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Abstract. The polynomiality of nonlinear separable convex (concave) optimization problems, on linear 
constraints with a matrix with “small” subdeterminants, and the polynomiality of such integer problems, 
provided the integer linear version of such problems is polynomial, is proven. This paper presents a 
general-purpose algorithm for converting procedures that solves linear programming problems with or 
without integer variables, to procedures for solving the respective nonlinear separable problems. The 
conversion is polynomial for constraint matrices with polynomially bounded subdeterminants. Among 
the important corollaries of the algorithm is the extension of the polynomial solvability of integer linear 
programming problems with totally unimodular constraint matrix, to integer-separable convex program- 
ming problems. An algorithm for finding an c-accurate optimal continuous solution to the nonlinear 
problem that is polynomial in log( l/c) and the input size and the largest subdeterminant of the constraint 
matrix is also presented. These developments are based on proximity results between the continuous 
and integral optimal solutions for problems with any nonlinear separable convex objective function. 
The practical feature of our algorithm is that is does not demand an explicit representation of the 
nonlinear function, only a polynomial number of function evaluations on a prespecified grid. 

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General; 
G.2.2 [Discrete Mathematics]: Graph Theory--network problems 

General Terms: Algorithms, Decision, Theory 
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1. Introduction 

We consider in this paper the nonlinear minimization (maximization) problem in 
either integer variables or in continuous variables: Mini C$‘=l fi‘(xi) 1 Ax I bj. The 
fls are convex (concave) functions (with no additional properties assumed). The 
polyhedron (x 1 Ax 2 b] is bounded, or alternatively, if unbounded, we assume 
that there is a known bound on the optimal solution, which, when incorporated 
into the constraint set, will convert it into a (bounded) polytope. A is an m x n 
integer matrix, and b is an integer vector of dimension m. We denote the maximum 
absolute value of the subdeterminants of A by A. 
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The purpose of this paper is to develop efficient solution methods for this class 
of problems. In this regard, we present: 

(1) A polynomial algorithm for the continuous problem. The polynomiality is in 
the input size, the logarithm of the accuracy required in the solution and A. 

(2) A polynomial algorithm for the integer nonlinear problem over a polytope 
with its A polynomially bounded. In particular, 

(a) A polynomial algorithm for integer nonlinear optimization over polytopes 
defined by totally unimodular matrices. 

(b) A polynomial (and very simple) algorithm for nonlinear integer optimiza- 
tion in fixed number of variables. This is an extension to the nonlinear 
case and a simplification of the linear case, of Lenstra’s result [ 121, when 
A is bounded. 

For many nonlinear optimization problems, our algorithms consist of the first 
polynomial algorithms devised. Since it is perceived that solving nonlinear pro- 
grams is much harder than solving linear programs, most continuous problems are 
formulated as linear programs, while a nonlinear formulation would have been 
more appropriate. Having shown that nonlinear separable problems can be solved 
without much additional effort compared to the linear programs, we can expect 
the use of nonlinear formulations to become more prevalent. 

Our analysis constitutes a novel venture in constrained optimization of arbitrary 
functions. The length of the input involving such functions is not well defined, as 
a complete representation might require infinite number of bits. In our algorithm, 
there is no need to provide any representation of the functions in the objective. It 
suffices to have an oracle that will compute the function values at points on a 
polynomial grid, and this oracle will be called only polynomially many times. 

To date, there are no finite algorithms known to produce the optimal continuous 
solutions to such problems. Indeed, no such algorithms can exist as the description 
of the output alone could be infinite (consider minimizing x3 - 6x subject to 
x L 0). For any desired finite precision of the solution, the algorithm described in 
this paper delivers such solution in time polynomial in the data and in the required 
precision. 

The issue of boundedness of the solution vector is critical in the analysis of 
nonlinear optimization. Once the polyhedron is unbounded, the optimal solution 
vector may still be bounded (i.e., there is a cube of finite size that contains the 
origin and the optimal solution), but there is no known function of the input that 
constitutes a bound on the solution vector. This is in contrast to the linear case 
where either the polyhedron and the solution vector are unbounded or there is a 
polynomial length bound on the finite optimal solution vector (see, e.g., [ 19, p. 30 
and p. 3201). Such a bound plays a critical role in polynomial algorithms for linear 
programming. The condition that the polyhedron is bounded can be easily verified 
using linear programming. 

Our method of analysis relies on sensitivity results on the proximity between 
integer and continuous solutions for separable nonlinear programming. These 
results can be viewed as extensions of the proximity results derived for linear 
programming [ 11, and for separable quadratic programming [5]. We also make use 
of proximity results between the continuous solutions for two different piecewise 
linear approximations of the nonlinear objective. Finally, we make use of the 
strongly polynomial algorithm for linear programming with A of polynomial length, 
by Tardos [2 11. 
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Since the O-l version of the nonlinear problem is always linear, it seems that 
one would want to convert the nonlinear integer problem to a O-l problem. A 
straightforward replacement of each integer variable by a sum of binary variables 
results in an exponential representation, since the number of variables ought to be 
equal to the length of the cube bounding the value of the solution, B; thus resulting 
in a formulation with a large number of variables. It would then appear that an 
alternative would be to replace each variable by the binary representation, that is, 
only a logarithmic number of variables, xi = Li + Czi~=gf~ 2’Xij, where Li is a known 
lower bound on the ith component of the solution x* = (XT, . . . , x,*). This 
approach however, will change critically the constraint matrix in a way that may 
convert a polynomially solvable (linear) integer programming problem into an NP- 
complete one. 

For the continuous problem, it seems that one could use piecewise linear 
approximation of the objective function and formulate it as a linear programming 
problem. If the break intervals (in which the function is linear), used for the 
piecewise linear approximation, are small, one would end up with a large number 
of such intervals and hence a large number of variables. On the other hand, if those 
intervals are large, the accuracy of the linear programming solution may not 
conform to the required accuracy. 

Our algorithm can in fact be viewed as an efficient way of using the idea of 
piecewise linear approximation of the objective, while controlling the number 
of variables to be polynomially bounded, and simultaneously guaranteeing the 
accuracy of the final solution. 

1.1 LITERATURE REVIEW. There is an extensive literature on nonlinear pro- 
gramming problems of the type considered here. Such nonlinear programming 
problems appear in the design and control of stochastic systems, in image processing 
and elsewhere. Hoffman and Wolfe [9] proposed an algorithm for unimodal 
nonlinear problems on integers with two variables. Their algorithm is not guaran- 
teed to run within certain bounded complexity. It applies, however, to unimodal 
functions that are a generalization of convex functions. McCallum [ 141 presented 
a heuristic for a special class of quadratic separable problems with a single constraint 
in nonnegative integer variables. This particular class of problems is actually 
solvable in polynomial time using our procedure. Minoux [ 15, 161 presents an 
algorithm for solving capacitated quadratic separable network flow problems in 
polynomial time. His procedure can be viewed as a special case of ours, though his 
presentation relies heavily on the Edmonds and Karp algorithm [3]. Edmonds and 
Karp scaling algorithm could be thought of as an application of a proximity result 
between the scaled and the original network flow problem, in which case the general 
purpose algorithm presented here applies immediately. The general nonlinear 
proximity result (in Section 3) is sufficient though to obtain the polynomial 
algorithm for any convex and separable objective, and in particular of course, to 
the quadratic case. 

Laughhunn [ 1 l] uses an explicit enumeration approach for solving a binary 
integer programming problem with a quadratic convex objective. Note that, since 
the variables in that problem are binary, this problem is immediately reducible to 
a linear binary integer programming problem with a quadratic increase in the 
number of variables (cross products are also represented by binary variables, and 
one constraint is added for each). It is not clear whether Laughhunn’s approach 
offers any computational advantage compared to solving the linear reduced version. 
A recent paper [8] considers a nonseparable quadratic integer problem with 
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transportation constraints. They solve a related quadratic continuous problem and 
derive the integer solution using a certain rounding property. The rounding 
property can be viewed as a tight proximity result for that particular nonseparable 
problem. 

As for the literature on continuous solutions to nonlinear objective and linear 
constraints problems, there has been a large body of papers on the strictly convex 
and separable problem with a single constraint Mini C?=i A(Xi) ] C y=, x, = C, 
XiZO,i= I,..., n 1. This type of problem is immediately solvable in polynomial 
time (the matrix is totally unimodular) for the integer case, and in logz( 1 /E) for the 
continuous case for an c-accurate optimal solution. This is a substantial improve- 
ment compared to the algorithms in Luss and Gupta [ 131, Yao and Shanthikumar 
[22], and Zipkin [23]. It should be noted that they require the functions to be 
strictly convex and continuously differentiable (a condition not required for the 
procedure in this paper). Helgason et al. [6] describe an O(nlogn) algorithm for 
the problem, when the objective is separable quadratic, which derives directly the 
optimal solution (and in strongly polynomial time). Such exact optimal solution 
rather than an c-accurate optimal solution can be derived in the quadratic case 
since the optimality conditions are linear and the length of the output is hence 
polynomial in the input. 

Finally, Monteiro and Adler [ 171, derived an adaptation of linear programming 
interior point methods restricted to a class of nonlinear convex separable objective 
functions. The complexity of the algorithm depends on the objective function. It 
is not polynomial for finding E-accurate optimal solutions. Therefore, that algorithm 
is not comparable to our algorithm for that class of problems. 

1.2 A COMPLEXITY MODEL. There is no complexity model available for the 
description of general functions. The only attempt to define such a model appears 
in Nemirovsky and Yudin’s book [ 181. Problems of the type we are considering 
pose certain difficulty as far as their complexity is concerned. This is due to the 
fact that the length of the output-the description of the solution-may be infinite, 
and the length of the input is not bounded either. This happens when we have 
nonanalytical functions, or even functions without explicit regular presentations. 
Such a function could be considered as an infinitely (noncountable) long table 
that, with our algorithm, never needs even to be looked at more than for a 
polynomial number of entries, each with polynomially long input and output. 
Since nonlinear functions cannot be treated with the absolute accuracy of linear 
functions, the notion of approximate solutions is particularly important. We prefer 
to approximate the solution vector, since in our approach a specification of the 
accuracy of the solution vector implies directly the complexity of the algorithm 
and the arithmetic accuracy with which it is to work. Nemirovsky and Yudin 
choose to approximate the objective value. If there is certain information about 
the behavior of the objective at the optimum, that can always be translated to a 
level of accuracy of the solution vector itself (and vice versa). 

For the nonlinear optimization problems that are considered here, this translation 
process will work as follows. First, derive an upper bound on the absolute value of 
the variation, di of the function5 over an interval of unit length. This can be done 
by taking the maximum of the absolute values of the first order difference to the 
left of the left endpoint and to the right of the right endpoint of the interval 
bounding the value of Xi in the optimal solution vector. For a given required 
approximation of the objective function, 6, one determines the accuracy of the 
solution vector as E = 6/C ?=‘=1 di. The value of E specified will determine the 
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maximum distance between the optimal solution and the derived solution com- 
ponents. It will also imply the grid and the arithmetic accuracy with which that 
approximate solution is to be found. 

1.3 OVERVIEW OF ALGORITHM. The algorithm maintains a box that contains 
an optimal solution to the problem. At each iteration, the size of this box is reduced 
by a factor of 2”. This is achieved by reducing each dimension of the box by a 
factor of 2. A direct implementation will therefore require a total of logzB iterations, 
where B is the length of the initial box for the integer problem. Certain modifica- 
tions (to be discussed in Section 4) will reduce this complexity. For the continuous 
problem solved to t-accuracy, there are logz(B/2c) such iterations. 

At a given iteration, the interval for each variable Xi is divided into a grid of 
O(nA) points, where A is the bound on the absolute value of a subdeterminant of 
the matrix A. The nonlinear function is approximated by a piecewise linear function 
on that particular grid. Due to the convexity, this piecewise linear approximation 
is solved as an ordinary linear program (e.g., [2, pp. 482-4861). 

We prove a proximity result between the optimal solution to the nonlinear 
problem (integer or continuous) and the optimal solution derived for the piecewise 
linear approximation. This proximity is a function of ~1, A, and the size of the grid 
(i.e., the scaling constant). We choose the grid size such that the optimal solution 
to the piecewise linear approximation is at most one-fourth the length of the box 
away from the optimal solution. This allows us to update the box in which the 
optimal solution is to be found, and reduce its size by a factor of 2”. 

When the grid corresponds to the integer grid, the final iteration for the integer 
problem consists of solving the integer problem on that particular grid. That 
problem looks precisely like a linearized version of the original problem except 
that each variable has O(nA) copies. It is important to notice that the duplication 
of the variables does not change the complexity of solving the linear problem, 
except for an adjustment for the number of variables. The size of the largest 
subdeterminant of the constraint matrix does not change, since we only added 
copies of the columns of the matrix (that are obviously linearly dependent). Since 
the number of variables though grows by a factor of O(nA), the requirement that 
A is polynomially bounded is essential for our algorithm. 

As for the continuous problem, the iterations continue, until the optimal solution 
interval is reduced to a size at most 2~. We summarize the properties of the 
algorithm in the following theorems. 

THEOREM 1.1. Let the complexity of Linear Programming Min{cx 1 Ax > b, 
0 5 x 5 1) be T(n, m, A), then the complexity of solving for an c-accurate optimal 
solution to a nonlinear separable and convex (concave) minimization (maximiza- 
tion) problem on (x 1 Ax L b] is logz(B/2t)T(8n2A, m, A). 

In the theorem for the integer problem, the notation Ak is used for a matrix A 
in which each column appears k times. 

THEOREM 1.2. Let the complexity of solving an Integer Linear Programming 
problem Min(cx 1 Ax 2 b, 0 2 x I 1, x integer] be TI(n, m, A), then the com- 
plexity of solving a nonlinear separable convex integer optimization problem 
on (x(Ax? bj is 

log2 & T(8n2A, m, A) + TI(4n2A, m, A4”a). 
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Remark 1.3. We can write the complexity of solving the binary linear program 
as TI(n, m, A), that is, independent of b and c. The independence of c follows from 
[4]. Since the variables are all O-l, the right-hand side, b, can be replaced by a 
vector of entries that are functions of A and y1 only. This is because the left-hand 
side of all inequalities can add up to integers in the interval [ Caj,<O Uij, Car,,0 Uij ] 
only. 

In the following section, we provide a formal problem statement and discuss the 
method of solution of the piecewise linear optimization problems. Section 3 
includes all the proofs of the proximity theorems. Section 4 describes the algorithms 
used and their complexity in the unit cost model, that is, in terms of the number 
of arithmetic operations. Finally, Section 5 studies the accuracy of the oracle 
computing the objective function value in terms of the number of digits required 
to derive the optimal solutions. 

2. Problem Statement 
LetJ:R+R,i= l,..., n be n convex functions and define 

F(X) := i A(xi), x := (xl, . . . , x,) E R”. 
i=l 

(2.1) 

We are interested in the solutions to the nonlinear integer programming problem 

(IP) Min F(x) 
such that Ax 1 b 

x integer 

and to its continuous relaxation 

(RP) Min F(x) 
such that Ax I b. 

Here A is an integral m x n matrix and b is an m-vector. The solutions to (IP) 
and (RP) will be obtained by solving a sequence of scaled and linearized versions 
of problems (IP) and (RP). For this, we introduce the following classes of problems. 
For any scaling constant s E R, let the scaled problem (IP - s) be defined by 

(IP - s) Min F(sy) 
Ay 2 b/s 
y integer. 

By setting x = sy in (IP - s), it can be observed that the only difference between 
(IP) and (IP - s) is that in (IP) we require the solution to be an integer while in 
(IP - s) we require it to be an integer multiple of s. Hence, for s = 1, both (IP) 
and (IP - s) are the same problems. The continuous relaxation of (IP - s) with 
x := sy is easily seen to be the same as (RP). We do not need the scaled version 
of (RP). Rather, we use a linearized version of (RP) as defined below. For any 
s > 0 let f,L’“: R --, R be the linearized version off; such that Ah’” takes the same 
value asf; at all integer multiples of s: that is, ~~“(syi) =J;(.ry,), for yi integer and 
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where LXi/SJ is the largest integer value smaller than or equal to Xi/S. Clearly fiL’” 
is a piecewise linear function which is convex if$ is convex. Now define 

(LP - s) Min F’:“(x) 
Ax 2 b 

where 

FL:“(x) := i fiL’“(Xi), x E R”. 
i=l 

Note that the optimal solution to the integer program 

(IP’ - s) Min FL’“(sy) 
Ay 2 b/s 
y integer 

(2.3) 

is also an optimal solution to (IP - s) because FL” and F take the same value at 
integer multiples of s, that is, FL:“(sy) = F(sy) for all integer vectors y. Hence, to 
solve (IP - s) we may solve (IP’ - s) and use its optimal solution. 

(LP - s) or (IP - s) is solved by using a linear programming formulation. Since 
the optimal solution is enclosed in a bounded box, we incorporate those bounds 
into the feasible solution set. That is, we add the constraints to the (RP) or (IP) 
problems: 

LiSXi5 Vi, i= 1, . . ..n. 

These constraints will be scaled as well. In our procedure, at each iteration we shall 
work with the upper and lower bounds, Vi and Li, and a scaling constant s, such 
that the length (Ui - Li)/S, is an integer constant independent of i. We denote 
N = (Vi - Li)/s. Each variable yi, for the integer case, is then substituted by 
a sum of N O-l variables: 

Li N 
yi = s + C Zij 

H j=l 

for i= l,...,y1 Zij is 0 or 1 for all i and j. (2.4) 

For the continuous case the substitution for x, is: 

Xi=S{[:J + ji, zij> 

fori= l,...,n 0 5 Zi, 5 1 for all i and j. (2.5) 

So now (LP - s) and (IP’ - s) are piecewise linear convex (concave) minimization 
(maximization) problems on the variables zij. 

The modified objective function for the linear programming formulation (e.g., 
[2, pp. 482-4861) of both (LP - s) and (IP’ - s) is 

We denote the columns of A by al, . . . , a,,. Then the constraint set 

ig, aixi 1 b 
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of (LP - s) [respectively, (IP’ - s)] is converted using the substitution (2.5) 
[respectively, (2.4)] into the constraint set 

n N 

)J C aizij 2 b’, 

for both (LP - s) and (IP’ - s), where b’ = b/s - CYcl a,lL,/sl. So the linear 
programming version of the (LP - s) problem (omitting the constant from the 
objective function) is 

i f$ aizij L b’, OSZijSl, j=l,..., N, i=1,2 ,..., n. 
i=* j=l 

One then has from well-known results (e.g., [2]): 

LEMMA 2.1. Let i be an optimal solution to (LP’ - s). Iffy’ is convex for each 
i= 1 . . 3 n, then i defined by& = s(LLi/sJ + C$, ,5!,), i = 1, . . . , n, is an optimal 
solutIdn to (LP - s). 

The treatment of the integer problem (IP’ - s) is similar. For this we have 

LEMMA 2.2. Let i be an optimal solution to (LP’ - s) with the added constraint 
that z is a 0- 1 vector. Zf$ is convex for each i = 1, . . . , n, then jr defined by 

L; N 
ji = s + C iij, 

LJ 

i= 1 , ***, n 
j=l 

is an optimal sohaion to (ZP’ - s). 

Note that in both (LP’ - s) and (IP’ - s), the constraint matrix is AN with each 
column of A appearing precisely N times, AN = [a,, . . . , al ; a2, . . . , a2 ; . . . ; 
a,, . . . , 61. 

Polynomial linear programming algorithms such as the ellipsoid method or 
Karmarkar’s method, can be adapted (see [21]) to run in time that is polynomial 
in the number of variables, n, the number of constraints, m, and the length of the 
largest subdeterminant of the constraint matrix, A. Denote the running time of a 
selected linear programming algorithm, solving minlcx ] Ax 2 b, 0 5 x I 11, by 
T(n, m, A). It is important to notice that the size of the biggest subdeterminant of 
AN is exactly the same as that of A’s, A. Consequently, the complexity of solving 
(LP’ - s) is T(Nn, m, A). For (IP’ - s), the complexity is TI(Nn, m, AN), where 
TI(n, m, A) is the running time required to solve minlcx ] Ax > b, 0 5 x I 1, and 
x integer}. Recall that TI(n, m, A) is independent of b and c, see Remark 1.3. 

3. Proximity Results 

In this section, proximity results for the optimal solutions of (IP), (RP), (IP - S) 
and (LP - s) will be derived. These results will be used to develop the algorithms 
to solve (IP) and (RP). The following preliminaries are needed. 

3.1 PRELIMINARIES. Let gi: R + R, i = 1, . . . , n and 

G(x) := i gi(xi), x E R”. 
i=l 

(3.1) 
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We shall use the notation y A z and y V z to denote 

y A z := (mini y,, zI 1, . . . , min( y,, z,)) 

and 

Y V z := (max(yl, ~11, . . . , max(h ~1). 

851 

In order to establish the proximity result, we shall need a property stronger than 
convexity for the objective function. This property, called directional convexity, is 
shown for separable convex functions in the following lemma: 

LEMMA 3.1. Suppose G is convex (i.e., gi is convex for each i, i = 1, . . . , n). 
Then for any quadruple of vectors x(j) E R”, j = 1, . . . , 4 that satisfies 

(i) x(” A x(4) 5 x(2) ( x(‘) v x(4) 

(ii) x (1’ A x(4) < x(3) 5 x(‘) V x(4), and - 

(iii) xu’ + x(4) = x(2) + x(3), 

we have 

G(x”‘) + G(xc4’) z G(x’;‘) + G(x’~‘). 

PROOF. Let y(l) = x(l) A xc4) and yc4) = x(l) V xt4). 
Then, from (i), (ii), and (iii), one has for any i, i = 1, . . . , n, 

and 
yp + yl"' = x$2’ + xp’. 

Then, from the convexity of gi, it is easily seen that 

gi( y$“) + gi( yy’) 2 gi(Xl”) + gi(X$3’). (3.2) 

Therefore, summing (3.2) over all i, i = 1, . . . , n, one gets 

G(y”‘) + G(yc4’) L G(xc2’) + G(xc3’). (3.3) 

Due to the separability of G, G(y”‘) + G(yc4’) = G(x”‘) + G(x’~‘). The desired 
result then follows from (3.3). Cl 

Remark 3.2. Consider a fixed partition ( S1, S2 ) of ( 1, . . . , n). Consider 
x(j) E R”, j = 1, . . . , 4 that satisfy conditions (i), (ii), and (iii) of Lemma 3.2 
and x(‘) 5 xy’, i E S, , and XI” L xy’, i E S2. Let G : R” + R be a function (not 
neces&-ily separable), that satisfies for such x(j), 

G(x”‘) + G(xc4’) 2 G(xc2’) + G(x’~‘). 

Then, Shaked and Shanthikumar [20] call G directionally convex (in the direction 
specified by (S,, S2 )). A necessary and sufficient condition for this directional 
convexity (when these derivatives exist) is: 

2 G(x) 2 0, i = 1, . . . , n 
I 

&,G(x)tO, i,jES, or i,jES2 
1 J 



852 D.S.HOCHBAUM AND J.G.SHANTHIKUMAR 

and 

& G(x) 5 0, iES,, jE&. 
I J 

(See Proposition 2.3 and remarks in [20].) If G is twice differentiable, then 
Lemma 3.1 follows from Shaken and Shanthikumar [20]. Notice that a separable 
convex function is directionally convex in all directions. If G is directionally convex 
in all directions, first choosing the direction (S,, S2 ) such that i, j E S, , and then 
choosing (S;, S; ) such that i E S,l, j E S;, it is seen that all cross derivatives 
(a’/a.xidXj)G(x), i # j vanish. Hence, G should be separable. Indeed, even if the 
function is not differentiable, it can be verified that a convex function is direction- 
ally convex in all directions iff it is a separable convex function. Therefore, since 
we use the directional convexity in developing the proximity results and the 
algorithms, it appears that our approach may not easily extend to nonseparable 
objective functions. 

Let A be the maximum of the absolute values of the determinants of the square 
submatricesofAand)IxI),=max(Ix,(,i=l,...,n)betheI,-normofxER”. 
We next give a proximity result between the optimal solution of (IP) and (RP). 

THEOREM 3.3 

(i) For each optimal solution i for (RP), there exists an optimal solution z* for 
(ZP) such that II zi - z* II m I nA. 

(ii) For each optimal solution i for (ZP), there exists an optimal solution x* for 
(RP) such that I( x* - i II m I n A. 

PROOF. Let i and i be two optimal solutions for (IP) and (RP), respectively. 
We first construct a cone with respect to i and i along the same line as in the 
proof of Theorem 1 of Granot and Skorin-Kapov [5]. Let {S, , S2) be a partition 
of (1, . ..) n 1 such that for any i E S1, ii 2 & and for any i E S2, 2; < ii. Also 
partition the matrix A into submatrices A ,, and Az such that A, i c A, i and 
A,i L A2k Define the cone C = (y: Aly I 0, A2y L 0, yi L 0, i E S1, yi % 0, 
i E S2, y E R”]. Note that i - i E C. Let U C C be a finite set of integral 
vectors that generates C. Then, because of the integrality of the elements of A, 
for each u E U, I] u I] m 5 A, and since i - i E C, there exist t (t 5 n) vectors 
u(j) E U, j = I, . . . , t and aJ > 0, j = I, . . . , t such that i - i = Cf=l aj u(j) 
(e.g., [I]). That is, 

! 

i=i+ C LyjU (i) . (3.4) 
j=l 

Let 

and define 

and 

/3j = a~ - LCYj J, j= 1, . . . . t 

z* = i + i pju(i), 
j=l 

(3.5) 

(3.6) x* = i - ;: pJu(J). 

j=l 
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From (3.4) and (3.5) one also has 

853 

z*=i- i (C~J - pj)U(j). (3.7) 
j=l 

Similarly, from (3.4) and (3.6), one has 

X* = i + i (Lyj - @j)U(j). (3.8) 
j=1 

Next, we show that z* and x* are feasible for (IP) and (RP), respectively. 
Observe that 

AlZ* (F,) Ali - i (CYj - pj)AIU(j) L A,?, 

j=l 

since aj - /?j I 0 and u(j) E C (i.e., AL u(j) 5 0, j = 1, . . . , t ). Similarly 

Hence, AZ* 1 b. Since aj - @j = Laj,J and 16~) are integers, the integrality of z* is 
immediate from (3.7). Likewise, 

and 

A~x* (FU) AZ% + i (aj - /3j)A,u(j) L AZ%. 
j=l 

Hence, Ax* 2 b. Since u(j) E C one has uY’ 2 0, i E Si, and ui” I 0, i E S2. 
Combining this with ii 2 ii, i E S, and ii < T&, i E S2 one has from (3.5) and (3.7) 

2, L Zr 2 ii, i E S, 
. * - 
ZiSZi 5X;, i E S,. (3.9) 

Similarly, from (3.6) and (3.8), one has 
A * - 
Zi1Xj LXi, i E S, 
* * * 
Zi5Xi <Xi, i E S2. 

(3.10) 

From (3.9) and (3.10), one sees that 

iAi%Z*5iUi (3.11) 

and 

iAi5x*cciui. (3.12) 

Furthermore, from (3.5) and (3.6) one has 

i + 22 = z* + x*. (3.13) 

Since Fis separable, from (3.1 l), (3.12), and (3.13) and from Lemma 3.1, one gets 

F(i) + F(i) L F(z*) + F(x*). (3.14) 
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F(z*) 5 F(i) + F(i) - F(x*) 5 F(i), 

since 2 is an optimal solution to (RP) and x* is a feasible solution to (RP) (i.e., 
Ax* 2 b). Therefore, z* is an alternate optimal solution to (IP) (feasibility is 
already established) and F(z*) = E;(z). Consequently, F(i) = F(x*) and x* is an 
optimal solution to (RP). From (3.9, one has 

Similarly from (3.6) 

Along the same line suppose z is an integral solution of Ax L b that is not an 
optimal solution to (IP). Let z* be an optimal solution to (IP). Then, as in the 
proof of Theorem 3.3, it can be shown that there exist two integral solutions i 
andz’forAx?bsuchthat /z-ill,= IIz’ - z* IIm 5 nA and F(z) + F(z*) r 
F(z’) + F(i). Since, F(z*) < F(z), it follows that F(i) < F(z). Therefore, one has 
for (IP) that has an optimal solution: 

THEOREM 3.4. For each integral solution z of Ax 2 b either z is an optimal 
solution to (ZP) or there exists an integral solution i of Ax 1 b with II z - i II m I 
nA and F(i) c F(z). 

Using a proof very similar to that of Theorem 3.3, we can obtain the following 
proximity between the optimal solutions to (IP) and (IP - s). 

THEOREM 3.5. Let s be a positive integer. 

(i) For each optimal solution y for (ZP - s), there exists an optimal solution z* for 
(ZP) such that 

IIs? - z*ll, I nsA. 

(ii) For each optimal solution i for (ZP), there exists an optimal solution y* for 
(ZP - s) such that 

(Isy* - ill, I nsA. 

Remark 3.6. Since (RP) is a continuous relaxation of (IP - s) with x := sy, 
from Theorem 3.3, one sees that for any optimal solution jr of (IP - s), there 
exists an optimal solution x* to (RP) such that 11 x*/s - jr II m I nA. Also from 
Theorem 3.3, we know that there exists an optimal solution z* to (IP) such that 
II x* - z* II m I nA. Combining these two proximity results using the triangular 
inequality of the 1, norm, one has 11 si - z* II m I n( 1 + s)A. Similarly, it can be 
shown that for any optimal solution jr of (IP - s), there exists an optimal solution 
y* for (IP - s) such that 11 s y* - i 11 m I n( 1 + s)A. These bounds, however, are 
slightly improved in Theorem 3.5. 

The following proximity result between the optimal solutions of (IP) and 
(LP - s) will be used to develop an algorithm for (IP). 
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THEOREM 3.7. Let s be a fixed positive integer. For every optimal solution i for 
(LP - s), there exists an optimal solution z* for (IP) such that 

11 i - z* IIm 5 2nsA. 

PROOF. Let jr: be a given optimal solution to (LP - s). Since (LP - s) is a 
continuous relaxation of (IP’ - s) with x := sy, from Theorem 3.3, one knows 
that there exists an optimal solution y* to (IP’ - s) (and hence (IP - s)) such that 
I] Ii/s - y* ]I m 5 nA. From Theorem 3.5, it is clear that there exists an optimal 
solution z* to (IP) such that I] sy* - z* I] m 5 nsA. Combining the above two 
proximity results, one gets the desired conclusion. 0 

To develop an algorithm for (RP), we use the following proximity result between 
the optimal solutions to (RP) and (LP - s). 

THEOREM 3.8. Let s > 0 be jixed. For every optimal solution i for (LP - s), 
there exists an optimal solution x* for (RP) such that 

11 i - x* IIm I 2nsA. 

PROOF. Let i be a given optimal solution to (LP - s). Then, as in the proof of 
Theorem 3.3, there exists an optimal solution y* for (IP - s) such that I] i - sy* I] m 
5 nsA. Observe that the continuous relaxation of (IP - s) with x := sy is the same 
problem as (RP). Hence, from Theorem 3.3, it follows that there exists an optimal 
solution x* for (RP) such that I] sy* - x* I] m % nsA. Combining the above two 
proximity results, one gets the desired conclusion. 0 

4. Algorithms and Complexity 
In this section, we present algorithms for (IP) and (RP) and discuss their complexity. 
First consider 

(IP) Min F(x) 
Ax 2 b 
x integer 

As pointed out earlier, we can assume that the polyhedron (x: Ax I b, x E R”) is 
bounded (since if it is not, there is a known bound on an optimal solution so that 
when it is incorporated into the constraint set it will form a polytope). There exists 
an integer y 2 1, such that the optimal solution to, 

(IP”‘) Min F(x) 
Ax I b 

-2y+LnAe 5 x -z 2?+‘nAe - 
x integer 

where e := (1, . . . , l)‘, is also an optimal solution to (IP). The existence of such y 
follows from the fact (e.g., [ 19, p. 301) that the box (x: ]I x ]Im I [I b I] ,m . A, 
x E R”} of length, B = 211 b]],. m . A, contains {x: Ax 2 b, x E R”]. Hence, 
it is sufficient to choose y such that 2y+’ nA 2 I] b I] m . m . A. In particular, 
y = [log, ((m/n) I] b ]I ,)l - 1 satisfies this inequality. We remark here that adding 
these upper and lower bounds will not change A and hence the proximity results 
given in Section 3. 

Next we present an algorithm for (IP). 
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Algorithm 4.1 

1 Setsk=2r-k k=O . . ) y ; G(O) = 0. 
2: Fork= l,.:., y &ng the substitution (2.5) and solving the resulting linear program, 

obtain an optimal solution lick) to 

(LP* - Sk) Min FL’“*(x) 
Ax z b 
$k- I) - 2nsk-, Ae 5 x 5 kck-‘) + 2nsk-, Ae 

3. Obtain an optimal solution i using the substitution (2.4) with L, = xy’) - 2nA and 
s = 1, and solving the resulting linear integer program, 

(IP*) Min F(x) 
Axrb 
Iicy) - 2nAe I x 5 Iicy) + 2nAe 
x integer. 

Let T(n, m, A) denote the running time of a linear programming algorithm 
solving Min(cx 1 Ax 2 b, 0 5 x 5 1). Let TZ(n, m, A), denote the running time of 
an algorithm for solving the integer problem Minlcx 1 Ax 2 b, 0 I x I 1, x integer). 
Ak denotes the matrix A in which each column is duplicated k times. 

THEOREM 4.1. i obtained by Algorithm 4.1 is an optimal solution to (ZP). 
The complexity of Algorithm 4.1 is fog2 ((m/n)11 b II m) . T(8n2A, m, A) + 
TZ(4n2A, m, A4”A). 

PROOF. Observe that for k = 1, s1 = 2y-’ and 

(LP* - Sl) YF$bQ(x) 

-2y+‘nAe 5 x 5 2?+‘nAe. 

Then (LP* - sl) is a linearized relaxation of (IP”‘). From Theorem 3.7, one sees 
that there exists an optimal solution z(‘) for (IP”‘) such that II zi(‘) - z(l) II m 5 
2nslA = 2y . n . A. Therefore, the optimal solution to 

(IP’*‘) Min F(x) 
Ax 2 b 
]i(‘) - 27. nAe 5 x p $') + 27. n. Ae 
x integer 

is also an optimal solution to (IP”‘) (and hence to (IP)). (LP* - s2) with sz = 2y-2 
is indeed the linearized relaxation of (IPc2’). Hence, as before from Theorem 3.7, 
one sees that there exists an optimal solution z (2) for (IPt2’) and (hence to (IP)) such 
that 11 kc’) - z(‘) II m 5 2ns2A = 2y-’ . n . A. Continuing this way one finds that there 
exists an optimal solution zck) for (IP) such that 11 lick) - zck) 11 I 2y+‘-k . n . A, 
k= I,..., y. Therefore, for any k = 1, . . . , y, an optimal solution for 

(IPck’) Min F(x) 
Ax>b 
]i(k-1) _ 2+-k. n . Ae 5 x 5 $k-‘) + 27+2-k. y1 . Ae 
x integer 

is also an optimal solution to (IP). The desired conclusion is reached by observing 
that there exists an optimal solution i to (IP) such that, II x(?) - i 11 m I 2nA 
(see Theorem 3.7). 

As for the complexity, Step 2 is repeated y times with y = Ilog, ((m/n) II b II ,)l 
- 1 < log, ((m/n) 11 b 11 m). At every iteration, each variable Xi is replaced by 8nA z,j 
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variables (see substitution (2.5)). Thus, the complexity of solving the corresponding 
linear program is T(8n2A, m, A). Step 3 in which a linear integer program is solved 
is executed exactly once. Since Xi for all i = I, . . . , n is an interval of length 4n A, 
in substitution (2.4), we introduce only 4nAZij variables for each yi. SO the total 
number of variables in the linearized version is 4n*A and the matrix A has each 
column duplicated 4nA times. Hence, T1(4n2A, m, A4”‘) is the complexity of 
solving the integer problem in Step 3. 0 

Remark 4.2. When the matrix A is totally unimodular, the optimal solution to 
(IP - s) can be obtained using Linear Programming. In such a case, a more 
efficient algorithm can be used. The efficiency in this algorithm derives from the 
above fact and also from the tighter proximity between (IP) and (IP - s) as proved 
in Theorem 3.5 (compared to (IP) and (LP - s) as proved in Theorem 3.7). Note 
that A is equal to 1 for totally unimodular matrices. 

In the following algorithm, which deals with the case A = 1, we need to solve a 
sequence of integer programs: 

(IP” - sk) Min F&y) - - 

Ayz b 
I I Sk 

2jrck-l) - 2ne 5 y 5 2jJk-‘) + 2ne 
y integer 

fork= 1, . . . . y where sk = 2y-k, k = 0, . . . , y. In order to guarantee that each 
one of these integer programs has a feasible solution, it is sufficient to have f = 0 
be feasible for Ax 2 b. For this observe that 0 is also a feasible solution to 
(IP” - s,) and that 2?(k-‘) is a feasible solution to (IP” - Sk), k = 2, . . . , y. In case 
0 is not a feasible solution to Ax I b, we may simply obtain a feasible (integer) 
solution ~0 to Ax 2 b, and replace the constraint set by A(x - xg) 2 b - A% 
and substitute x - ~0 by x and b - Ax,, by b. Since (IP” - sk) has a feasible 
integer solution and A is a totally unimodular matrix, the optimal extreme point 
solution to 

(RP’ - Sk) Min F&y) 

2jrck-') - 2ne c: y 5 2fck-‘) + 2ne 

is also an optimal solution to (IP” - Sk). Note that an Optimal Solution t0 

(RP’ - Sk) can be obtained using the substitution (2.4) and then applying a linear 
programming algorithm that can identify an optimal extreme point solution (if one 
exists), to the resulting linearized problem. The value of y used in the algorithm is 
one unit larger than in the general case. That is y = [log, ((m/n) 11 b 11 ,)l. This 
additional unit is required to bring down the size of the interval to the form 2nsA, 
as opposed to 4nsA as in the general case. This can be done since the proximity 
theorem used here is a factor of 2 better than the general proximity theorem. 

Algorithm 4.2 

1 Set Sk = 27-k k= 0 
2: For k = 1, .I., y c&t& ib$?!, solution fck) to (IP” - Sk) using substitution (2.4) 

and solving the resulting linear program. 
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In the next theorem, T(4n2, m, 1) is used to denote the running time of the 
linear programming algorithm as before, except that this linear programming 
algorithm has to identify an extreme point solution. Otherwise, the solution 
identified is not necessarily integer, as required for the following theorem: 

THEOREM 4.3. Algorithm 4.2 delivers fy), which is an optimal solution to (IP) 
with a totally unimodular constraint matrix A. The running time of Algorithm 4.2 
is 

[log2(: Ilbll-)].T(4n*, m, 1). 

PROOF. Using Theorem 3.5, it can be shown (as in the proof of Theorem 4.1) 
that an optimal solution to 

(IPCk’) Min F(x) 
Ax 2 b 
Sk-, j?(k-1) - risk-le 5 x 5 Sk-1 y A(k-‘) + risk-le 
x integer 

is also an optimal solution to (IP). The required conclusion is obtained by 
the observation that (IPCy)) and (IP” - s,) are the same problems, for totally 
unimodular constraint matrix A. 

As for the running time of Algorithm 4.2, it suffices to notice that the linearized 
version of the integer linear program in Step 2 can be solved by applying a linear 
programming algorithm. The number of variables is multiplied by a factor of 4n 
and A = 1. Since Step 2 is applied y times with y I rlog2 ((m/n) 11 b 11 -)l, it follows 
that the complexity of Algorithm 4.2 is rlog2 ((m/n) II b II ,)l . T(4n2, m, 1). 0 

Next we will look at the problem (RP). Note than an optimal solution to 

(RP’) Min F(x) 
Ax 2 b 
-2y+‘nAe 5 x 5 2yc1nAe 

is also an optimal solution to (RP). We are interested only in an c-accurate 
optimal solution to (RP). A feasible solution i for (RP) is said to be c-accurate 
optimal if there exists an optimal solution x* to (RP) such that 11 i - x* I( m 5 E. 
The following algorithm gives an c-accurate optimal solution for (RP). 

Algorithm 4.3 
1. LetK=ry+10gzn+10gla-10g2~1+ 1,~~=2Y-~,k=O,...,K,i(O)=0. 
2. Fork = 1,. . . , K using the substitution (2.5) and solving the- resulting linear program, 

obtain an optimal solution ?Zk) to 

(LP* - sk) Min F=‘“I-(x) 
Ax 2 b 
p- 1) - 2nsk-,Ae 5 x I fdk-‘) + 2nsk-,Ae 

THEOREM 4.4. Algorithm 4.3 produces i CK) that is an c-accurate optimal solution 
for (RP). The running time ofAlgorithm 4.3 is 

log2 
II b II ad 

1 
. T(8n2A, m, A). 

E 
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PROOF. Using Theorem 3.8, it can be shown (see the proof of Theorem 4.1) 
thatforeachk(k= I,..., K), there exists an optimal solution x*(@ for (RP) such 
that 

II x -(k) - x*(~) 11 m 5 2nskA. (4.1) 

Since SK = 2y-K, one sees that 

2nSKA = 2 Yw’-KnA 5 2yw’ nA6 
2?+‘nA 

= t. (4.2) 

Combining (4.1) and (4.2), one sees that 

11 SK) - X*(K) 11 rn % 6. 

At each application of Step 2, the interval of length 4nsk-,A containing each 
optimal value Of Xi, i = 1, . . . , n is subdivided into a grid of granularity & that 
produces an increase in the number of variables of factor 8nA in the linearized 
version, resulting in a complexity 7’(8n*A, m, A). Since Step 2 is applied K times 
(K I flog* ( ]I b ]I (x . m . A/6)1), the complexity of the algorithm is as specified. Cl 

5. Nonlinear Integer Programming with Fixed Number of Variables 
First, consider the linear integer programming problem with fixed number of 
variables, 

Min cx 
Ax > b 
x integer. 

Lenstra has shown that linear integer programming with a fixed number of 
variables is solvable in polynomial time [ 121. The problem solved in [ 121 is a 
feasibility problem rather than an optimality problem. In order to find the optimal 
integer solution, one could use the feasibility procedure as a subroutine, and carry 
out a binary search on the value of the objective. The number of applications of 
the subroutine will depend on the logarithm of the bounds on the objective value, 
especially on log* ]I c ]I -, and log2 ]I b I] m. 

The same idea as used in the algorithms we present in this paper, that is, relying 
on the use of proximity theorem to reduce the size of the cube in which the optimal 
solution is to be found, can be used to provide an alternative approach to solving 
linear integer programming with fixed number of variables. Moreover, this reduc- 
tion can also be applied to the convex separable integer programming problem. 
For the linear case, the procedure simply amounts to solving the LP relaxation, 

cx* = Min cx 
Ax I b, 

and carrying out a complete enumeration on the integer points in the cube 
{xl x* - nAe 5 x 5 x* + nAe). The number of such points is (2nA)“. The 
complexity of this procedure is then T(n, m, A) + n(2nA)“. Note that since in this 
case the number of columns of the matrix A is fixed, A is bounded by a polynomial 
in I] A ]I m, the largest absolute value of an entry in the matrix. Hence the complexity 
is polynomial in m and ]I A I] m, but is independent of b and c. So if either log, ]I b I] m 
or log* (I c ]I m is very large compared to ]I A ]I -, then our procedure might yield 
faster running time. 
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For the problem with the nonlinear objective we apply Steps I and 2 of Algorithm 
(IP). In Step 3, the integer problem (IP*) is solved by enumerating all (4r~‘A)~ 
points. 

6. Concluding Remarks and Possible Extensions 
The algorithms presented in this paper determine the complexity of nonlinear 
separable optimization problems. Yet, there are numerous issues involving nonlin- 
ear optimization that remain unresolved, and many others that require further 
study and improvement. 

As pointed out earlier, the question of boundedness of the solution vector is 
critical. It would be important to determine the conditions under which bounds 
on a solution vector can be derived for nonlinear optimization. This issue is yet 
unresolved even for unconstrained optimization. Indeed, in order to obtain poly- 
nomial algorithms of the type described in this paper for separable convex min- 
imization, one needs only the convexity property, a proximity result, and bound- 
edness of the solution vector in an interval whose length’s logarithm is polynomial 
in the data. Therefore, our algorithms are also applicable to unconstrained separable 
optimization problems in the presence of polynomial bounds. Consequently, the 
derivation of a polynomial bound to the optimal solution of such problems is 
tantamount to solving it in polynomial time. 

Another closely related question is that of strong polynomiality when the 
polyhedron is bounded. We bound the solution by a value that essentially depends 
on the log of the right-hand side. Tardos’ algorithm for linear programming [21] 
works independently of this value. If we were to apply Tardos’ procedure in the 
nonlinear context, it would amount to discarding one constraint at a time, until a 
face is identified where the optimal solution lies. On this face, the problem can be 
solved as unconstrained optimization. But here again, we come up against the 
difficulty of identifying an optimal solution for an unconstrained optimization 
problem. A strongly polynomial procedure will have to resolve the question of 
unconstrained optimization first. 

One obvious extension is for the proximity theorem to apply also for nonsepar- 
able functions. We use the fact that separable convex functions are directionally 
convex in the proof. It is possible that such a strong property may not be essential 
for the proof, and it may suffice for the function to be supermodular. Note though, 
that even if a proximity theorem is proved, the linearization of nonseparable 
functions may increase, by at least an exponential factor, the number of vari- 
ables. Perhaps another approach altogether is needed for nonseparable objective 
functions. 

The optimization problems discussed here are defined over a set of linear 
inequalities. A closely related problem is the separable optimization over a set of 
nonlinear inequalities defining a convex set. Note that our proximity theorem’s 
proof does not directly extend to this case. 

The algorithms described in the paper are polynomially dependent on A in the 
continuous case and, when the corresponding integer linear program is polynomial, 
in the integer case also. To be truly polynomial, rather than pseudopolynomial, 
the running time should depend polynomially on the logarithm of A. The value of 
A is important only as a factor in the number of variables in the O-l linearized 
version of the piecewise linear convex functions. Such problems, however, possess 
a specialized structure where large sets of columns of the constraint matrix are 
identical. The simplex method, for instance, is adaptable for such setups; at each 
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iteration, the search for the entering and leaving basic variable can be implemented 
in time logarithmic in the size of those sets (notice that the reduced-costs coefficients 
are arranged in each set of identical columns in descending order). There are, 
however, no known polynomial algorithms that can work in such setups in time 
logarithmic in the multiplicities of the set of columns. Both the ellipsoid and 
Karmarkar’s algorithms work in a space, the dimension of which is determined by 
the number of variables. 

Even if A is polynomial, the running time of the algorithms presented here is 
polynomial but not strongly polynomial in the right-hand side. This is in contrast 
to linear programming that is solvable in time that is independent of the magnitude 
of both the right-hand side and the objective function [21]. In a recent work [7], 
we show that it is impossible to solve the nonlinear separable convex problem 
independently of both the right-hand side and the objective, even over totally 
unimodular constraint matrices and even for the simple allocation problem (which 
consists of one constraint on the sum of the variables). This “impossibility” is 
established in the algebraic tree model allowing for the four arithmetic operations, 
comparisons, and even the floor and ceiling operations. 

This study is only a beginning of introducing nonlinear and nonanalytical 
functions into complexity theory. This topic needs addressing with tools that go 
beyond those of numerical analysis, in order to obtain truly efficient algorithms 
that run on digital computers, or delineate the limits of such algorithms. 
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