This article was downloaded by: [128.32.10.164] On: 04 November 2017, At: 15:52
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

OprEraTIONS 1

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Scheduling Semiconductor Burn-In Operations to Minimize
Total Flowtime

Dorit S. Hochbaum, Dan Landy,

To cite this article:
Dorit S. Hochbaum, Dan Landy, (1997) Scheduling Semiconductor Burn-In Operations to Minimize Total Flowtime. Operations
Research 45(6):874-885. https://doi.org/10.1287/0opre.45.6.874

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1997 INFORMS

Please scroll down for article—it is on subsequent pages

infy

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

RIGHTSE LI MN iy

http://pubsonline.informs.org
https://doi.org/10.1287/opre.45.6.874
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

SCHEDULING SEMICONDUCTOR BURN-IN OPERATIONS
TO MINIMIZE TOTAL FLOWTIME

DORIT S. HOCHBAUM AND DAN LANDY

University of California, Berkeley, California
(Received August 1994; revisions received June 1995; accepted November 1995)

This paper addresses a problem of batch scheduling which arises in the burn-in stage of semiconductor manufacturing. Burn-in ovens
are modeled as batch-processing machines which can handle up to B jobs simultaneously. The processing time of a batch is equal to
the longest processing time among the jobs in the batch. The scheduling problem involves assigning jobs to batches and
determining the batch sequence so as to minimize the total flowtime. In practice, there is a small number m of distinct job types.
Previously, the only solution techniques known for the single-machine version of this problem were an O(m>B™*") pseudopolyno-
mial algorithm, and a branch-and-bound procedure. We present an algorithm with a running time of O(m?3™), which is independent
of B, the maximum batch size. We also present a polynomial heuristic for the general problem (when m is not fixed), which is a
two-approximation algorithm. For any problem instance, this heuristic provides a solution at least as good as that given by previously
known heuristics. Finally, we address the m-type problem on parallel machines, providing an exact pseudopolynomial algorithm and
a polynomial approximation algorithm with a performance guarantee of (1 + V2)/2.

his paper addresses a batch scheduling problem that

arises in the manufacture of integrated circuits. The
final stage in the production of circuits is the burn-in op-
eration, in which chips are loaded onto boards which are
then placed in an oven and exposed to high temperatures.
The purpose of this operation is to subject the circuits to
thermal stress, thereby weeding out the chips which might
experience an early failure under normal operating
conditions.

Each chip has a prespecified minimum burn-in time,
which may depend on its type and/or the customer’s re-
quirements. The burn-in oven has a limited capacity, so
the circuit boards holding the chips must be divided into
batches. Since chips may stay in the oven for a period
longer than their minimum required burn-in time, it is
possible to place different products in the oven simulta-
neously. The processing time of each batch will therefore
be equal to the longest minimum exposure time among al
the products in the batch. Scheduling burn-in operations
thus involves assigning jobs to batches and deciding upon
the sequence in which the batches will be processed so as
to optimize some objective function.

In this paper we consider the problem of scheduling to
minimize total flowtime (i.e., the sum of job completion
times). This objective, which is equivalent to minimizing
the average time spent in the system by a job, increases
throughput and reduces work-in-process inventories. This
is especially important in the scheduling of burn-in opera-
tions, which are often a bottleneck in the final stage of
semiconductor production due to their long processing
times relative to the other testing operations.

Chandru et al. (1993a) proposed a branch-and-bound
algorithm to solve the problem exactly, but the procedure

is only effective for small problem instances. They also
described two heuristics which find good approximate so-
lutions in pseudopolynomial time, and showed how to ex-
tend these heuristics to the parallel machines burn-in
problem.

Chandru et al. (1993b) also considered a restricted ver-
sion of the problem on a single machine, in which there is
a fixed number of job types, and jobs of the same type have
the same processing time. We shall refer to this problem
as the m-type burn-in problem. The assumption of a fixed
number of job types accurately describes the real world of
semiconductor manufacturing, since a typical facility pro-
duces fewer than 10 distinct circuit types at a time. Chan-
dru et al. provided a dynamic programming algorithm
(henceforth referred to as the CLU algorithm) with run-
ning time O(m>B™*"), where m is the number of job types
and B is the maximum batch size (oven capacity). Al-
though the authors consider mm to be fixed, their algorithm
still depends upon the value of B, making it pseudo-
polynomial.

The usefulness of the CLU algorithm in practice de-
pends heavily on the size of B, the oven capacity. The
authors assume that the manner in which chips are loaded
onto circuit boards is given, so that a board is taken to be a
single job (with processing time determined by the chip on
the board with the longest required burn-in time), and the
capacity B is defined as the number of boards that fit in
the oven. Even with this simplified model, the fact that the
capacity of a typical burn-in oven is between 100 and 200
boards means that the running time of O(m>B™*") is prac-
tical only for small values of m. If the assumption is
dropped—that is, if individual chips are considered as

Subject classifications: Production/scheduling, applications: semiconductor burn-in operations. Dynamic programming, applications. scheduling semiconductor burn-in

operations
Area of review: MANUFACTURING, OPERATIONS AND SCHEDULING.

Operations Research
Vol. 45, No. 6, November-December 1997

RIGHTS L

0030-364X/97/4506-0874 $05.00
© 1997 INFORMS

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

jobs—then B, the oven capacity, is a number in the
thousands.

The only other exact solution procedure for the burn-in
problem is the branch-and-bound procedure described by
Chandru et al. (1993a). The running time of this procedure
depends both on B and n, the total number of jobs, and
computational results indicate that the procedure is only
effective for solving problem with a small number (30 or
fewer) of jobs.

In this paper we present an algorithm for the m-type
burn-in problem which has a running time of O(m?3™).
This running time is independent of B, and may therefore
be used to model the more open-ended scenario in which
chips can be placed on boards as desired. The running
time is also independent of #, and may thus be used to
solve problems with any number of jobs. We present com-
putational results that verify that the algorithm is quite fast
even for large problems.

We also consider the general burn-in problem on a sin-
gle machine, in which the number of distinct job types is
not fixed. Although the complexity of this problem is un-
known, it can be solved in polynomial time when B = 2
(Hochbaum and Landy 1995). We present a dynamic pro-
gramming based heuristic for the general problem which
guarantees a solution that is at most twice the value of the
optimal solution. Furthermore, the heuristic always finds a
solution at least as good as those provided by the heuristics
of Chandru et al. (1993a), and empirical tests indicate that
it provides significantly better solutions in practice. Finally,
we consider the m-type burn-in problem on parallel ma-
chines, and show that it can be solved exactly by a pseudo-
polynomial algorithm, or solved within a factor of (1 +
V/2)/2 of the optimal solution in polynomial time.

Related research has been done by Lee et al. (1992),
who provided dynamic programming algorithms for the
single machine burn-in scheduling problem with several
objective functions, including minimizing the maximum
lateness and minimizing the number of tardy jobs, under
various assumptions about processing times, release times,
and due dates. A survey of other planning and scheduling
problems in the semiconductor industry can be found in
(Uszoy et al. 1990).

Other authors have examined various types of schedul-
ing problems on a single batch processing machine. In one
such problem, the processing time of each batch depends
on a fixed setup time and on the sum of the processing
times of the jobs in the batch. This problem has been
addressed with the objective function of minimizing the
sum of (weighted) completion times by Dobson et al.
(1987), Coffman et al. (1989), Albers and Brucker (1993),
Brucker (1991), Coffman et al. (1990), Naddef and Santos
(1988), and Shallcross (1992). The objective of minimizing
the weighted number of tardy jobs was analyzed by Hoch-
baum and Landy (1994). In a batch scheduling problem
described by Ikura and Gimple (1986), all jobs have equal
processing times and agreeable release times and dead-
lines, and the processing time of a batch is independent of

RIGHTS L

HocusauMm anNDp LaNnDy / 875

the number of jobs in the batch. Ahmadi et al. (1992)
study a flowshop with two or three machines in which one
machine is a batch processor and the batch processing
time is the same for all jobs. Glassey and Weng (1991)
present heuristics for the problem of minimizing total
completion time on a batch processing machine when jobs
arrive dynamically over time.

Several researchers have addressed the problem of
scheduling jobs on parallel machines to minimize the
weighted flowtime, which is closely related to the parallel
machine burn-in problem. The parallel machine weighted
flowtime problem was shown to be NP-hard by Bruno et
al. (1974), and pseudopolynomial algorithms were de-
scribed by Lawler and Moore (1969), Rothkopf (1965),
and Lee and Uzsoy (1992). Kawaguchi and Kyan (1986)
presented an O(r log n) time approximation algorithm
with a worst-case performance ratio of (V2 + 1)/2 ~ 1.2.
We shall make use of some of these results in our analysis
of the parallel machine burn-in problem.

1. THE m-TYPE BURN-IN PROBLEM

Suppose there are m job types numbered 1...m, and for
each type t+ € {1...m} there are n, jobs, each having
processing time p,, where p; < p,<--- <p,,. We will say
that type ¢ is smaller than type w if t < w (i.e., if p, <p,).
Let B be the maximum batch size. A schedule § =
(By, - - -, By) is a sequence of batches, where each batch B;
is a set containing |B,| jobs, with |B;| < B for each j €
{1...k}. The processing time of batch B;, denoted by
p(B)), is equal to the largest processing time among the
jobs in the batch:

p(B,) = max{p, : batch B, contains a job of type t}.

The cost of schedule S = (B, ..., By), denoted by C(S), is
the sum of job completion times. Since the completion
time of each job is simply the completion time of the batch
in which it appears, the cost of the schedule is given by:

cs)= 3 81(3 p8)

The m-type burn-in problem is to find a schedule S that
minimizes C(S).

Example 1. Consider an instance with B = 3, and four
types of jobs:

Type D n,
1 3 1
2 5 1
3 8 2
4 9 2

Representing jobs by their processing times, we can
write the optimal schedule as the following sequence of
three batches: {3, 5}, {8, 9, 9}, {8}. There are two jobs
with a completion time of 5, three jobs with a completion
time of 14, and one job with a completion time of 22, so
the cost of this schedule is2-5 +3-14 + 1-22 = 74.

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

876 / HOCHBAUM AND LANDY

Throughout the paper we will make use of an alternative
method for calculating the cost of a schedule. For a sched-
ule § = (B,,..., By), we may calculate the cost of S by
multiplying each batch processing time by the number of
jobs which are either in the batch or in one of the subse-
quent batches, as follows:

c(s) = ép(B,) (]i).

Each of the k terms in this sum represents the contribution
that the processing time of a batch makes to the comple-
tion times of all the jobs that follow this batch, inclusive.
Applying this method of calculation to the numerical
example above, we see that the first batch contributes a
processing time of 5 to a total of six jobs, the second batch
contributes a processing time of 9 to four jobs, and the last
batch contributes a processing time of 8 to one job. The
cost of the schedule is therefore 5-6 +9-4 + 8-1 = 74,
Using the notation introduced by Chandru et al
(1993b), a batch is called full if it contains B jobs, and
homogeneous if it contains jobs of a single type. We expand
this terminology as follows. A batch will be called t-pure if
it is homogeneous with jobs of type t. A batch that is not
full will be called a partial batch. Finally, if p, = p(B;) is the
largest processing time in a batch B;, ¢ is called the domi-
nant type of B;; alternatively, we say type t dominates batch
B

.
1.1. Structural Properties of Optimal Schedules

Here we state several structural properties of optimal
schedules which were proved by Chandru et al. (1993b).
These are then augmented with some further properties
which will provide the basis for the algorithm that follows.

Lemma 1 (CLU). Suppose a schedule S = (B, ..., By)
has k batches, where p(B,) and |B,| are the processing time
and the number of jobs in batch B,, respectively. Then the
sequence of batches is optimal if

p(B1) _pBz) _ _p(By)
IB:| ~ [Ba2] A

Adopting the terminology of Chandru et al. (1993b), we
say that a sequence of batches which satisfies the preced-
ing property is in batch weighted shortest processing time
(BWSPT) order.

Lemma 2 (CLU). There exists an optimal solution contain-
ing Ln,/B) homogeneous and full batches of type t, and
these batches will be sequenced consecutively, for each t €
{1...m]}.

By Lemma 2, it may be possible to immediately schedule
some jobs in full homogeneous batches. Assuming this has
been done, there are n, (mod B) jobs remaining for each
t € {1...m}. These jobs will be referred to as leftover
jobs, and the batches that contain these job will be referred
to as leftover batches. The following lemma states that
there is always an optimal schedule in which all leftover

RIGHTS L

jobs in the same batch are consecutive with respect to their
processing times.

Lemma 3 (CLU). There exists an optimal solution in
which the jobs in each leftover batch are consecutive with
respect to processing times, that is: for any three leftover
jobs with processing times p; < p; < p,, if a batch contains
the jobs with processing times p; and p,, it must also con-
tain the job with processing time p,.

It is easy to verify that the preceding structural proper-
ties are not mutually exclusive; that is, there always exists
an optimal solution that satisfies all of the properties. Us-
ing only these properties, Chandru et al. (1993b) devised a
dynamic programming algorithm that solves the burn-in
problem in O(m>B™"!) operations. Before presenting a
faster algorithm, we must prove some additional structural
properties of the leftover batches in optimal solutions.

Lemma 4. In every optimal schedule that satisfies the prop-
erties of Lemmas 1-3, each job type t € {1...m} domi-
nates at most one leftover batch.

Proof. Suppose that type ¢ dominates two different left-
over batches in an optimal schedule that satisfies the prop-
erties of Lemmas 1-3. Denote the batches by B, and B,,
and suppose that B, precedes B, in the schedule. If |B,| +
|B,| < B, then the cost of the schedule can be strictly
decreased by moving all of the jobs in B, into By, and
eliminating batch B,, thus contradicting the optimality of
the schedule. Suppose |B,| + |B,| > B. Then either B, or
B, must contain some jobs of a type other than ¢. (Recall
that there are n, mod B leftover jobs of type t.) The fact that
type ¢t dominates both batches, together with the consecu-
tivity property of Lemma 3, implies that exactly one of B,
and B, contains jobs that are not of type ¢, and these jobs
have type(s) smaller than ¢ (i.e., these jobs have shorter
processing times). Consider two possible cases:

Case 1. B, is t-pure; B, contains jobs of smaller type(s).
The schedule may be improved in two steps. First move
type-t jobs from B, into B, until B, is full (or do nothing if
B, is already full). If any jobs are moved then the cost of
the schedule is strictly decreased, because the completion
times of the moved jobs are decreased while the comple-
tion times of all other jobs are unchanged. Next swap the
remaining jobs in B, (which are type-¢) with an equal num-
ber of jobs in B; of type smaller than z. This move strictly
decreases the cost of the schedule, because it decreases the
processing time of batch B,. The strict decrease in cost
contradicts the optimality of the original schedule. Note
that there are always enough jobs of type other than ¢ to
make this swap, because there are fewer than B leftover
jobs of type ¢ in total.

Case 2. B, is t-pure; B, contains jobs of smaller type(s).
Moving all the type-t jobs from B, to B, strictly decreases
the cost of the schedule, contradicting its optimality. Such

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

a move is always possible because B, can not be full, since
there are fewer than B leftover jobs of type ¢. []

An immediate consequence of this result is that an opti-
mal schedule will have at most m leftover batches. The
following lemma establishes the fact that when these
batches are not full they will be sequenced in order of
increasing processing times. Only full batches will not
agree with this ordering.

Lemma 5. In any optimal schedule, if there are two leftover
jobs i and | with processing times p, < p, such that the
batch containing job j precedes the batch containing job i,
then job j must be in a full batch.

Proof. Suppose j precedes i but j’s batch is not full. Then
moving job i into the same batch with job j strictly de-
creases the cost of the schedule, since the completion time
of job i is reduced while all other job completion times are
unchanged. This strict decrease in cost contradicts the op-
timality of the original schedule. []

Let a basic schedule be one that satisfies the properties
described in Lemmas 1-5. Since there is always an optimal
schedule that is basic, an algorithm for the m-type burn-in
problem may restrict its search to such schedules. Consider
the following general strategy for finding an optimal basic
schedule:

1. For each t € {1...m}, create Ln/B] full homoge-
neous batches of type .

2. List the leftover jobs in order of increasing processing
time.

3. Divide the list into m or fewer batches (of size B or
less) by indicating where each batch begins and ends.
(By the consecutivity property of Lemma 3, this suf-
fices to define the batches).

4. Arrange the batches (from Steps 1 and 3) in order of
increasing p(B,)/|B,| ratios, and evaluate the cost of the
resulting schedule.

5. Repeat Steps 3 and 4 as necessary to create candidate
schedules, and choose the one with lowest cost.

Except for number 3, all these steps are straightforward
and can be done quickly. The key to developing an effi-
cient algorithm thus depends upon the approach used in
Step 3. In general, the large number of possible ways of
batching the jobs in Step 3 means that a complete enumer-
ation will not be efficient. In the next section we show that
the optimal solution can be determined by enumerating
only a small subset of all the possibilities. To this end we
introduce the following terminology.

A batching is a list of leftover batches, where every left-
over job appears in exactly one batch. A batching is called
basic when it satisfies the properties described in Lemmas
3 and 4, namely:

e jobs are consecutive with respect to processing time in
each batch, and
e cach job type dominates at most one leftover batch.

RIGHTS L

HocHBAUM AND LaNDY / 877

Note that a basic schedule is composed of a basic batch-
ing together with some number of full homogeneous
batches, where the batches (both homogeneous and left-
over) are sequenced according to Lemma 1.

Every basic batching can be represented by listing all
leftover jobs in order of increasing processing times from
left to right and then inserting breakpoints into the list,
indicating where each batch begins and ends. With this
representation in mind, we may describe both batches and
jobs as being to the left or right of other batches and jobs.
Note that these references to left and right only apply to
the batching (in which batches are ordered by dominant
type), and not to the final schedule, in which batches are
ordered according to Lemma 1. Consider, for instance, the
optimal schedule in Example 1 above. The corresponding
batching is: {3, 5}, {8}, {8, 9, 9}. Although batch {8} is to
the left of {8, 9, 9} in the batching, it becomes the last
batch in the final schedule.

1.2. Leftmost Batchings

1.2.1. Definitions. One way of describing a batching is to
indicate which job type dominates each batch. More spe-
cifically, we might indicate which types dominate full
batches and which dominate partial batches. Given two
sets of job types, F, P C {1...m}, suchthat FN P = @,
we say that a basic batching s{ agrees with the pair (F, P) if
for each job type t € {1...m}:

e ¢t € F if and only if + dominates a full batch in «,
e t € P if and only if + dominates a partial batch in A,
e t € (F U P)° otherwise.

In general there may be more than one basic batching that
agrees with a given (F, P) pair, or there may be no such
basic batching, in which case the pair (F, P) will be called
infeasible. If there is at least one basic batching that agrees
with (F, P) we may define a new batching, denoted by L(F,
P), which will be called the leftmost batching with respect
to (F, P). L(F, P) is the unique basic batching that agrees
with (F, P), and in which all jobs are pushed to the “left”
as much as possible. This means that if the batches are
arranged from left to right in order of increasing process-
ing time (i.e., dominating type), then it is impossible to
move a job from its current batch into a batch to the left
and still have a batching that agrees with (F, P).

1.2.2. Constructing the Leftmost Batching L(F,
P). Given the pair (F, P), constructing the corresponding
leftmost batching is fairly straightforward. The basic idea is
to proceed from left to right, adding as many jobs as pos-
sible to each batch while maintaining agreement with (F,
P). At some point it may happen that a certain batch is
required to be full, but adding the next job will change the
dominant type of the batch, preventing agreement with (F,
P). In this case it will be necessary to pull jobs from the
batches to the left in order to fill the current batch. A
detailed description of the procedure follows.

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

RIGHTS

878 / HocHBAUM AND LANDY

The dominating types in F U P are sorted into a list in
order of increasing processing times; the leftover jobs are
sorted into another list, also in order of increasing processing
times. At each stage of the procedure, a partial batching that
agrees with (F, P) has already been created; it consists of a
sequence of batches arranged from left to right in order of
increasing dominant type. Let ¢ be the next dominating
type in the list which has not yet been assigned to a batch.
t is assigned to the current batch, and jobs which are not
yet in the batching are added to this batch in order of
increasing processing time. The way that jobs are added
depends upon whether the batch is to be partial or full
(ie., whethert € Fort € P).

If + € P, jobs are added to the batch dominated by ¢
until either:

P1. The batch contains B — 1 jobs, or

P2. The last job added is of type ¢, and the next job to be
added is of type f > t.

If t+ € F, jobs are added to the batch dominated by ¢
until either:

F1. The batch contains B jobs, or

F2. The batch contains fewer than B jobs, and the next job
to be added is of type £ > ¢.

If case P1 or F1 occurs, and the last job that was added
to the batch is of type ¢, or if case P2 occurs, then the batch
agrees with (F, P). Furthermore, it is impossible to add
another job to the batch and maintain agreement with (F,
P) (since adding another job will either change the domi-
nant type or make the batch full when it should be partial).
At this point the batch is appended to the batching (at the
right end), and the procedure continues by starting a new
batch with the next dominant type in the list.

If case P1 or F1 occurs but the last job added to the
batch was of type { < ¢, then the procedure stops. It is
impossible to add more jobs to the batch (while keeping it
partial or full as required) without pushing some jobs into
carlier batches. But since the earlier batches were packed
as full as possible, there is no way to add jobs to them
while maintaining agreement with (F, P). Hence there is
no basic batching that agrees with (F, P).

Finally, suppose case F2 occurs, and the batch has B — &
jobs, for some k& > 0. The batch is not full, but adding the
next job will cause the dominant type to be { > ¢. In this
case the only possibility for filling the batch while main-
taining agreement with (F, P) is to pull k jobs from preced-
ing batches (i.e. those to the left of the current batch).

A pull begins at the nearest (rightmost) preceding batch
that is not full, because if jobs are removed from a full
batch then it will become partial and the batching will no
longer agree with (F, P). If there is no partial batch pre-
ceding the current batch, then there is no pull available
and hence no basic batching that agrees with (F, P). Sup-
pose there is a preceding partial batch, and let B, be the
nearest such batch. If |B,| < k, then there are not enough

Lr

.
jobs for the pull and there is no basic batching that agrees
with (F, P). To see that this is true, note that if all jobs are
moved out of B, (to the right), then they must be replaced
by jobs from batches to the left, which will be of different
type than the dominating type of B,. Thus the resulting
batching will not agree with (F, P). If |B)| > k, the pull is
performed by moving the k largest jobs in B, into the batch
to the right. Then the k largest jobs in this batch are moved to
the right, and so on until £ jobs have been moved into the
current batch, filling it. If this pull changes the dominant
type of any of the batches between B, and the current
batch, then it was unsuccessful and there is no basic batch-
ing that agrees with (F, P). If, on the other hand, all
batches maintain their original dominating types, then
the resulting batching agrees with (F, P). (Note that
after the pull, batch B, is still a partial batch (but with &
fewer jobs), the intervening batches have the same number
of jobs as before the pull, and the current batch is now full
with the addition of the k jobs).

The procedure continues until either all jobs have been
added to the batching, or until the infeasibility of (F, P)
has been established.

Lemma 6. Given the pair (F, P), the procedure described
above either constructs L(F, P), or determines that (F, P) is
infeasible, in O(m?) operations.

Proof. The correctness of the procedure is essentially im-
plicit in the description above, so a formal proof is omit-
ted. It is easy to see that jobs are added to batches that are
as far left as possible. This principle is only violated when
it is impossible to maintain agreement with (F, P); in this
case, jobs must be pulled from the left to the right. The
pull is always executed so that the minimum number of
jobs necessary to establish agreement with (F, P) is moved.

The bound on the procedure’s running time is based
upon the observation that jobs can be added to each batch
in groups which share the same type, rather than one at a
time. Since each type can appear in at most two different
batches, there will be O(m) additions. Pulling a group of &
jobs from the left can be done with O(m) operations, since
there are at most m batches that jobs must move through.
(Note also that the k jobs moved out of each batch must
be of the same type, otherwise the dominant type of the
batch will change and the batching will no longer agree
with (F, P).) Since there is at most one pull per batch, the
total time required for pulling is O(m?). Sorting the types
in F U P and sorting the leftover jobs can both be done in
O(m log m) time. Thus the total procedure requires
O(m?) operations. []

1.3. The m-type Burn-in Algorithm

Having defined leftmost batchings and described the pro-
cedure for constructing them, we may now state the result
which is the basis for the algorithm that follows.

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

Theorem 7. There exists an optimal schedule S for the
m-type burn-in problem such that S is basic and the left-
over batches of S form a leftmost batching.

Proof. By Lemmas 1-5 there exists an optimal schedule §
that is basic. Suppose that S has batching & with dominant
type sets F* and P*. Since S is basic, it is clear that & is
basic. We will show, by way of contradiction, that & =
L(F*, P*) (i.e., A is leftmost with respect to (F*, P*)).

Suppose # is not leftmost with respect to (F*, P¥).
Then it is possible to push a leftover job to the left, yield-
ing a new basic batching ¢’ which agrees with (F*, P*).
Such a push must be from a partial batch to a partial
batch, because any other kind of move would yield a batch-
ing that does not agree with (F*, P*). Since § satisfies the
property of Lemma 5, this push to the left in the batching
corresponds to moving a job from a later batch to an
earlier batch in the schedule, which means that the cost of
schedule § is strictly reduced. (Since the resulting schedule
has the same dominant types as S, the only change in cost
is the decrease in the completion time of the moved job.)
This decrease in cost contradicts the optimality of §; thus
no such push can exist, so & must be leftmost with respect
to (F*, P*). [

This result shows that in searching for an optimal basic
schedule, we need only consider leftmost batchings of the
leftover jobs. This fact is exploited in the following algo-
rithm for the m-type burn-in problem:

Algorithm MTB

1. For each t € {1...m}, create the |n/B] full homoge-
neous batches of type .
2. Arrange the leftover jobs in order of increasing process-
ing time.
3. For each possible (F, P) pair, perform the following two
steps:
(a) Create the leftmost batching L(F, P).
(b) Arrange the batches (from Steps 1 and 3a) in order
of increasing p(B,)/|B,] ratios, and evaluate the cost
of the resulting schedule.

4. From among the schedules created in Step 3, return the
one with the lowest cost.

Theorem 8. Algorithm MTB solves the m-type burn-in
problem in O(m?3™) operations.

Proof. The correctness of the algorithm follows immedi-
ately from Theorem 7. The running time is determined as
follows. Creating the homogeneous full batches requires
O(m) operations. The leftover jobs are then batched by
finding L(F, P) for every possible (F, P) pair. Since every
job type can either be assigned to F, to P, or to neither, the
number of (F, P) pairs is 3™. For each such pair, finding
the leftmost batching requires O(m?) operations. Sorting
all batches can be done in O(m log m) time. Thus the total
running time of the algorithm is O(m?3™) operations. [

RIGHTS L

HocHBAUM AND LaNDY / 879

2. THE GENERAL BURN-IN PROBLEM ON A
SINGLE MACHINE

We now turn to the general burn-in problem, in which the
number of distinct job types is not fixed. Initially we will
assume that an instance of this problem is described by n
processing times, p, ...p, and a maximum batch size B.
(Later we will consider the high-multiplicity version of the
problem, i.e., the m-type problem when m is not fixed.)
Chandru et al. (1993a) developed a branch-and-bound
procedure for finding an optimal schedule, but it is effec-
tive only for small problem sizes. They also proposed two
heuristics which find good approximate solutions in pseu-
dopolynomial time.

In the sections that follow, we present a two-
approximation algorithm for the general burn-in problem.
In practice, this algorithm finds solutions which are very
close to optimal, and we will prove that it guarantees a
solution at least as good as those provided by the two
beuristics described by Chandru et al. (1993a), for which
no performance bound is given. Finally, we describe how
the procedure can be modified so that its running time
depends only on m, the number of distinct job types, mak-
ing it a strongly polynomial procedure.

Before presenting our heuristic, we define a new re-
stricted version of the burn-in problem. In the fixed-
sequence burn-in problem, the goal is to find the lowest
cost schedule in which jobs are scheduled in order of in-
creasing processing time. In other words, a schedule for
the fixed-sequence problem must satisfy the following
property: if p, << p,, then job i cannot be in a batch later
than the batch of job j. It is easy to see that in every such
schedule, the jobs in each batch are consecutive with re-
spect to processing times.

Our heuristic for the general burn-in problem is com-
posed of two steps: first it finds an optimal schedule for the
fixed-sequence version of the problem, and then it orders
the batches by the BWSPT rule. In the next section we
describe how the fixed-sequence burn-in problem can be
solved using a straightforward dynamic programming pro-
cedure.

2.1. Dynamic Programming Solution for the Fixed-
sequence Problem

Let the jobs be ordered so that p; < p,..., < p,. Define
f(i) as the minimum cost of a fixed-sequence schedule for
jobs i through n. If the first batch in this schedule is known
to contain jobs / through k£ — 1, then we can express f(i) as
Pr—1(n — i + 1) + f(k). The first term is the contribution
to the cost made by the batch containing jobs i through
k — 1 (the processing time of the batch is multiplied by the
number of jobs in the schedule following the batch, includ-
ing those in the batch), and the second term is the cost of
the remaining schedule for jobs £ through ». Finding the
minimum cost at each stage thus amounts to choosing
the appropriate value of k&, and f can be defined recur-
sively, as follows:

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

880 / HocHBAUM AND LANDY
Procedure SP

Base Case: f(i) = 0, foralli > n
Recurrence: (i) = minges s {f(K) + pes(n — i + 1)}
Solution: f(1)

Each evaluation of f requires the comparison of at most
B values, so the running time of the procedure is O(nB).
This procedure is the first step in our Fixed-Sequence (FS)
heuristic for the burn-in problem:

Heuristic FS

1. Use procedure SP to find an optimal schedule for the
fixed-sequence problem.

2. Arrange the batches from this solution in BWSPT or-
der.

The following section establishes the fact that the opti-
mal fixed-sequence schedule found by the dynamic pro-
gramming procedure has a cost at most twice that of the
optimal schedule for the burn-in problem. Since rearrang-
ing the batches can only improve the schedule, heuristic
FS is a two-approximation for the burn-in problem.

2.2. A Two-approximation Algorithm

Theorem 9. Heuristic FS provides a two-approximation for
the burn-in problem.

Proof. Let $*(K) be a basic optimal schedule for an in-
stance of the burn-in problem in which K is the set of jobs,
where |K| = n. Let D*(K) be the optimal fixed-sequence
schedule for the same problem instance (before arranging
the batches in BWSPT order). We will show by induction
that for any set of jobs K, C(D*(K))/C($*(K)) =< 2.

Throughout the proof, we will make use of the following
fact. If S(K) is a schedule for a set of jobs K, with |K| = n,
in which the first batch contains jobs 1. ..j, then the cost
of S(K) can be expressed as: C(S(K)) = np + C(S(J))),
where p = p, is the processing time of the first batch and J
is the set of jobs K — {1,...j}. Also note that if S(K) is
the optimal schedule for the jobs in K, then S(J) is optimal
for the jobs in J. (If this were not the case, rebatching the
jobs in J would improve the total schedule, contradicting
the optimality of S(K)).

Base Case. |K| = 1. In this case both schedules S*(K)
and D*(K) consist of a single batch containing a single job.
Thus C(D*(K))/C(S*(K)) = 1 = 2.

Induction Step. Suppose that C(D*(J)))/C(S*(J)) < 2 for
all J C K. We consider three possible cases. Case 1 occurs
when the first batch in the schedule contains jobs 1
through j for some j < B. Cases 2 and 3 occur when the
first batch is a full “out-of-order” batch. That these are
the only three possibilities follows from Lemma 5.

Case 1. The first batch of $*(K) contains jobs 1. ..j, for
some j < B.

RIGHTS L

Let p = p,, the processing time of the first batch. Then
C(S*(K)) = np + C(S*(J)), where J = K — {1...j} and
the second term on the right is the optimal value of a
schedule for the n ~ j largest jobs. The dynamic program-
ming procedure will find a schedule at least as good as the
one in which jobs 1...j are in the first batch, followed by
the optimal fixed-sequence schedule for the remaining
jobs. Thus, C(D*(K)) = mp + C(D*(J)), and since
C(D*(N)/C(S*(N)) =< 2 for all J C K, we have

C(D*(K)) _ C(D*(J)) +np _
C(S*(K)) ~ C(S*())) +np

Case 2. The first batch of S*(K) contains jobs j +
1...j + B, where j <B.

Letting p = p, . 5, the processing time of the first batch,
we have C(§*(K)) = np + C(S*(J))), where J = K — {j +
1,...j + B}, and the second term on the right is the
optimal value of a schedule for the n — B jobs after the
first batch. The dynamic programming procedure will al-
ways give a solution at least as good as the one with jobs
1...j in the first batch and jobs j + 1...j + B in the
second batch, followed by the optimal fixed-sequence
schedule for the remaining jobs. Thus we have

CD*(K)) <np, +(n—j)p + CD*(J—={1...j})
< (2n —j)p + C(D*())),

since p, < p = p,,5 and D*(J — {1...j}) = D*(J).

Combining this with the induction hypothesis gives:
CD*(K)) _CD*(J)+ (2n—jlp _
C(S*(K) ~ C(S*I) +np

Case 3. The first batch of $*(K) contains jobs j +
1...j + B, where j = B.

Somewhere in schedule $*(K) are the jobs 1...B, in
some number of (not necessarily consecutive) batches.
Note that the batch with job B may also contain bigger
jobs. We consider two subcases:

Case 3a. The batch containing job 1 is preceded by fewer
than n/2 jobs in $*(K).

Suppose the batch containing job 1 has a total of j jobs,
so it has processing time p = p,. Moving this batch to the
front of the schedule increases the cost of the schedule by
an amount less than n/2 p, since fewer than n/2 jobs are
delayed by an additional p units of processing time. De-
note the resulting scheduie by §'(K). Since C(S'(K)) <
C(S*(K)) + n/2p, we have:

C($*(K)) > C(S"(K) = 5 p
> C($*() +np =5 p = CS*) +5p,

where the second inequality follows from the fact that
C(S'(K)) = np + C(S"(J)) for some schedule $"(J), and
C(S§"(1)) = C(S*())) by the optimality of S*(J).

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

We also know that C(D*(K)) = np + C(D*(J)), and
thus

C(D*(K)) _ C(D*() +np _
CETR) e + 5

2.

Case 3b. The batch containing job 1 is preceded by more
than n/2 jobs in $*(K).

Consider the batch that contains job B, and suppose this
batch also contains & jobs with smaller processing times
{(and possibly some jobs with larger processing times). Let
P = pg. Moving job B and the preceding jobs in the batch
to the front of the schedule increases the cost by at most
np, since at most n jobs are delayed by an additional p
units of processing time. Now move all the remaining jobs
with index less than B into this first batch, yielding sched-
ule S'(X), in which the first batch contains jobs 1...B.
Each job moved in this way has its completion time re-
duced by at least n/(2B)p, since there are at least n/2 jobs
preceding job 1, and hence at least n/(2B) batches, each
with a processing time greater than p = py. Since there are
B jobs moved in this way, there is a total decrease in cost
of at least n/2 p. Thus the total increase in the cost of the
schedule is less than np — n/2p = n/2p, and we have:

C(S*(K) > C(S"(K) = 5 p

> C(S* (D) +np = 7p = CS* D) + 5P,

where the second inequality follows from the fact that
C(S'(K)) = np + C(S"(J)) for some schedule $"(J) and
C(8"(J)) = C(S*(J)) by the optimality of S*(J).

We also know that C(D*(K)) < np + C(D*(J)), and
thus

C(D*(K)) _ C(D*() +rp _
CETED e +5p

2. O

Thus heuristic FS is a two-approximation algorithm for
the general burn-in problem. In the next section we com-
pare it with two previously proposed heuristics.

2.3. Comparison with Other Heuristics

In this section we compare heuristic FS with the two heu-
ristics for the burn-in problem described by Chandru et al.
(1993a).

Heuristic FBSPT (Chandru et al. 1993a)

1. Form k = [n/B] batches where batch i contains the jobs
indexed (i — 1)B + 1 to min {n, iB}.
2. Schedule the batches in BWSPT order.

Heuristic GR (Chandru et al. 1993a)

1. Seti = 1.
2. Find job k such that

Pk _ . Pi+1 Di+2 pz+B—1}
(k—i+1)—mm{p” 23> B)

RIGHTS L

HocHBauM AND LANDY / 881

Place jobs i through & in a batch together and schedule
this batch on the machine. If all jobs have been sched-
uled, stop. Otherwise, set i = k + 1 and repeat Step 2.

In order to compare FS with these two heuristics, we
first observe that both heuristics generate schedules which
are feasible for the fixed-sequence problem—that is, jobs are
scheduled in order of increasing processing time. (Although
Step 2 of heuristic FBSPT involves arranging the batches
in BWSPT order, it is easy to verify that the batches cre-
ated in Step 1 are already in this order, so the job se-
quence does not change.) Since heuristic FS finds the
optimal schedule for the fixed-sequence problem and then
improves it by rearranging the batches, it is guaranteed to
find a solution with the same or lower cost than those
produced by the other heuristics. In Section 4 below, we
present computational results which show that heuristic FS
does indeed find better schedules.

Note that all three heuristics have running times that
depend on n, the number of jobs, and B, the maximum
batch size. Any procedure which depends on B is only
pseudopolynomial. Furthermore, if the problem instance
can be described by ny, n,, ..., n,,, where each #; is the
number of jobs of type i, then a procedure is only polyno-
mial if its running time is a polynomial function of log
ny, ..., log n,. Thus all three heuristics discussed above
run in pseudopolynomial time. The dynamic programming
procedure of heuristic FS can be modified so that its run-
ning time depends only on m, the number of distinct job
types, thereby making it a truly polynomial algorithm.
(Due to space considerations, we have omitted the de-
scription of this modification.)

3. THE PARALLEL MACHINES BURN-IN
PROBLEM

The parallel machine burn-in (PMB) problem is defined as
follows: given m job types, where for each type t € {1, . . .,
m} there are n, jobs with processing time p,, and given a
maximum batch size B, and a number of machines M, find
a schedule (an assignment of jobs to batches and batches
to machines) to minimize the sum of job completion times.
This problem was addressed by Chandru et al. (1993a),
where the authors proved some structural properties of
optimal schedules and showed how to extend their heuris-
tics for the single-machine burn-in problem to the parallel
machines version.

In the sections that follow we address the m-type PMB
problem, in which the number of distinct job types is fixed.
We show that the structural properties established in Sec-
tion 1.1 for the single-machine problem are easily ex-
tended to the parallel machines problem, and hence the
search for an optimal schedule can be restricted to left-
most batchings. Once a particular leftmost batching has
been determined, the remaining problem is to assign
batches to machines. This batch assignment problem is
equivalent to the classic scheduling problem of minimizing

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

RIGHTS L

882 / HocHBAUM AND LANDY

the weighted flowtime of a set of jobs on parallel ma-
chines, which is NP-hard. Nonetheless, pseudo-polynomial
procedures can be used to solve the problem exactly, and
there are polynomial approximation algorithms that guar-
antee solutions that are close to optimal.

3.1. Structural Properties

Here we extend the results of Section 1.1 for the single-
machine problem to the parallel-machine problem. The
proofs of these results are omitted, since they are virtually
identical to those of Section 1.1. The five structural prop-
erties of optimal schedules are extended to the PMB prob-
lem as follows:

1. There exists an optimal schedule for the PMB prob-
lem in which the batches on each machine are in BWSPT
order.

2. There exists an optimal solution for the PMB prob-
lem containing Ln,/B] homogeneous and full batches of
type t.

3. There exists an optimal solution in which the jobs in
each leftover batch are consecutive with respect to processing
times, that is, for any three leftover jobs with processing times
P: = p, < py, if a batch contains the jobs with processing
times p; and p,, it must also contain the job with pro-
cessing time p;.

4. In every optimal schedule that satisfies the three pre-
ceding properties, each job type ¢t € {1...m} dominates
at most one leftover batch.

5. In any optimal schedule, if there are two leftover jobs
i and j with processing times p, < p, such that the batch
containing job j has an earlier completion time than the
batch containing job i, then job j must be in a full batch.

The proofs of properties 1-3 and 5 are straightforward.
In the proof of property 4, it is necessary to specify the
meaning of “batch B, precedes batch B,.” In the case of
parallel machines, where two batches may be on different
machines, we say batch B, precedes batch B, if the comple-
tion time of batch B, is less than or equal to the com-
pletion time of batch B,.

Let a basic schedule be one that satisfies five properties
given above. Since there is always an optimal schedule
that is basic, an algorithm for the m-type PMB problem
may restrict its search to such schedules. In Section 1.2 we
defined leftmost batchings. Using the same definition,
we may now prove that the PMB problem, like the single
machine problem, always has an optimal schedule which is
a leftmost batching.

Theorem 10. There exists an optimal schedule S for the
m-type PMB problem such that S is basic, and the leftover
batches of S form a leftmost batching.

Proof. There is always an optimal schedule S that is basic.

Suppose that S has batching «{ with dominant type sets F*
and P*. Since § is basic, it is clear that & is basic. We will

show, by way of contradiction, that & = L(F*, P*) (i.e., o
is leftmost with respect to (F*, P*).

Suppose o is not leftmost with respect to (F*, P*).
Then it is possible to push a leftover job to the left, yield-
ing a new basic batching i’ which agrees with (F*, P*).
Such a push must be from a partial batch to a partial
batch, because any other kind of move would yield a batch-~
ing that does not agree with (F*, P*). Since S satisfies
property 5, this push to the left in the batching corre-
sponds to moving a job from a later batch to an earlier
batch in the schedule, which means that the cost of sched-
ule § is strictly reduced. (Since the resulting schedule has
the same dominant types as S, the only change in cost is the
decrease in the completion time of the moved job.) This de-
crease in cost contradicts the optimality of S; thus no such
push can exist, so { must be leftmost with respect to (F*,
Py,

This theorem suggests the following solution procedure
for the m-type parallel machine burn-in problem:

Procedure G-PMB: A General Approach to the PMB
Problem

1. For each t € {1...m}, create the |n,/B] full homoge-
neous batches of type ¢.
2. Arrange the leftover jobs in order of increasing process-
ing time.
3. For each possible (F, P) pair, perform the following two
steps:
(a) Create the leftmost batching L(F, P).
(b) Assign the batches from Steps 1 and 3a to the M
machines, and evaluate the cost of the resulting
schedule.

4. From among the schedules created in Step 3, return the
one with the lowest cost.

In the next section we address the question of how to
perform Step 3b in the above algorithm.

3.2. Assigning Batches to Machines

Once jobs have been assigned to batches, the problem of
scheduling the batches on the M machines may be viewed
as an instance of the weighted flowtime problem, which
may be described as follows: given n jobs, each with pro-
cessing time p; and weight w, fori € {1,..., n}, and M
machines, find a schedule to minimize the weighted sum of
job completion times. It is clear that the problem of assign-
ing batches to machines is identical to this scheduling
problem—each batch B, may be viewed as a job with pro-
cessing time P(B,) and weight |B,|.

Although the weighted flowtime problem on parallel
machines is NP-hard (see Bruno et al. 1974), pseudopoly-
nomial algorithms have been described by Lawler and
Moore (1969), Rothkopf (1966), and Lee and Uzsoy
(1992). The latter algorithm has a running time of O(n-
MWY1) where W = 2%, w,. In the PMB problem, the
“weight” of a batch is the number of jobs it contains, and

Copyright © 2001 All Rights Réserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

RIGHTS

thus the sum of job weights W is simply n, the total num-
ber of jobs. Thus batches may be scheduled on M ma-
chines in O(Mn™) operations. Using this algorithm as the
subroutine for Step 3b in the above procedure yields a
total running time of O(Mn™m?3™). Note that even when
the number of types and the number of machines is fixed,
this running time is still only pseudopolynomial, since a
problem instance requires the specification of m rather
than n processing times.

A much faster procedure may be used to find very good
(though not necessarily optimal) solutions to the weighted
flowtime problem. First, jobs are arranged in order of in-
creasing p/w, ratio. Each job is removed from this list and
assigned to the first machine that becomes available for
processing. A result due to Kawaguchi and Kyan (1986) is
that this heuristic guarantees a solution no worse than
(V2 + 1)/2 ~ 1.2 times the optimal solution. Since the
running time of this heuristic is dominated by sorting
the jobs, it requires O(n log n) operations.

This heuristic may be used as the subroutine of Step 3b
in the above procedure to find a very good solution for the
PMB problem. At first glance it appears that the running
time of the subroutine depends on the total number of
batches which must be assigned to the machines, which
may be large. The following observation suggests a method
for streamlining the assignment.

If batches are arranged in BWSPT order and sequen-
tially assigned to the next available machine, and if there
are k, full homogeneous batches of type ¢ for each t €
{1,..., m}, then at least |_k,/M_| of these batches will be
assigned to each machine. To see why this is true, it is
sufficient to note that at the time of scheduling the full
batches of type ¢, every batch assigned to a machine so far
has a processing time that is less than p, (because if a
batch with larger processing time had been assigned,
that batch would have to be of a size greater than B, which
is a contradiction). Thus the difference between the
makespans of the partial schedules on any two machines is
at most p,, and it immediately follows that the full homo-
geneous batches of type ¢ will be scheduled so that each
machine gets a batch before any machine gets two batches.
In other words, full homogeneous batches may be assigned
to machines in groups, so that at most M — 1 batches of
each type must be assigned one at a time.

Since there are at most m leftover batches (by property
4), and since it takes at most M operations to assign all the
full homogeneous batches of each type to the M machines,
the total number of operations required to sort and then
assign batches is O(m log m + m(M + 1)). Recall that
finding a leftmost batching can be done in O(m?) opera-
tions, and that there are at most 3" such batchings which
must be checked. Thus the total running time of procedure
G-PMB when the BWSPT rule is used for step 3b is O(3™
min {m? m(M + 1)}. The resulting solution will be no
more than V2 + 1/2 ~ 1.2 times the optimal solution.

i,

HocHBAUM AND LANDY / 883
4. EMPIRICAL RESULTS

In this section we report the results of empirical compari-
sons of different solution procedures for the single ma-
chine burn-in problem. First we compare two procedures
which find optimal solutions to the m-type burn-in prob-
lem: the branch-and-bound procedure of Chandru et al.
(1993a), and algorithm MTB (described in Section 1 of
this paper). We report on the CPU time required by the
two procedures for finding solutions to problems with five
distinct job types. Next we compare three heuristics for
solving the general burn-in problem: two which were pre-
sented by Chandru et al. (1993a), and heuristic FS (de-
scribed in Section 2.1 of this paper). In this case we
compare the quality of the solutions obtained (rather than
the CPU time required). Algorithm MTB and heuristic FS
were implemented using the C programming language on
a Sun SPARC II workstation.

4.1. Comparison of Exact Algorithms

We used the MTB algorithm to solve problems that were
randomly generated using the following distribution of job

types:

Type Processing Time Probability
1 15 0.25
2 96 0.15
3 120 0.25
4 150 0.25
5 240 0.10

This distribution was chosen by Chandru et al. (1993a)
because it represents a realistic mix of products that might
be found at a semiconductor fabrication plant.

We solved 10 problems for each value of B, the maxi-
mum batch size, and n, the total number of jobs. Table I
presents the CPU time required to solve each set of 10
problems, and compares it with the CPU time required by
the branch-and-bound algorithm of Chandru et al
(1993a). The results indicate that the running time of the
MTB algorithm is essentially independent of the batch size
and the total number of jobs, while the running time of the
branch-and-bound procedure is dependent on both param-
eters and therefore cannot effectively solve problems with
more than 30 jobs.

Note that these problems all had five distinct job types.
If the number of distinct types were greater, the branch-
and-bound algorithm would probably be impractical for
even fewer than 30 jobs. On the other hand, in computa-
tional experiments the MTB algorithm was able to solve
problems with up to 12 distinct jobs types in a few minutes
of CPU time. This result held true regardless of the batch
size or the total number of jobs. We conclude that the
MTB algorithm can efficiently solve any problem that is
likely to arise in practice.

4.2. Comparisons of Heuristics

Heuristic FS was used to solve the same randomly gener-
ated problem instances used by Chandru et al. (1993a) to

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

884 / HocHBAUM AND LANDY

Table 1
Comparison of Exact Algorithms for Problems with
Five Job Types

Table I1
Comparison of Heuristics for Problems with Uniform
(1,100) Job Processing Times

Number of Branch and bound MTB Algorithm Number of Avg. FBSPT Avg. GR Avg. FS
jobs CPU time* CPU time” Jobs Solution Sotution Solution
B = B =
10 45 0.2 10 1131.6 1057.2 1047.3
15 52 0.2 15 1958.1 1931.9 1915.5
20 93 0.2 20 32373 3164.2 31379
25 590 0.2 25 4892.0 4900.6 4849.4
30 1255 0.2 30 6573.0 6555.2 6490.8
B = 35 8705.2 8637.1 8591.4
10 47 0.2 B =
15 53 0.3 10 983.0 893.5 878.7
20 136 0.2 15 1585.0 1519.7 1484.2
25 547 0.3 20 2393.0 2362.3 23327
30 1419 0.2 25 3501.5 3465.3 3430.2
B = 30 4606.0 45479 4512.8
10 47 0.3 35 5950.0 5933.6 5905.5
15 55 0.4 B =
20 119 04 10 924.6 837.2 825.1
25 419 04 15 1532.7 1379.1 1360.6
30 2325 0.4 20 2053.4 2069.6 2001.4
B =100 25 3049.6 2937.1 2886.5
100 — 0.2 30 3855.1 3850.3 3771.5
1000 — 04 35 4867.1 4837.9 4802.0
10000 — 14
B = 200
100 — 0.2
1000 — 04 ; : ;
10000 _ 14 Section 2.1) is the only one with a proven worst-case per

“CPU time measured in seconds per 10 problems

test heuristics FBSPT and GR. Table II shows the average
solution value when each heuristic was applied to 10 prob-
lems with job processing times randomly generated from a
uniform distribution on the interval [1, 100]. It is clear that
FS finds the best solutions among the three heuristics.
Although the improvement over the GR heuristic may ap-
pear small, it is important to note that the average devia-
tion of the GR solutions from optimal is never more than
3.4 percent (Chandru et al. 1993a). Thus even an improve-
ment of 1 percent over the GR solution is significant.

5. CONCLUSION

The O(m*3™) MTB algorithm presented above is a signif-
icant improvement over the O(m>B™ ") dynamic program-
ming procedure of Chandru et al. (1993b), and the branch-
and-bound procedure of Chandru et al. (1993a) for two
reasons: first, because it is independent of both the maxi-
mum batch size and the number of jobs; and second, be-
cause it can be used to solve practical problems which have
a greater number (m) of distinct product types. The empir-
ical results reported above verify that the algorithm is
quite fast in practice.

When the number of distinct job types is large, heuristic
methods can be used to find solutions that are very close to
optimal. Of the heuristics that have been proposed for the
general burn-in problem, heuristic FS (described in

RIGHTS L

formance bound. Furthermore, it is guaranteed to find a
solution at least as good as those found by any heuristic
that maintains jobs in order of increasing processing time,
such as heuristics GR and FBSPT. Indeed, the empirical
results reported above show that FS does provide better
solutions in practice. These results also suggest that heuris-
tic FS does significantly better than the proven worst-case
performance ratio of 2. We have been unable to construct
a problem instance in which this worst-case bound is
achieved, and we conjecture that a tighter bound can be
established with a more sophisticated proof.

Relatively little research has been done on the parallel
machine burn-in problem. We have shown that when the
number of distinct job types is fixed, it is possible to find
the optimal solution in pseudopolynomial time, or to find a
solution less than (1 + V/2/2) times the optimal value in
polynomial time.

Resolving the complexity of the general single machine
burn-in problem is perhaps the most interesting subject for
future research. Hochbaum and Landy (1995) have shown
that there is a polynomial algorithm for the special case
B = 2. It can also be shown that there is a pseudopoly-
nomial algorithm for the case when the total number of
jobs is small relative to B (bounded above by ¢B for a
constant ¢).

The complexity of the parallel machines problem is also
unresolved. It secems likely that this problem is NP-
complete, since the problem of sequencing jobs on parallel
machines to minimize weighted flowtime is NP-complete,
and the PMB problem appears at least as hard.

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [128.32.10.164] on 04 November 2017, at 15:52 . For personal use only, al rights reserved.

RIGHTS

ACKNOWLEDGMENT

This research was supported in part by the Competitive Semi-
conductor Manufacturing project of the Sloan Foundation.
The research of the first author was also supported by the
Office of Naval Research under grant N00014-88-K-0377.

REFERENCES

Anmapy, J. H, R. R. AEMADL, S. Dasu, anp C. S. TanG. 1992,
Batching and Scheduling Jobs on Batch and Discrete
Processors. Opns. Res. 40, 750-763.

ALBERS, S., AND P. BRUCKER. 1993. The Complexity of One-
machine Batching Problems. Discrete Applied Mathemat-
ics, 47, 87-107.

BRUCKER, P. 1991. Scheduling Problems in Connection with
Flexible Production Systems. Proceedings, 1991 IEEE Int.
Conf. on Robotics and Automation, 1778-1783.

Bruno, J., E. G. CorrMmAN, aND R. SETHI 1974. Scheduling
Independent Tasks to Reduce Mean Finishing Time.
Comm. ACM, 17, 382-387.

CHANDRU, V., C. Y. LEE, anp R. Uzsoy. 1993a. Minimizing
Total Completion Time on Batch Processing Machines.
Int. J. Prod. Res. 31, 2097-2121.

CHANDRU, V., C. Y. Leg, aND R. Uzsoy. 1993b. Minimizing
Total Completion Time on a Batch Processing Machine
with Job Families. O. R. Lett. 13, 61-65.

CorrMaN JR., E., A. NOZARI, AND M. YANNAKAKIS. 1989. Op-
timal Scheduling of Products with Two Subassemblies on
a Single Machine. Opns. Res. 37, 426-436.

CorrMAN JR., E., M. YANNAKAKIS, M. MAGAZINE, AND C. SAN-
T0s. 1990. Batch Sizing and Sequencing on a Single Ma-
chine. Ann. Opns. Res. 26, 135-147.

Dosson, G., U. S. KARMARKAR, aND J. L. RuMmMEL. 1987.
Batching to Minimize Flow Times on One Machine.
Mgmt. Sci. 33, 784-799.

i,

HocHBAUM AND LANDY / 885

GLassey, C. R. AND W. W. WENG. 1991. Dynamic Batching
Heuristics for Simultancous Processing. IEEE Trans.
Semiconductor Manufacturing 4, 77-82.

HocHBauM, D. aAND D. LanDY. 1994. Scheduling with Batch-
ing: Minimizing the Weighted Number of Tardy Jobs.
O. R. Lert. 16, 79-86.

HocuBauMm, D. anD D. LAnDY. 1995. The Double Batching
Problem. Working Paper. Engineering Systems Research
Center, University of California, Berkeley.

IKURA, Y. AND M. GimpLE. 1986. Scheduling Algorithms for a
Single Batch Processing Machine. O. R. Lett. 5, 61-65.

KawagucHs, T. AND S. Kyan. 1986. Worst Case Bound of an
Irf Schedule for the Mean Weighted Flow-time Problem.
SIAM J. Computing 15, 1119-1129.

LAWLER, E. AND J. MOORE. 1969. A Functional Equation and
Its Application to Resource Allocation and Sequencing
Problems. Mgmt. Sci. 16, 77-84.

Leg, C. Y. aNnp R. Uzsoy. 1992. A New Dynamic Program-
ming Algorithm for the Parallel Machines Total
Weighted Completion Time Problem. O. R Lett. 11,
73-75.

Leg, C. Y., R. Uzsoy, aNnp L. A. MARTIN-VEIGA. 1992. Effi-
cient Algorithms for Scheduling Semiconductor Burn-in
Operations. Opns. Res. 40, 764-775.

NaDDEF, D. AND C. SaNTOs. 1988. One-pass Batching Algo-
rithms for the One Machine Problem. Discrete Appl.
Math. 21, 133-145.

RotrKOPF, M. H. 1966. Scheduling Independent Tasks on
Parallel Processors. Mgmt. Sci. 12, 437-447.

SHALLCROss, D. 1992. A Polynomial Algorithm for a One Ma-
chine Batching Problem. O. R. Lett. 11, 213-218.

Uzsoy, R.,, C. Y. LEg, aND L. A. MARTIN-VEIGA. 1990.
A Review of Production Planning and Scheduling
Models in the Semiconductor Industry. IIE Trans. 24,
47- 60.

Copyright © 2001 All Rights Reserved

