using Breadth-First-Search
in O(n2) time.

As for the complexity of finding the blocking flow in
each stage, we will push one unit of flow at a time. (The
usual implementation is to identify the node of minimum
throughput and push/pull that amount to the sink and from
the source.) Because each node has throughput (4 it can
be processed at most 4 times before it is eliminated. Find-
ing one flow augmentation in the layered network is O(l),
and whenever a node is eliminated all arcs adjacent to it
are removed as well. Thus, the complexity of finding the
blocking flow in a stage is O(n2) and the removal of arcs

794 / HOCHBAUM

when nodes are eliminated is O(n2) as well. Thus, all the

O(V/n) stages are completed in O(n25) steps.
In the second phase of the algorithm the remaining

O(J-n) units of flow are found by augmenting the flow up
to O(JI-n) times. Finding augmenting paths is accomplished
by searching the residual graph for a path from source to
sink. Maintaining and updating the residual path involves
O(n) steps for the update of each node along the path
along which the flow was augmented. The search for an
augmenting path is O(n2) at most. Thus, the second phase
of the algorithm also has complexity O(n25), and there-
fore the complexity of the algorithm for finding maximum
flow (and minimum cut) on the "almost bipartite" graph is
O(n25). The total complexity of solving the IST problem
with this implementation of the maximum flow algorithm
used at each scaling step is O(n25 log C).

5.1.1. The Absolute Deviation Case with the Refor-
mulation. The reformulation of the associated graph
called the auxiliary graph is described in ?4. For our pur-
poses here it is important to note several properties of the
auxiliary graph. A set of nodes V3 that serves as inter-
mediary nodes between V1 and V2 is added to the graph
(V1, V2, A). The number of nodes in V3 is O(n), and the
maximum degree of each node in the auxiliary graph is
O(log n). The maximum distance label in the auxiliary
graph is O(n) and the distance from nodes of V, to nodes of
V2 that are their neighbors in the associated graph does not
exceed O(log n), and vice versa. Therefore, in the residual
auxiliary graph the distance from one node of V, to another
is at most O(log n).

We now construct a layered network where each layer
has only nodes of V1, and two consecutive layers are sep-
arated by nodes of V3 U V2 that are internal to some path
between two nodes of V1. As before, there are at most O(n)
nodes of V2 that are internal to any path between nodes
of V1. The construction of the i-layered network for each
stage thus takes O(n log n) steps, and for all In- stages it
is O(n/n logn).

Although some nodes have throughput larger than 1, we
push flow from the first layer of V1 nodes 1 unit at a time
along a path to sink. Each node on the path gets its through-
put reduced by 1 unit and each residual path along the path
gets its capacity reduced by 1 unit. If a node's throughput
has become zero, it is eliminated along with its adjacent
arcs. The complexity of a push of a single unit is O(l log n)
because two adjacent layers are separated by paths of length
not exceeding log n. Throughout a single stage, at most
O(n log n) residual arcs are eliminated. Because i-layered
networks and stages are used until 1; > and the total flow
in all stages is O(n), the complexity of pushing the flow
through the layered networks in the first phase is at most

O(n,/n log n).
Finally, finding each augmenting path in the residual

graph and updating the residual graph is at most O(n log n).
Because there are up to O(fn) units of residual flow, the
total complexity is O(n1s5 log n). This implies in particu-
lar that finding the maximum bipartite matching in path

graphs or their extension to almost bipartite path graphs
can be accomplished in O(n'1 log n). This is faster than
the algorithm of Ahuja and Orlin (2000) for this prob-
lem, O(n2 log n), although the latter works also for node-
weighted bipartite matching in path graphs.

For the IST problem with the L1 norm, this leads to a

O(n'15 log n log C) algorithm which is more efficient than
other algorithms for C < 2k.

6. USING THE CONVEX COST
CLOSURE ALGORITHM

The convex closure algorithm of Hochbaum and Queyranne
(2003) works in two steps, where in step 1 a parametric
minimum cut problem is solved and in step 2 the values
of the variables are determined. The outcome of the first
step is a partition of the set of variables into V, U... U

Vp and the interval [1, u] into a collection of p subintervals,

(akl,9 ak] for k = 1,..., p, where ao = l and a = u. The
property of an optimal solution is that all variables in the
same subset Vk assume an identical value which falls in the
corresponding interval (ak-1, ak].

In the first step, the CCC problem is reduced to its binary
counterpart-the minimum closure problem. The key to
this reduction is in the threshold theorem, Theorem 6.1.
The threshold theorem makes use of the derivatives of the
functions fj() denoted by fj'(). If the functions are not
differentiable, then the discrete equivalent of the derivative,

fj(A) = fj(A + 1) - fj(A) is used. This definition will be
adjusted for the problem on continuous variables discussed
in ?7.

THEOREM 6.1 (HOCHBAUM AND QUEYRANNE 2003). Let

wi = fi'(A) be the weight assigned to node i, i = 1,..., n
in a minimum closure problem defined on the partial order
graph G = (V, A). Let S* be the minimal minimum weight
closed set in this graph. Then, an optimal solution x* to
the convex cost closure problem satisfies x7 > A if i E S*
and x* < A if i e S*.

One obvious method of using the threshold theorem for
solving CCC is to perform a search by calling for the solu-
tion of the minimum closure problem for all integer values
of A in the interval (1, u). A more careful analysis shows
that phase 1 can be solved more efficiently.

Let GA be the graph associated with the minimum clo-
sure problem with weights wi = f'i(A). Denote the source
set of a minimum cut in the graph GA by SA. Consider
varying the value of A in the interval [l, u]. As the value of
A increases, the sink set becomes smaller and contained in
the previous sink sets corresponding to smaller values of A.
Specifically, for some A < l, S = {s} and for some A > u,
SA = VU {s}. We call each value of A where SA strictly
increases a node-shifting breakpoint. For A1 < ... < A,, the
set of all node-shifting breakpoints, we get a corresponding
nested collection of source sets:

{s} = SA, C SA C ... C SS = {s}U V.

HOCHBAUM / 795

We are interested only in those parameter values where
the sink set of the cut is strictly reduced in size, A1 <
A2 < ... < Ap. From the threshold theorem it follows that
if j E Sk - Sk-1, then the optimal solution of xj lies in the
interval (Ak-, ,k]. So, to identify all these intervals it is
sufficient to find all breakpoint values of A. The breakpoints
where the cut is changed can be generated by a parametric
cut procedure.

Suppose we have a capacitated network where the
capacities are functions of a given parameter. The source-
adjacent arcs have capacities that are monotone nondecreas-
ing with the parameter value, and the sink-adjacent arcs
have capacities that are monotone nonincreasing with the

parameter value. A form of a complete parametric analysis
is to find all the breakpoints in the parameter values where
the cut changes the source set. Obviously, there are at most
n breakpoints. Gallo et al. (1989) showed for linear mono-
tone functions how to find all the breakpoints in the time
of a single minimum cut for the push-relabel algorithm.
Hochbaum (1997) showed that a complete parametric anal-
ysis can be conducted using the pseudoflow algorithm with
the complexity of a single minimum cut. (To date these
are the only two types of algorithms for which the strong
complexity result of accomplishing a complete parametric
analysis in the complexity of a single run is valid.)

The algorithm solving CCC, summarized formally below,
makes calls to a procedure called parametric which is a

parametric minimum cut algorithm identifying all the break-
points in the specified interval. The procedure parametric

(fj'(), j = 1, ..., n, 1, u) has nodes of positive weight con-
nected to source with capacity equal to the weight and nodes
of negative weight connected to the sink with capacity equal
to the absolute value of the weight. The capacity of an arc

(s, j) is thus max{0, fj(A)} and the capacity of an arc (i, t)
is min{0, fi'(A)}. These derivatives are monotone nonde-
creasing in A. Thus the source adjacent capacities as a func-
tion of A are monotone nondecreasing and the sink adjacent
capacities are monotone nonincreasing.

Procedure Convex Closure (G, fj, j = 1, ..., n, [1, u])
Step 1. Call parametric (fj(), j = 1, ..., n, 1, u). Let

the output be a set of up to n breakpoints A1, A2,..., A p
and the corresponding sets of source sets of minimum cuts
S cS2...C Sp.

Step 2. Output the optimal solution x* where for j e

Sk-Sk_,
x- = Ak-1 + 1.

The complexities of the algorithms of Gallo et al. and
Hochbaum are finding a single minimum cut plus an addi-
tional run time when the parametric functions are general
monotone. Although this is not discussed explicitly in Gallo
et al. (the description there is only for linear monotone
functions) that run time is O(n log U). We further show that
the additional run time is equivalent to minimizing sums of
subsets of the convex functions fj().

At each iteration of parametric there is a search for
breakpoints in an interval [A1, A2] and the minimum cuts
resulting from setting the parameter value to A1 and A2
have been computed. By comparing the cuts' source sets

S,_
C

SA, it is easy to determine whether the two cuts are
identical. If not, there is a breakpoint in the interval.

One way of identifying the breakpoint is selecting a
median A* in the interval and proceeding recursively on

[A*, A2] and [A,, A*]. This results in additional run time of

O(n log U) since each time a median point is selected, up
to O(n) capacities are adjusted.

An alternative approach is to observe that if there is a

single breakpoint in the interval [A1, A2] then it is the value
A* where the cut capacities as functions of A intersect,

c, (A*) = CA2(A*)
The following statements hold:
1. CA, (A)- CA2 (A) is a monotone nondecreasing func-

tion of A.
2. If there are two or more breakpoints in the interval

[A1, A2], then A* "separates" them in the sense that [A*, A2]
and [A,, A*] each contain at least one breakpoint. (This is
a corollary of 1.)

Therefore, finding A* is required at most n times.
3. The complexity of finding A* is the same as the com-

plexity of finding that the sum of derivatives of convex
functions is equal to a constant K (or finding the minimum
of a sum of convex functions plus the linear function K(A)
as we see below).

We provide a proof of 1 and 3: Let ({s} U S, {t} U
T1),

({s} U S2, {t} UT2) be the cuts corresponding to
A1

and A2
respectively.

CA,(A) - CA2(A)

=
C(S1, TO)- C(S29 T2)

+ C({s}, T)(A)- C({s}, T2)(A)
+ C(S1, {t})(A) - C(S2, {t})(A)

= K12 + C({s}, T \ T2)(A) - C(S2 \
S1,

{t})(A),

K1,2 is a constant independent of A. C({s}, T1 \ T2)(A) is
a monotone nondecreasing function, and C(S2 \ S,, {t})(A)
is a monotone nonincreasing function. Therefore the differ-
ence between these two terms is monotone nondecreasing.
Thus we proved 1.

To prove 3 we find the intersection of the two functions,

0 = CA (A)- CA2 (A)

= K1,2 + C({s}, \ T2)(A) - C(S2 \
S1,

{t})(A)

= K,2 + E max{0, fj(A)} + E min{0, fi'(A)}.
jET\ \T2 iES2\S1

We now note that TI \ T2 = S2 \ S; therefore, this sum
is K1,2 + EieS2\S fi'(A). Thus A* that solve this equation is
also the minimum argument of the sum of convex func-
tions, EiES2\S, fi(A) + KI,2A.

We call the search for A* in parametric, the A*-step.
Because the associated graph is a bipartite graph, we

use here variants of the push-relabel algorithm in the para-
metric minimum cut that have particularly efficient run-
ning times for bipartite graphs of the type we are con-

796 / HOCHBAUM

cerned with. Such algorithms are analyzed in a paper by
Ahuja et al. (1994). We select the FIFO implementation of
the push-relabel algorithm which runs in time 0(n'n2) on
a bipartite graph with n1 and n2 nodes in the bipartition
where n1 < n2. Our bipartite graph has n and m nodes, and
thus the largest distance label is at most 2n. The running
time using the FIFO variant is thus O(n2m) for the inverse
spanning-tree problem. The complexity of A*-step depends
on the convex functions. For the general convex function
defined on a variable in an interval of width U, one can find
its integer minimum using binary search in time O(log U).
For the quadratic penalty function, weighted absolute devi-
ation and absolute deviation objective function, this time is
instead O(n) for all O(n) functions. The total run time is
thus O(n2m + n log C) for the general convex problem and
O(n2m) for the easily minimized convex objectives.

With the reformulation presented in ?4, the complexity
of step 1 is improved. The reformulation has an associ-
ated graph that is no longer bipartite, with O(n) additional
nodes, but still with the maximum node label bounded
by O(n). The maximum degree of a node in this graph
is O(logn). Thus, if we use the pseudoflow algorithm in
parametric, its complexity is the product of the maximum
label times the number of arcs and a logarithmic fac-
tor for a total of O(mn log2 n). With some adaptation,
following the methods of Ahuja et al. (1994), the para-
metric push-relabel can be used as well with complexity
O(mn log n log(n/ log n)).

6.1. The Absolute Deviation Problem

Consider the path graph in Figure 1 when the objective
function is the sum of absolute deviations CI~E IXj - C.
The functions, as proved in Lemma 3.1, are in fact

max{xj - cj, 0} for j E E\T and min{xj - cj, 0} for j E T.
Therefore, the derivatives defining the weights of the nodes
in the parametric graph are, for an out-of-tree edge node j,
0 in the range (-oo, cj] and then 1 in the range (cj, oo).
For an in-tree edge node the derivative is -1 in the range

(-00oo, cj] and 0 in the range (cj, oo).
Consider the modifications in the parametric graph G. as

the value of A increases from 1 to u. Let the indices of the
nodes in the associated graph be ordered so that c < <c2 <

S.. < cm. When A e (ci_1, ci], then nodes i, i+ 1,..., m are
isolated in the sense that the are connecting them to the
source or the sink has capacity 0 and thus can be removed
from the graph. As the value of A increases to ci, node i
joins the graph GA. It is therefore simpler to consider the
change in the minimum cut, if any, as one node at a time
joins the parametric graph. The breakpoints are all in the set

{C, c2, ..., Cm}.
The value ci is a breakpoint if the addition

of node i increases the value of the flow by 1 unit.
Consider the auxiliary graph of the reformulation.

Again, it will be convenient to consider the reverse graph
(V1, V3, V2, A), where V1 are nodes adjacent to the source
representing the O(n) edges of T, V2 are the O(m) nodes
adjacent to the sink, and V3 are the O(n) added interme-
diary nodes between V1 and V2 in the reformulation. The
algorithm will maintain the reachability status of all nodes

(each node that has a residual path from the source reaching
it is labeled as reachable). Suppose a node of V1 is added,
then updating the status of nodes newly reachable from the
source and exploring whether the newly added node, and
thus the source, can reach an unsaturated node of V2 requires
O(n log n) work at most. If a node of V2 is added, then it is
sufficient to check whether any of its in-neighbors is reach-
able from source. If so, then there is an augmenting path
ending at that node. Because the indegree of a node in V2 is
at most O(log n), the complexity of this step is O(log n).

To summarize, if the added node is i E V1, then the com-
plexity is O(n log n), and for I V I nodes the complexity is
O(n2 log n), accounting for the addition of all nodes of V1.
If the added node is i E V2, then the complexity is O(log n),
and for all IV2I nodes the complexity is O(m log n).

The total complexity is thus O((n2 + m) log n), which is
O(n2 log n).

6.2. The Maximum Deviation Problem
We now address the IST problem with the L, norm.
Sokkalingam et al. (1999) showed that the optimal value is
8/2 where 8 = max{0, maxiETjEE\T(ci - cj)}. This quantity
can be calculated in a straightforward manner in O(mn)
steps. Sokkalingam et al. (1999) showed how to compute
8 in O(n2) steps. We use the reformulation to demonstrate
that this computation can be done in O(m log n) steps.

In the auxiliary graph (V1, V3, V2, A) we compute recur-
sively for each node of V, U V3, the maximum value of ci
among all predecessors of the node. The computation starts
by labeling all nodes i of V, with their weights ci. For each
node of V3 that has all its predecessors labeled, assign it the
maximum label among all its predecessors. The complexity
of this process is the number of arcs (adjacency relations)
visited, which is O(n log n). Now, for each node j of V2,
compare the value of cj to the label of each of its no more
than log n neighbors in V, U V3. Finding the value of 8 is
thus dominated by this computation, which requires at most
O(m log n) comparisons. When the graph is not dense, the
run time of O(m log n) is more efficient than O(n2).

7. COMPLEXITY ISSUES IN CONVEX
MINIMIZATION

Nonlinear and nonquadratic optimization problems with
linear constraints were proved impossible to solve in

strongly polynomial time in a complexity model of the
arithmetic operations, comparisons, and the rounding oper-
ation (Hochbaum 1994). That implies that even convex
minimization over a bounded interval may not be solved
in strongly polynomial time. Instead, the complexity has to
depend either on the convex function analytic description
(or variability) or on the size of the interval. Therefore, all
algorithms for convex IST must have the log C factor in
the run time expression.

Integer minimization of a convex function on an inter-
val of length U can be trivially accomplished using binary
search in O(log U). In the A*-step of the CCC algorithm
there are up to n convex functions minimizations over

HOCHBAUM / 797

bounded intervals; thus, the complexity of that stage is

O(n log C).
Now, consider the problem of convex minimization in

real variables. The solution to such a problem may be irra-
tional and impossible to represent with finite accuracy. In
Hochbaum and Shanthikumar (1990) we introduced for that

purpose the e-accuracy complexity model. That complexity
model has the solution to the continuous problem given with

E-accuracy on a grid of size e or with a number of signifi-
cant bits that is O(log(1/E)). The negative result on strong
polynomiality translates to requiring run time which is at
least polynomial in log(U/e) for an E-accurate solution.

The complexity of A*-step in the CCC algorithm is

O(n log C) for the integer-valued solution, or a complex-
ity of O(n log(C/IE)) for the continuous solution of E accu-

racy. The definition of the subgradient when we solve the

problem in continuous variable with e accuracy is f'(x) =

[f (x + E) -f
(x)].

E. With the cut-based algorithm the solv-

ing of the scaled problem s-IST proceeds until s < E. This
increases the number of calls to the solution of s-IST to

O(log(C/E)).
For simple functions such as weighted absolute devia-

tion functions, or quadratic functions, A*-step can be imple-
mented in 0(1) for each of the interval convex minimiza-
tion problems. Next, we discuss further the complexity of
the problem with the quadratic objective function.

7.1. The Quadratic Convex Closure Problem
The negative result proved in Hochbaum (1994) on the
impossibility of solving constrained nonlinear problems in

strongly polynomial time is not applicable to the quadratic
case. Thus, it may be possible to solve constrained quadratic
optimization problems in strongly polynomial time, yet very
few constrained quadratic optimization problems are known
to be solvable in strongly polynomial time. For instance, it
is not known how to solve the minimum quadratic convex
cost network flow problem in strongly polynomial time. For
the convex quadratic IST problem, our result adds to the
limited repertoire of quadratic problems solved in strongly
polynomial time.

In the quadratic case, the CCC algorithm is implemented
to run in strongly polynomial time. This is easily achieved
because finding the minima in the A*-step of the algorithm
amounts to solving a linear equation in one variable. There-
fore, the run time required for finding all the minima is
O(n), and thus the overall run time of the algorithm is dom-
inated by the complexity of a single minimum cut. Note
that among the other algorithms that apply to the quadratic
IST none solves the problem in strongly polynomial time.

ENDNOTE

1. All minimum cut problems mentioned here are in fact
the minimum s, t-cut problem, which calls for a partition
of the graph to S and S so that S contains a specific source
node s and S contains t, and the total capacity of the arcs
between S and S is minimized.

ACKNOWLEDGMENTS

This research was supported in part by NSF award
Nos. DMI-0085690 and DMI-0084857 and by UC-smart
award. Special thanks to Jim Orlin for the inspiration for
writing this paper and providing the pointer to reference
Ahuja and Orlin (2000). Our discussion on the properties
of the reformulation provided the essential ingredients in
the algorithms described here. Extra thanks to Ilan Adler
who, while converting espresso to theorems, provide state-
ment 1 for the parametric algorithm.

REFERENCES

Ahuja, R. K., J. B. Orlin. 2000. A faster algorithm for the inverse
spanning tree problem. J. Algorithms 34 177-193.

-, D. S. Hochbaum, J. B. Orlin. 1999a. Solving the con-
vex cost integer dual network flow problem. G. Cornuejols,
R. E. Burkard, G. J. Woeginger, eds. Proc. IPCO'99. Lecture
Notes in Computer Science, Vol. 1610, 31-44. Management
Sci. Forthcoming.
, _, _. 1999b. A cut based algorithm for the convex
dual of the minimum cost network flow problem. Manuscript,
University of California, Berkeley, CA.

- , J. B. Orlin, C. Stein, R. E. Tarjan. 1994. Improved algo-
rithms for bipartite network flow. SIAM J. Comput. 23
906-933.

Barlow, R. E., D. J. Bartholomew, J. M. Bremer, H. D. Brunk.
1972. Statistical Inference Under Order Restrictions. Wiley,
New York.

Dinic, E. A. 1970. Algorithm for solution of a problem of max-
imal flow in a network with power estimation. Soviet Math.
Dokl. 11 1277-1280.

Even, S., R. E. Tarjan. 1975. Network flow and testing graph
connectivity. SIAM J. Comput. 4 507-518.

Gallo, G., M. D. Grigoriadis, R. E. Tarjan. 1989. A fast parametric
maximum flow algorithm and applications. SIAM J. Comput.
18 30-55.

Goldberg, A. V., R. E. Tarjan. 1988. A new approach to the max-
imum flow problem. J. ACM 35 921-940.

Gusfield, D., C. Martel, D. Fernandez-Baca. 1987. Fast algorithms
for bipartite network flow. SIAM J. Comput. 16 237-251.

Hochbaum, D. S. 1994. Lower and upper bounds for allocation
problems. Math. Oper. Res. 19 390-409.

_. 1997. The pseudoflow algorithm for the maximum flow
problem. Manuscript, University of California, Berkeley, CA.

', M. Queyranne. 2003. The convex cost closure problem.
SIAM J. Discrete Math. 16 192-207.

-, J. G. Shanthikumar. 1990. Convex separable optimization
is not much harder than linear optimization. J. ACM 37
843-862.

Picard, J. C. 1976. Maximal closure of a graph and applications
to combinatorial problems. Management Sci. 22 1268-1272.

Sleator, D. D., R. E. Tarjan. 1983. A data structure for dynamic
trees. J. Comput. Systems Sci. 24 362-391.

Sokkalingam, P. T., R. Ahuja, J. B. Orlin. 1999. Solving inverse
spanning tree problems through network flow techniques.
Oper Res. 47 291-298.

Tarantola, A. 1987. Inverse Problem Theory: Methods for
Data Fitting and Model Parameter Estimation. Elsevier,
Amsterdam, The Netherlands.

	Article Contents
	p. 785
	p. 786
	p. 787
	p. 788
	p. 789
	p. 790
	p. 791
	p. 792
	p. 793
	p. 794
	p. 795
	p. 796
	p. 797

	Issue Table of Contents
	Operations Research, Vol. 51, No. 5 (Sep. - Oct., 2003), pp. i-iv+681-838
	Front Matter [pp. i-i]
	In This Issue [pp. ii-iv]
	Invited Paper
	Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling [pp. 681-710]

	OR Chronicle
	Drift or Shift? Continuity, Change, and International Variation in Knowledge Production in OR/MS [pp. 711-720]

	Explicit Solutions of Optimization Models and Differential Games with Nonsmooth (Asymmetric) Reference-Price Effects [pp. 721-734]
	A Dynamic Model for Inventory Lot Sizing and Outbound Shipment Scheduling at a Third-Party Warehouse [pp. 735-747]
	Necessary and Sufficient Conditions for Delay Moments in FIFO Multiserver Queues with an Application Comparing s Slow Servers with One Fast One [pp. 748-758]
	The Ordered Open-End Bin-Packing Problem [pp. 759-770]
	A Three-Stage Model for a Decentralized Distribution System of Retailers [pp. 771-784]
	Efficient Algorithms for the Inverse Spanning-Tree Problem [pp. 785-797]
	From Fluid Relaxations to Practical Algorithms for High-Multiplicity Job-Shop Scheduling: The Holding Cost Objective [pp. 798-813]
	Using Ranking and Selection to "Clean up" after Simulation Optimization [pp. 814-825]
	An Exact Algorithm for the Two-Constraint 0-1 Knapsack Problem [pp. 826-835]
	Back Matter [pp. 836-838]

