
SIAM J. OPTIM. c© 2017 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 2563–2596

A FASTER ALGORITHM SOLVING A GENERALIZATION OF
ISOTONIC MEDIAN REGRESSION AND A CLASS OF FUSED

LASSO PROBLEMS∗

DORIT S. HOCHBAUM† AND CHENG LU†

Abstract. Many applications in the areas of production, signal processing, economics, bioinfor-
matics, and statistical learning involve a given partial order on certain parameters and a set of noisy
observations of the parameters. The goal is to derive estimated values of the parameters that satisfy
the partial order that minimize the loss of deviations from the given observed values. A prominent
application of this setup is the well-known isotonic regression problem where the partial order is a
total order. A commonly studied isotonic regression problem is the isotonic median regression (IMR)
where the loss function is a sum of absolute value functions on the deviations of the estimated values
from the observation values. We present here the most efficient algorithm to date for a generalization
of IMR with any convex piecewise linear loss function as well as for variant models that include �1
norm penalty separation/regularization functions in the objective on the violation of the total order
constraints. Such penalty minimization problems that feature convex piecewise linear deviation func-
tions and �1 norm separation/regularization functions include classes of nearly isotonic regression
and fused lasso problems as special cases. The algorithm devised here is therefore a unified approach
for solving the generalized problem and all known special cases with a complexity that is the most
efficient known to date. We present an empirical study showing that our algorithm outperforms the
run times of a linear programming software, for simulated data sets.

Key words. isotonic median regression, quantile regression, fused lasso, partial order estimation,
Markov random fields, minimum cut

AMS subject classifications. 90B10, 90C27, 62G08

DOI. 10.1137/15M1024081

1. Introduction. A common problem in many applications is that noisy obser-
vations of parameters do not satisfy preset (partial) rank order requirements. The
problem is to adjust the observations in order to identify estimated values, that satisfy
the (partial) rank order constraints, while minimizing the total loss of deviations of
the estimated values from the observation values. This problem, known as the partial
order estimation problem, has applications in numerous fields including production
[47, 28, 40, 25], signal processing [35], economics [42], bioinformatics [8, 9, 30], and
statistical learning [5, 7, 6, 39, 24, 34].

The partial order estimation problem is often generalized to relax the requirement
of satisfying the rank order constraints, and replacing the order constraints by penalty
separation functions that impose costs for each violated constraint. These separation
penalties are then traded off against the deviation penalties.

The problem studied here is a generalization of several well-known problems
including isotonic median regression (IMR); we call this problem generalized IMR
(GIMR). The GIMR problem is formulated as

min
x1,...,xn

n∑
i=1

fpl
i (xi; {ai,j}qi

j=1) +
n−1∑
i=1

di,i+1(xi − xi+1)+ +
n−1∑
i=1

di+1,i(xi+1 − xi)+(1.1)

(GIMR) s.t. �i ≤ xi ≤ ui, i = 1, . . . , n,

∗Received by the editors June 2, 2015; accepted for publication (in revised form) September 22,
2017; published electronically December 19, 2017.

http://www.siam.org/journals/siopt/27-4/M102408.html
Funding: The first author’s research was supported in part by NSF award CMMI-1200592.

†Department of Industrial Engineering and Operations Research, University of California, Berke-
ley (hochbaum@ieor.berkeley.edu, chenglu@berkeley.edu).

2563

http://www.siam.org/journals/siopt/27-4/M102408.html
mailto:hochbaum@ieor.berkeley.edu
mailto:chenglu@berkeley.edu

2564 DORIT S. HOCHBAUM AND CHENG LU

where each deviation function fpl
i (xi; {ai,j}qi

j=1) is an arbitrary convex piecewise linear
function with qi breakpoints ai,1 < ai,2 < · · · < ai,qi (the superscript “pl” stands for
“piecewise linear”). The separation terms involve the nonnegative coefficients di,i+1
and di+1,i for positive and negative separation penalties, and the notation (x)+ is
the positive part of x, max{x, 0}. For values of di,i+1 that are sufficiently large, an
optimal solution to GIMR satisfies the total rank order x1 ≤ x2 ≤ · · · ≤ xn. The set
of feasible values for each xi is contained in the interval [�i, ui].

1.1. Special cases of GIMR and applications.

1.1.1. Models with deviation terms only. A commonly used special case of
convex piecewise linear deviation functions, in the context of isotonic regression, is
the �1 norm. An �1 deviation function is a sum of (weighted) absolute values of the
differences between the estimated values and the respective observation values. There
are a number of advantages for the use of the �1 deviation function: This function gives
the exact maximum likelihood estimate if the noises in the observation values follow
the Laplacian distribution [29, 10]; it is in general robust to heavy-tailed noises and
to the presence of outliers [31, 48, 44]; it provides better preservation of the contrast
and the invariance to global contrast changes [11, 44]. The �1 deviation function,
in weighted or unweighted form, was used in a number of models and applications.
IMR was studied in [37, 29, 10, 33], and its applications in statistics can be found
in [36, 38, 39]. Additional areas in which IMR on partial order has been applied
include chromosomal microarray analysis (CMA) [4] in bioinformatics and ordinal
classification with monotonicity constraints [13]. We note that the algorithm of [4] is
incorrect, and the complexity of the corrected version is considerably worse than the
complexity of the algorithm of [22] for IMR.

The formulation of IMR with weights wij is

min
x1,...,xn

n∑
i=1

qi∑
j=1

wij |xi − aij |

(IMR) s.t. xi ≤ xi+1, i = 1, . . . , n − 1.

(1.2)

When each variable xi is associated with only one observation ai, i.e., qi = 1, IMR is
then referred to as the simple IMR (SIMR):

min
x1,...,xn

n∑
i=1

wi|xi − ai|

(SIMR) s.t. xi ≤ xi+1, i = 1, . . . , n − 1.

(1.3)

SIMR (1.3) was studied extensively, e.g., in [22, 3].
Some applications use deviation functions that are not �1 functions, but use only

two pieces in the piecewise linear deviation function. One example is the quantile
deviation function which preserves the robustness property of the �1 deviation func-
tion. The quantile deviation function of estimated variable xi from observation ai for
parameter τ ∈ [0, 1] is

(1.4) ρτ (xi; ai) =

{
τ(xi − ai) if xi − ai ≥ 0,

−(1 − τ)(xi − ai) if xi − ai < 0.

Here the parameter τ represents the quantile of the observations of interest. For
τ = 1

2 (half-quantile), the quantile deviation function is identical to the absolute value

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2565

function. Quantile deviations have been used in array-based comparative genomic
hybridization (array-CGH) analysis in bioinformatics [15, 27].

Another special case of the convex piecewise linear function is the ε-insensitive
deviation function, defined as follows [32]:

(1.5) dε(xi; ai) =

⎧⎪⎨
⎪⎩

xi − ai − ε if xi − ai > ε,

0 if |xi − ai| ≤ ε,

−xi + ai − ε if xi − ai < −ε.

The absolute value function is a special case of the 0-insensitive deviation function.
The use of isotonic regression for medical prognosis was discussed by Ryu, Chan-

drasekaran, and Jacob [41]. They considered convex piecewise linear deviation func-
tions (each with 3 pieces) and a partial order that is derived from medical knowledge
on the relative prognosis prospects for pairs of feature vectors.

1.1.2. Models that include separation/regularization terms. There are
variant models of total order estimation that include penalty terms in the objective on
the violation of total order constraints, instead of imposing those constraints. These
penalty functions are often referred to as separation or regularization functions. We
present here four such models that were presented for specific contexts.

Tibshirani, Hoefling, and Tibshirani [45], studied a “nearly isotonic” model on
total order for the purpose of fitting global warming data on annual temperature
anomalies. Here ai is the observation of the temperature anomaly value at the ith
year of the dataset:

(1.6) (nearly isotonic) min
x1,...,xn

1
2

n∑
i=1

(xi − ai)2 + λ

n−1∑
i=1

(xi − xi+1)+.

In this model (1.6), the tuning parameter λ ≥ 0 measures the relative importance
between the deviation terms and the separation terms. As λ → ∞ the problem is
equivalent to imposing the total order constraints of IMR (1.2) and SIMR (1.3). In
model (1.6) the quadratic deviation terms are based on the Gaussian noise assump-
tion on the observations. We note that the GIMR model differs from (1.6) in that
instead of convex quadratic deviation functions it has convex piecewise linear devia-
tion functions. This convex piecewise linear class of functions includes �1 deviation
functions that are considered to be more appropriate as a model for Laplacian noises
or heavy-tailed noises.

The separation term in the nearly isotonic model (1.6), λ(xi − xi+1)+, is “one-
sided” in that it only penalizes the surplus of xi over xi+1. A more general separation
term also penalizes the surplus of xi+1 over xi, in the form of λ′(xi+1 − xi)+, leading
to a “two-sided” separation penalty. If the two-sided penalty is symmetric (λ = λ′),
it can be presented as the absolute value (�1) separation term λ|xi − xi+1|. This �1
separation penalty is known as fused lasso [46]. An example of the use of the fused
lasso model is in array-CGH analysis [15, 27]. It is to estimate the ratio of gene
copying numbers at each position in DNA sequences between tumor and normal cell
samples, based on the biological knowledge that the ratios between adjacent positions
in the DNA sequences are similar. Eilers and de Menezes, [15] proposed the following
quantile fused lasso (Q-FL) model to identify the estimated log-ratio xi, based on the

2566 DORIT S. HOCHBAUM AND CHENG LU

observed log-ratio ai at the ith position:

(1.7) (Q-FL) min
x1,...,xn

n∑
i=1

ρτ (xi; ai) + λ
n−1∑
i=1

|xi − xi+1|.

The deviation terms are the quantile deviation functions (1.4) and the �1 separation
functions |xi − xi+1| drive the log-ratios of adjacent positions to be similar. Later, Li
and Zhu in [27] extended the above model to the following quantile weighted fused
lasso (Q-wFL) model by considering the distances between adjacent positions, which
is claimed to help improve the estimation [27]:

(1.8) (Q-wFL) min
x1,...,xn

n∑
i=1

ρτ (xi; ai) + λ

n−1∑
i=1

1
di,i+1

|xi − xi+1|,

where di,i+1 ∈ R is the distance between the ith and the (i + 1)th positions. Thus
the closer the adjacent positions, the larger penalty on the log-ratio difference. The
quantile deviation functions are also claimed in [15, 27] to be advantageous over the
standard quadratic deviation functions (least squares mean regression).

In signal processing, Storath, Weinmann, and Unser [44], considered a fused lasso
model with �1 deviation functions:

(1.9) (�1-FL) min
x1,...,xn

n∑
i=1

wi|xi − ai| + λ

n−1∑
i=1

|xi − xi+1|,

where the wi’s are nonnegative weights and λ > 0 is the model tuning parameter.
Recently, Kolmogorov, Pock, and Rolinek [26] studied a weighted fused lasso

problem, which generalizes Q-FL (1.7), Q-wFL (1.8), and �1-FL (1.9), by allowing
deviation functions to be general convex piecewise linear functions with O(1) break-
points each, and different weights on the �1 separation terms |xi −xi+1| in place of the
uniform coefficient λ. This problem is denoted by PL-wFL-O(1), where PL stands
for piecewise linear, and O(1) indicates that each convex piecewise linear deviation
function has O(1) breakpoints.

1.2. Best algorithms for partial order estimation. Even though the GIMR
problem is defined for total order, our algorithm uses key ideas from the best algo-
rithms for partial order.

Partial order estimation with deviation terms only. The most general
setup of the partial order estimation problem has general convex deviation functions,
as well as partial order rather than total order. The fastest algorithm for the general
partial order estimation problem was by Hochbaum and Queyranne [22] with com-
plexity that is the sum of a minimum s, t-cut complexity, on a respective graph with a
node for each variable and an arc for each rank order constraint, and the complexity
of finding the minimum of the n convex deviation functions in the given intervals.
This total complexity is provably best possible since, as shown in [22], the problem is
a generalization of both minimum s, t-cut and of the problem of finding the minimum
of each of the convex deviation functions.

Partial order estimation with separation terms. The Markov random fields
model is the most general deviation-separation model. Given a partial order repre-

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2567

sented by a graph G = (V, A), the problem is

min
xi:i∈V

∑
i∈V

fi(xi) +
∑

(i,j)∈A

gi,j(xi − xj)

s.t. xi ∈ Xi ∀i ∈ V,

(1.10)

where each fi(xi) is a deviation function, and each gi,j(xi−xj) is a separation function.
Xi indicates the feasible set for each variable, typically integer or continuous values
within an interval [�i, ui]. Best known algorithms for this problem under convexity
assumptions of the separation functions were given in [18, 1, 2]. We are interested here
in the Markov random fields where the separation terms are convex two-piecewise-
linear functions each with a breakpoint at 0, which we refer to here as MRF. This
MRF problem is a generalization of GIMR (1.1) and is formulated as

min
xi:i∈V

∑
i∈V

fi(xi) +
∑

(i,j)∈A

di,j · (xi − xj)+

(MRF) s.t. xi ∈ Xi ∀i ∈ V.

(1.11)

Here fi(xi) is a general (not necessarily differentiable) convex deviation function, di,j

is a given nonnegative coefficient, and the associated graph is an arbitrary directed
graph G = (V, A).

Hochbaum in [18] gave an efficient algorithm to solve the MRF (1.11) in time
O(T (n, m) + n log U

ε) (where n = |V |, m = |A|, U = maxi |Xi|, and ε a parameter
to be explained next). The first term T (n, m) is the complexity of solving maximum
flow (or minimum cut) on an associated graph of G = (V, A). The second term
O(n log U

ε) is the complexity of finding the minima of n convex functions with ε-
accuracy. The value of log 1

ε indicates the number of significant digits in the solution.
The ε-accuracy complexity model is the only way to solve problems that involve
nonlinear and nonquadratic functions on digital computers. This issue is discussed
in detail in [23, 22, 18] and in a review in [19]. If each Xi is an integer set, then
ε = 1 and the complexity becomes O(T (n, m) + n log U). It was shown in [18] that
this algorithm is the fastest possible since the MRF (1.11) generalizes both the graph
minimum cut problem and the problem of finding the minima of n convex functions
over each feasible set Xi.

Note that for the convex piecewise linear functions discussed here, the continuous
MRF algorithm is irrelevant since it is known a priori that the optimal solution can
only take values that are the given breakpoints of the convex piecewise linear functions;
see Lemma 4.1 in section 4. Thus the accuracy is determined by the input data.

1.3. Best algorithms for total order estimation.
Total order estimation with deviation terms only. For the special case

that the partial order is a total order, the respective graph is a directed path. For the
directed path Hochbaum and Queyranne’s algorithm was shown to have complexity
O(n(log n + log(U/ε))) [22], where U is the largest width of the interval in which any
variable can take values, and ε is the solution accuracy, which is 1 for integer solutions.
(It is important to note that the complexity term of log(U/ε) is provably unavoidable
when minimizing a nonlinear and nonquadratic convex function, as discussed in [22]
and is based on the impossibility of strongly polynomial algorithms for nonlinear
nonquadratic optimization proved in [17]). For quadratic deviation functions, the run
time of Hochbaum and Queyranne’s algorithm is O(n log n). Ahuja and Orlin in [3]
derived a specialized algorithm for the total order case with complexity O(n log(U/ε)).

2568 DORIT S. HOCHBAUM AND CHENG LU

Since U is generally assumed to be Ω(n), this complexity matches that of Hochbaum
and Queyranne’s algorithm, but Hochbaum and Queyranne’s algorithm is applicable
to the more general problem of partial order estimation.

Let q =
∑n

i=1 qi be the total number of breakpoints of the n convex piecewise
linear deviation functions, {fpl

i (xi)}i=1,...,n, in GIMR. For the GIMR problem with
deviation terms only (or very large d parameters), if the q breakpoints of the con-
vex piecewise linear deviation functions are sorted, the complexity of Hochbaum and
Queyranne’s algorithm is O(n(log n + log q)) = O(n log q) (q = Ω(n)), and otherwise
the sorting complexity of O(q log n) is added.

Other known algorithms for IMR (1.2) include an algorithm in [10] of complexity
O(qn) and an algorithm of complexity O(q log2 q) by [33]. GIMR-Algorithm shown
here solves IMR (1.2) in time O(q log n), which improves the complexity of [10] and
[33], and matches the complexity of Hochbaum and Queyranne’s algorithm in [22].
For SIMR (1.3), the fastest algorithms to date, by [22, 3], have complexity O(n log n).
GIMR-Algorithm solves SIMR (1.3) in the same complexity.

Total order estimation with separation terms. GIMR is a special case of
MRF (1.11) where the graph G is a bidirectional path with node set V = {1, . . . , n},
arc set A = {(i, i + 1), (i + 1, i)}i=1,...,n−1, and the deviation functions are convex
piecewise linear. Therefore, any algorithm that solves MRF can solve GIMR. As dis-
cussed in section 1.2, Hochbaum’s algorithm for MRF uses a parametric minimum
cut procedure that runs in the complexity of solving a single minimum s, t-cut. Pro-
cedures known to date that can be used as parametric minimum cut and have this
property (that they solve the parametric problem in the complexity of a single cut)
are Hochbaum’s pseudoflow (HPF) algorithm [20] and the push-relabel algorithm [16].
Both HPF algorithm and the push-relabel algorithm solve the parametric minimum
cut in complexity T (n, m) = O(nm log n2

m) [16, 21]. A direct application of this MRF
algorithm to GIMR (1.1) (total order graph) is of complexity O(n2 log n + n log q)
since m = O(n) and the deviation functions are convex piecewise linear, so finding
n times the minima of such functions requires at most a binary search on the set of
breakpoints. Our main contribution here can be viewed as an algorithm that speeds
up Hochbaum’s algorithm for GIMR by efficiently generating the respective minimum
s, t-cuts for a path.

Other algorithms were devised for various special cases of total order estimation
with separation terms: Eilers and de Menezes in [15], and Li and Zhu in [27], derived
algorithms to solve Q-FL (1.7) and Q-wFL (1.8), respectively, both based on linear
programming. They did not state concrete complexity results. For the �1-FL problem
(1.9), Dümbgen and Kovac in [14] gave the best algorithm to-date with O(n log n)
complexity. Recently Storath, Weinmann, and Unser in [44] proposed an algorithm
for the �1-FL problem of complexity O(n2). GIMR-Algorithm solves all these problems
in O(n log n) complexity.

For problem PL-wFL-O(1), Kolmogorov, Pock, and Rolinek [26] derived an algo-
rithm of complexity O(n log n), which, like our algorithm, uses a method for efficiently
generating the respective minimum s, t-cuts for Hochbaum’s algorithm and achieves
the same complexity as ours (using a different methodology). Since PL-wFL-O(1)
generalizes Q-FL (1.7), Q-wFL (1.8), and �1-FL (1.9), this is also an alternative
fastest algorithm for these problems. Note that Kolmogorov, Pock, and Rolinek in
[26] also claimed an O(n log log n) algorithm for the PL-wFL-O(1) problem. How-
ever, the divide-and-conquer technique used in the algorithm requires the sorting of
the breakpoints, which adds to the complexity O(n log n).

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2569

Table 1

Summary of comparison of complexities. Here LP stands for the complexity of solving a linear
programming problem of size O(n).

Problem Deviation Separation Algorithm Algorithms
here to-date

GIMR Convex di,i+1(xi − xi+1)+ O(q log n) O(n2 log n + n log q)
piecewise linear +di+1,i(xi+1 − xi)+ [18]

IMR
∑qi

j=1 |xi − aij | O(q log n) O(n log q + q log n)
[22]

SIMR |xi − ai| O(n log n) O(n log n) [22, 3]

Nearly isotonic Convex
λ(xi − xi+1)+ O(q log n) O(n2 log n + n log q)

piecewise linear [18]

Q-FL ρτ (xi; ai) λ|xi − xi+1| O(n log n) LP [15]

Q-wFL ρτ (xi; ai) λ 1
di,i+1

|xi − xi+1| O(n log n) LP [27]

�1-FL wi|xi − ai| λ|xi − xi+1| O(n log n) O(n log n) [14]
O(n2) [44]

PL-wFL-O(1) Convex O(1)-
di,i+1|xi − xi+1| O(n log n) O(n log n) [26]piecewise linear

1.3.1. Summary of results. In Table 1 we provide a comparison of the com-
plexity of our algorithm for GIMR and its special cases as compared to the best and
recent algorithms’ complexities known to date. As can be seen, our GIMR-Algorithm’s
complexity either matches the complexity of the best algorithms to date, or improves
on them. And furthermore, GIMR-Algorithm is one unified algorithm for all these spe-
cial cases, whereas, up till now specialized algorithms were devised for each category
of the special cases.

We assess the empirical performance of GIMR-Algorithm by comparing our soft-
ware implementation with Gurobi, a commercial linear programming solver, on sim-
ulated data sets of various sizes. The experimental results demonstrate that
GIMR-Algorithm runs faster than Gurobi on the collection of simulated data sets,
by approximately a factor of 10.

1.4. Overview. The paper is organized as follows: Notation and preliminaries
are introduced in section 2. Then we provide a brief review of Hochbaum’s algo-
rithm [18] for the MRF problem (1.11) in section 3. Then we give an overview of
GIMR-Algorithm in section 4, including additional notation that will help to present
the algorithm and its analysis. Then we present GIMR-Algorithm in details in two
steps: First, in section 5 we present GIMR-Algorithm for GIMR with �1 deviation
functions, namely, �1-GIMR-Algorithm; then, in section 6, �1-GIMR-Algorithm is gen-
eralized to solving GIMR with arbitrary convex piecewise linear deviation functions,
namely, GIMR-Algorithm. Experimental study that assess the performance of GIMR-
algorithm is discussed in section 7. Concluding remarks are provided in section 8.
The pseudocodes for the various subroutines used in �1-GIMR-Algorithm and GIMR-
Algorithm are given in Appendices A and B.

2. Notation and preliminaries. The partial order estimation problem is rep-
resented on a directed graph G = (V, A) with n = |V | and m = |A|. Each decision
variable xi (i = 1, . . . , n) corresponds to node i ∈ V and the (partial) ranking order
constraints correspond to the arc set A where each (partial) ranking order constraint
of the form xi ≤ xj is represented by an arc (i, j) ∈ A.

2570 DORIT S. HOCHBAUM AND CHENG LU

For the special case that the partial order is a total order, the respective graph is
a directed path. A directed path of length n is an ordered list of nodes (v1, . . . , vn)
so that (vi, vi+1) ∈ A for all i = 1, . . . , n − 1. GIMR (1.1) is represented as a bi-
directional path (bi-path) which is a union of two directed paths: (1, 2, . . . , n) and
(n, n − 1, . . . , 1). We call a graph G = (V, A) a bi-path graph if for V = {1, . . . , n} the
arc set is A = {(i, i + 1), (i + 1, i)}i=1,...,n−1.

Let the directed s, t-graph Gst = (Vst, Ast) be associated with graph G = (V, A)
such that Vst = V ∪ {s, t} and Ast = A ∪ As ∪ At. The appended node s is called the
source node and t is called the sink node. The respective sets of source adjacent arcs
and sink adjacent arcs are denoted as As = {(s, i) : i ∈ V } and At = {(i, t) : i ∈ V }.
Each arc (i, j) ∈ Ast has an associated nonnegative capacity ci,j .

For two subsets of nodes V1, V2 ⊆ Vst, we let the set of arcs of Ast directed from
nodes of V1 to nodes of V2 be denoted by (V1, V2). The sum of the capacities of the
arcs in (V1, V2) is denoted by C(V1, V2) =

∑
(i,j)∈(V1,V2) ci,j .

An s, t-cut is a partition of Vst, ({s}∪S, T ∪{t}), where T = V \S. For simplicity,
we refer to an s, t-cut partition as (S, T). We refer to S as the source set of the cut,
excluding s. For each node i ∈ V , we define its status in graph Gst as status(i) = s
if i ∈ S (referred as an s-node), otherwise status(i) = t (i ∈ T) (referred as a
t-node).

The capacity of a cut (S, T) is defined as C({s} ∪ S, T ∪ {t}). A minimum cut
in s, t-graph Gst is an s, t-cut (S, T) that minimizes C({s} ∪ S, T ∪ {t}). Hereafter,
any reference to a minimum cut is to the unique minimum s, t-cut with the maximal
source set. That means if there are multiple minimum cuts, then the one selected has
a source set that is not contained in any other source set of a minimum cut.

A convex piecewise linear function fpl
i (xi) is specified by its ascending list of qi

breakpoints, ai,1 < ai,2 < · · · < ai,qi , and the slopes of the qi +1 linear pieces between
every two consecutive breakpoints, denoted by wi,0 < wi,1 < · · · < wi,qi . We assume
that the n sets of breakpoints are disjoint and that the total number of breakpoints in
the union is q =

∑n
i=1 qi. Note that we make the disjoint breakpoint assumption only

for convenience in presenting the algorithm. Our algorithm works in the same way
even when a breakpoint is shared by multiple functions; for details see Remark 6.2 in
section 6.

Let the sorted list of the union of q breakpoints of all the n convex piecewise
linear functions be ai1,j1 < ai2,j2 < · · · < aiq,jq , where aik,jk

, the kth breakpoint in
the sorted list, is the breakpoint between the (jk − 1)th and the jkth linear pieces of
function fpl

ik
(xik

).
For fpl

i (xi) = wi|xi − ai|, each function has one breakpoint ai and two pieces
of slopes −wi and wi. Thus for this case the sorted list of all the n breakpoints is
ai1 < ai2 < · · · < ain , where aik

is the single breakpoint of function fpl
ik

(xik
).

3. Review of Hochbaum’s algorithm for MRF. Recall that for MRF (1.11),
the partial order is represented by a directed graph G = (V, A). Hochbaum’s algorithm
constructs a parametric graph Gst(α) = (Vst, Ast) associated with G = (V, A), for
any scalar value α in the union of the ranges of the decision variables,

⋃
i Xi. The

capacity of arc (i, j) ∈ A is ci,j = di,j . Each arc in As = {(s, i)}i∈V has capacity cs,i =
max{0, −f ′

i(α)} and each arc in At = {(i, t)}i∈V has capacity ci,t = max{0, f ′
i(α)},

where f ′
i(α) is the right subgradient of function fi(·) at argument α. (One can select

instead the left subgradient.) Note that for any given value of α, either cs,i = 0
or ci,t = 0. Hochbaum’s algorithm finds the minimum cuts in the parametric graph
Gst(α), for all values of α, in the complexity of a single minimum s, t-cut. The key idea

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2571

of Hochbaum’s algorithm is the threshold theorem which links the optimal solution of
MRF (1.11) with the minimum cut partitions in Gst(α).

Theorem 3.1 (threshold theorem, Hochbaum [18]). For any given α, let S∗ be
the maximal source set of the minimum cut in graph Gst(α). Then there is an optimal
solution x∗ to MRF (1.11) satisfying x∗

i ≥ α if i ∈ S∗ and x∗
i < α if i ∈ T ∗.

An important property of Gst(α) is that the capacities of source adjacent arcs are
nonincreasing functions of α, the capacities of sink adjacent arcs are nondecreasing
functions of α, and the capacities of all the other arcs are constants. This implies the
following nested cut property.

Lemma 3.2 (nested cut property [16, 18, 20]). For any two parameter values
α1 ≤ α2, let S∗

α1
and S∗

α2
be the respective maximal source set of the minimum cuts

of Gst(α1) and Gst(α2), then S∗
α1

⊇ S∗
α2

.

The threshold theorem is used to find an optimal solution to MRF (1.11): For
each variable xi, the largest value of α in Xi for which the corresponding node is still
in the maximal source set is the optimal value of xi. This can either be done with
binary search, or as in Hochbaum’s algorithm, all cut partitions for all values of α are
identified with the use of a parametric cut procedure.

4. Overview of GIMR-Algorithm. The key idea used in our GIMR-Algorithm
is to adapt the cut-derived threshold theorem of Hochbaum’s MRF algorithm. But,
instead of using a parametric cut procedure as in the MRF algorithm, our algorithm
uses certain properties of the cut function, for the special case of a bi-path graph
and convex piecewise linear functions, which lead to a more efficient procedure for
computing all relevant cuts. This adaptation runs an order of magnitude faster than
the direct application of Hochbaum’s algorithm to GIMR, as explained in section 1.3.

The parametric graph Gst(α) associated with a bi-path graph G has the capacities
of arcs (i, i + 1), (i + 1, i) ∈ A as ci,i+1 = di,i+1 and ci+1,i = di+1,i, respectively, and
the capacities of the source and sink adjacent arcs as cs,i = max{0, −(fpl

i)′(α)} and
ci,t = max{0, (fpl

i)′(α)}, respectively. Based on the threshold theorem, Theorem 3.1,
it is sufficient to solve the minimum cuts in the parametric graph Gst(α) for all values
of α, in order to solve the GIMR (1.1). We next show that the values of α to be
considered can be restricted to the set of breakpoints of the n convex piecewise linear
functions, {fpl

i (xi)}i=1,...,n. This is proved in the following lemma.

Lemma 4.1. The minimum cuts in Gst(α) remain unchanged for α assuming any
value between any two consecutive breakpoints in the sorted list of breakpoints of all
the n convex piecewise linear functions, {fpl

i (xi)}i=1,...,n.

Proof. Recall that only the capacities of the source and sink adjacent arcs depend
on the values of α. Since each fpl

i (xi) is convex piecewise linear in GIMR, the source
and sink adjacent arc capacities remain constant for α between any two consecutive
breakpoint values in the sorted list of breakpoints over all the n convex piecewise linear
functions. Therefore the minimum cuts in Gst(α) remain unchanged as capacities of
all the arcs in the parametric graph are unchanged.

GIMR-Algorithm efficiently computes the minimum cuts of Gst(α) for subsequent
values of α in the ascending list of breakpoints of all the n convex piecewise linear
functions, {fpl

i (xi)}i=1,...,n.

Remark 4.2. For graphs such as bi-path graphs, a simple, linear complexity, dy-
namic programming algorithm solves the minimum cut in Gst(α) for a fixed value

2572 DORIT S. HOCHBAUM AND CHENG LU

Fig. 1. The structure of graph G0. Arcs of capacity 0 are not displayed. Nodes 1 to n are
labeled s on top as they are all in the maximal source set S0 of the minimum cut in G0.

of α. A naive application of this dynamic programming algorithm setting α equal
to each value of the q breakpoints, would render the running time O(qn) for solving
GIMR. Our GIMR-Algorithm solves GIMR in O(q log n) complexity which is signifi-
cantly faster.

4.1. Additional notation. We introduce additional notation to facilitate the
presentation of GIMR-Algorithm.

Let interval [i, j] in G for i ≤ j be the subset of V , {i, i+1, . . . , j −1, j}. If i = j,
the interval [i, i] is the singleton i. The notation [i, j) and (i, j] indicate the intervals
[i, j − 1] and [i + 1, j], respectively. Let [i, j] = ∅ if i > j.

For an (S, T) cut, an s-interval is the maximal interval containing only s-nodes.

Definition 4.3. An interval [i�, ir] of s-nodes in Gst(α) is said to be an s-interval
if it is not strictly contained in another interval of only s-nodes.

Node i�(ir) is said to be the left (right) endpoint of the s-interval [i�, ir]. The
definition of s-interval implies that for an s-interval [i�, ir], if i� > 1, then i� − 1 is a
t-node; if ir < n, then ir + 1 is a t-node.

Let Gk for k ≥ 1 be the parametric graph Gst(α) for α equal to aik,jk
, i.e.,

Gk = Gst(aik,jk
) (Gk = Gst(aik

) for the �1 special case). For ease of presentation, we
introduce G0 = Gst(ai1,j1 − ε) (or G0 = Gst(ai1 − ε) in the �1 special case) for a small
value of ε > 0 (all values of ε > 0 generate the same graph G0). Let (Sk, Tk) be the
minimum cut in Gk for k ≥ 0. Recall that Sk is the maximal source set.

5. �1-GIMR-Algorithm. This section describes an O(n log n) algorithm for the
GIMR problem with �1 deviation functions, fpl

i (xi) = wi|xi − ai| with nonnegative
coefficients wi. This problem is referred to as �1-GIMR:
(5.1)

(�1-GIMR) min
x1,...,xn

n∑
i=1

wi|xi − ai| +
n−1∑
i=1

di,i+1(xi − xi+1)+ +
n−1∑
i=1

di+1,i(xi+1 − xi)+.

The algorithm generates the respective minimum cuts of graphs Gk in increasing
order of k. Based on the threshold theorem, Theorem 3.1, and the nested cut property,
Lemma 3.2, we know that for each node j = 1, . . . , n, x∗

j = aik
for the index k such

that j ∈ Sk−1 and j ∈ Tk.
In G0, illustrated in Figure 1, cs,i = wi and ci,t = 0 for all i = 1, . . . , n. The

minimum cut in G0 is ({s} ∪ V, {t}).
For k ≥ 1 graph Gk is obtained from graph Gk−1 as follows: Capacity cs,ik

is
modified from wik

to 0 and capacity cik,t is modified from 0 to wik
. Other arcs’

capacities remain unchanged. An illustration of Gk for k ≥ 1 is provided in Figure 2.

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2573

Fig. 2. The structure of graph Gk. Arcs of capacity 0 are not displayed. Here node ik − 1
appears to the right of ik and ik + 1 appears to the left, to illustrate that the order of the nodes in
the graph, (1, 2, . . . , n), does not necessarily correspond to the order of the nodes according to the
subscripts of the sorted breakpoints, (i1, i2, . . . , in).

The key idea of the algorithm is to use a property, proved later, that the minimum
cut in Gk is derived by updating the minimum cut in Gk−1 on an interval of nodes
that change their status from s to t. It is then shown that this interval of s-nodes
can be found in amortized time O(log n). With this result, the total running time
to solve �1-GIMR (5.1) is O(n log n). The remainder of this section is a proof of this
main result, stated as Theorem 5.1.

Theorem 5.1. Given the minimum cut (Sk−1, Tk−1) in Gk−1, there is an amor-
tized O(log n) algorithm for computing the minimum cut (Sk, Tk) in Gk.

Note that the update of the graph from Gk−1 to Gk involves only a change in the
capacities of the source and sink adjacent arcs of ik. The algorithm proceeds from G0
to Gn by inspecting in order the nodes i1, i2, . . . , in, the order of which is determined
by the sorted list of breakpoints ai1 < ai2 < · · · < ain . Next we evaluate certain
properties of node ik.

For any node i, if i ∈ Tk−1, the nested cut property, Lemma 3.2, implies that i
remains in the sink set for all subsequent cuts (i.e., status(i) = t remains unchanged),
and in particular i ∈ Tk. Hence an update of the minimum cut in Gk from the
minimum cut in Gk−1 can only involve shifting some nodes from source set Sk−1 to
sink set Tk (i.e., changing some nodes from s-nodes in Gk−1 to t-nodes in Gk).

We first demonstrate that if node ik ∈ Tk−1, then (Sk−1, Tk−1), the minimum cut
in Gk−1, is also the minimum cut in Gk. This is proved in Lemma 5.2.

Lemma 5.2. If ik ∈ Tk−1 then (Sk, Tk) = (Sk−1, Tk−1).

Proof. Since ik ∈ Tk−1, by the nested cut property, Lemma 3.2, ik ∈ Tk.
The minimum cut in Gk−1 satisfies

C({s} ∪ Sk−1, Tk−1 ∪ {t})
= min

∅⊆S⊆V
C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ ([1, ik) ∪ (ik, n])) + C(S ∩ ([1, ik) ∪ (ik, n]), {t})

+ C(S ∩ [1, n], T ∩ [1, n])
}

+ wik
,

2574 DORIT S. HOCHBAUM AND CHENG LU

and the minimum cut in Gk satisfies

C({s} ∪ Sk, Tk ∪ {t})
= min

∅⊆S⊆V
C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ ([1, ik) ∪ (ik, n])) + C(S ∩ ([1, ik) ∪ (ik, n]), {t})

+ C(S ∩ [1, n], T ∩ [1, n])
}

+ 0.

Since the expressions inside the curly brackets are the same for both graphs, it
follows that C({s} ∪ Sk−1, Tk−1 ∪ {t}) − C({s} ∪ Sk, Tk ∪ {t}) = wik

, a constant.
Therefore the total cut capacities in the two graphs differ by a constant. Recall that
the minimum cut is unique as it is the maximal source set minimum cut. Hence the
minimizer set S is the same for both Gk−1 and Gk.

We conclude that there is no update to the minimum cut in Gk from the minimum
cut in Gk−1 when ik /∈ Sk−1 (i.e., ik ∈ Tk−1). As proved next, there is still no change
to the minimum cut in Gk from the minimum cut in Gk−1 when ik is an s-node that
does not change its status from Gk−1 to Gk.

Lemma 5.3. If ik ∈ Sk−1 and ik ∈ Sk, then (Sk, Tk) = (Sk−1, Tk−1).

Proof. The minimum cut in Gk−1 satisfies

C({s} ∪ Sk−1, Tk−1 ∪ {t})
= min

∅⊆S⊆V
C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ ([1, ik) ∪ (ik, n])) + C(S ∩ ([1, ik) ∪ (ik, n]), {t})

+ C(S ∩ [1, n], T ∩ [1, n])
}

+ 0.

And the minimum cut in Gk satisfies

C({s} ∪ Sk, Tk ∪ {t})
= min

∅⊆S⊆V
C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ ([1, ik) ∪ (ik, n])) + C(S ∩ ([1, ik) ∪ (ik, n]), {t})

+ C(S ∩ [1, n], T ∩ [1, n])
}

+ wik
.

Therefore, C({s} ∪ Sk−1, Tk−1 ∪ {t}) − C({s} ∪ Sk, Tk ∪ {t}) = −wik
, and hence

the minimizer set S is the same for both Gk−1 and Gk.

These two lemmas imply that the only case that will involve an update to the
minimum cut in Gk is when ik ∈ Sk−1 yet ik ∈ Tk, i.e., when node ik changes its
status from an s-node in Gk−1 to a t-node in Gk. It is shown next that in this case, if
there is any node j < ik (on the left of ik) that does not change its status from Gk−1
to Gk (i.e., either j is an s-node in both Gk−1 and Gk or j is a t-node in both Gk−1
and Gk), then all nodes in the interval [1, j] do not change their status from Gk−1 to
Gk; similarly, if there is any node j′ > ik (on the right of ik) that does not change
its status from Gk−1 to Gk, then all nodes in the interval [j′, n] do not change their
status from Gk−1 to Gk. This is proved formally in Lemma 5.4.

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2575

Lemma 5.4. Suppose that ik ∈ Sk−1 and ik ∈ Tk.
(a) If there is a node j < ik that does not change its status from Gk−1 to Gk

(i.e., either j is an s-node in both Gk−1 and Gk or j is a t-node in both Gk−1
and Gk), then all nodes in [1, j] do not change their status from Gk−1 to Gk.

(b) If there is a node j′ > ik that does not change its status from Gk−1 to Gk,
then all nodes in [j′, n] do not change their status from Gk−1 to Gk.

Proof.
(a) The minimum cut in Gk−1 satisfies

C({s} ∪ Sk−1, Tk−1 ∪ {t})
= min

∅⊆S⊆V
C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t})

+ C(S ∩ [j, n], T ∩ [j, n]) + C({s}, T ∩ (j, n]) + C(S ∩ (j, n], {t})
}

= min
S∩[1,j]

C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t})

+ min
S∩[j,n]

{
C(S ∩ [j, n], T ∩ [j, n]) + C({s}, T ∩ (j, n]) + C(S ∩ (j, n], {t})

}
.

And the minimum cut in Gk satisfies

C({s} ∪ Sk, Tk ∪ {t})
= min

∅⊆S⊆V
C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t})

+ C(S ∩ [j, n], T ∩ [j, n]) + C({s}, T ∩ (j, n]) + C(S ∩ (j, n], {t})
}

= min
S∩[1,j]

C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t})

+ min
S∩[j,n]

{
C(S ∩ [j, n], T ∩ [j, n]) + C({s}, T ∩ (j, n]) + C(S ∩ (j, n], {t})

}
.

Since the arc capacities other than (s, ik) and (ik, t) in these two cut capacities
are, respectively, the same, and the status of j does not change from Gk−1
to Gk, the expressions C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t}) are of the same
value for both graphs. As a result, the minimizer set S ∩ [1, j] is the same for
both Gk−1 and Gk.

(b) The minimum cut in Gk−1 satisfies

C({s} ∪ Sk−1, Tk−1 ∪ {t})
= min

∅⊆S⊆V
C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ [1, j′)) + C(S ∩ [1, j′), {t}) + C(S ∩ [1, j′], T ∩ [1, j′])

+ C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t})
}

= min
S∩[1,j′]

{
C({s}, T ∩ [1, j′)) + C(S ∩ [1, j′), {t}) + C(S ∩ [1, j′], T ∩ [1, j′])

}
+ min

S∩[j′,n]
C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t}).

2576 DORIT S. HOCHBAUM AND CHENG LU

Fig. 3. Illustration of Lemma 5.4. ik ∈ Sk−1 (labeled s on top). If there is a node j < ik that
does not change its status from Gk−1 to Gk (i.e., either j is an s-node in both Gk−1 and Gk or j
is a t-node in both Gk−1 and Gk), then all nodes in [1, j] do not change their status from Gk−1 to
Gk; if there is a node j′ > ik that does not change its status from Gk−1 to Gk, then all nodes in
[j′, n] do not change their status from Gk−1 to Gk.

And the minimum cut in Gk satisfies

C({s} ∪ Sk, Tk ∪ {t})
= min

∅⊆S⊆V
C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ [1, j′)) + C(S ∩ [1, j′), {t}) + C(S ∩ [1, j′], T ∩ [1, j′])

+ C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t})
}

= min
S∩[1,j′]

{
C({s}, T ∩ [1, j′)) + C(S ∩ [1, j′), {t}) + C(S ∩ [1, j′], T ∩ [1, j′])

}
+ min

S∩[j′,n]
C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t}).

Since the arc capacities other than (s, ik) and (ik, t) in these two cut capacities
are, respectively, the same, and the status of j′ does not change from Gk−1
to Gk, the expressions C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n])∪ {t}) are of the same
value for both graphs. As a result, the minimizer set S ∩ [j′, n] is the same
for both Gk−1 and Gk.

Lemma 5.4 is illustrated in Figure 3.
If there is a nonempty set of nodes that change their status from s in Gk−1 to t in

Gk, it must include ik (otherwise by Lemmas 5.2 and 5.3, none of the nodes changes
its status, which is a contradiction). Among all the nodes in V = [1, n] that change
from s in Gk−1 to t in Gk, we denote the smallest node index as i∗k1 and the largest
node index as i∗k2, thus i∗k1 ≤ ik ≤ i∗k2. All nodes in the interval [i∗k1, i

∗
k2] must change

their status from s in Gk−1 to t in Gk, because if there is a node j ∈ [i∗k1, i
∗
k2] \ {ik}

whose status does not change, then Lemma 5.4 implies that either the status of i∗k1
does not change (when j < ik) or the status of i∗k2 does not change (when j > ik),
which contradicts the choice of these nodes as nodes that do change their status. We
conclude that if ik changes its status, then all nodes that change their status form an
interval of s-nodes containing ik. This is stated in the following corollary.

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2577

Fig. 4. Illustration of Corollary 5.5. ik ∈ Sk−1. Nodes are labeled on top s if they are s-nodes
in Gk−1 or Gk. Nodes are labeled on top t if they are t-nodes in Gk−1 or Gk. All s-nodes in
[i∗k1, i∗k2] (possibly empty) in Gk−1, containing ik, change to t-nodes in Gk. Note that [i∗k1, i∗k2] is a
subinterval of the s-interval w.r.t. node ik in Gk−1, [ik�, ikr].

Corollary 5.5. If ik ∈ Sk−1, then all the nodes that change their status from s
in Gk−1 to t in Gk must form a (possibly empty) interval of s-nodes containing ik in
Gk−1.

Corollary 5.5 is illustrated in Figure 4. Note that [i∗k1, i
∗
k2] is a subinterval of

the s-interval w.r.t. node ik in Gk−1, [ik�, ikr]. Using Corollary 5.5 the problem of
computing the minimum cut in Gk from the minimum cut in Gk−1 is reduced to the
problem of identifying the interval [i∗k1, i

∗
k2].

5.1. Finding node status change interval. To identify the node status change
interval [i∗k1, i

∗
k2], we have the following lemma.

Lemma 5.6. The node status change interval [i∗k1, i
∗
k2] is the optimal solution to

the following optimization problem for Gk:

min
[ik1,ik2]

C({s}, [ik1, ik2]) + C([ik�, ikr] \ [ik1, ik2], {t})

+ C([ik�, ikr] \ [ik1, ik2], [ik1, ik2] ∪ {ik� − 1, ikr + 1})
s.t. [ik1, ik2] = ∅ or ik ∈ [ik1, ik2] ⊆ [ik�, ikr].

(5.2)

Proof. The minimum cut (Sk, Tk) in Gk satisfies

C({s} ∪ Sk, Tk ∪ {t})(5.3)
= min

(S,T)
C({s} ∪ S, T ∪ {t})

= min
(S,T)

{
C({s} ∪ (S ∩ [1, ik� − 1]), (T ∩ [1, ik� − 1]) ∪ {t})

+ C({s}, T ∩ [ik�, ikr]) + C(S ∩ [ik�, ikr], {t})
+ C(S ∩ [ik� − 1, ikr + 1], T ∩ [ik� − 1, ikr + 1])

+ C({s} ∪ (S ∩ [ikr + 1, n]), (T ∩ [ikr + 1, n]) ∪ {t})
}

.

2578 DORIT S. HOCHBAUM AND CHENG LU

This minimization problem can be written as the sum of three minimization problems:

= min
S∩[1,ik�−1]

C({s} ∪ (S ∩ [1, ik� − 1]), (T ∩ [1, ik� − 1]) ∪ {t})(5.4)

+ min
T∩[ik�,ikr]

{
C({s}, T ∩ [ik�, ikr]) + C(S ∩ [ik�, ikr], {t})(5.5)

+ C(S ∩ [ik� − 1, ikr + 1], T ∩ [ik� − 1, ikr + 1])
}

+ min
S∩[ikr+1,n]

C({s} ∪ (S ∩ [ikr + 1, n]), (T ∩ [ikr + 1, n]) ∪ {t}).(5.6)

By Corollary 5.5, the minimizer set S ∩ [1, ik� − 1] in subproblem (5.4) is Sk−1 ∩
[1, ik�−1] and the minimizer set S∩[ikr +1, n] in subproblem (5.6) is Sk−1∩[ikr +1, n].

It remains to solve subproblem (5.5). Recall that since ik� − 1 and ikr + 1 are
outside an s-interval, they are both t-nodes in Gk, therefore, S ∩ [ik� − 1, ikr + 1] =
S ∩ [ik�, ikr]. For [ik1, ik2] the interval of nodes that change their status from s to t,
either [ik1, ik2] is empty, or else it must contain ik (Corollary 5.5, S ∩ [ik�, ikr] =
[ik�, ikr] \ [ik1, ik2], and T ∩ [ik�, ikr] = [ik1, ik2]). An interval [ik1, ik2] ⊆ [ik�, ikr] is
said to be feasible if it is either empty, [ik1, ik2] = ∅, or else it contains ik, ik ∈ [ik1, ik2].
The interval [i∗k1, i

∗
k2] is optimal if it is the feasible interval that minimizes the objective

value of subproblem (5.5).
For any feasible interval [ik1, ik2] ⊆ [ik�, ikr], we can rewrite the terms in subprob-

lem (5.5) as

S ∩ [ik� − 1, ikr + 1] = S ∩ [ik�, ikr] = [ik�, ikr] \ [ik1, ik2], and
T ∩ [ik� − 1, ikr + 1] = (T ∩ [ik�, ikr])∪{ik� − 1, ikr + 1} = [ik1, ik2]∪{ik� − 1, ikr + 1}.

Substituting for these expressions in subproblem (5.5), it is rewritten as

min
[ik1,ik2]

C({s}, [ik1, ik2]) + C([ik�, ikr] \ [ik1, ik2], {t})

+ C([ik�, ikr] \ [ik1, ik2], [ik1, ik2] ∪ {ik� − 1, ikr + 1})
s.t. [ik1, ik2] = ∅ or ik ∈ [ik1, ik2] ⊆ [ik�, ikr].

This completes the proof.

Next, we discuss how to solve the optimization problem (5.2). In the following
equations, let d0,1 = d1,0 = dn,n+1 = dn+1,n = 0.

We evaluate the objective value of problem (5.2) for an empty interval solution,
and compare it to the objective value of the optimal nonempty interval solution. The
one that gives smaller objective value is the optimal solution to problem (5.2). For
[ik1, ik2] = ∅, the objective value of problem (5.2) is

(5.7) Z(∅) � C([ik�, ikr], {ik� − 1, ikr + 1, t}) =
ikr∑

i=ik�

ci,t + dik�,ik�−1 + dikr ,ikr+1.

Let [̂ik1, îk2] be the optimal solution to the problem (5.2) restricted to nonempty
intervals. Let the value of the objective function of problem (5.2) for [̂ik1, îk2] be
Z([̂ik1, îk2]). If Z([̂ik1, îk2]) < Z(∅) then the optimal solution is [i∗k1, i

∗
k2] = [̂ik1, îk2],

otherwise [i∗k1, i
∗
k2] = ∅.

We next demonstrate that îk1 and îk2 can be found by solving two independent
optimization problems.

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2579

Lemma 5.7. The optimal nonempty interval solution, [̂ik1, îk2], can be found by
solving two independent minimization problems for ik1 and ik2, respectively.

Proof. Problem (5.2) that restricted to nonempty intervals is equivalent to

min
ik1:ik�≤ik1≤ik
ik2:ik≤ik2≤ikr

{
C({s}, [ik1, ik]) + C([ik�, ik1), {t}) + C([ik�, ik1), [ik1, ik] ∪ {ik� − 1})

+ C({s}, (ik, ik2]) + C((ik2, ikr], {t}) + C((ik2, ikr], [ik, ik2] ∪ {ikr + 1})
}

= min
ik1:ik�≤ik1≤ik

{
C({s}, [ik1, ik])+C([ik�, ik1), {t})+C([ik�, ik1), [ik1, ik] ∪ {ik� −1})

}

+ min
ik2:ik≤ik2≤ikr

{
C({s}, (ik, ik2])+C((ik2, ikr], {t})+C((ik2, ikr], [ik, ik2] ∪ {ikr +1})

}
� min

ik1:ik�≤ik1≤ik

{
f1(ik1)

}
+ min

ik2:ik≤ik2≤ikr

{
f2(ik2)

}
.

Hence îk1 is found by solving the optimization minik1:ik�≤ik1≤ik
{f1(ik1)} and îk2 is

found by solving the optimization problem minik2 :ik≤ik2≤ikr
{f2(ik2)}.

We first show how to solve problem minik1:ik�≤ik1≤ik
{f1(ik1)}. We evaluate the

objective value f1(ik1) for ik1 = ik�, and compare it to the optimal objective value for
ik1 ∈ [ik� + 1, ik]. The one that gives smaller objective value is the optimal solution
îk1. For ik1 = ik�, the objective value f1(ik�) is

(5.8) f1(ik�) =
ik∑

i=ik�

cs,i.

For ik1 ∈ [ik� + 1, ik], we have the following equation to express the objective value
f1(ik1):

(5.9) f1(ik1) =
ik1−1∑
i=ik�

ci,t +
ik∑

i=ik1

cs,i + dik�,ik�−1 + dik1−1,ik1 .

Let ĩk1 be the minimizer of f1(ik1) for ik1 ∈ [ik� +1, ik]. If there are multiple minima,
ĩk1 takes the largest index, due to the maximal source set requirement. To summarize,

îk1 =

{
ĩk1 if ik� + 1 ≤ ik and f1(̃ik1) ≤ f1(ik�),
ik� otherwise.

We next show how to solve the problem minik2:ik≤ik2≤ikr
{f2(ik2)}. We evaluate

the objective value f2(ik2) for ik2 = ikr , and compare it to the optimal objective
value for ik2 ∈ [ik, ikr −1]. The one that gives a smaller objective value is the optimal
solution îk2. For ik2 = ikr, the objective value f2(ikr) is

(5.10) f2(ikr) =
ikr∑

i=ik+1

cs,i.

For ik2 ∈ [ik, ikr − 1], we have the following equation to express the objective value
f2(ik2):

(5.11) f2(ik2) =
ik2∑

i=ik+1

cs,i +
ikr∑

i=ik2+1

ci,t + dikr ,ikr+1 + dik2+1,ik2 .

2580 DORIT S. HOCHBAUM AND CHENG LU

Let ĩk2 be the minimizer of f2(ik2) for ik2 ∈ [ik, ikr − 1]. If there are multiple min-
ima, ĩk2 takes the smallest index, due to the maximal source set requirement. To
summarize,

îk2 =

{
ĩk2 if ik ≤ ikr − 1 and f2(̃ik2) ≤ f2(ikr),
ikr otherwise.

Finally the value of the objective function of problem (5.2) for [̂ik1, îk2] is

Z([̂ik1, îk2]) = f1(̂ik1) + f2(̂ik2).

5.2. Data structure to find node status change interval efficiently. We
observe that (5.7) to (5.11) share two operations, one is the sum of capacities of
source adjacent arcs of nodes in an interval [i, j],

∑j
i′=i cs,i′ , and the other is the sum

of capacities of sink adjacent arcs of nodes in an interval [i, j],
∑j

i′=i ci′,t. It will be
convenient to rewrite these two sums of capacities as

j∑
i′=i

cs,i′ =
j∑

i′=1

cs,i′ −
i−1∑
i′=1

cs,i′ ,

j∑
i′=i

ci′,t =
j∑

i′=1

ci′,t −
i−1∑
i′=1

ci′,t.

To derive these sums easily, we maintain two arrays, (sa(i))i=0,1,...,n and (ta(i))i=0,1,...,n.
sa(i) is the sum of capacities of source adjacent arcs of nodes in [1, i] and ta(i) is the
sum of capacities of sink adjacent arcs of nodes in [1, i]. Formally,

sa(0) = 0; sa(i) = C({s}, [1, i]) =
i∑

j=1

cs,j (i = 1, . . . , n);(5.12)

ta(0) = 0; ta(i) = C([1, i], {t}) =
i∑

j=1

cj,t (i = 1, . . . , n).(5.13)

Note that both arrays can also be defined recursively as

sa(0) = 0; sa(i) = sa(i − 1) + cs,i (i = 1, . . . , n);
ta(0) = 0; ta(i) = ta(i − 1) + ci,t (i = 1, . . . , n).

The two arrays, along with two others to be introduced, will be used throughout the
algorithm.

Equations (5.7), (5.8), and (5.10) in terms of the two arrays result in

Z(∅) =
ikr∑

i=ik�

ci,t + dik�,ik�−1 + dikr ,ikr+1

= ta(ikr) − ta(ik� − 1) + dik�,ik�−1 + dikr ,ikr+1,

f1(ik�) =
ik∑

i=ik�

cs,i = sa(ik) − sa(ik� − 1),

f2(ikr) =
ikr∑

i=ik+1

cs,i = sa(ikr) − sa(ik).

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2581

Equation (5.9) can be rewritten as

f1(ik1) =
ik1−1∑
i=ik�

ci,t +
ik∑

i=ik1

cs,i + dik�,ik�−1 + dik1−1,ik1

=
(
ta(ik1 − 1) − ta(ik� − 1)

)
+

(
sa(ik) − sa(ik1 − 1)

)
+ dik�,ik�−1 + dik1−1,ik1 .

Next we introduce a third array (tms(i))i=0,1,...,n defined as

(5.14) tms(i) = ta(i) − sa(i) + di,i+1 (i = 0, 1, . . . , n).

With these arrays, (5.9) can be simplified to

f1(ik1) = tms(ik1 − 1) − ta(ik� − 1) + sa(ik) + dik�,ik�−1.

Recall that the above equation is the expression of f1(ik1) for ik1 ∈ [ik� + 1, ik], and
we want to find the minimizer of f1(ik1) for ik1 ∈ [ik� + 1, ik]. The only term in
f1(ik1) that depends on ik1 is tms(ik1 − 1), thus the minimizer ĩk1 of f1(ik1), is also
the minimizer of tms(ik1 − 1), for ik1 ∈ [ik� + 1, ik]:

(5.15) ĩk1 = argminik1:ik�+1≤ik1≤ik

{
f1(ik1)

}
= argminik1:ik�+1≤ik1≤ik

{
tms(ik1−1)

}
.

Similarly, for f2(ik2) (ik2 ∈ [ik, ikr − 1]), (5.11) can be rewritten as

f2(ik2) =
ik2∑

i=ik+1

cs,i +
ikr∑

i=ik2+1

ci,t + dikr ,ikr+1 + dik2+1,ik2

=
(
sa(ik2) − sa(ik)

)
+

(
ta(ikr) − ta(ik2)

)
+ dikr ,ikr+1 + dik2+1,ik2 .

A final, fourth, array (smt(i))i=0,1,...,n is

(5.16) smt(i) = sa(i) − ta(i) + di+1,i (i = 0, 1, . . . , n).

Then (5.11) can be further simplified to

f2(ik2) = smt(ik2) − sa(ik) + ta(ikr) + dikr ,ikr+1.

Recall that the above equation is the expression of f2(ik2) for ik2 ∈ [ik, ikr − 1], and
we want to find the minimizer of f2(ik2) for ik2 ∈ [ik, ikr − 1]. The only term in
f2(ik2) that depends on ik2 is smt(ik2), thus the minimizer ĩk2 of f2(ik2), is also the
minimizer of smt(ik2) for ik2 ∈ [ik, ikr − 1]:

(5.17) ĩk2 = argminik2:ik≤ik2≤ikr−1
{
f2(ik2)

}
= argminik2:ik≤ik2≤ikr−1

{
smt(ik2)

}
.

To summarize, we introduced here four arrays: (sa(i))i=0,1,...,n in (5.12),
(ta(i))i=0,1,...,n in (5.13), (tms(i))i=0,1,...,n in (5.14), and (smt(i))i=0,1,...,n in (5.16).

2582 DORIT S. HOCHBAUM AND CHENG LU

With the four arrays, ĩk1 is identified by finding the minimum value of a subarray of
array (tms(i))i=0,1,...,n according to (5.15), ĩk2 is identified by finding the minimum
value of a subarray of array (smt(i))i=0,1,...,n according to (5.17). After we identify
ĩk1 and ĩk2, we evaluate and compare f1(ik�) to f1(̃ik1) to identify îk1, and evaluate
and compare f2(ikr) to f2(̃ik2) to identify îk2. The process also gives us the objec-
tive value of Z([̂ik1, îk2]). Finally, we evaluate Z(∅) and compare it to Z([̂ik1, îk2]) to
identify [i∗k1, i

∗
k2]. Evaluating all the above objective values involves querying different

specific elements of the four arrays.
In our algorithm, we implement the four arrays using a data structure introduced

in Appendix B. Using the data structure, the operations of identifying the minimum
value of any subarray of an array; querying a specific element of an array; updating the
arrays from graph Gk−1 to Gk, can all be done efficiently, in complexity O(log n) per
operation. Therefore the node status change interval [i∗k1, i

∗
k2] and the array updates

can be computed efficiently.

5.3. The complete �1-GIMR-Algorithm. To summarize, the algorithm pro-
ceeds from Gk−1 to Gk by checking the status of node ik. If this node is an s-node
then it is possible that the minimum cut in Gk−1 is changed when the graph is up-
dated to Gk. In that case, the algorithm identifies the node status change interval
with respect to ik, [i∗k1, i

∗
k2]. If this interval is not empty then the nodes in the in-

terval change their status from s to t. This triggers a change in the set of s-intervals
of Gk−1 by decomposing one s-interval to up to two new s-intervals in Gk. Once the
s-intervals have been updated, the iteration for k terminates.

We next present the pseudocode for �1-GIMR-Algorithm, followed by an explana-
tion of the subroutines used:
�1-GIMR-Algorithm
input: {wi, ai}i=1,...,n and {di,i+1, di+1,i}i=1,...,n−1 in �1-GIMR (5.1).
output: An optimal solution {x∗

i }i=1,...,n.
begin
1 Sort the ai’s as ai1 < ai2 < · · · < ain ;
2 initialization();
3 for k := 1, . . . , n:
4 {Update graph}update arrays(ik, −wik

, wik
);

5 if status(ik) = s then
6 [ik�, ikr] := get s interval(ik);
7 [i∗k1, i

∗
k2] := find status change interval(ik�, ik, ikr);

8 if [i∗k1, i
∗
k2]
= ∅ then

9 for i ∈ [i∗k1, i
∗
k2]: x∗

i := aik
, status(i) := t;

10 update s interval(ik�, i
∗
k1, i

∗
k2, ikr);

11 end if
12 end if
13 end for
14 return {x∗

i }i=1,...,n;
end

At line 2, We use initialization() to initialize all the data structures for G0 that are
needed in the algorithm, including the set of s-intervals, the four arrays, and the status
of all the nodes. The data structure for the set of s-intervals is introduced in Ap-
pendix A. G0 contains a single s-interval [1, n]. Appendix A.1 shows that initializing
the set of s-intervals containing a single s-interval [1, n] is done in O(1) time using the
data structure. The data structure for the four arrays is introduced in Appendix B.

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2583

Appendix B.1 shows that initializing the four arrays for G0 is done in time O(n log n)
using the data structure. We implement the status of all the nodes as a simple boolean
array such that status(i) is the status of node i for i = 1, . . . , n. As all nodes are
in the maximal source set in the minimum cut in G0, initially status(i) = s for all
i = 1, . . . , n, which is initialized in O(n) time. Hence the complexity of initialization()
is O(n log n).

At line 3, the for loop computes, in the kth iteration, the minimum cut in Gk from
the minimum cut in Gk−1. At line 4 we first call subroutine update arrays(ik, −wik

, wik
)

to update the values of the four arrays from Gk−1 to Gk. Recall that graph Gk is
obtained from graph Gk−1 by changing only the capacities cs,ik

and cik,t. Thus the
values of the four arrays are updated as follows:

∀i ∈ [ik, n] :

sa(i) := sa(i) − wik
,

ta(i) := ta(i) + wik
,

tms(i) := tms(i) + 2wik
,

smt(i) := smt(i) − 2wik
.

Note that the above operations are all to add the same constant to a subarray. We
show in Appendix B.2 that adding the same constant to a subarray of size O(n) can
be done in complexity O(log n) using the data structure for the array. Hence the
complexity of update arrays is O(log n) with a pseudocode provided in Appendix B.2.

At line 5 we check whether ik is an s-node in Gk−1, that is, whether ik ∈ Sk−1,
and if so, there is a potential change of status of nodes. If ik is an s-node, we pro-
ceed to the if statement to identify the node status change interval [i∗k1, i

∗
k2]. We

first find the s-interval [ik�, ikr] w.r.t. node ik in Gk−1. This is implemented in sub-
routine [ik�, ikr] := get s interval(ik) at line 6. The data structure for the (disjoint)
s-intervals maintains them sorted in increasing order of their left endpoints. This al-
lows us to identify [ik�, ikr] with the binary search in O(log n) time. The pseudocode
of get s interval is given in Appendix A.2. With the values of ik and [ik�, ikr], the
algorithm proceeds to subroutine [i∗k1, i

∗
k2] := find status change interval(ik�, ik, ikr) at

line 7 to identify [i∗k1, i
∗
k2] by solving the optimization problem (5.2) according to the

procedure shown in section 5.2. Appendix B shows that using the data structure,
it takes O(log n) time to identify the minimum value of any subarray of an array
and O(log n) time to query a specific element of an array. Hence the complexity of
find status change interval is O(log n). The pseudocode for find status change interval
is in Appendix B.3.

If [i∗k1, i
∗
k2] is nonempty, checked at line 8, we proceed to line 9 to record the

optimal values of all xi for all node i in the node status change interval [i∗k1, i
∗
k2],

as x∗
i = aik

, and update the status of node i from s in Gk−1 to t in Gk. The
s-interval [ik�, ikr] in Gk−1 is then decomposed into at most two new nonempty s-
intervals in Gk, [ik�, i

∗
k1 − 1] (if i∗k1 > ik�) and [i∗k2 + 1, ikr] (if i∗k2 < ikr), while all the

other s-intervals in Gk−1 remain unchanged in Gk. This is achieved by subroutine
update s interval(ik�, i

∗
k1, i

∗
k2, ikr) at line 10 by removing the s-interval [ik�, ikr] from

the data structure and inserting the decomposed nonempty s-intervals [ik�, i
∗
k1 − 1]

and [i∗k2 + 1, ikr] into the data structure. Appendix A.3 shows that the data struc-
ture can complete the above operations, while keeping the s-intervals sorted, in
O(log n) time. Hence the complexity of update s interval is O(log n). The pseudocode

2584 DORIT S. HOCHBAUM AND CHENG LU

of update s interval is in Appendix A.3. The optimal solution is returned at line
14.

It takes O(n log n) time to sort the breakpoints ai’s. In each iteration of the for
loop starting at line 3, each of the four subroutines called takes O(log n) time. For each
node i ∈ V = [1, n], its corresponding decision variable gets optimal value assigned
exactly once, and it changes status from s to t exactly once over the n iterations.
Thus the amortized complexity of line 9 is O(1) in each iteration. Therefore each
iteration takes amortized time O(log n). This completes the proof of Theorem 5.1.

In addition, reading the input data and outputting the optimal solution take
O(n) time in total. Thus the total complexity of �1-GIMR-Algorithm is O(n log n). We
therefore conclude the following.

Theorem 5.8. �1-GIMR-Algorithm solves problem �1-GIMR (5.1) in O(n log n)
time.

6. Extending �1-GIMR-Algorithm to GIMR-Algorithm. The key ideas used
in �1-GIMR-Algorithm are extended here for GIMR (1.1) of general convex piecewise
linear deviation functions. The adjustments required are described below.

First we note that without loss of generality, any convex piecewise linear deviation
function fpl

i (xi) with box constraints for the variable �i ≤ xi ≤ ui, is equivalent to a
convex piecewise linear function without the box constraints:

f̃pl
i (xi) =

⎧⎪⎪⎨
⎪⎪⎩

fpl
i (�i) − M(xi − �i) for xi < �i,

fpl
i (xi) for �i ≤ xi ≤ ui,

fpl
i (ui) + M(xi − ui) for xi > ui

for M sufficiently large. Therefore GIMR is unconstrained, without loss of generality,
with the first piece of each convex piecewise linear function having negative (nonpos-
itive) slope (wi,0 = −M) and the last piece of each convex piecewise linear function
having positive (nonnegative) slope (wi,qi = M).

The running time of GIMR-Algorithm is proved in Theorem 6.1.

Theorem 6.1. GIMR (1.1) is solved in O(q log n) time, where q is the total num-
ber of breakpoints of the n arbitrary convex piecewise linear deviation functions.

Proof. For GIMR (1.1), the structure of G0 remains as in Figure 1 as for �1-GIMR
(5.1) with cs,i = −wi,0 > 0 and ci,t = 0 for all i = 1, . . . , n. Thus the minimum cut in
G0 is ({s} ∪ V, {t}). Hence subroutine initialization() is still valid for GIMR (1.1) in
the same complexity.

For GIMR (1.1), as for �1-GIMR (5.1), all arc capacities other than cs,ik
and

cik,t are the same for both Gk−1 and Gk. But the construction of Gk from Gk−1
is more complicated than that in �1-GIMR. Recall that from Gk−1 to Gk, the right
subgradient of fpl

ik
changes from wik,jk−1 to wik,jk

. Thus depending on the signs of
wik,jk−1 and wik,jk

, we have the following three possible cases:
Case 1. wik,jk−1 ≤ 0, wik ,jk

≤ 0: cs,ik
is changed from −wik,jk−1 to −wik,jk

.
Case 2. wik,jk−1 ≤ 0, wik,jk

≥ 0: cs,ik
is changed from −wik,jk−1 to 0 and

cik,t is changed from 0 to wik ,jk
.

Case 3. wik,jk−1 ≥ 0, wik ,jk
≥ 0: cik,t is changed from wik,jk−1 to wik,jk

.
The capacities of other arcs do not change.

Accordingly, the four arrays are updated for each one of these three cases as
follows:

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2585

Case 1. wik,jk−1 ≤ 0, wik,jk
≤ 0:

∀i ∈ [ik, n] :

sa(i) := sa(i) − (wik,jk
− wik ,jk−1),

tms(i) := tms(i) + (wik,jk
− wik ,jk−1),

smt(i) := smt(i) − (wik,jk
− wik ,jk−1).

Case 2. wik,jk−1 ≤ 0, wik,jk
≥ 0:

∀i ∈ [ik, n] :

sa(i) := sa(i) + wik,jk−1,

ta(i) := ta(i) + wik,jk
,

tms(i) := tms(i) + (wik,jk
− wik ,jk−1),

smt(i) := smt(i) − (wik,jk
− wik ,jk−1).

Case 3. wik,jk−1 ≥ 0, wik,jk
≥ 0:

∀i ∈ [ik, n] :

ta(i) := ta(i) + (wik,jk
− wik ,jk−1),

tms(i) := tms(i) + (wik,jk
− wik ,jk−1),

smt(i) := smt(i) − (wik,jk
− wik ,jk−1).

Although seemingly more complicated, all the above operations amount to
adding a constant to a subarray, which can be done efficiently using the data struc-
ture for the four arrays. The above update is done by calling the subroutine
update arrays(ik, wik ,jk−1, wik,jk

) in complexity O(log n) (see Appendix B.2 for pseu-
docode). Note that the �1 deviation function in �1-GIMR (5.1) is a special case of
Case 2 above where wik,jk−1 < 0, wik,jk

> 0, and −wik,jk−1 = wik ,jk
.

On the other hand, since all arc capacities other than cs,ik
and cik,t are the same

for both Gk−1 and Gk, Lemmas 5.2, 5.3, and 5.4 and Corollary 5.5 for �1-GIMR (5.1)
hold true for GIMR (1.1). As a result, the procedure to identify the node status change
interval [i∗k1, i

∗
k2] in graph Gk for �1-GIMR, shown in sections 5.1 and 5.2, also applies

to GIMR. This implies that subroutines get s interval, find status change interval, and
update s interval are still valid for GIMR in the same complexity, respectively, as for
�1-GIMR. Thus Theorem 5.1 holds for GIMR.

The complete GIMR-Algorithm follows.
GIMR-Algorithm
input: {{ai,1, . . . , ai,qi}, {wi,0, . . . , wi,qi}}i=1,...,n and {di,i+1, di+1,i}i=1,...,n−1 in GIMR
(1.1).
output: An optimal solution {x∗

i }i=1,...,n.
begin

Sort the breakpoints of all the n convex piecewise linear functions as ai1,j1 <
ai2,j2 < · · · < aiq,jq ;
initialization();
for k := 1, . . . , q:

{Update graph}update arrays(ik, wik,jk−1, wik ,jk
);

if status(ik) = s then
[ik�, ikr] := get s interval(ik);

2586 DORIT S. HOCHBAUM AND CHENG LU

[i∗k1, i
∗
k2] := find status change interval(ik�, ik, ikr);

if [i∗k1, i
∗
k2]
= ∅ then

for i ∈ [i∗k1, i
∗
k2]: x∗

i := aik,jk
, status(i) := t;

update s interval(ik�, i
∗
k1, i

∗
k2, ikr);

end if
end if

end for
return {x∗

i }i=1,...,n;
end

Reading the input data takes O(q) time. Sorting the q breakpoints from n or-
dered lists takes O(q log n) time [12]. The amortized complexity of each iteration
in the for loop remains O(log n), thus for the q iterations the total complexity is
O(q log n). Finally it takes O(n) time to output the optimal solution. Therefore the
total complexity of GIMR-Algorithm is O(q log n).

Remark 6.2. The discussion above and algorithms’ presentations assume that all
breakpoints are distinct. However, when this is not the case and a breakpoint is shared
by more than one function, the algorithms still work in the same way, by breaking ties
arbitrarily: A breakpoint is associated with a function or a variable, or with multiple
functions and variables. The ordering of the variables that correspond to the same
breakpoint can be selected arbitrary. To see that, consider a “perturbed” problem,
in which small perturbations are applied to the original shared breakpoints so as to
break the ties. The values that the optimal variables would then assume are either
values of the breakpoints or the perturbed breakpoints. Since the perturbations can
be made arbitrarily small, it follows that the optimal variables values will be among
the “unperturbed” breakpoints.

Remark 6.3. The GIMR-Algorithm is applicable for solving, not only the contin-
uous, but also the integer GIMR (1.1) problem. In [18] it is proved in the threshold
theorem (Theorem 3.1) that the integer optimal solution can only take values at ar-
guments where at least one function’s integer subgradient, f ′(x) = f(x + 1) − f(x),
changes. For piecewise linear functions that can have noninteger breakpoints, the
subgradients can only change at integer arguments that are the breakpoints of the
piecewise linear functions rounded up or down. Therefore instead of considering only
the q breakpoints, as is the continuous case proved in Lemma 4.1, the integer case
requires us to consider up to 2q breakpoints. Therefore the running time of GIMR-
Algorithm for the integer version of GIMR is the same as for the continuous version,
O(q log n).

7. Experimental study. We implement GIMR-Algorithm in C++ in Microsoft
Visual Studio 2015. We use the “set” data structure object in C++ standard template
library (STL) to maintain the set of s-intervals in the algorithm. The dynamic path
data structure has been implemented according to [43]. In order to assess the perfor-
mance of GIMR-Algorithm in practice, we compare our software implementation with
Gurobi, a commercial linear programming solver, on 30 simulated data sets of various
sizes. Both algorithms are run on the same laptop with an Intel(R) Core i7-6820HQ
CPU at 2.70 GHz, 32 GB RAM, and 64-bit Windows 10 operating system.

The GIMR problem can be formulated as a linear programming problem: Let
bi,j = fpl

i (ai,j) for i = 1, . . . , n; j = 1, . . . , qi. It is easy to see that the following linear
programming problem has the same optimal solution as GIMR (1.1), where ui is the
upper envelope of the qi lines,

{
wi,0(xi − ai,1) + bi,1, {wi,j(xi − ai,j) + bi,j}j=1,...,qi

}
,

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2587

Table 2

Running time (in seconds) comparison between GIMR-Algorithm and Gurobi for solving GIMR
(1.1). The numbers reported are the average running times (standard deviations).

Time (in seconds)
(n, q̄) GIMR-Algorithm Gurobi
(100, 100) 0.17(0.013) 1.64(0.034)
(100, 1000) 1.47(0.079) 15.59(0.29)
(1000, 100) 1.97(0.035) 16.37(0.50)
(1000, 1000) 16.33(0.12) 148.46(0.40)
(1000, 10000) 174.06(9.86) 1608.36(61.66)
(10000, 1000) 190.53(3.62) 1559.07(63.41)

which correspond to the qi linear pieces of function fpl
i (xi):

min
{ui,xi}i=1,...,n

{zi,i+1,zi+1,i}i=1,...,n−1

n∑
i=1

ui +
n−1∑
i=1

di,i+1zi,i+1 +
n−1∑
i=1

di+1,izi+1,i

s.t. ui ≥ wi,0(xi − ai,1) + bi,1, i = 1, . . . , n,

ui ≥ wi,j(xi − ai,j) + bi,j, i = 1, . . . , n; j = 1, . . . , qi,

xi − xi+1 ≤ zi,i+1, i = 1, . . . , n − 1,

xi+1 − xi ≤ zi+1,i, i = 1, . . . , n − 1,

�i ≤ xi ≤ ui, i = 1, . . . , n,

zi,i+1, zi+1,i ≥ 0, i = 1, . . . , n − 1.

The simulated data sets. In the generated data sets there are no box con-
straints. For each convex piecewise linear deviation function, we let the slope of the
first linear piece be negative and the slope of the last linear piece be positive. That
guarantees that the problem has an optimal solution in a bounded interval. In the sep-
aration terms, we set di,i+1 = di+1,i = di, thus di,i+1(xi−xi+1)++di+1,i(xi+1−xi)+ =
di|xi − xi+1|. We set the number of breakpoints of each piecewise linear function
fpl

i (xi), qi, to all be equal to a common value q̄. Thus the total number of break-
points of the n convex piecewise linear functions is q = nq̄. For each pair of (n, q̄),
we generate 5 random problem instances, by randomly generating 5 groups of q̄ + 1
slope values, q̄ breakpoints (for each convex piecewise linear deviation function), and
di coefficients for the separation terms. The slopes of each fpl

i (xi) are randomly gen-
erated in increasing order as follows: We first sample the value of wi,0 from a uniform
distribution on (−q̄, 0). Each subsequent breakpoint wi,j (j = 1, . . . , qi) is generated
by adding a uniformly sampled random real value from (0, 100) to wi,j−1. The break-
points of fpl

i (xi) are generated in increasing order as follows: A first value, denoted as
ai,0, is sampled with uniform distribution from (−q̄, 0). This value is not a breakpoint.
Each subsequent breakpoint ai,j (j = 1, . . . , qi) is generated by adding a uniformly
sampled real value from (0, 100) to ai,j−1. This guarantees that the generated slopes
and breakpoints are strictly increasing in each convex piecewise linear function. Each
di value is sampled uniformly from the interval (0, q̄).

We compare the average running times of GIMR-Algorithm and Gurobi for the 5
random instances of GIMR for each pair of (n, q̄). We report the average running
times(standard deviations) for all six families of problem instances in Table 2.

From Table 2 one can see that GIMR-Algorithm is approximately 10 times faster
than Gurobi for each problem size with a smaller standard deviation.

2588 DORIT S. HOCHBAUM AND CHENG LU

8. Concluding remarks. We describe here an efficient algorithm that solves
GIMR (1.1), generalizing isotonic median regression and a class of fused lasso prob-
lems with wide applications in signal processing, bioinformatics, and statistical learn-
ing. The algorithm proposed here is the first known unified, and most efficient in
terms of complexity to date, for IMR, SIMR, and fused lasso problems with convex
piecewise linear deviation functions. The latter includes the Q-FL and the Q-wFL
problems. For all these problems our algorithm improves or matches on previous
complexities of a collection of specialized algorithms and offers a unified framework
for all these problems. The unified framework here is also amenable to extensions to
other generalized versions of GIMR, that include generalized IMR on simple structure
graphs, such as directed trees or cycles. The algorithm devised here is also shown to
work well in practice, as demonstrated in an empirical study.

Appendix A. Red-black tree data structure to maintain s-intervals.
A red-black tree is a binary search tree. Each node of the tree contains the following
five fields [12]:
color : The “color” of a node. Its value is either RED or BLACK.
key: The “key” value of a node. It is a scalar.
left, right : The pointers to the left and the right child of a node. If the corresponding
child does not exist, the corresponding pointer has value NIL.
p: The pointer to the parent of a node. If the node is the root node, the pointer value
is NIL.

As it is a binary search tree, the keys of the nodes are comparable. Furthermore,
it has the following two properties [12]:

1. Binary-search-tree property: Let x be a node in a binary search tree. If y is
a node in the left subtree of x, then key[y] ≤ key[x]. If y is a node in the right subtree
of x, then key[y] ≥ key[x].

2. Tree height property: A red-black tree with n nodes has height at most
2 log(n + 1).

We use a red-black tree data structure T to represent the set of s-intervals.
Each node of the tree represents one s-interval. Due to the disjointness property
of s-intervals, every s-interval is uniquely identified by its two endpoints. Thus
we extend the key field from a scalar to a tuple: For a node x representing an
s-interval [i�, ir], the key field of x, key[x], contains two values, key[x].f irst and
key[x].second, such that key[x].f irst = i� and key[x].second = ir. As a result, we
also define a comparison between the key tuples of two nodes, which can also be
viewed as a comparison between their corresponding s-intervals: For any two nodes
x1 (representing an s-interval [i�1, ir1]) and x2 (representing an s-interval [i�2, ir2]), we
define

1. key[x1] < key[x2]: if key[x1].second = ir1 < i�2 = key[x2].f irst. It is the
case where [i�1, ir1] is on the left of [i�2, ir2];

2. key[x1] = key[x2]: if key[x1].f irst = i�1 = i�2 = key[x2].f irst. It implies
that key[x1].second = ir1 = ir2 = key[x2].second. It is the case where x1 and x2 refer
to the same tree node and the same s-interval;

3. key[x1] > key[x2]: if key[x1].f irst = i�1 > ir2 = key[x2].second. It is the
case where [i�1, ir1] is on the right of [i�2, ir2].
As s-intervals do not overlap, the comparison of any two (possibly identical) nodes in
the tree must fall into exactly one of the above three outcomes.

The above is our only extension of the red-black tree discussed in [12] in our
algorithm. Since any two different nodes in the tree represent different s-intervals,

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2589

the binary-search-tree property still holds with the two inequalities being strict, i.e.,
“ ≤ ” → “ < ”. The tree height property still satisfies as its proof in [12] does not
involve the key fields.

A.1. Initializing the red-black tree with a single s-interval. In each of
the two algorithms presented in the paper, the red-black tree is initialized with a
single s-interval [1, n]. This is achieved by a subroutine z := new node(i�, ir) initial-
izing a new node z for s-interval [i�, ir], such that color[z] = RED, key[z].f irst =
i�, key[z].second = ir, and left[z] = right[z] = p[z] = NIL [12]. This is done
in O(1) time [12]. Thus the initialization of the tree is completed by calling z :=
new node(1, n). Node z is the root of the tree.

A.2. Pseudocode of subroutine [ik�, ikr] := get s interval(ik). Let root[T]
represent the root node of the red-black tree T . The pseudocode of get s interval is
[ik�, ikr] := get s interval(ik)
begin

z := root[T];
while z
= NIL:

if ik ≥ key[z].f irst and ik ≤ key[z].second {node ik is in the s-interval
represented by node z}
then ik� := key[z].f irst, ikr := key[z].second; return [ik�, ikr];
else if ik < key[z].f irst
then z := left[z];
else z := right[z];
end if

end while
end

The correctness of the pseudocode is justified by the binary-search-tree property
with the extended comparison for the key tuples. The complexity is determined by
the height of the tree. Note that since all s-intervals are originally decomposed from
the initial s-interval [1, n], then the number of s-intervals generated throughout the
algorithm is at most n. Thus the red-black tree has at most n nodes. Therefore the
tree height is at most 2 log(n + 1). As a result, the complexity of get s interval is
O(log n).

A.3. Pseudocode of subroutine update s interval(ik�, i∗
k1, i∗

k2, ikr). Cor-
men et al. in [12] define and analyze the following three operations on a red-black
tree with scalar key values:

1. TREE-SEARCH(T , k): Searching for a node in red-black tree T with a given
key value k. It returns a pointer to a node with key k if one exists; otherwise it returns
NIL. In our case the key value is a tuple and the comparison of scalar key values is
extended to key tuples.

2. RB-INSERT(T ,z): Inserting a node z into red-black tree T . The pseudo-
code involves comparing the key values of two nodes, where we can simply apply our
definition of a key tuple comparison. As a result, literally there is no change to the
pseudocode of RB-INSERT(T , z) in our extension.

3. RB-DELETE(T , z): Deleting a node z from red-black tree T . The pseudo-
code does not involve the key field, hence it is directly applicable to our extension.
Cormen et al. in [12] prove that each of the above operations has complexity O(log n)
for a tree of at most n nodes. The complexities are the same in our case with key
tuples.

2590 DORIT S. HOCHBAUM AND CHENG LU

update s interval is implemented by calling the above three built-in operations,
and the new node subroutine. It changes the red-black tree T .
update s interval(ik�, i

∗
k1, i

∗
k2, ikr)

begin
z := TREE-SEARCH(T, (ik�, ikr));
RB-DELETE(T, z);
if ik� ≤ i∗k1 − 1 then z := new node(ik�, i

∗
k1 − 1); RB-INSERT(T, z); end if

if i∗k2 + 1 ≤ ikr then z := new node(i∗k2 + 1, ikr); RB-INSERT(T, z); end if
end

As the tree has at most n nodes, each call to update s interval takes O(log n) time.

Appendix B. Dynamic path data structure to maintain the four arrays.
Dynamic path [43] is a data structure for a collection of vertex-disjoint paths. Each

path in the collection is an undirected symmetric path, where each edge has a real-
valued cost.

Each internal vertex of a path has two edges adjacent to it. To distinguish the
two edges, we define the following terminology. We designate one end of the path as
head and the other end as tail [43]. For any internal vertex v, we define the vertex
before vertex v as the index of the adjacent vertex of v that is closer to the head of
the path. Similarly, we define the vertex after vertex v as the index of the adjacent
vertex of v that is closer to the tail of the path [43]. For head vertex v, the vertex
before vertex v does not exist. Likewise, for tail vertex v, the vertex after vertex v
does not exist. The designation of the head and tail vertices is arbitrary. If the head
and tail vertices are reversed, the references to the vertices before and after vertex v
are also reversed accordingly.

The following 11 operations are supported in dynamic paths [43]:
p := path(v): Return the path p containing vertex v.
v := head(p): Return the head vertex v of path p.
v := tail (p): Return the tail vertex v of path p.
u := before(v): Return the vertex u before vertex v on path(v). If v is the

head of the path, return NIL.
u := after (v): Return the vertex u after vertex v on path(v). If v is the tail

of the path, return NIL.
x := pcost(v): Return the real-valued cost x of the edge (v, after (v)). If

vertex v is the tail of the path, return NIL.
v := pmincost(p): Return the vertex v closest to tail(p) such that (v, after (v))

has minimum cost among edges on path p. If p contains only one vertex (degenerate
case), return NIL.

pupdate(p, x): Add real value x to the cost of every edge on path p.
reverse(p): Reverse the direction of path p, making the head the tail and

vice versa.
p3 := concatenate(p1, p2, x): Merge paths p1 and p2 by adding the edge

(tail (p1), head(p2)) of real-valued cost x. Return the merged path p3.
[p1, p2, x, y] := split(v): Divide path(v) into (up to) three parts by deleting

the edges incident to v. Return a list [p1, p2, x, y], where p1 is the subpath consisting of
all vertices from head(path(v)) to before(v), p2 is the subpath consisting of all vertices
from after(v) to tail(path(v)), x is the cost of the deleted edge (before(v), v), and y
is the cost of the deleted edge (v, after (v)). If v is originally the head of path(v), p1
is NIL and x is undefined; if v is originally the tail of path(v), p2 is NIL and y is
undefined.

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2591

A dynamic path is implemented as a full balanced binary tree [43]. Each vertex
of the path is constructed as a leaf node of the tree and each edge of the path is
constructed as a nonleaf node of the tree, which stores the edge cost as a node field.
Besides, each node in the tree contains various other fields in support of efficient
implementation of the above 11 operations on dynamic paths. The complete details
of the binary tree implementation of a dynamic path was presented in [43, Chap. 4].

We highlight the complexity of each of the above operations: Sleator and Tarjan in
[43] show that, for a collection of dynamic paths with a total of O(n) vertices, head(p),
tail(p), pupdate(p, x), and reverse(p) each takes O(1) time and path(v), before(v),
after(v), pcost(v), pmincost(p), concatenate(p1, p2, x), and split(v) each takes O(log n)
time.

We define the following two additional split operations that are more convenient
to use for our purpose:

[p1, p2, x] := split-before(v): Divide path(v) into (up to) two parts by deleting
the edge (before(v), v). Return a list [p1, p2, x], where p1 is the subpath consisting of
all vertices from head(path(v)) to before(v), p2 is the subpath consisting of all vertices
from v to tail(path(v)), x is the cost of the deleted edge (before(v), v). If v is originally
the head of path(v), p1 is NIL and x is undefined.

[p1, p2, y] := split-after (v): Divide path(v) into (up to) two parts by deleting
the edge (v, after (v)). Return a list [p1, p2, y], where p1 is the subpath consisting of
all vertices from head(path(v)) to v, p2 is the subpath consisting of all vertices from
after(v) to tail(path(v)), y is the cost of the deleted edge (v, after (v)). If v is originally
the tail of path(v), p2 is NIL and y is undefined.

Both split-before and split-after can be implemented efficiently using concatenate
and split :
[p1, p2, x] := split-before(v)
begin

[p1, p2, x, y] := split(v);
if p2
= NIL then p2 := concatenate(v, p2, y);
else p2 := [v, v]; {a path with single vertex v}
end if
return [p1, p2, x];

end
[p1, p2, y] := split-after (v)
begin

[p1, p2, x, y] := split(v);
if p1
= NIL then p1 := concatenate(p1, v, x);
else p1 := [v, v]; {a path with single vertex v}
end if
return [p1, p2, y];

end
Since each subroutine calls one split and one concatenate operation, the complex-

ity of split-before(v) and split-after(v) is each O(log n). We include split-before(v) and
split-after(v) into our pool of dynamic path operations.

B.1. Initializing the four arrays for G0. For GIMR (1.1), the four arrays
are initiated for G0 as follows:
begin

sa(0) := 0, sa(i) := sa(i − 1) − wi,0 for i = 1, . . . , n;
psa := init dynamic path((sa(i))i=0,1,...,n);

2592 DORIT S. HOCHBAUM AND CHENG LU

Fig. 5. parray is a dynamic path constructed from array (array(i))i=0,1,...,n. In parray, we
designate vertex varray

0 as head and vertex varray
n+1 as tail. parray is implemented as a single full

balanced binary tree of n + 1 nonleaf nodes and n + 2 leaf nodes.

ta(i) := 0, for i = 0, 1, . . . , n;
pta := init dynamic path((ta(i))i=0,1,...,n);
tms(0) := 0, tms(i) := ta(i) − sa(i) + di,i+1, for i = 1, . . . , n − 1, tms(n) :=
ta(n) − sa(n);
ptms := init dynamic path((tms(i))i=0,1,...,n);
smt(0) := 0, smt(i) := sa(i) − ta(i) + di+1,i, for i = 1, . . . , n − 1; smt(n) :=
sa(n) − ta(n);
psmt := init dynamic path((smt(i))i=0,1,...,n);

end
Note that for �1-GIMR (5.1), wi,0 = −wi. An ordinary array is converted into

a dynamic path by subroutine parray := init dynamic path((array(i))i=0,1,...,n), which
takes as argument an array (array(i))i=0,1,...,n and returns a dynamic path parray

constructed from the array.
Let (array(i))i=0,1,...,n be any of the four arrays of n + 1 elements. We can

construct a dynamic path parray of n + 2 vertices, from vertex varray
0 to varray

n+1 , such
that the cost of edge (varray

i , varray
i+1) is array(i) for i = 0, 1, . . . , n (see Figure 5).

We use the concatenate operation to construct parray from array (array(i))i=0,1,...,n.
The pseudocode is the following:
parray := init dynamic path((array(i))i=0,1,...,n)
begin

Initialize dynamic path parray of a single vertex varray
0 , i.e., parray

:= [varray
0 , varray

0];
for i := 0, . . . , n:

Create dynamic path q of a single vertex varray
i+1 , i.e., q := [varray

i+1 , varray
i+1];

parray := concatenate(parray, q, array(i));
end for
return parray;

end
It takes O(1) time to create a single vertex dynamic path [43], therefore, the

complexity of the subroutine is O(n log n).
Note that by the definition of the concatenate operation, parray has vertex varray

0
as head and vertex varray

n+1 as tail. Recall that pcost(v) returns the cost of edge
(v, after (v)), hence array(i) is accessed by calling pcost(varray

i).

B.2. Pseudocode of subroutine update arrays(ik, wik,jk−1, wik,jk). We de-
fine subroutine update constant(parray, ik, w) that adds a constant value w to the
subpath of dynamic path parray that corresponds to the subarray from array(ik) to
array(n).
update constant(parray, ik, w)
begin

[p, q, x] := split-before(varray
ik

); {q is the subpath corresponding to the subar-
ray array(ik) to array(n)}
pupdate(q, w); {∀j ∈ [ik, n] : array(j) := array(j) + w}

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2593

if p
= NIL then parray := concatenate(p, q, x); else parray := q; end if
{Merge the split vertex-disjoint paths p and q back to a single dynamic path
parray corresponding to the whole array (array(i))i=0,1,...,n}

end
The complexity of each call to update constant is O(log n).

With update constant, update arrays is implemented as follows:
update arrays(ik, wik ,jk−1, wik,jk

)
begin

if wik ,jk−1 ≤ 0 and wik,jk
≤ 0 then

update constant(psa, ik, −(wik,jk
− wik,jk−1));

update constant(ptms, ik, wik,jk
− wik ,jk−1);

update constant(psmt, ik, −(wik,jk
− wik,jk−1));

else if wik,jk−1 ≤ 0 and wik,jk
≥ 0 then

update constant(psa, ik, wik,jk−1);
update constant(pta, ik, wik,jk

);
update constant(ptms, ik, wik,jk

− wik ,jk−1);
update constant(psmt, ik, −(wik,jk

− wik,jk−1));
else if wik,jk−1 ≥ 0 and wik,jk

≥ 0 then
update constant(pta, ik, wik,jk

− wik,jk−1);
update constant(ptms, ik, wik,jk

− wik ,jk−1);
update constant(psmt, ik, −(wik,jk

− wik,jk−1));
end if

end
As update arrays makes constant a number of calls to update constant, then the

complexity of update arrays is O(log n).
For the special case of �1-GIMR (5.1), update arrays is called with argument

wik,jk−1 = −wik
and wik,jk

= wik
.

B.3. A pseudocode of subroutine [i∗
k1, i∗

k2]. The following pseudocode op-
erates on the dynamic paths of the four arrays:
[i∗k1, i

∗
k2] := find status change interval(ik�, ik, ikr)

begin
{Identify îk1}
if ik� = ik then îk1 := ik�, f1(̂ik1) = pcost(vsa

ik
) − pcost(vsa

ik�−1);
else

{Identify ĩk1 ∈ [ik� + 1, ik]}
[p1, p2, x] := split-before(vtms

ik�
); {Path ptms is split into path p1 and path

p2}
[q1, q2, y] := split-after (vtms

ik
); {Path p2 is split into path q1 and path q2.

Path q1 corresponds to the subarray tms(ik�) to tms(ik − 1)}
ĩk1 := pmincost(q1) + 1;
{Recover a single dynamic path ptms for (tms(i))i=0,1,...,n}
if q2
= NIL then ptms := concatenate(q1, q2, y); else ptms := q1; end
if
if p1
= NIL then ptms := concatenate(p1, ptms, x); end if
f1(̃ik1) := pcost(vtms

ĩk1−1
) − pcost(vta

ik�−1) + pcost(vsa
ik

) + dik�,ik�−1;
f1(ik�) := pcost(vsa

ik
) − pcost(vsa

ik�−1);
if f1(̃ik1) ≤ f1(ik�) then îk1 := ĩk1, f1(̂ik1) := f1(̃ik1); else îk1 := ik�,
f1(̂ik1) := f1(ik�); end if

end if

2594 DORIT S. HOCHBAUM AND CHENG LU

{Identify îk2}
if ikr = ik then îk2 := ikr; f2(̂ik2) := pcost(vsa

ikr
) − pcost(vsa

ik
);

else
{Identify ĩk2 ∈ [ik, ikr − 1]}
[p1, p2, x] := split-before(vsmt

ik
); {Path psmt is split into path p1 and path

p2}
[q1, q2, y] := split-after (vsmt

ikr
); {Path p2 is split into path q1 and path q2.

Path q1 corresponds to the subarray smt(ik) to smt(ikr − 1)}
reverse(q1); {Make vsmt

ik
as the tail and vsmt

ikr
as the head}

ĩk2 := pmincost(q1);
reverse(q1); {Resume vsmt

ik
as the head and vsmt

ikr
as the tail}

{Recover a single dynamic path psmt for (smt(i))i=0,1,...,n}
if q2
= NIL then psmt := concatenate(q1, q2, y); else psmt := q1; end
if
if p1
= NIL then psmt := concatenate(p1, psmt, x); end if
f2(̃ik2) := pcost(vsmt

ĩk2
) − pcost(vsa

ik
) + pcost(vta

ikr
) + dikr ,ikr+1;

f2(ikr) := pcost(vsa
ikr

) − pcost(vsa
ik

);
if f2(̃ik2) ≤ f2(ikr) then îk2 := ĩk2, f2(̂ik2) := f2(̃ik2); else îk2 := ikr,
f2(̂ik2) := f2(ikr); end if

end if
Z([̂ik1, îk2]) := f1(̂ik1) + f2(̂ik2);
Z(∅) := pcost(vta

ikr
) − pcost(vta

ik�−1) + dik�,ik�−1 + dikr ,ikr+1;
if Z(∅) ≤ Z([̂ik1, îk2]) then [i∗k1, i

∗
k2] := ∅; else [i∗k1, i

∗
k2] := [̂ik1, îk2]; end if

return [i∗k1, i
∗
k2];

end
The number of calls to the dynamic path operations is constant. More precisely,

there are 16 calls to pcost, 2 calls to split-before, 2 calls to split-after, 2 calls to
pmincost, 4 calls to concatenate, and 2 calls to reverse. Therefore the complexity of
find status change interval is O(log n).

REFERENCES

[1] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin, Solving the convex cost integer dual network
flow problem, Manag. Sci., 49 (2003), pp. 950–964.

[2] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin, A cut-based algorithm for the convex dual
of the minimum cost network flow problem, Algorithmica, 39 (2004), pp. 189–208.

[3] R. K. Ahuja and J. B. Orlin, A fast scaling algorithm for minimizing separable convex
functions subject to chain constraints, Oper. Res., 49 (2001), pp. 784–789.

[4] S. Angelov, B. Harb, S. Kannan, and L.-S. Wang, Weighted isotonic regression under the
L1 norm, in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithm,
SODA, SIAM, Philadelphia, 2006, pp. 783–791.

[5] M. Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and E. Silverman, An empirical dis-
tribution function for sampling with incomplete information, Ann. Math. Stat., 26 (1955),
pp. 641–647.

[6] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk, Statistical Inference
under Order Restrictions: The Theory and Application of Isotonic Regression, Wiley, New
York, 1972.

[7] R. E. Barlow and H. D. Brunk The isotonic regression problem and its dual, J. Amer.
Statist. Assoc., 67 (1972), pp. 140–147.

[8] D. J. Bartholomew, A test for homogeneity for ordered alternatives, Biometrika, 46 (1959),
pp. 36–48.

[9] D. J. Bartholomew, A test for homogeneity for ordered alternatives II, Biometrika, 46 (1959),
pp. 328–335.

ISOTONIC MEDIAN REGRESSION AND FUSED LASSO 2595

[10] N. Chakravarti, Isotonic median regression: A linear programming approach, Math. Oper.
Res., 14 (1989), pp. 303–308.

[11] T. F. Chan and S. Esedoglu, Aspects of total variation regularized L1 function approxima-
tion, SIAM J. Appl. Math., 65 (2005), pp. 1817–1837.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
MIT Press, Cambridge, MA, 2009.

[13] K. Dembczyński, W. Kotlowski, and R. Slowiński, Learning rule ensembles for ordinal
classification with monotonicity constraints, Fund. Inform. 94 (2009), pp. 163–178.

[14] L. Dümbgen and A. Kovac, Extensions of smoothing via taut strings, Electron. J. Stat., 3
(2009), pp. 41–75.

[15] P. H. C. Eilers and R. X. de Menezes, Quantile smoothing of array CGH data, Bioinfor-
matics, 21 (2005), pp. 1146–1153.

[16] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, A fast parametric maximum flow algorithm
and applications, SIAM J. Comput., 18 (1989), pp. 30–55.

[17] D. S. Hochbaum, Lower and upper bounds for the allocation problem and other nonlinear
optimization problems, Math. Oper. Res., 19 (1994), pp. 390–409.

[18] D. S. Hochbaum, An efficient algorithm for image segmentaion, Markov random fields, and
related problems, J. ACM, 48 (2001), pp. 686–701.

[19] D. S. Hochbaum, Complexity and algorithms for nonlinear optimization problems, Ann. Oper.
Res., 153 (2007), pp. 257–296.

[20] D. S. Hochbaum, The pseudoflow algorithm: A new algorithm for the maximum flow problem,
Oper. Res., 58 (2008), pp. 992–1009.

[21] D. S. Hochbaum and J. B. Orlin, Simplifications and speedups of the pseudoflow algorithm,
Networks, 61 (2013), pp. 40–57.

[22] D. S. Hochbaum and M. Queyranne, Minimizing a convex cost closure set, SIAM J. Discrete
Math., 16 (2003), pp. 192–207.

[23] D. S. Hochbaum and J. G. Shanthikumar, Convex separable optimization is not much harder
than linear optimization, J. ACM, 37 (1990), pp. 843–862.

[24] A. T. Kalai and R. Sastry, The isotron algorithm: High-dimensional isotonic regression, in
Proceedings of Computational Learning Theory, COLT, Montreal, Quebec, 2009.

[25] Y. Kaufman and A. Tamir, Locating service centers with precedence constraints, Discrete
Appl. Math., 47 (1993), pp. 251–261.

[26] V. Kolmogorov, T. Pock, and M. Rolinek, Total variation on a tree, SIAM J. Imaging Sci.,
9 (2016), pp. 605–636.

[27] Y. J. Li and J. Zhu, Analysis of array CGH data for cancer studies using fused quantile
regression, Bioinformatics, 23 (2007), pp. 2470–2476.

[28] W. L. Maxwell and J. A. Muckstadt, Establishing consistent and realistic reorder intervals
in production/distribution systems, Oper. Res., 33 (1985), pp. 1316–1341.

[29] J. A. Mendendez and B. Salvador, An algorithm for isotonic median regression, Comput.
Statist. Data Anal., 5 (1987), pp. 399–406.

[30] R. E. Miles, The complete amalgamation into blocks, by weighted means, of a finite set of real
numbers, Biometrika, 46 (1959), pp. 317–327.

[31] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Applica-
tion to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), pp. 965–994.

[32] A. Painsky and S. Rosset, Isotonic modeling with non-differentiable loss functions with appli-
cation to lasso regularization, IEEE Trans. Pattern Anal. Mach. Intell., 38 (2016), pp. 308–
321.

[33] P. M. Pardalos, G. L. Xue, and L. Yong, Efficient computation of an isotonic median
regression, Appl. Math. Lett., 8 (1995), pp. 67–70.

[34] K. Punera and J. Ghosh, Enhanced hierarchical classification via isotonic smoothing, in
Proceedings of the 17th International Conference on World Wide Web, WWW, ACM,
New York, 2008, pp. 151–160.

[35] A. Restrepo and A. C. Bovik, Locally monotonic regression, IEEE Trans. Signal Process.,
41 (1993), pp. 2796–2810.

[36] T. Robertson and P. Waltman, On estimating monotone parameters, Ann. Math. Statist.,
39 (1968), pp. 1030–1039.

[37] T. Robertson and F. T. Wright, Multiple isotonic median regression, Ann. Statist., 1 (1973),
pp. 422–432.

[38] T. Robertson and F. T. Wright, Algorithms in order restricted statistical inference and the
Cauchy mean value property, Ann. Statist., 8 (1980), pp. 645–651.

[39] T. Robertson, F. T. Wright, and R. L. Dykstra, Order Restricted Statistical Inference,
Wiley, New York, 1988.

2596 DORIT S. HOCHBAUM AND CHENG LU

[40] R. Roundy, A 98%-effective integer-ratio lot-sizing for one-warehouse multi-retailer systems,
Manag. Sci., 31 (1985), pp. 1416–1430.

[41] Y. U. Ryu, R. Chandrasekaran, and V. Jacob, Prognosis using an isotonic prediction
technique, Manag. Sci., 50 (2004), pp. 777–785.

[42] T. S. Shively, S. G. Walker, and P. Damien, Nonparametric function estimation subject to
monotonicity, convexity and other shape constraints, J. Econometrics, 161 (2011), pp. 166–
181.

[43] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System
Sci., 24 (1983), pp. 362–391.

[44] M. Storath, A. Weinmann, and M. Unser, Exact algorithms for L1-TV regularization of
real-valued or circle-valued signals, SIAM J. Sci. Comput., 38 (2016), pp. A614–A630.

[45] R. J. Tibshirani, H. Hoefling, and R. Tibshirani, Nearly-isotonic regression, Technometrics,
53 (2011), pp. 54–61.

[46] R. J. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, Sparsity and smoothness
via the fused lasso, J. Roy. Statist. Soc., Ser. B, 67 (2005), pp. 91–108.

[47] A. F. Veinott, Jr., Least d-majorized network flows with inventory and statistical applica-
tions, Manag. Sci., 17 (1971), pp. 547–567.

[48] H. S. Wang, G. D. Li, and G. H. Jiang, Robust regression shrinkage and consistent variable
selection through the LAD-lasso, J. Bus. Econom. Statist., 25 (2007), pp. 347–355.

	Introduction
	Special cases of GIMR and applications
	Models with deviation terms only
	Models that include separation/regularization terms

	Best algorithms for partial order estimation
	Best algorithms for total order estimation
	Summary of results

	Overview

	Notation and preliminaries
	Review of Hochbaum's algorithm for MRF
	Overview of GIMR-Algorithm
	Additional notation

	1-GIMR-Algorithm
	Finding node status change interval
	Data structure to find node status change interval efficiently
	The complete 1-GIMR-Algorithm

	Extending 1-GIMR-Algorithm to GIMR-Algorithm
	Experimental study
	Concluding remarks
	Appendix A. Red-black tree data structure to maintain s-intervals
	Initializing the red-black tree with a single s-interval
	Pseudocode of subroutine ...
	Pseudocode of subroutine update_s_interval(ik, i*k1, i*k2, ikr)

	Appendix B. Dynamic path data structure to maintain the four arrays
	Initializing the four arrays for G0
	Pseudocode of subroutine update_arrays(ik, wik,jk-1, wik,jk)
	A pseudocode of subroutine [i*k1, i*k2]

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

