
The Inequality-Satisfiability problem

Dorit S. Hochbaum ∗

Department of Industrial Engineering and Operations Research and
Walter A. Haas School of Business,
University of California, Berkeley

email: hochbaum@ieor.berkeley.edu
Erick Moreno-Centeno †

Department of Industrial Engineering and Operations Research
University of California, Berkeley
email: emc@ieor.berkeley.edu

May 30, 2007

Abstract

We define a generalized variant of the satisfiability problem (SAT) where each “clause” is
an or -list of inequalities in n variables. The inequality satisfiability problem (I-SAT) is to find
whether there exists a feasible point in <n that satisfies at least one inequality in each “clause”.
We show that I-SAT is harder than SAT in that I-SAT is NP-complete even when restricted to
contain only two inequalities per “clause”. We provide here an algorithm for solving an I-SAT
on n variables and m “clauses” each containing up to k inequalities, with complexity dominated
by O((km)min(n,m)−1m(kn + log m)). In fact the complexity of the algorithm is polynomial
when either the number of variables or the number of “clauses” is fixed. A problem of major
interest in manufacturing called the mold casting problem, is shown to be a special case of an
I-SAT on two variables and at most 9 inequalities per “clause”.

Keywords: Satisfiability (SAT); Inequality Satisfiability; or-inequalities

1 Introduction

This paper introduces a new generalization of the satisfiability problem (SAT) with inequalities
instead of literals. Our study of this problem, which we call the inequality satisfiability problem (I-
SAT), has been motivated by a problem arising in the molding and casting manufacturing process.

The inequality satisfiability problem (I-SAT) is defined for given m or -lists of inequalities (to
which we will refer as inequality-clauses or i-clauses), each of which contains up to k n-variable
inequalities; the problem is to find an n-dimensional vector which satisfies at least one inequality
per i-clause. A general instance of I-SAT is shown in Figure 1.

Another way to interpret I-SAT is to regard each i-clause as the union (OR) of up to k n-
dimensional half-spaces. The problem is then to find a point in <n that lies in the intersection
of all the half-space-unions defined by each i-clause, or to determine that no such point exists.
In other words, each i-clause defines a (non-convex) set (⊆ <n) containing all the points ∈ <n

∗Research supported in part by NSF awards No. DMI-0085690 and DMI-0084857.
†PhD studies supported by CONACyT, Mexico grant No. 160619.

1






α
(1)
1,1x1 + · · ·+ α

(1)
1,nxn ≤ β

(1)
1⋃ ...

...
...⋃

α
(1)
k,1x1 + · · ·+ α

(1)
k,nxn ≤ β

(1)
k




⋂
· · ·

⋂



α
(m)
1,1 x1 + · · ·+ α

(m)
1,n xn ≤ β

(m)
1⋃ ...

...
...⋃

α
(m)
k,1 x1 + · · ·+ α

(m)
k,n xn ≤ β

(m)
k




Figure 1: A generic I-SAT instance with each i-clause containing up to k inequalities. The union⋃
expresses the “or” operation, and the intersection

⋂
expresses the “and” operation.

satisfying at least one of its inequalities (i.e. lie in the union of the half-spaces defined by the
i-clause’s inequalities); and the problem is to find a point ∈ <n that belongs to the intersection of
all such sets, or to determine that such intersection is empty.

For k = 1, I-SAT is a linear programming (LP) feasibility problem on n variables and m
inequalities. However for k ≥ 2, I-SAT is a generalization of SAT.

Our main result here is an algorithm for solving I-SAT, which we call the projection algorithm,
with running time T (m,n):

T (m,n) =





O ((km)mn) if m ≤ n

O
(
(km)n−1m(kn + log m)

)
if n < m

(1)

This complexity demonstrates the polynomial time solvability of I-SAT for either a fixed number
of variables or a fixed number of i-clauses. We further show here that I-SAT is NP-hard even for
k = 2. We devise an algorithm for I-SAT for n = 1, and then establish a complexity lower bound
for the problem. As the lower bound is equal to the upper bound - the complexity of the algorithm
- this proves that this algorithm is the best possible for the problem. In other words, the concrete
complexity of I-SAT for n = 1 is Θ(m(k + log m)). Finally we present a new algorithm for solving
a generalization of the mold casting problem.

The paper is organized as follows: Section 2 includes an analysis of the computational complexity
of I-SAT, and the result that even when restricted to contain at most 2 inequalities per i-clause,
I-SAT remains NP-complete. Section 3 describes an algorithm for I-SAT with n = 1, a proof that
this algorithm has best possible complexity, and the description of the projection algorithm for
the general I-SAT problem. Finally section 4 provides details on the mold casting problem that
motivated our study.

Throughout we assume that the coefficients and right-hand sides of the inequalities are rational
or integral. Rational data is transformed to integer data by multiplying it by a suitably large
number (e.g. the least common multiple of their denominators). With rational data the running
time of solving a system of n equations in n variables is O(n3), [8]. Finite precision rationals are
also important in implementing the “<” operation, which is used here.

2 The complexity of I-SAT

Let 2I-SAT refer to instances of I-SAT where each i-clause has at most 2 inequalities, and 3I-SAT
refer to instances of I-SAT where each i-clause has at most 3 inequalities. We prove that 3I-SAT is
NP-complete, implying that I-SAT is NP-complete. We then reduce 3I-SAT to 2I-SAT thus proving
that 2I-SAT is NP-complete as well.

Lemma 2.1 3I-SAT ∈ NP− complete

2



Proof: We first show that I-SAT ∈ NP. For an I-SAT instance to be feasible it must contain
m inequalities (one from each i-clause) that are satisfied simultaneously. There always exists a
solution to a system of m inequalities that is of polynomial-size in the length of the input. This is
true since LP feasibility ∈ NP. For such a certificate vector of polynomial length, x, we can check
in O(kmn) time that x satisfies at least one inequality per i-clause.

To complete the NP-completeness proof we demonstrate that 3SAT is polynomial-time reducible
to 3I-SAT. Consider any formula Φ consisting of m clauses C1, ..., Cm, and n variables a1, ..., an, and
let a 3I-SAT instance be constructed as follows: For each variable ai ∈ Φ there is a variable bi ∈ Ψ;
for each clause Cj ∈ Φ there is an i-clause Dj ∈ Ψ, and for the qth literal of the jth clause ljq ∈ Cj

there is an inequality ej
q ∈ Dj . If ljq := ai then ej

q := bi ≥ 1 and if ljq := ¬ ai then ej
q := bi ≤ −1. An

example of this mapping between Φ and Ψ is given in equations (2) and (3) respectively.

Φ =
m⋂

j=1

Cj =
m⋂

j=1

(lj1 ∪ lj2 ∪ lj3)

= (¬a11 ∪ a12 ∪ ¬a13) ∩ · · · ∩ (aj1 ∪ ¬aj2 ∪ aj3) ∩ · · · ∩ (¬am1 ∪ am2 ∪ am3) (2)

Ψ =
m⋂

j=1

Dj =
m⋂

j=1

(ej
1 ∪ ej

2 ∪ ej
3)

=




b11 ≤ −1⋃
b12 ≥ 1⋃
b13 ≤ −1


⋂

· · ·
⋂




bj1 ≥ 1⋃
bj2 ≤ −1⋃
bj3 ≥ 1


⋂

· · ·
⋂




bm1 ≤ −1⋃
bm2 ≥ 1⋃
bm3 ≥ 1


(3)

It is easy to see that Ψ is feasible if and only if Φ is satisfiable.

Although I-SAT is analogous to SAT, while 2SAT (SAT with at most two literals per clause) is
solvable in polynomial-time [3], 2I-SAT is NP-complete when the number of variables is not fixed.

Theorem 2.2 2I-SAT ∈ NP− complete

Proof: As before 2I-SAT ∈ NP. To prove the NP-completeness we reduce 3I-SAT to 2I-SAT in a
manner analogous to the reduction from SAT to 3SAT.

Consider any formula Ψ consisting of m i-clauses E1, ..., Em, and n variables a1, ..., an. We will
construct a 2I-SAT instance Γ in at most n + 2m variables such that Γ is feasible if and only if Ψ
is feasible.

We examine the i-clauses Ei ∈ Ψ one by one: If Ei has 2 or fewer inequalities we do nothing.
Therefore we can restrict our attention to instances with exactly three inequalities in each i-clause.
For Ei with three inequalities, we create 3 i-clauses F j

i , j = 1, 2, 3 of Γ, each containing one of the
three inequalities, say inequality r, r = 1, 2, 3, from Ei and inequality r of the following set:

xi ≤ 0
yi ≤ 0 (4)

xi + yi ≥ 1

An important property of the set of inequalities (4) is that it is infeasible, but any subset of
two inequalities of the set of three is feasible. To prove that Ψ is feasible if and only if Γ is feasible
it is sufficient to show that the 3 i-clauses F j

i and Ei are equivalent.

3



First assume that the vector p ∈ <n is feasible for Ei. This means that it satisfies at least
one of its inequalities, say the 3rd inequality. This inequality appears in F 3

i together with the
inequality xi + yi ≥ 1. Let an augmented vector p′ ∈ <n+2m that is equal to p on the first n
variables and has xi = 0 and yi = 0. By the property of (4) p′ satisfies F 1

i and F 2
i because

the assignment of xi = yi = 0 satisfies the first two inequalities. Therefore, p′ satisfies the three
i-clauses corresponding to Ei.

For the converse we assume that a vector q ∈ <n+2m is feasible for the three i-clauses F j
i ,

j = 1, 2, 3, corresponding to Ei. Since the three inequalities (4) are not satisfied simultaneously,
then q satisfies at least one of the inequalities in Ei. Thus projecting the vector q to the first n
values will be a vector in <n that satisfies Ei (and all the other i-clauses). Finally, we note that
this reduction is polynomial as we add at most 2m i-clauses and 2m variables.

3 The projection algorithm

We define a vector x ∈ <n to be I-SAT feasible if it satisfies at least one inequality in each i-clause.
We first comment that there is an obvious LP-based algorithm for I-SAT as follows. Enumerate

all possible systems of m inequalities, one from each i-clause, and check each such system for linear
programming feasibility. The complexity of this algorithm is O(kmLP (m,n)), where LP (m, n) is
the complexity of solving an LP feasibility problem in n variables and m inequalities. Since linear
programming is polynomially solvable, then for a fixed number of i-clauses m, this is a polynomial
time algorithm.

We first define and solve the single-variable I-SAT problem. This special case of I-SAT is such
that all inequalities are defined on a unique variable (i.e. n = 1). Therefore this problem is defined
on m clauses, each containing at most k upper/lower bound inequalities.

For a single-variable I-SAT it is easy to identify the set of all infeasible solutions for each i-
clause. Since all inequalities in a single-variable i-clause are of the form of upper or lower bounds,
e.g. x2 ≤ u or x2 ≥ `, then their complements form open intervals, or strict inequality upper and
lower bound constraints. Each such open interval is the set of all the infeasible real values which
don’t satisfy the corresponding inequality. Therefore, for each i-clause, the intersection of all these
open intervals is the set of real values which do not satisfy any of its inequalities, and thus do not
satisfy this i-clause. We call such interval for i-clause Dj the i-infeasible interval Ij .

This discussion shows that the single-variable I-SAT problem is equivalent to finding a real
value that does not belong to a union of m intervals. Procedure 1-I-SAT shown next solves a single
interval I-SAT problem by identifying such real value, or stating that none exists and therefore the
instance of I-SAT is infeasible. Note that although the intervals may be rays, (a,∞), we still refer
to them as intervals.

procedure 1-I-SAT (D1, . . . Dm′)

Step 1: For j = 1, . . . ,m′ find the i-infeasible interval of Dj , Ij , by comparing upper and lower bounds.

Step 2: For Ij = (aj , bj) let I1, . . . , Im′ be a sorted sequence according to the left endpoints, a1 ≤ a2 ≤
. . . ≤ am′ . If a1 > −∞, then return feasible.

Step 3: Set I(1) = I1.
For q = 1, . . . ,m′ − 1, do

For I(q) = (−∞, b(q)) and Iq+1 = (aq+1, bq+1),
if aq+1 < b(q), then I(q + 1) = (−∞, max{b(q), bq+1}), else return feasible.

4



If bq+1 = ∞, then return infeasible.
enddo

Step 4: If b(m′) < ∞, then return feasible.

Lemma 3.1 The complexity of procedure 1-I-SAT for a single-variable I-SAT on m i-clauses is
O(m(k + log m)).

Proof: Procedure 1-I-SAT requires O(k) steps to find each i-infeasible interval, for a total of O(km)
time. The sorting of the lower bounds in Step 2 takes O(m log m) time. Finding the union I(q)
in Step 3 takes O(m) operations in total. The complexity of the one variable I-SAT is therefore
O(m(k + log m)).

Next we give a lower bound on the number of steps required to solve a single-variable I-SAT
problem on m i-clauses and at most k inequalities per i-clause. This lower bound is obtained under
the decision tree with linear tests model. The reader is referred to [4] for a full description of this
model.

Theorem 3.2 Under the decision tree with linear tests model, a lower bound on the complexity of
solving a single-variable I-SAT is Θ(m(k + log m)).

Proof: Reading the input to the single-variable I-SAT problem requires Θ(km) steps. We use
a result from [4] to show that also Θ(m log m) is a lower bound on the complexity of the single-
variable I-SAT. This implies, with Lemma 3.1, that Θ(m(k + log m)) steps are required to solve a
single-variable I-SAT problem.

The integer interval cover problem is to decide whether the union of m intervals with integer
endpoints covers an interval with integer endpoints. This problem is easily shown to be equivalent
to solving a single-variable I-SAT problem on m+2 i-clauses each containing at most 2 inequalities.

Fredman and Weide [4] studied the evaluation version of the interval cover problem which re-
quires computing the measure of the union of m intervals. They showed that under the decision
tree with linear tests model the evaluation problem, even when restricting the interval endpoints
to be integer, requires Θ(m log m) steps to solve. Their argument applies directly to the decision
version of the integer interval cover problem. The only adaptation needed is that each leaf node
is labeled with “yes” or “no” rather than with a value m or less than m. Therefore this argument
applies also for the single-variable I-SAT problem.

As the complexity of the algorithm established in Lemma 3.1 matches the lower bound proved
in Theorem 3.2, it follows that this is the concrete complexity of the problem I-SAT for n = 1:

Corollary 3.3 The concrete complexity of the single-variable I-SAT problem is Θ(m(k + log m)).

Next we show how to solve the general I-SAT problem. For this purpose let us define a vector
x ∈ <n to be binding for an inequality if x satisfies it at equality.

Remark 3.4 An I-SAT feasible solution exists if and only if there is an I-SAT feasible solution
binding for at least one inequality.

Proof: Obviously if p is an I-SAT feasible solution binding for some inequality, then p is also a
feasible solution to the I-SAT problem. On the other hand if p ∈ <n is an I-SAT feasible solu-
tion, then the system of m linear inequalities satisfied by p, one from each i-clause, forms a convex

5



feasible set in <n. Therefore there exists a feasible vector that is binding for at least one inequality.

This remark implies that it is sufficient to restrict the search for I-SAT feasible solutions to
solutions that satisfy any of the O(km) inequalities set as equalities.

The projection algorithm entails a recursive reduction of an I-SAT instance on n variables and
m clauses to a collection of km I-SAT instances each on at most n − 1 variables, and at most
m − 1 i-clauses. This reduction in number of variables and i-clauses is achieved by selecting a
single inequality at a time, out of km inequalities, setting it as an equality. From this equation,
one of the variables is selected arbitrarily, say xi, and written as a linear function in the remaining
variables. Any solution to this equation obviously satisfies this inequality, and thus the i-clause
from which it was selected. We then substitute for xi in all inequalities of the other i-clauses
yielding a collection of up to k(m − 1) inequalities on the remaining variables in at most m − 1
i-clauses. If the substitution in an inequality results in a tautology (e.g. 0 ≤ 2), then the entire
i-clause can be removed (as there is always an inequality satisfied in that i-clause). And if the
substitution results in a contradiction (e.g. 2 ≤ 0), then the contradictory inequality is removed
from (the reduced) I-SAT instance. If all inequalities in a specific i-clause are removed, then this
reduced I-SAT instance is infeasible.

Corollary 3.5 An I-SAT problem on m clauses each containing at most k inequalities on n vari-
ables is reducible to O(km) I-SAT problems each in at most m−1 clauses each containing at most
k inequalities on n−1 variables.

At the nth recursion level of the projection algorithm we have a collection of at most (km)n−1

single-variable I-SAT problems each on at most m−n i-clauses. If a feasible value is found in any
of the single-variable I-SAT problems, then substituting the equation that generated this I-SAT
problem we find an I-SAT feasible vector for the for the previous recursion level (with one more
variable). Otherwise, if all the generated single-variable I-SAT problems are infeasible, then from
Remark 3.4 the I-SAT problem is also infeasible. It might also be possible that some branch of this
recursive procedure leads to an I-SAT problem containing a single i-clause. In this case, if any of
the inequalities of such i-clause is not contradictory, then any of its feasible solutions is feasible for
the original I-SAT problem. Note that when m ≤ n then all branches lead to I-SAT problems with
a single i-clause containing inequalities on at most n−m variables.

We next give the Projection Algorithm. For this purpose let C be the set of i-clauses of an I-SAT
instance, where the jth i-clause consists of kj inequalities ej

1, . . . , e
j
kj

. For a vector x ∈ <n, denote
by x−p an (n− 1)-dimensional vector restricting x to a projected subspace with the pth dimension
missing.

Projection Algorithm (n,m, C)
01: If m = 1, then return feasible.
02: If n = 1, then return procedure 1-I-SAT (C).
03: For j = 1, . . . , m do

04: For i = 1, . . . , kj do

05: Set ej
i ∈ Di as equality, and let xpi = fi(x−pi) be the implied linear function.

06: Let n′ = n, m′ = m and C′ = C, and flagej
i

= 1
07: For every inequality e ∈ Dq, for q 6= i do

08: Substitute xpi = fi(x−pi) in e

09: If inequality e becomes a tautology, then C′ ← C′ \ {Dq}, m′ ← m′ − 1.
10: If inequality e becomes a contradiction, then D′

q ← D′
q \ {e}.

6



11: If D′
q = ∅ then set flagej

i
= 0, {the substituted I-SAT is infeasible.}

12: enddo

13: If flagej
i

= 1, then
14: If Projection Algorithm (n′,m′, C′) = feasible1, then return feasible
15: enddo

16: enddo

17: return infeasible

For simplicity of presentation, the Projection Algorithm does not output a specific feasible solu-
tion. If the I-SAT instance is feasible, then an I-SAT feasible vector can be easily obtained from
the inequalities (ej

i ) that lead to feasible reduced I-SAT instances along the recursive iterations (in
lines 13 and 14 of the code).

The correctness of the Projection Algorithm follows directly from Remark 3.4.

Theorem 3.6 The running time T (m,n) of the Projection Algorithm is given by equation (1).

Proof: At any given recursive iteration, the Projection Algorithm reduces the current I-SAT in-
stance to O(km) I-SAT instances with at least one less variable and one less i-clause. To construct
each of the reduced I-SAT instances takes O(kmn) steps. Therefore the running time is given by
the recurrence: T (m, n) ≤ km(kmn + T (m − 1, n − 1)), with base cases T (m, 1) = m(k + log m)
and T (1, n) = O(1), the solution of which is given by equation (1). Note that this is dominated by
the complexity expression O((km)min(m,n)−1m(kn + log m)) given in the abstract.

Corollary 3.7 I-SAT is solved in polynomial time when either the number of clauses, m, is fixed
or the number of variables, n, is fixed.

One might think that it is sufficient to check all the O(k) inequalities of one i-clause in an I-SAT
instance. However the following example shows that this is not the case.

Example 3.1 Consider the following I-SAT instance:

r⋂

i=1

(
y − (x− i) ≤ 0⋃
y + (x− i) ≥ 0

) ⋂ (
y − (x− (r + 1)) ≤ 0

) ⋂(
y + (x− (r + 1)) ≥ 0

)

The reader may verify that none of the lines defined by any of the inequalities in the first r i-clauses
have an I-SAT feasible point, but the line defined by the inequality of the (r+1)th i-clause is feasible
for y ≥ 0 and line defined by the inequality of the (r + 2)th i-clause is feasible for y ≤ 0.

4 The mold casting problem

Casting is the process by which an object is reproduced through the use of a mold. A molten
substance, such as metal or plastic, is poured or forced into a mold and allowed to harden, and
finally the parts of the mold are removed. For today’s mass production needs, reutilization of the
mold is important to maintain the productions costs as low as possible; therefore a major concern
in the casting and molding manufacturing process is the need to determine whether a given 3D

1where n′ is the number of variables in the substituted inequalities.

7



Figure 2: The casting direction is the direction of the cast removal. All of the objects have
undercut features (pointed by the arrows) that prevent the direction perpendicular to the cast
removal direction to be castable direction.

figure can be manufactured using a reusable two-part mold. For earlier work on this area, and a
more extensive introduction see references [9, 5].

To guarantee that a given object can be mass produced using a two-part mold, there must exist
a parting direction such that the mold parts can be removed from the object without destroying
either the mold or the object. Reusable molds consist on two main halves, which are separated in
opposite directions (called casting directions) to remove the object [6]. For a parting direction to
be feasible, it is necessary that the object being reproduced is free from undercut features relative
to the direction (i.e. depressions or protuberances on the boundary of the object), which make
impossible the removal of the mold parts into opposite directions without colliding with the object
built [1]. In Figure 2 we show three examples of objects manufactured by two-part molds.

Khardekar et al. [7] represent the mold casting problem by enumerating pairs of conflicting faces
that are such that directions that go through both of them are infeasible mold parting directions.
The conflicting faces are then approximated by triangles. The convex region constructed from the
nine vectors connecting the vertices of both triangles, contains all infeasible directions generated
by this pair. So the feasible directions must be in the complement of this convex region and
must satisfy at least one of the nine inequalities that define the complement of the convex region.
Khardekar et al. showed that the problem of finding a feasible direction can be solved by finding
values of two variables that satisfy, for each set of nine inequalities, at least one inequality. In other
words if there is a nonempty intersection of the complements of the region, then there exists at
least one direction that satisfies at least one of the 9 inequalities per set of inequalities. The mold
casting problem is thus reduced to an I-SAT problem with k = 9 inequalities per i-clause and n = 2.
Therefore, it follows from Theorem 3.6 that the projection algorithm solves the casting problem in
O(m2 log m) time.

The most efficient algorithm for the mold casting problem is by Ahn et. al. [1] who used a
computational geometry approach to achieve running time of O(η4) for determining whether an
object is castable, where η is the number of faces of the object. In terms of the I-SAT problem, the
i-clauses correspond to pairs of interacting facets of the object [7]. Therefore m = O(η2) and the
running time of the projection algorithm for the mold casting problem is O(η4 log η). This running
time is worse by a factor of log η than the algorithm of Ahn et. al. but the I-SAT problem for
n = 2 and k = 9 is more general than the mold casting problem.

8



Acknowledgements

Special thanks to Professor McMains of the Mechanical Engineering Department at the University
of California at Berkeley for taking to our attention the mold casting problem an its relation to the
I-SAT problem. We also thank two anonymous referees who helped us to improve the presentation
of this paper. The first author was supported in part by the National Science Foundation under
award No. DMI-0620677. The second author is grateful to Consejo Nacional de Ciencia y Tecnoloǵıa
(CONACyT), México, for supporting his doctoral studies under grant No. 160619.

References

[1] H. K. Ahn, M. de Berg, P. Bose, S. W. Cheng, D. Halperin, J. Matousek, and
O. Schwarzkopf. Separating an object from its cast. Proc. 13th Annu. ACM Sympos.
Comput. Geom., 1997.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT Press, Cambridge, Mass., 2nd edition, 2001.

[3] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.

[4] M. L. Fredman and B. Weide. On the complexity of computing the measure of
⋃

[ai, bi].
Commun. ACM, 21(7):540–544, 1978.

[5] M. A. Ganter and P. A Skoglund. Feature extraction for casting core development. 17th
Design Automation Conference presented at the 1991 ASME Design Technical Confer-
ences, 1991.

[6] K. C. Hui and S. T. Tan. Mould design with sweep operations–a heuristic search ap-
proach. Computer-Aided Design, 24(3):81–91, 1992.

[7] R. Khardekar, G. Burton, and S. McMains. Finding feasible model parting directions
using graphics hardware. ACM symposium on Solid and Physical modeling, 2005.

[8] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, New-York, 1998.

[9] M. N. Srinivasan and B. Ravi. Decision criteria for computer-aided parting surface
design. Computer-Aided Design, 22:11–18, 1990.

9


