
Lower and Upper Bounds for the Allocation Problem and Other Nonlinear Optimization
Problems
Author(s): Dorit S. Hochbaum
Source: Mathematics of Operations Research, Vol. 19, No. 2 (May, 1994), pp. 390-409
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/3690226
Accessed: 21/07/2009 20:32

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=informs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Operations
Research.

http://www.jstor.org

http://www.jstor.org/stable/3690226?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 19, No. 2, May 1994
Printed in U.S.A.

LOWER AND UPPER BOUNDS
FOR THE ALLOCATION

PROBLEM AND OTHER NONLINEAR
OPTIMIZATION PROBLEMS

DORIT S. HOCHBAUM

We demonstrate the impossibility of strongly polynomial algorithms for the allocation
problem, in the comparison model and in the algebraic tree computation model, that follow
from lower bound results. Consequently, there are no strongly polynomial algorithms for
nonlinear (concave) separable optimization over a totally unimodular constraint matrix. This
is in contrast to the case when the objective is linear.

We present scaling-based algorithms that use a greedy algorithm as a subroutine. The
algorithms are polynomial for the allocation problem and its extensions and are also optimal
for the simple allocation problem and the generalized upper bounds allocation problem, in
that the complexity meets the lower bound derived from the comparison model. For other
extensions of the allocation problem the scaling-based algorithms presented here are the
fastest known.

These algorithms are also polynomial time algorithms for solving with e accuracy the
allocation problem and its extension in continuous variables.

1. Introduction. We consider in this paper the separable concave simple alloca-
tion problem,

Max{ f(xi) x = B, x>0
i=l i=l J

and its extensions to problems with x satisfying in addition general polymatroidal
constraints. We call the problem over polymatroidal constraints, the general alloca-
tion problem. These problems are studied for x either an integer or continuous vector.
Other than the concavity of the fi's, no additional assumptions are made.

The allocation problem and its extensions have been studied extensively. A recently
published book by Ibaraki and Katoh (1988), gives a comprehensive review of the
state-of-the-art of the problem, as well as more than 150 references. There are
numerous applications of these problems in the literature of capital budgeting,
portfolio planning, production planning and more. Several such applications are
presented in ?2. We study here in detail, in addition to the general allocation
problem and the simple allocation problem, also the cases of the generalized upper
bounds problem, the nested problem and the tree problem. These problems are
defined formally in ?2.

The integer version of the general allocation problem is characterized as solvable
via a greedy allocation procedure. The value of each variable is incremented by one
unit at a time if the corresponding increase in the objective function is largest among

Received December 15, 1989; revised October 9, 1992.
AMS 1980 subject classification. Primary: 90C25, 90C60, 68Q25. Secondary: 90C10, 90C45.
IAOR 1973 subject classification. Main: Programming/Algorithms. Cross references: Allocation/Re-
sources.
OR/MS Index 1978 subject classification. Primary: 656 Programming/Nonlinear/Convex.
Key words. Submodular, lower bounds, strong polynomiality, nonlinear optimization.

390

0364-765X/94/1902/0390/$01.25
Copyright ? 1994, The Institute of Management Sciences/Operations Research Society of America

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

all possible increments that are feasible, until all B units are allocated. This greedy
algorithm was first devised by Gross (1956) and later by Fox (1966) for the integer
simple allocation problem. The difficulty with this algorithm is that it requires O(B)
iterative steps, each including at least one evaluation of the objective function. Since
the representation of B in the input takes only log2 B bits, the running time of the
greedy is exponential (or pseudo-polynomial) in the length of B, and hence exponen-
tial in the input length.

In order to characterize the complexity of algorithms for the general allocation
problem, one needs to know the form of the representation of the objective function,
and the complexity of evaluating those functions' values. Since the functions fi are
assumed to be general, the existence of an oracle computing the functions' values is
assumed. An oracle call is counted as a single operation in the complexity model
employed here. With this complexity model, the running time of the greedy algorithm
for the general allocation problem is O(B[log n + F]), where F is the number of
operations required to check the feasibility of a given increment in the solution.

This paper contains a number of results concerning the allocation problems and
other nonlinear optimization problems over linear constraints. For the general
allocation problem and its cases we devise a general purpose algorithm from which
upper bounds on the complexity of these problems are established. We also demon-
strate lower bounds for the simple allocation problem which has implications on the
concrete complexity of constrained nonlinear optimization.

The key to the general purpose algorithm is a proximity theorem. The essence of
this theorem is that the greedy algorithm can be applied to these problems with
arbitrary increments, rather than unit integer increments, until no such increments
are possible. The proximity theorem shows, that only the last increment of each
variable can be potentially erroneous, and if removed we get a valid lower bound to
the integer optimal solution. This process of scaled greedy increments, can then be
repeated with smaller increments. By careful choice of scaling of increments we can
demonstrate polynomial running time for all allocation problems. No proximity of this
type has been observed before for optimization problems over polymatroidal con-
straints. The only result that bears some similarity is by Ibaraki and Katoh (1988,
pp. 72-74) who prove for the simple allocation problem with continuously differenti-
able objective, that the value of an optimal integer solution is bounded from above by
the ceiling of an optimal continuous solution. This result, even for nondifferentiable
objective functions and for all allocation problems, is a corollary of our proximity
theorem.

The results given in this paper establish constructively, that the general integer and
continuous allocation problems are solvable in polynomial time, requiring
O(log(B/n)) iterations. This polynomial algorithm is developed using concepts of
scaling and proximity between the optimal solutions of two scaled problems. The
running time of our algorithm for the general integer allocation problem is

O(n(log n + F)log(B/n)),

and for the continuous case an E-accurate solution (to be defined subsequently) is

produced in O(n(log n + F)log(B/en)) steps.
For the general allocation problem and its special cases, the algorithms derived

here are the fastest known. For the general allocation problem Groenevelt (1985)
established polynomiality, yet gave no explicit complexity expression. (It relies on the

separation algorithm for which explicit complexity has not been established.) For the
simple allocation problem the fastest algorithm is Frederickson and Johnson's (1982)
algorithm, O(n log(B/n)), which is also optimal with respect to the comparison

391

D. S. HOCHBAUM

complexity model. Our algorithm uses a subroutine of Frederickson and Johnson, yet
its overall structure is simpler than Frederickson and Johnson's algorithm, while
achieving the same running time. This optimal running time is also established for the
generalized upper bounds case. This case, that comes up in financial portfolio
planning, could be solved as a special case of the tree problem (it corresponds to a
star of diameter 2). Our algorithm consists of substantial improvement over this
running time. The nested problem is also a special case of a tree problem where the
tree is a path. For the nested problem some notable algorithms include that of
Galperin and Waksman's (1981) of complexity O(B log n), Tamir's (1980) of complex-
ity O(n2 log2 B), and Dyer and Walker's (1987) of complexity O(n log nlog2(B/n)).
For the tree problem there is an algorithm with running time O(n2 log(B/n)) by
Ibaraki and Katoh (1988), and the recent most efficient algorithm by Dyer and Frieze
(1990) with running time O(n log2 n log B). This latter algorithm uses as a subroutine
the algorithm of Frederickson and Johnson to solve a number of simple allocation
problems. Our algorithm, when applied to the nested allocation problem and the tree
allocation problem, run in time O(n log n log(B/n)), which is faster than any known
algorithm for these problems and is a factor of log n off the comparison model lower
bound.

Another topic presented here is lower bond proofs. Dyer and Frieze say in (1990),
"... we do not address the potentially interesting issue of strong polynomial complex-
ity of algorithms for this problem. ... If we were to make appropriate assumptions
about the form of the f, in the general case, it would seem we could obtain strongly
polynomial algorithms, but we do not discuss this further here." This implied
conjecture, that strongly polynomial algorithms exist for these problems, is refuted
here. We show that the dependence on log(B/e) in the running time of the algorithm
cannot be removed even for the simple case of the allocation problem and hence for
the general problem as well (with the possible exception of quadratic objective
function). The lower bound result holds for both the comparison model and the
algebraic computation tree model with the four arithmetic operations +,-, ,:, and
comparisons. It holds even if the floor operation is permitted. Since the simple
allocation problem is a special case of separable concave maximization problems over
totally unimodular constraint matrices or over polymatroidal constraints, then in
particular all allocation problems and nonlinear convex network flow problems
cannot be solved in strongly polynomial time.

This issue of strong polynomiality is of special interest, as it clearly delineates the
distinction in the complexity of nonlinear versus linear problems. For linear objective
function, the integer programming problem over totally unimodular constraint matrix
is solvable in strongly polynomial time, (Tardos 1986), whereas the separable concave
version of this problem is solvable in time which depends on the logarithm of the
right-hand side (Hochbaum and Shanthikumar 1990). As a conclusion from the lower
bound result given here, the dependence on the right-hand sides cannot be removed.

Our results not only improve on existing algorithms for the general allocation
(integer) problem and its special cases, but also provide polynomial algorithms for the
problem in continuous variables. The continuous general allocation problem has only
been solved to data in special cases when the derivatives of the fi's exist. For
example, the "ranking algorithm" suggested by Zipkin (1980) for the allocation
problem, requires the existence of the derivatives as well as a solution to a system of
nonlinear equations. Similar difficulties are encountered in the algorithms proposed
by Yao and Shanthikumar (1987). In contrast, we do not require here the existence of
derivatives.

It is not surprising that these difficulties are encountered in the continuous version
of the (general) allocation problem since the solution could require infinite represen-
tation. For example, let a simple allocation problem be given with f,(x,) = 6x, - x3 tain Fo xml,ltasmlealcto rbe e ie ihf7x 6

392

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

f2(x2) 0, and B - 2. The optimal solution to the 2 variable allocation problem is
(/2-, 2 - v2), which is irrational. The solution may even lack an algebraic
representation. Hence, solving a system of nonlinear equations is a challenging
problem even when the nonlinearities are as simple as polynomials. We therefore use
the practical notion of e-accurate solution to represent the continuous solution to the
problem. A solution, x(e) is e-accurate if there exists an optimal solution x* such that
Ilx() - x* ll < E. That is, e is the accuracy required in the solution space.

Using the proximity results, we show that e-accurate solutions can be obtained by
solving a general integer allocation problem obtained by scaling the continuous
general allocation problem by a factor of e/n. Hence, the continuous problem is
reduced to the integer case, and similar algorithms to those used in the integer case
apply to the continuous case. The lower bound results mentioned earlier, establish
that the dependence on B/e cannot be removed.

The plan of the paper is as follows. Section 2 defines the general allocation
problem, its special cases and several applications. The lower bounds for the compari-
son model and the algebraic computation tree model are given in ?3. Section 4
includes the proximity theorem between the scaled solution and the optimal solution
and its consequence regarding the proximity of optimal integer and continuous
solutions. This theorem validates the scaling algorithm. Section 5 gives the general
algorithm, and in ?6 there are adaptations of the general algorithm for the special
cases. Finally, ?7 has concluding remarks and some open questions.

2. Preliminaries, notation and applications. Given a submodular rank function
r: 2E - R, for E = {1,..., n}, i.e., r(O) = 0 and for all A, B c E,

r(A) + r(B) > r(A U B) + r(A n B).

(for a detailed description of submodular functions see e.g. Nemhauser and Wolsey
(1988). The polymatroid defined by the rank function r, is the polytope {xlEjE Ax <

r(A), A c E}.
We call the system of inequalities {E x AXi < r(A), A c E}, the polymatroidal

constraints.
As for the notation in this paper, bold letters are used to denote vectors; e is the

vector (1,1,...,1); ej is the unit vector with ej = 1 and e -= 0 for i -j; all
logarithms are base 2 logarithms. The general allocation problem, GAP, is

max Ef(xl),
JlE

E xi = B,

(GAP) jE

E x < r(A), A cE
jeA

xj > lj and integer j E E.

For B < r(E), the problem (GAP) has a feasible (and optimal) solution. The problem
is given here with general lower bounds 1j rather than nonnegativity requirements as
is common in the literature. From properties of polymatroid, any solution that
satisfies all constraints other than the equality constraint (a member of the polyma-
troid), is a lower bound vector to a feasible solution that satisfies the equality

393

D. S. HOCHBAUM

constraint as well. It is well known that the greedy algorithm solves the problem
(GAP) (e.g., Federgruen and Greenevelt 1986a, Ibaraki and Katoh 1988). An impor-
tant concept of the greedy algorithm is that of an increment.

The jth increment at x; is defined as Aj(x1) = fj(xj + 1) - fj(xj). The greedy for
GAP is formally described as follows.

Procedure greedy
Input (1, r, E)

Step 0: x = , B <- B- Ie.
Step 1: Find i such that Ai(xi) = maxJ E{AI(xj)}.
Step 2: (Feasibility check), is x + e' infeasible?

If yes, E <- E - {i},
else xi - xi + 1

B-B- 1.
Step 3: If B = 0 stop. Output x. If E = 4, stop, output "no feasible solution."

Otherwise go to step 1.
Note that the feasibility check is polynomial for the general allocation problem (using
the ellipsoid method, (Gr6tchel, Lovasz and Schrijver 1981), and can be performed
trivially in a single step for the simple allocation problem. Note also that the output
of "no feasible solution" in Step 3 never materializes if r is indeed a submodular
function, B < r(E), and the choice of the vector 1 is such that it does not violate the
polymatroidal constraints (that is, I is a member of the polymatroid).

The greedy algorithm is applicable to special cases of GAP. These cases are
generated by restricting the set of the polymatroidal constraints to specially struc-
tured collection of subsets of E, rather than the entire power set. Important special
cases that have been studied in the literature are:

(1) The simple resource aliocation problem (SRA):

(SRA) max E f(x),
j=

j=1

xj, nonegative integers j = 1,..., n.

The earliest explicit investigations of SRA are due to Koopman (1953). One early
application is the distribution of search effort problem for which a discrete version is
discussed by Charnes and Cooper (1958), and a continuous version by Koopman
(1957). In the discrete version, an object may be located in one of n given locations.
There is a known probability for the object to be in position j, pi. The probability of
detecting the object in position j depends on the amount of effort allocated to the
search in position j, x,. This probability is (1 - e-"/)pJ, for a positive constant a.
For a total amount of effort b, the problem is SRA with the objective function,

n

max (1- e-Ai)p/.

j=l

As this function is concave and separable, the problem is an instance of SRA.
Another interesting application is described by Luss and Gupta (1975) for a problem
of allocating marketing effort.

394

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

(2) The generalized upper bounds resource allocation problem (GUB):

n

(GUB) max E f(x.),
j=

x/ = B,
j=1

E x; < b, i= 1,...,m,
j Si

xj, nonnegative integers j = 1,..., n

where {SI, S,..., S,,,} is a partition of E = 1,..., n}, i.e., disjoint sets the union of
which is E.

The GUB problem has an application to optimal portfolio selection of securities
with consideration of risk factors. Here there are n securities representing potential
investment opportunity. The securities are sorted in classes according to risk level
associated with the investment. This risk level is the estimated standard deviation on
the return. The objective is to minimize the ratio of expected return to variance. It
was shown (see Elton, Gruber and Podberg 1976 and Zipkin 1980) that such a
problem can be written, when correlation coefficients are constant, as a separable
convex minimization problem on variables yJ = cr.x for or the standard deviation,
and Xj the proportion invested in security j. That problem is SRA in nonnegative
continuous variables, except for the existence of one additional variable that is
unrestricted in sign. That variable represents the weighted sum of risks of the chosen
investment. The problem is then solved as an allocation problem with the weighted
sum of risks treated as a fixed parameter. It is further desirable that the proportion of
securities of each risk level o-i, Si, does not exceed a certain prescribed proportion pi.
The additional constraints are then

E j Xxj < i, i = l,...,m.
j@Sj

Dividing through the ith constraint by o-i gives a GUB allocation problem formulation
over continuous variables.

(3) The nested resource allocation problem:

n

max fj(xj),

xE < bi, i = 1,..., m,

xi, nonnegative integers j = 1,..., n

where Sc c S2 c ..c S,, c E. Notice that bI < <... b,, otherwise, if bi > bi+l,
then the ith constraint is redundant and can be omitted.

395

D. S. HOCHBAUM

Tamir (1980) considered a production problem application. It is given that the
horizon is finite, [0, T], and a restriction that product units can be sold only at m
prescribed times 0 < tI < t2 < . . < t,, = T. The utility of selling k items at time ti
is a monotone nondecreasing concave function fj(k). The production rate is constant,
with a units of time required to produce one unit of the product, and there is no
initial stock or inventory holding cost. This problem is formulated as a problem
concave maximization problem with the constraints:

n

a 3x t < t, i 1,...,n,
j-1

for x; nonnegative integers. This problem is the nested problem once we divide
through each inequality by a.

Another unrelated application is in determining optimal sample sizes for the
purpose of estimation. The stratified sampling problem is an instance of the nested
problem discussed by Sanathanan (1970).

(4) The tree resource allocation problem:

max f(x,i),

i= B^ Exj -B,

xj <biv, i = 1 ... , m,
jESi

x i, nonnegative integers j = 1,..., n.

The sets Si are derived by some hierarchical decomposition of E into disjoint subsets
and the repeated decomposition of each of the subsets. Each set thus generated is
among the sets Si i = 1,..., m. Describing each set as a node and the decomposition
as edges from the parent set to its subsets, one gets a tree on m nodes which is a
branching, i.e., the indegree of each node except the root (corresponding to the set
E), is one.

Note that the nested problem is a special case of the tree problem when the tree is
a path. Also the generalized upper bounds is a special case of the tree problem with
all nodes other then the root being leaves; that is, the tree is a star.

One application of this problem is in the context of product storage and transporta-
tion. A company needs to buy B units of a product from up to n different suppliers
that are geographically dispersed. The utility function for possessing k units for the

product from supplier j is f,(k), where all fj's are concave monotone nondecreasing
functions. The product from the suppliers is routed to local warehouses, where
transportation capacity is limited and warehouse capacity is limited. From local
warehouses the product is transported to regional warehouses and from there to
distribution centers. Each product may be transported to the nearest warehouse
facility, but the routes are predetermined. The capacity of each warehouse and center
is bounded by the minimum of its own capacity and the capacity of the routes leading
to the warehouse. So for a warehouse i, the set of products assigned to be shipped via
that warehouse is Si. For a total number of m warehouses and centers the constraint

396

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

is,

Ex < C, i= 1,...,m,
jE Si

where Ci is the capacity of warehouse i.
A variation of this problem with n different items and objective function represent-

ing the lot ordering cost and holding cost, an optimal lot sizing problem, is presented
by Ziegler (1982) and Bitran and Hax (1981). There the objective function is a
minimization of a separable convex function. In the constraints each variable xj
appears with a coefficient vi that represents the amount of storage required by a unit
of that product. In order to derive the allocation problem form of constraints the
variables are scaled by the factor vj.

Many researchers have discussed other cases of the general allocation problem.
One such case is the network allocation problem that is not defined here. The tree
problem is a special instance of the network problem when the network forms a tree.
Federgruen and Groenevelt (1986b)) showed that the network allocation problem is a
special case of GAP, and presented an application to an oil and gas bidding problem.
In this application, the network is a bipartite graph. An adaptation of the proximity-
scaling algorithm gives faster running time (than that of the greedy described in
Federgruen and Groenevelt (1986b)) to the oil and gas bidding problem, where the
factor F for checking the feasibility of an increment is equivalent to testing whether
in a given residual network an increment of a unit of flow from one of the sources is
feasible. For a network on m arcs this can be trivially implemented in O(m). More
efficient implementations are potentially possible.

The greedy is valid for all these problems, also with 1 replacing 0 as a lower bound
(for proof see Federgruen and Groenevelt (1986a) or Ibaraki and Katoh (1988)).

3. Lower bounds. In contrast to combinatorial linear programming (with zero-one
coefficients in the constraint matrix) where there is a strongly polynomial algorithm to
solve the problem (see Tardos (1986)), this is not the case when we introduce a
concave objective function, even if it is separable and consists only of two (or one)
variables, and even if the maximum subdeterminant is 1 (i.e., the constraint matrix is
totally unimodular), and even if there is only one constraint in addition to nonnegativ-
ity. We first present a comparison model lower bound followed by an algebraic tree
model lower bound.

3.1. A comparison model lower bound. Here, we rely on a result of information
theory according to which there is no algorithm that finds a value in a monotonic
decreasing n-array that is the first to be smaller than some specified constant in less
than log2 n comparisons.

Consider the allocation problem defined for c > 0,

n

max f,((x) + c x,,+l,
j=1

n+ 1

xj = B,
j=l

x > 0 and integer j = 1,..., n + 1.

Let the functions fj be concave and monotonic increasing in the interval [0, [1],
and constant in [L[J, B]. Solving this problem is then equivalent to determining in n

397

D. S. HOCHBAUM

arrays of increments, {Afi(k)}, k = 0,...,[J - 1 of length [,] each, the last entry of
value > c. Since the arrays are independent, the information theory lower bound is
fl(n log[]). Similarly, for the case of an inequality constraint the same lower bound
applies for the problem on n variables,

n

maxE fj(x),
j=1

n

j xi < B,
j=l

xi > 0, integer j= 1,...,n,

since x,,+ can simply be viewed as the slack and c = 0.

3.2. The algebraic-tree model. One might criticize the choice of the comparison
model for this problem as being too restrictive. Indeed, the use of arithmetic
operations may help to reduce the problem's complexity. This is the case for the
quadratic simple allocation problem, which is solvable in linear time, O(n), (Brucker
1984). The lower bound here demonstrates that such success is not possible for other
nonlinear functions. The computation model that is used hereafter allows the
arithmetic operations +, -, X, - as well as comparisons and branching based on any
of these operations. It is demonstrated that the nature of the lower bound is
unchanged even if the floor operation is permitted as well.

We rely on Renegar's (1987) lower bound proof in this arithmetic model of
computation for finding c-accurate roots of polynomials of fixed degree > 2. In
particular, the complexity of identifying an E-accurate single real root in an interval
[0,R], fl(loglog(R/E)) even if the polynomial is monotone in that interval. Let
p1(x),... ., p,(x) be n polynomials each with a single root to the equation p,(x) = c
in the interval [0, B/n], and each p,(x) a monotone decreasing function in this
interval. Since the choice of these polynomials is arbitrary, the lower bound on
finding the n roots of these n polynomials is fl(n loglog(B/ne)). Let f1(xj))=
f(i(x) dx. The fi's are then polynomials of degree > 3. The problem,

(Pe) max f(xi * E) + c x,,i E,
j

n+l B

E X/ = r,
X.

j=l

xj > 0, x; integer,

has an optimal solution x such that y = e x is the (ne)-accurate vector of roots
solving the system

P\(Yi) =c,

P2(Y2) =c,

\Pj(y,1) c.

This follows directly from the Kuhn-Tucker conditions of optimality, and the fact that
an optimal integer solution to the scaled problem with a scaling constraint, s, x*, and
the optimal solution to the continuous problem y* satisfy Ilx* - y* l| < ns. This

398

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

proximity between the optimal integer and the optimal continuous solutions was
proved in Hochbaum and Shanthikumar (1990) for a general constraint matrix. The
right-hand side is ns when the constraint matrix is totally unimodular. (A tighter
proximity is proved in Corollary 4.3.) Hence, a lower bound for the complexity of
solving (Pt) is fl(n log log(B/n2E)). For E = 1, we get the desired lower bound for the
integer problem.

In Mansour, Schieber and Tiwari (1991) there is a lower bound proof for finding
E-accurate square roots that allows also the floor, [], operation. In our notation the
resulting lower bound for our problem is Q1(vloglog(B/e)), hence even with this
additional operation the problem cannot be solved in strongly polynomial time.
Again, the quadratic objective is an exception and the algorithms for solving the
quadratic objective simple resource allocation problems rely on solving for the
continuous solution first, then rounding down, using the floor operation, and proceed-
ing to compute the resulting integer vector to feasibility and optimality using fewer
than n greedy steps. See for instance Ibaraki and Katoh (1988) for such an algorithm.
Since the lower bound result applies also in the presence of the floor operation, it
follows that the "ease" of solving the quadratic case is indeed due to the quadratic
objective and not to this, perhaps powerful, operation.

4. A proximity theorem. Consider the scaled problem, GAPs,

(GAPS) max E f,(sx/),
jIe

B
E X,j -

jE

< r(A) A E, S
jEA

X > -- and integer j E E.

A direct application of the algorithms in Hochbaum and Shanthikumar (1990) calls
for finding an optimal integer solution to this scaled problem. Yet, the running time
depends on the largest subdeterminant of the constraint matrix, which may not be
polynomial. Here we employ a different approach that relies on tighter proximity thus
resulting in polynomial running time. We use an algorithm, greedy(s), that compares
the increments Ai as in greedy, (rather than z(')) but the increase of the selected
component is s units, when such increase is feasible. If such increase is infeasible, yet
a positive increase is feasible, greedy(s) increments the variable for the last time by
one unit. The proximity theorem proves that only the last increment made in
greedy(s) to each variable may be "incorrect."

Procedure greedy(s)
Step 0: x = 1, B = B - 1 e, E = 1,2,...,n}.
Step 1: Find i such that Ai(xi) = max, E{A(j(x)}.
Step 2: (Feasibility check), is x + e' infeasible?

If yes, E - E - {i}, and Si = s.
Else, is x + s e' infeasible?

If yes, E- E - {i}, x x-x + 1, BB - B- 1, and Si= 1.
Else, xi <- xi + s, and B - B -s.

Step 3: If B = 0, or E == , stop, output x.
Otherwise go to step 1.

399

D. S. HOCHBAUM

Let the output of greedy(s) be x(s), and the output of greedy which is an optimal
solution to (GAP), be x*. The vector 8 records the last increments executed by
greedy(s). Note that i8 = 1 or s; hence x(s) is equal to 0 or 1 modulo s. All algorithmic
results reported here would hold if only increments of size s permitted in greedy(s).
This feature of allowing single unit increments as the last increment in a variable is
only to strengthen the statement of the proximity theorem. In general, x(s) may not
satisfy the equality constraint, EjeEXj = B, if B > 0 at the termination of the
procedure.

PROXIMITY THEOREM (THEOREM 4.1). If there is a feasible solution to (GAP) then
there exists an optimal solution x* such that x* > x(S) - 2 x(- s e. (where the
inequalities are component-wise).

DIscussION. This theorem is of similar flavor as the one that has been used by
Edmonds and Karp (1972) to solve the minimum cost network flow problem via
scaling where the solution obtained at each iteration bounds the solution at the next
iteration, and the optimal solution, from below.

PROOF. In the proof we need the output of greedy(s) to be feasible and satisfy the

equality constraint. In order to achieve that, we introduce another greedy algorithm
greedy'(s) with output x'(). x'(S) is a solution derived from x(s) by applying greedy to
it, until the equality constraint is satisfied. Note that greedy'(s) is not a polynomial
algorithm. The proof will show that x* > x'(s - 6' where 6' is the vector of last
increments in greedy'(s). Since (see claim 4.2 below) x'(s)- ' > x(S) - 6, the theo-
rem will follow for x(s) as well.

greedy'(s) differs from greedy(s) in step 3 where "stop" is replaced by "go to step
4." Step 4 is essentially an application of greedy with the initial solution x().

Step 4a: 6' = E = {1,2,...,n}.
Step 4b: Find i such that A,(xi) = maxj E{AI(xj)}.
Step 4c: (Feasibility check), is x + e' infeasible?

If yes, E - E - {i}.
Else, xi <-xi -+ 1, B B- , and 68 = 1.

Step 4d: If B = 0, stop, output x. (If E = while B > 0, then GAP is infeasible).
Otherwise go to step 4b.

Note that unlike the output of greedy(s), the vector x'(S) satisfies the equality
constraint. We now prove the claim.

Claim 4.2. x(') + (s - 2)e > x'() > x(S) and x'() - b' > x(- ,

PROOF. Obviously x'() x). If xS) < xJ(s) then an increment of further s - 1
units of xs) is infeasible; hence, x(S) + (s - 2)e > x'(s). Now bj > 6 for all j. This is
because 8j is either 1 or s, whereas 5' is either equal to 6j or is 1. O

One corollary of this claim that will be used in Theorem 5.1 is that Ej EXs) 2
E E Ex - (s - 2)n = B - (s - 2)n. The rest of the theorem is proved for x'(s. To
simplify the notation, without risking ambiguity, we shall use the notation x(S) for the

output of greedy'(s) and 6 for the vector of last increments.
Let x** be an optimal solution to GAP. Let the vector, x, be defined by

xj = min{x**, x5S)}. Consider the problem GAP restricted to solutions satisfying
x 2 x. Since x**> x applies, the modified problem has the same objective value.

Applying the optimality of greedy solution to the submodular function r(A) = r(A)
- Ej,Ax., and B = B - EJ= xi, we get that starting the greedy algorithm from x it

finds an optimal solution, which is denoted by x*. Now run this greedy algorithm,
greedy (of ?2), with choosing i such that xi < xs) - i8 whenever possible. By the

400

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

concavity of the functions fj and the greedy choices of greedy'(s) applied to (GAPs),
we get that if xi < x) - i and xk > xk), then Ai > Ak

Therefore, as long as x > x(s) - is not satisfied, we must have that x < xs).
Recall that x* denotes an optimal solution obtained by greedy, beginning with x, such
that whenever x* > x(S) - 8 is not satisfied, we have x* < x(s). But x* < x(s) implies
that x*

=
x(), since Et= x* = El=X5S) = B. Hence, whenever x* > x(s) - 8 is not

satisfied, x* = x(S)> x(s) - 8, a contradiction. Therefore, x* > x() - .
We conclude from this theorem, a proximity result on the distance between an

optimal integer and optimal continuous solutions to GAP. Such a result is not useful
in finding optimal integer solutions to the problem unless the continuous problem is
particularly easy to solve. This is the case for the continuous quadratic allocation
problem, and potentially for other cases of the general quadratic allocation problem.

COROLLARY 4.3. For an integer optimal solution to GAP, z*, there is a continuous
optimal solution to GAP, x*, such that,

z* - e < x* < z* + ne.

and, vice versa, for a continuous optimal solution to GAP, x*, there is an integer
optimal solution to GAP, z*, such that,

Z* - e < x* < z* + ne.

PROOF. Let x(E) be an E-accurate solution to the continuous problem, i.e., it
satisfies for x*, lIx* - x(E)llK < e. Obviously, x* = limE_,x(e).

Given any E > 0, by rescaling E to 1, an optimal integer solution, in integer
multiplies of e is derived from a procedure greedy(1/e). Hence the proximity
Theorem 4.1 applies,

z* - e < x().

Taking E -> 0, this becomes

Z* - e < x*,

Also, since z* ? e = x* ? e = B it follows that x* < z* + ne. C1
In particular, Ilz* - x*llo < n. This is a tighter proximity theorem than the one

existing in the literature for constrained linear (Cook, et al. 1986), quadratic (Granot
and Skorin-Kapov 1990) and nonlinear (Hochbaum and Shanthikumar 1990) opti-
mization problems, all of which have Jlz* - x*|1. < nA, where A is the largest
subdeterminant of the constraint matrix. The result stated here could be viewed as
effectively considering the largest subdeterminant of a polymatroid to be 1, although
it could be in fact exponentially large.

A potential use of this result is to produce more efficiently integer solutions to the
quadratic cases of GAP, where the continuous solution is relatively easy to derive
from Kuhn-Tucker conditions (all of which are linear for quadratic objective function).

5. The main algorithm. Given a general resource allocation problem, GAP, with
I a feasible solution. The following algorithm is based on scaling and proximity. It
solves the GAP problem in O(n(log n + F)log(B/n)) operations, with F denoting
the running time (in greedy or greedy(s)) required to verify that an increment in one
of the vector's component is feasible. Note that greedy is identified with greedy(l).

401

D. S. HOCHBAUM

Algorithm GAP
Step 0: Let s = [B/2nl.
Step 1: If s = 1, call greedy. The output is x*. Stop. x* is an optimal solution.
Step 2: Call greedy(s). Let x(s) be the output.

Set I = x) - se
Set s <- [s/21.
Go to step 1.

THEOREM 5.1. (a) Algorithm GAP is talid;
(b) The running time of Algorithm GAP is O(n(log n + F)log(B/n)).

PROOF. (a) The validity is a direct corollary of the proximity theorem. Since the
vector x() - s e bounds an optimal solution from below, setting the lower bound
constraints to x > x(S) - s e does not change the optimal value of GAP.

(b) greedy(s) is called log[B/2n] times and greedy is called once. Each time a call
is made there are at most [(B - I e)/sl increments to be executed. Using Claim 4.2,

Il /1 fl

le = (x(- s)= Pxi -sn >B - (s -)n-sn> B- 2sn.
i= 1 i= i-l

Hence, at each iteration [(B - 1 e)/(s/2)] < 4n. Thus, there are not more than
0(n) increments at each call to be executed by greedy(s), or greedy. The amount of
work required for each increment is O(log n + F), where O(log n) comparisons are
needed to maintain the sorted vector of up to n potential increments and F steps to
check the feasibility of a selected increment. Note that if an increment in component
j is not feasible, that component is removed from consideration. Consequently, there
are at most n such "failed" feasibility tests. F]

The next section describes specialized implementations of Algorithm GAP that are
more efficient than Algorithm GAP in the feasibility checking phase or in maintaining
the increments' array.

6. Faster implementations.

6.1. The simple resource allocation problem (SRA). The fastest algorithm known
for this problem is an O(n log(B/n)) algorithm by Frederickson and Johnson (1982).
This algorithm is optimal in the comparison model (see ?3.1). Their procedure uses
among others, a subroutine called CUT. Here we show how incorporating CUT at
each iteration of the main Algorithm GAP yields the same running time while
avoiding other complex procedures of the FJ algorithm. Given an SRA problem with
a constraint, y-=!x- = B, each variable could potentially take any integer value in
[O,B]. Given the n monotone nonincreasing arrays of increments {f/(i)- f(i-
l)}, 1, j = 1..., n, CUT removes all but O(B) largest increments. Effectively CUT
provides new upper bounds to each variable xi < ui that are satisfied by an optimal
solution. The procedure CUT works in linear time, O(n). CUT is used in Frederick-
son and Johnson (1982) as a preprocessing step followed by an algorithm that finds
the Bth largest entry in the remaining array of size O(B). We use CUT in the scaled
problem where it is followed by a median selection algorithm among O(n) entries.

The main algorithm here makes O(log(B/n)) calls to greedy(s). Each call for
greedy(s) generates a feasible solution x(') to the constraints LEI= X = s[B/sl, with
xPs) nonnegative integers, for j = 1,..., n. This vector x(') is generated by considering
the increments of one unit at points on a grid of granularity s. The array describing
such [B/sl increments for each of the n variables is of length O(n) since s = [B/2n]

402

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

(in fact [B/sl < 2n + 1). So the total number of entries in the n arrays is O(n2). We
apply CUT, thus removing all but O(n) entries from the n arrays. Of these O(n)
entries we need to find the (2n + 1)st ranking element and the implied partition of
elements to those smaller than that element and those larger. Such a selection
procedure can be done in linear time in the size of the array (Blum, et al. 1972).
Hence, each call to greedy(s) works in O(n) time. The total running time is thus
0(n log(B/n)).

6.2. The generalized upper bounds resource allocation problem (GUB). The GUB
problem is easier to handle once we observe that it is polynomially equivalent to a
simple resource allocation problem where each variable has an upper bound con-
straint:

n

(UB) max E f(x),
i= I

EXi = B,
i = I

Xj < u, and nonnegative integers j = 1,...,n.

This observation is proved in Lemma 6.2.1.
Consider the set Si, the constraint E/ s xi < bi, and the following simple resource

allocation problem restricted to Si:

(SRA,) max E f/(xi),
jE xCSi

x Xj = bi,
jEsi

Xj, nonnegative integers j E Si.

LEMMA 6.2.1. Let the solution to SRAi be {x i)}j , . There exists an optimal solution
to GUB, x*, satisfying x* < x') j E Si.

PROOF. If there is no such optimal solution, then choose among all optimal
solutions, the one x* such that 8 = EY,smax{x, - xi),0} is minimum. Let j E= S
be such that x* > xi); then 3j2 E Si such that x* < x'), otherwise EYe 5x, > bi. ,/ I ,I12 S

2

From the optimality of x(), A 2(xi)- 1) 2 Aj,(xi).
From the optimality of x*, A Xx*) < A(x* - 1).
From the concavity,

A.2(X) > Aj2(,) -1) and

AJ(X) < ,(- 1).

Hence all these increments are equal, and the solution x'*,

x X, j IJ 1

x* + 1, J =J2,

403

D. S. HOCHBAUM

satisfies Ej s, max{x'* - x, = 6 - 1, which contradicts the minimality of this
expression for x*. n

The algorithm for GUB applies scaling as before. Each of the log(B/n) scaled
problems involve n variables (arrays) with at most 2n + 1 values each. Now each of
the scaled problems SRA, is solved by first applying CUT and then median finding in

O(ni) time. Once the problems SRA,..., SRA,n are solved, the (scaled) upper
bounds on the variables are available. Those upper bounds are used to trim the arrays
to length Uj each j - 1,..., n. CUT is then applied, in O(n) time, to the truncated
arrays and removes all but O(n) entries. The O(n)th element if then found in linear
time. Hence, each scaled problem is solved in linear time. The total running time of
the algorithm is thus O(n log(B/n)). This running time is optimal for this problem
and matches its concrete complexity in the comparison model.

6.3. The nested problem. Unlike the problem SRA and GUB, here we actually
execute the algorithm greedy(s) in order to obtain a feasible scaled solution. Com-
pared to the general algorithm, the faster implementation is due entirely to more
efficient feasibility checking procedure. The running time of the general algorithm is
O(n(log n + F)log(B/n)) with F the running time needed to determine whether for
a feasible solution x, x + e' is feasible. An obvious way of performing the feasibility
checking is to check each of the m constraints in O(m) total time per each of the
O(n) feasibility checks. We show how to perform that check more efficiently in 0(1)
time on the average, i.e., in a total of O(n) time for the O(n) greedy steps.

For notational convenience, we shall write the nested system:

xE i<b

E Xj<b2
j~s2

E x. < b,n
j S,,,

with S1, cS2 c - cS, as

Ex< bk(i) i = 1,... , ISnJ.

Where k(i) is such that Sk(i) - C {x..., x } C Sk(i). Consequently, if Si contains,
say, 3 more variables than Si_, then there will be three constraints each adding one
of these variables with the same right-hand side. In this new formulation we set
Si = {1,... i}. We now associate with each variable (or set, as in the new formulation
each set Si corresponds to a variable xi) a nonnegative "slack" si, initialized as the
value s", s? = bi - bi_ . (b(is assumed to be 0). Some of these slacks s, may already
be zero at the outset if bi = bi . Slacks are defined so the following invariant
property is satisfied. If a variable with a positive slack is to be increased by one unit,
then this increase is feasible, and a variable xi with zero slack can be feasibly
increased if any of the preceding slacks s ,...,si_ is positive. More precisely, we
claim that the following feasibility checking algorithm initialized with slacks s, = s[is

404

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

valid. The input is a feasible vector x, the index i of the variable to be increased, the
present slacks vector, and a 0 - 1 labeling vector 1.

1 if si > 0,
i= \0 if si= 0.

Feasibility check (x, i; s, ..., s,1; 1, ... ,,)
Set so = 1.
Let k(i) = max{jl0 < j < i, sj > 0}.
If k(i) > 0, set sk() k(i)

- 1, k(i)
-

min{lk(i), Sk(i)}
output "feasible," and (s,,..., s,),
else output "infeasible."
end.

LEMMA 6.3.1. The feasibility check algorithm is valid.

PROOF. In order for an increment vector 8 of a feasible solution x to be feasible,
8 has to satisfy:

81 < bI - xI,

61 + 62 < b2 - xI - X2,

i < b,, - E xi.
j== j=l

As discussed earlier, the right-hand side in a nested system can always be monotone
nondecreasing. Hence we set the right-hand sides, b to be bi = min{bi - = I XJ, bi+ 1)
where bL is set equal to bn - EJ= Ixj. The algorithm maintains the vector b monotone
nondecreasing. When, for an index i, it is found that sk() > 0, then b1 = Ei,sj > 0,
hence the value of xi can indeed be incremented by one unit (assuming b is an
integer vector). One can also deduce that bk = i) = b,. The updating of the
slacks corresponds to setting the new values of bk(),..., b, to be all equal to b, - 1,
which corresponds to the right-hand sides of the system the increment vector needs to
satisfy following the increment of xi by one unit. D

The implementation of the feasibility check requires the labeling of constraints (or
variables) with a 0 - 1 label, li, and the identification of the index k(i). This can be
done in linear time as follows.

If we view inclusion as a partial order where SI precedes S2 if Sl c S2, the search
is for the nearest predecessor with label 1. Since the partial order is linear, we can
maintain the 0 labeled indices on the line, in intervals separated by l's. Each interval
is represented by pointers to its left-end and right-end points. The left-end point of
an interval has a pointer to the nearest preceding right-end point of the previous
interval. With this data structure, each iteration consists of finding the left-end point
of an interval to which i belongs (that will provide the index k(i)), or updating the
sets of intervals by a merger when a label becomes 0. This series of n union-find
operations can be executed in O(n) time using Gabow and Tarjan's algorithm
(Gabow and Tarjan 1985).

The total complexity of the algorithm for the nested problem is then O((n log n +
n) log(B/n)) = 0(n log n log(B/n)).

405

D. S. HOCHBAUM

6.4. The tree constrained problem. Recall from ?2 that the tree structure is such
that each set is decomposed into disjoint subsets. Consequently, the number of nodes
in the tree, m, is O(n). For the sake of convenience we assume the existence of an
upper bound constraint for each variable. If such a constraint does not exist for a
variable, then we can add it by setting the right-hand side to be the same as in the
leaf constraint (the smallest set) in which this variable appears. These additional
constraints are redundant and do not change the set of feasible solutions. As a result,
the tree can be assumed to have n leaf nodes, corresponding to each of the variables.

A straight-forward way in which to implement the feasibility check works as
follows. The depth of the tree is n at most. For each feasibility check of increase in

xi, all the nodes on the path from the root to the leaf containing index i, are
inspected and the slack in each such constraint (the current difference between the
right-hand side and the left-hand side) is updated. Hence in two passes of length
O(n) each, the feasibility check and the update of the slacks is accomplished. The
total running time is therefore O(n(log n + n)log(B/n) = 0(n2 log(B/n)). This run-
ning time is equivalent to the best running time reported in Ibaraki and Katoh (1988)
(at the time when these results were initially reported). Recently, an algorithm by
Dyer and Frieze (1990), improved on that running time to O(n log2 n log B). We
show here that implementing the feasibility check using the path compression
approach, yields an algorithm with running timeO(n log n log(B/n)).

We label each node in the tree with the value of its slack-the difference between
the value of the right-hand side, and the value of the left-hand side for the current
solution. Initially the labels are the right-hand sides of the respective constraints. The
feasibility check, as described above, consists of two phases. The first phase is to
identify the minimum label on the path from the leaf node corresponding to the
variable to be incremented, to the root, r. If the value of this minimum label is
positive, then the increment is feasible. The other phase is the updating of the values
of the slacks (reduce each by one) on the same path once the feasibility of an
increment has been confirmed.

For the first phase, the operator of minimum of two values is associative, therefore
the path compression technique described in Tarjan (1979) is applicable and can be
used to evaluate the feasibility. Such operation is called EVAL in the terminology of
Tarjan (1979). Since there are only O(n) EVAL operations, this part can be
accomplished in O(n log n), as proved in Theorem 1 in Tarjan (1979). The update
operation is trickier. First, it consists of a different operator (subtraction of 1); hence
the result on path compression is not applicable, as it requires the same operator to
be used in EVAL and the update. Furthermore, the path compression algorithm
counts the number of nodes that are being updated. Since there could be O(n2)
updates, the application of the path compression will take longer running time than
the straight-forward technique. To overcome this difficulty, we maintain the labels in
a special data structure that allows us to perform an update of a path in the tree as a
single operation. Also EVAL is performed simultaneously with the update; i.e., as the
value of the minimum is computed from the leaf to some node on the path to the
root, the values of the slacks along this path have already been updated. Although
such simultaneous update is not correct, in the sense that when an increment is not
feasible, some of the labels on the path have been updated, as if the increment has
been performed, resulting in slack labels that are not the difference between the
right-hand side and left-hand side as required. Yet, the algorithm remains correct by
interrupting the EVAL process once a 0 label has been encountered. This works
since if some node in the tree has the label 0, then all leaves of the subtree rooted at
that node, cannot be feasibly incremented, and the value of the minimum on the path
from these leaves to the root (which is 0) remains unchanged.

406

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM

The labels of all nodes in the tree are maintained in an array, SLACK, that can
also be read as a single word. Since all right-hand sides in each phase of the scaling
algorithm are O(n), the length of SLACK is up to O(n log n) bits. The array SLACK
is created following each scaling in linear time. In addition, there are 0(n) such
arrays created, SUBARRAY(r, v), one for each node v in the tree. SUBARRAY(r, v)
is an array of the same length as SLACK, and it consists only of 0 or 1 values, 1 for all
entries corresponding to nodes on the unique path from r to v, and 0 in all other
entries. Those values are padded with O's so that this array is of the same length as
SLACK. SUBARRAY's are created once in a preprocessing stage, and maintained
unchanged throughout. The SUBARRAY's are created using depth-first-search or
breadth-first-search in linear time.

Implementing EVAL using the path compression technique results in a modified
tree, called the tirtual tree, with the property that a parent of a node in the virtual
tree, is an ancestor in the original tree. Updating the labels requires updating in the
original tree. The updating of the path between a node v, and its immediate ancestor,
parent(v) in the virtual tree, is done by setting:

SLACK - SLACK - SUBARRAY(r, v) + SUBARRAY(r, parent(v)).

The EVAL operation in Tarjan (1979) is implemented by proceeding from leaf to
root in the virtual tree and applying EVAL(u) for each node 1 on that path. We
modify this operation as follows:

procedure EVAL(L);
if parent(t) = r then EVAL = label(u) Stop.

else if label(l) = 0 then EVAL = 0 Stop.
else COMPRESS(); EVAL = min{label(parent(u)), label()}
SLACK := SLACK - SUBARRAY(r, u) + SUBARRAY(r, parent())fi;

The procedure COMPRESS(u) is the same as in Tarjan (1979). The change in the
EVAL(L) procedure is only in the interruption when EVAL is 0 and the added
update of SLACK. The total number of operations of this new EVAL procedure is
only a constant factor more than the original EVAL procedure. Hence the total
running time for the O(n) feasibility checks and updates is O(n log n). The running
time of the scaling algorithm for solving the tree case is hence O(n log n log(B/n)).

7. Concluding remarks. Among the questions still left open in this paper is the
tightness of the different lower bounds. Can one find optimal algorithms with respect
to the comparison model lower bound for the nested case and the tree case of the
allocation problem? In order to do that, one would have to devise an approach of
maintaining the array of the increments without sorting.

Another question is on the tightness of the lower bounds of the algebraic computa-
tion tree model. In particular it may be possible, when the objective function is a
separable polynomial, to reduce the running time to a function of log2 log2 B. Such
algorithms will probably require a refining of the existing Newton methods for finding
roots of polynomials.

The quadratic problem takes a special place in terms of its complexity among the
nonlinear problems. The lower bound in the algebraic computation tree model does
not apply to the quadratic objective function. Hence, strongly polynomial algorithms
could potentially be developed for quadratic optimization problems. In particular, the
linear transportation problem is known solvable in strongly polynomial time, where
no such algorithm is known for the quadratic transportation problem. Recently, this
issue has been partially resolved by demonstrating a strongly polynomial algorithm for
the quadratic transportation problem with a fixed number of sources or sinks

407

D. S. HOCHBAUM

(Cosares and Hochbaum 1990). Also, recently, the quadratic cases of the allocation
problem-the generalized upper bounds, nested and tree-were shown to be solv-
able by strongly polynomial algorithms of complexity O(n), 0(n log n) and O(n log n)
respectively (Hochbaum and Hong 1992).

Acknowledgement. I wish to thank George J. Shanthikumar for suggesting the
study of the allocation problem and for many helpful discussions. Thanks are
extended to A. Tamir for pointing out important relevant literature, especially the
reference (Mansour, Schieber and Tiwari 1991). I am also indebted to R. Shamir for
his detailed comments and to S. P. Hong for identifying an error in an early version of
the proof of Theorem 4.1. Finally, I am grateful to an anonymous referee for
suggestions that resulted in improving the substance and presentation of the paper
and simplifying significantly the proof of Theorem 4.1. The author was supported in
part by the Office of Naval Research under Grant N00014-88-K-0377 and by Grant
ONR N00014-91-J1241 and by the National Science Foundation under Grant ECS-
85-01988.

References

Bitran, G. R. and Hax, A. C. (1981). Disaggregation and Resource Allocation Using Convex Knapsack
Problems with Bounded Variables. Management Sci. 27 431-441.

Blum, M. Floyd, R. W. Pratt, V. R. Rivest, R. L. and Tarjan, R. E. (1972). Time Bounds for Selection.
J. Comput. System Sci. 7 448-361.

Brucker, P. (1984). An O(n) Algorithm for Quadratic Knapsack Problems. Oper. Res. Lett. 3 163-166.
Charnes, A. and Cooper, W. W. (1958). The Theory of Search: Optimal Distribution of Effort. Manage-

ment Sci. 5 44-49.
Cook, W. Gerards, A. M. H. Schrijver, A. and Tardos, E. (1986). Sensitivity Results in Integer Linear

Programming. Math. Programming 34 251-264.
Cosares, S. and Hochbaum, D. S. (1990). Strongly Polynomial Algorithms for the Quadratic Transportation

Problem with Fixed Number of Sources. Math. Oper. Res., (to appear).
Dyer, M. E. and Frieze, A. M. (1990). On an Optimimization Problem with Nested Constraints. Discrete

Appl. Math. 26 159-173.
and Walker, J. (1987). An Algorithm for a Separable Integer Programming Problem with

Cumulatively Bounded Variables. Discrete Appl. Math. 16 135-149.
Edmonds, J. and Karp, R. M. (1972). Theoretical Improvements in Algorithmic Efficiency for Network

Flow Problems. J. Assoc. Comput. Mach. 19 248-264.

Elton, E. J. Gruber, M. J. and Padberg, M. W. (1976). Simple Criteria for Optimal Portfolio Selection.
J. Finance 31 1341-1357.

Federgruen, A. and Groenevelt, H. (1986a). The Greedy Procedure for Resource Allocation Problems:

Necessary and Sufficient Conditions for Optimality. Oper. Res. 34 909-918.
and (1986b). Optimal Flows in Networks with Multiple Sources and Sinks, with Applica-

tions to Oil and Gas Lease Investment Programs. Oper. Res. 34 218-225.

Fox, B. L. (1966). Discrete Optimization via Marginal Analysis. Management Sci. 13 210-216.

Frederickson, G. N. and Johnson, D. B. (1982). The Complexity of Selection and Ranking in X + Y and
Matrices with Sorted Columns. J. Comput. System Sci. 24 197-208.

Gabow, H. N. and Tarjan, R. E. (1985). A Linear-Time Algorithm for a Special Case of Disjoint Set Union.
J. Comput. System Sci. 30 209-221.

Galperin, A. and Waksman, Z. (1981). A Separable Integer Programming Problem Equivalent to its
Continual Version. J. Comput. Appl. Math. 7 173-179.

Granot, F. and Skorin-Kapov, J. (1990). Some Proximity and Sensitivity Results in Quadratic Integer
Programming. Math. Programming 47 259-268.

Grotchel, M. Lovasz, L. and Schrijver, A. (1981). The Ellipsoid Method and its Consequences in
Combinatorial Optimization. Combinatorica 1 169-197.

Gross, 0. (1956). A Class of Discrete Type Minimization Problems. RM-1644, Rand Core.

Groenevelt, H. (1985). Two Algorithms for Maximizing a Separable Concal e Function over a Polymatroidal
Feasible Region. Technical Report, The Graduate School of Management, University of Rochester.

Hochbaum, D. S. and Hong, S. P. (1992). About Strongly Polynomial Time Algorithms for Quadratic
Optimization over Submodular Constraints. Manuscript, University of California Berkeley, CA.

408

LOWER AND UPPER BOUNDS FOR THE ALLOCATION PROBLEM 409

and Shanthikumar, J. G. (1990). Convex Separable Optimization is not much Harder than Linear
Optimization. J. Assoc. Comput. Mach. 37 843-862.

Ibaraki, T. and Katoh, N. (1988). Resource Allocation Problems: Algorithmic Approaches. MIT Press,
Boston, MA.

Koopman, B. O. (1953). The Optimum Distribution of Effort. Oper. Res. 1 52-63.
(1957). The Theory of Search: Part III. The Optimum Distribution of Searching Effort. Oper. Res.

5 613-626.
Luss, H. and Gupta, S. K. (1975). Allocation of Effort Resources Among Competing Activities. Oper. Res.

23 360-366.
Mansour, Y. Schieber, B. and Tiwari, P. (1991). Lower Bounds for Computations with the Floor

Operations. SIAM J. Comput. 20 315-327.
Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization. John Wiley and Sons,
Renegar, J. (1987). On the Worst Case Arithmetic Complexity of Approximation Zeroes of Polynomials,

J. Complexity 3 9-113.
Sanathanan, L. (1970). On an Allocation Problem with Multistage Constraints. Oper. Res. 18 1647-1663.
Tamir, A. (1980). Efficient Algorithms for the Selection Problem with Nested Constraints and its

Application to a Production-Sales Planning Model. SIAM J. Control Optim. 3 282-287.
Tardos, E. (1986). A Strongly Polynomial Algorithm to Solve Combinatorial Linear Problems. Oper. Res.

34 250-256.
Tarjan, R. E. (1979). Applications of Path Compression on Balanced Trees. J. Assoc. Comput. Mach.

690-715.
Yao, D. D. and Shanthikumar, J. G. (1987). The Optimal Input Rates to a System of Manufacturing Cells.

INFOR 25 57-65.
Ziegler, H. (1982). Solving Certain Singly Constrained Convex Optimization Problems in Production

Planning. Oper. Res. Lett. 1 246-252.
Zipkin, P. (1980). Simple Ranking Methods for Allocation or One Resource. Management Sci. 26 34-43.

D. S. Hochbaum: School of Business Administration and IEOR Department, University of California,
Berkeley, California 94720; e-mail:dorit(o hochbaum.berkeley.edu

	Article Contents
	p. 390
	p. 391
	p. 392
	p. 393
	p. 394
	p. 395
	p. 396
	p. 397
	p. 398
	p. 399
	p. 400
	p. 401
	p. 402
	p. 403
	p. 404
	p. 405
	p. 406
	p. 407
	p. 408
	p. 409

	Issue Table of Contents
	Mathematics of Operations Research, Vol. 19, No. 2 (May, 1994), pp. 257-512
	Front Matter
	On the Complexity of Cooperative Solution Concepts [pp. 257 - 266]
	Unstable Asymptotics for Nonstationary Queues [pp. 267 - 291]
	Bounds for Two-Stage Stochastic Programs with Fixed Recourse [pp. 292 - 313]
	Bounding the Expectation of a Saddle Function with Application to Stochastic Programming [pp. 314 - 340]
	An Adjustment Process for an Economy with Linear Production Technologies [pp. 341 - 351]
	Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search [pp. 352 - 389]
	Lower and Upper Bounds for the Allocation Problem and Other Nonlinear Optimization Problems [pp. 390 - 409]
	Risk Theory in a Periodic Environment: The Cramér-Lundberg Approximation and Lundberg's Inequality [pp. 410 - 433]
	On Finding Optimal Policies for Markov Decision Chains: A Unifying Framework for Mean-Variance-Tradeoffs [pp. 434 - 448]
	Monotone Optimal Control of Permutable GSMPs [pp. 449 - 476]
	Stochastic Convexity and Concavity of Markov Processes [pp. 477 - 493]
	Strong Consistency of the Variance Estimator in Steady-State Simulation Output Analysis [pp. 494 - 512]
	Back Matter

