
An Efficient Algorithm for Image Segmentation, Markov
Random Fields and Related Problems

DORIT S. HOCHBAUM

University of California, Berkeley, Berkeley, California

Abstract. Problems of statistical inference involve the adjustment of sample observations so they fit
some a priori rank requirements, or order constraints. In such problems, the objective is to mini-
mize thedeviation costfunction that depends on the distance between the observed value and the
modify value. In Markov random field problems, there is also a pairwise relationship between the
objects. The objective in Markov random field problem is to minimize the sum of the deviation cost
function and a penalty function that grows with the distance between the values of related pairs—
separation function.

We discuss Markov random fields problems in the context of a representative application—the
image segmentationproblem. In this problem, the goal is to modify color shades assigned to pixels
of an image so that the penalty function consisting of one term due to the deviation from the initial
color shade and a second term that penalizes differences in assigned values to neighboring pixels
is minimized. We present here an algorithm that solves the problem in polynomial time when the
deviation function is convex and separation function is linear; and in strongly polynomial time when
the deviation cost function is linear, quadratic or piecewise linear convex with few pieces (where “few”
means a number exponential in a polynomial function of the number of variables and constraints).
The complexity of the algorithm for a problem onn pixels or variables,m adjacency relations or
constraints, and range of variable values (colors)U , is O(T(n,m) + n logU ) whereT(n,m) is the
complexity of solving the minimum s, t cut problem on a graph withn nodes andm arcs. Furthermore,
other algorithms are shown to solve the problem with convex deviation and convex separation in
running timeO(mnlogn lognU) and the problem with nonconvex deviation and convex separation
in running timeO(T(nU,mU). The nonconvex separation problem is NP-hard even for fixed value
of U .

For the family of problems with convex deviation functions and linear separation function, the
algorithm described here runs in polynomial time which is demonstrated to be fastest possible.
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1. Introduction

Many problems of statistical inference, or Markov random field problems, in-
volve sample observations that do not conform to prior information about the
properties of the data. In the problem of image segmentation the image is trans-
mitted and degraded by noise. The goal is to reset the values of the colors to
the pixels so as to minimize the penalty for the deviation from the observed
colors, and furthermore, so that the discontinuity in terms of separation of col-
ors between adjacent pixels is as small as possible. In other statistical inference
problems (see Barlow et al. [1972] for an extensive survey), the objective is to
adjust the observed values so that the assumed order and ranking relationship
is satisfied.

We consider the image segmentation problem as a prototype for the class of
Markov Random Fields problems studied here. This class of problems is also known
as themetric labellingproblem [Kleinberg and Tardos 1999].

Consider an image constituting of a set of pixels each with a given color and a
neighborhood relation between pairs of pixels. In the image segmentation problem,
each pixel gets a color assignment that may be different from the given color of
the pixel so that neighboring pixels will tend to have the same color assignment.
The aim is to modify the given color values as little as possible while penaliz-
ing changes in color between neighboring pixels. The penalty function thus has
two components: the deviation cost that accounts for modifying the color assign-
ment of each pixel, and the separation cost that penalizes pairwise discontinuities
in color assignment for each pair of neighboring pixels. This problem has been
studied over the past two decades.1 The case of primary interest for image segmen-
tation has the separation cost nonconvex, which is an NP-hard problem as noted in
the sequel.

Although the image segmentation problem has the pixels embedded in the plane,
the results described are applicable to any arbitrary graph that is not necessarily
Euclidean or planar.

Representing the image segmentation problem as a graph problem, we let the
pixels be nodes in a graph and the pairwise neighborhood relation be indicated
by edges between neighboring pixels. Each pairwise adjacency relation{i, j } is
replaced by a pair of two opposing arcs (i, j ) and (j, i ) each carrying a capacity
representing the penalty function for the case that the color ofj is greater than
the color ofi and vice versa. The set of directed arcs representing the adjacency
(or neighborhood) relation is denoted byA. We denote the set of neighbors ofi ,
or those nodes that have pairwise relation withi , by N(i ). Thus, the problem is
defined on a graphG= (V, A).

Let each nodej have a valuegj associated with it—the observed color. The
problem is to assign an integer valuexj to each nodej so as to minimize the
penalty function.

Let the K color shades be a set of ordered valuesL={q1,q2, . . . ,qK }. De-
note the assignment of a colorqp to pixel j by setting the variablexj = p. Each
pixel j is permitted to be assigned any color in a specified range{q` j , . . . ,quj }.

1 See, for example, Blake and Zisserman [1987], Boykov et al. [1988], Ishikawa and Geiger [1998],
Geiger and Girosi [1991], and Geman and Geman [1984].
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For G( ) the deviation costfunction andF( ) the separation costfunction the
problem is,

Min
ui≥xi≥`i

∑
i∈V

Gi (gi , xi )+
∑
i∈V

∑
j∈N(i )

Fij (xi − xj ).

This formulation is equivalent to the following constrained optimization problem,
referred to as (IS) (standing for Image Segmentation):

(IS) Min
∑
j∈V

G j (gj , xj )+
∑

(i, j )∈A

Fij (zij )

subject to xi − xj ≤ zij for (i, j ) ∈ A
uj ≥ xj ≥ ` j j = 1, . . . ,n
zij ≥ 0 (i, j ) ∈ A.

Now the constraints of (IS) have several interesting properties. First, the co-
efficients of the constraints form a totally unimodular matrix. Second, the set of
constraints are those of the linear programming dual of the minimum cost network
flow. For the dual of minimum cost network flow problem, a generic constraint
would be of the type

xi − xj ≤ cij + zij .

Third, the constraints of the problem are monotone, as defined in Hochbaum
[1998a]. That is, each constraint is of the formaxi − bxj ≤ cij + zij for a, b ≥ 0.
For each of these classes of problems, there are known algorithms that are thus
applicable to the (IS) problem.

The (IS) problem has several known special cases.

(1) The Statistical Inference Problem.The problem is to adjust observed values
gi to valuesxi so that the adjusted values conform to rank requirements of
the typexi ≤ xj . The objective function is to minimize the deviation penalty of
|xi−gi |. This is an (IS) with the functionsF( ) and the variableszij omitted. (Or,
alternatively, whenFij (zij )=∞.) Such convex problems have been addressed
by Hochbaum and Queyranne [2000], where the problem is calledthe convex
closure problem.

(2) The Minimum Cut Problem. If the functionsF( ) are linear, the functions
G( ) are identically 0 and the variablesxj are binary, the problem (IS) is the
minimum-cut problem. More precisely, by settingxs= 1 andxt = 0, a feasible
solution to this (IS) problem is a partition of the set of nodes corresponding to
the variables to (S, S̄) with S containings and S̄ containingt and the sum of
arc capacities of arcs in (S, S̄) is minimum.

(3) The Minimum s-Excess Problem.For binary variablesxj , the problem be-
comes the so-calleds-excessproblem in Hochbaum [1998b]. This problem is
defined on a capacitated graph with node weights. The goal is to find a subset
of nodesS so that the total weight of the nodes in the set plus the capacity of
the cut separating the set from the rest of the graphC(S, S̄) is minimum. This
problem plays a crucial role in the solution to the (IS) problem, as discussed in
Section 3.1. Thes-excess problem is equivalent to the (IS) problem with a set
of colors restricted to two colors. This binary (IS) problem was first identified
as equivalent to the minimum-cut problem by Greig et al. [1989].
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(4) The Minimum Closure Problem. A closed set has the property that all succes-
sors of nodes in the set are included in the set. For a directed graphG = (V, A)
with node weightswi , i ∈ V the minimum closure problem is to find a closed
set of total minimum weight. (Note that weights should be positive or negative;
otherwise, the problem is trivial to solve.) For each arc (i, j ), we have the con-
straintxi ≤ xj . When nodei is in the set,xi = 1 and nodej , its successor, is in
the set as well. This is an (IS) problem with binary variablesxj and no variables
zij . This problem was found by Picard [1976] to be solved by a minimum cut
procedure on an associated graph.

(5) Unconstrained Minimization of Convex Functions.When the setA is empty
and there are no constraints other than the box constraints, then the problem is
to minimize each of the convex functions in integers on the given interval. That
task cannot be performed in strongly polynomial time as explained in Section 2.
More precisely, it is provably impossible for nonlinear and nonquadratic optimi-
zation problems over linear constraints to be solved in strongly polynomial time.

(6) The Multiway Cut Problem. The problem is defined for a graph with given
edge weights and a set ofK terminals specified among the vertices. The problem
is to partition the graph toK subsets so that each terminal belongs to one of
the subsets and so that the weight of the edges that have two endpoints in two
different sets is minimum. This problem is special case of (IS) whenG j ( )= 0
and the functionsFij are so-calledδ-functions:

Fij (xi − xj ) =
{

uij if xi 6= xj

0 if xi = xj .

This demonstrates that the (IS) problem withδ functions forFij ( ) is NP-hard
as it is at least as hard as the multiway cut problem [Boykov et al. 1999b].

The main result here is an algorithm forG( ) convex and forF( ) linear, the
complexity of which is thesumof the complexity of a minimum cut procedureplus
the complexity of minimizing in integers then convex functionsG j . Since the (IS)
problem generalizes both the minimum-cut and the convex minimization problems,
this complexity is the best that can be achieved.

1.1. RESULTS TODATE. Most literature reviewed here provides algorithms for
problems generalizing the (IS) problem.

The (IS) problem is a case of convex separable optimization over linear con-
straints. As such, it was first shown to be solved in polynomial time by Hochbaum
and Shanthikumar [1990]. Among the results in Hochbaum and Shanthikumar
[1990], it was proved that any continuous or integer convex separable minimiza-
tion over linear constraints is solved in time polynomial in the number of variables
and the constraints and the absolute value of the largest subdeterminant. For (IS)
the constraint matrix is totally unimodular and thus the largest subdeterminant’s
absolute value is 1.

An inequality is said to bemonotoneif it is of the form axi − bxj ≤ cij + zij

with a, b≥ 0. Problem (IS) is a special case witha= b= 1. In Hochbaum
[1998a], it was shown that any nonlinear separable problem withG( ) arbi-
trary nonlinear functions andF( ) convex functions, on monotone constraints is
solved in integers in time that is polynomial in the number ofxj variablesn,
and the number of constraints (or variableszij ) m, and in the range of thexj
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variablesU ={maxj u j − ` j }. The optimization problem over monotone con-
straints is cast as a minimum cut problem on a graph withnU nodes andmU
arcs. The complexity of that algorithm is, due to the presence of the factor
U , pseudopolynomial.

Ishikawa and Geiger [1998] provide a pseudopolynomial algorithm for the (IS)
problem. That algorithm casts the problem as a minimum cut on a graph of pseu-
dopolynomial size.

Another problem generalizing the (IS) problem is the convex dual of the minimum
cost network flow. Consider a minimum cost network flow problem defined on a
networkG = (V, A) with flow variables denoted byyij . Let the sum of supplies be
equal to the sum of demands of the nodes,

∑n
i=1 wi = 0. Thus, we can write the

problem’s flow balance constraints as inequalities.

Min
∑
ij∈A

cij yij

subject to
∑

j

yij −
∑

j

yji ≥ wi i ∈ V

ūij ≥ yij ≥ 0 (i, j ) ∈ A.
The dual of this problem is

Min
∑
j∈V

w j xj +
∑

(i, j )∈A

ūij zij

subject to xi − xj ≤ cij + zij for (i, j ) ∈ A
xj ≥ 0 j = 1, . . . ,n
zij ≥ 0 (i, j ) ∈ A.

Although there are no explicit upper bounds on the variablesxj , it is easy to see
that forC= max(i, j )∈A cij , xj ≤ nC for all j ∈ V . Thus, the problem is equivalent
to a problem with bounded variables in a range of lengthU = nC. The constraints
of (IS) are the constraints of the dual of minimum cost network flow problem with
0 costs,cij = 0.

Recently Ahuja et al. [1999a, 1999b] devised two different polynomial-time
algorithms for the convex dual of the minimum-cost network flow. In Ahuja et al.
[1999b], it was shown how to solve the convex dual of the minimum-cost network
flow with an algorithm of complexityO(mnlogn lognU). The earlier paper Ahuja
et al. [1999a] describes an algorithm that solves this problem by making logU calls
to a minimum cut procedure on a graph onO(n2) nodes, wheren is the number
of variablesxi in the problem, andO(nm) arcs, wherem is the size ofA or the
number of variableszij .

The fact that the (IS) problem is solvable in pseudopolynomial time has been
noted again recently by Chekuri et al. [2000]. They describe a new linear program-
ming formulation of (IS) that has pseudopolynomial size, the solution to which is
integral. The number of variables in their formulation isO(n2U2).

The instances of the (IS) problem with the functionF( ) nonconvex are
NP-hard even for fixed value ofU ≥ 3 (since this problem generalizes the multi-
way cut problem onU terminals.) These intractable problems have been a recent
subject of a great deal of work in approximation algorithms.2 All these and other

2 See, for example, Boykov et al. [1988; 1999a; 1999b], Kleinberg and Tardos [1999], Gupta and
Tardos [2000], and Chekuri et al. [2000].
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approximation algorithms known for the problem run in pseudopolynomial time
and depend onU (or K , in the context of the number of colors).

1.2. OUR RESULTS. Let the (IS) problem involven pixels (variables) andm
adjacency relations (arcs). LetT(n,m) be the complexity of solving the minimum
s, t cut problem on a graph withn nodes andm arcs. Our main result is an algo-
rithm that solves the problem forG( ) convex functions andF( ) linear functions in
time O(T(n,m)+ n logU ). This complexity expression is composed of the time
required to solve a minimum cut problem plus the time required to find the minima
of n convex functions. Since the (IS) problem generalizes both these problems this
time complexity is the best time complexity achievable. Any improvement in the
run time of algorithms to identify the integer minima of convex functions or to find
a minimum (parametric) cut would immediately translate into improvements of the
run time of our algorithm.

A summary of our results for solving the (IS) problem include algorithms, de-
pending on the functional form of the functionsF andG.

(1) ForG( ), F( ) convex functions, the problem is solved in polynomial time. An
algorithm that runs in logU calls to a minimum cut procedure with complexity
O(logU ·T(n2,mn)) is reported in Ahuja et al. [1999a]. Another, more efficient,
algorithm for this problem runs inO(mnlogn lognU) [Ahuja 1999b]. Both
these algorithms have been devised for the more general problem of the convex
dual of minimum cost network flow.

(2) For G( ) convex functions andF( ) linear deviation functions, the algorithm
reported here has the complexity of the minimum cut problem,T(n,m), plus
the complexity of finding the integer minima in intervals of up ton convex
functions of the form ofG j . The linear deviation functions are of the form:

Fij (xi − xj ) =


uij if xi > xj

0 if xi = xj

uji if xi < xj .

The complexity of this problem isO(T(n,m)+ n logU ).
(3) ForG( ) arbitrarynonlinearfunctions andF( ) convex functions the algorithm

of Hochbaum [1998a] and Ahuja et al. [1999a] runs in pseudopolynomial time
required to find a minimum cut on a graph withnU nodes andmU edges,
T(nU,mU).

Our results imply that a specific type of the multiway cut problem—where the
weight of each edge in the cut is a linear function of the absolute distance between
its endpoints’ subset terminal values—is polynomial time solvable.

2. A Complexity Model for Convex Functions

The challenge of convex optimization for nonlinear and nonquadratic problems
is that searching for a minimum of a convex function involves an unavoidable
factor such as logU in the running time, forU = maxi {ui − `i } [Hochbaum
1994]. Although one can replace the length of the interval by other parameters
that depend on the variability of the functions, the running time cannot be made
strongly polynomial using the arithmetic complexity model (see Hochbaum [1994]
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for details). The algorithm presented here differs from previous algorithms in that
the search for the minima of the convex functions is disjoint from the rest of the
algorithm and conducted as a post-processing step. Thus, if the functions have a
special structure that allows to find the minima more efficiently, this structure can
be used to improve the complexity of the algorithm. For instance, for the minima
of quadratic functions can be found inO(1). Also, for piecewise linear functions
with few pieces (such as absolute value deviation), the minima can be found in
strongly polynomial time. “Few” in this context means that the number of pieces
or breakpoints isN where logN is a polynomial function ofn andm, p(n,m). So
“few” can be for instanceO(2p(n,m)).

The structure of the convex functions here is not restricted, so it is necessary
to define the complexity model used. In dealing with convex functions, we use
the unit cost complexity model: This assumes the existence of an oracle returning
function values for every argument input inO(1). We will only be interested with
arguments that are integers, or lie on a grid ofε granularity when we consider the
continuous problem. Any arithmetic operation or comparison involving functions
values is assumed to executed in unit time. We further assume that the sum of two
convex functions can be determined inO(1). Derivatives, or rather subgradients,
are also required. For the problems considered we let the subgradient of the function
f ( ) be,

f ′j (x) = f j (x + 1)− f j (x).

The negative result in Hochbaum [1994] is not applicable to the quadratic case.
Thus, it may be possible to solve constrained quadratic optimization problems in
strongly polynomial time. Yet, very few quadratic optimization problems are known
to be solvable in strongly polynomial time. For instance, it is not known how to solve
the minimum quadratic cost network flow problem in strongly polynomial time.
For the (IS) problem with the functionsG( ) quadratic convex and the functions
F( ) linear, our result adds to the limited repertoire of quadratic problems solved in
strongly polynomial time.

3. A Reduction to the Binary Case—The Threshold Theorem

The main idea of the algorithm is to reduce the problem to a number of calls to the
binary version of the problem (IS). We prove next a key theorem that demonstrates
that for a given threshold valueα, and a suitably selected binary version of the
problem, the solution to the binary problem separates thexj variables into two sets:
One set of variables that have value aboveα in an optimal solution, and the second
that has the variables values belowα in an optimal solution.

3.1. THE S-EXCESSPROBLEM. As noted in the introduction the s-excess prob-
lem is the binary version of the (IS) problem. The formal statement of the problem
is

Problem Name: Minimum s-Excess
Instance: Given a directed graph G= (V, A), node weights(positive or negative)

wi for all i ∈ V , and nonnegative arc weights uij for all (i, j ) ∈ A.

Optimization Problem: Find a subset of nodes S⊆ V such that∑
i∈S wi +

∑
i∈S, j∈S̄ uij is minimum.
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The s-excess problem is formulated as the binary optimization problem

(s-excess) Min
∑
j∈V

w j xj +
∑

uij zij

subject to xi − xj ≤ zij for (i, j ) ∈ A
1≥ xj ≥ 0 integer j = 1, . . . ,n
1≥ zij ≥ 0 integer (i, j ) ∈ A.

The following lemma was proved in Greig et al. [1989] and in Hochbaum [1998b].

LEMMA 3.1. Solving the minimum s-excess problem is equivalent to solving
the minimum-cut problem on an appropriately defined graph.

PROOF. Let the s-excess problem be defined on a graphG = (V, A). Define a
graphGst = (V ∪ {s, t}, Ast): The set of nodes of the graph is the setV appended
by two nodess andt . There is an arc between each node of negative weightj and
the source carrying the capacity−w j . There is an arc between each node of positive
weight i and the sink carrying the capacitywi .

We claim thatS is the source set of a minimum cut inGst if and only if it is a set
of minimum s-excess capacity in the graphG. LetC(A, Ā) be the sum of capacities
of arcs with tails inA and heads in̄A.

Noting that the capacities of arcs adjacent to source are the negative of the
respective node weights, we have that the s-excess weight of a setS is the sum
of capacities:−C({s}, S) + C(S, {t}). We rewrite the objective function in the
minimum s-excess problem:

min
S⊆V

[−C({s}, S) + C(S, S̄∪ {t})]
= min

S⊆V
−[C({s},V)− C({s}, S̄)] + C(S, S̄∪ {t})

= −C({s},V)+min
S⊆V

[C({s}, S̄)+ C(S, S̄∪ {t})].

In the last expression, the term−C({s},V) is a constant. The expression mini-
mized is precisely the sum of capacities of arc in the cut (S∪ {s}, S̄∪ {t}). Thus,
the setSminimizing the s-excess is also the source set of a minimum cut and, vice
versa—the source set of a minimum cut also minimizes the s-excess.

The Convex s-excess problem is a generalization of the s-excess problem with
node weightsf j ( ) that are convex functions.

(Convex s-excess)P(x) = P(x, z) = Min
∑
j∈V

f j (xj )+
∑

eij zij

subject to xi − xj ≤ zij for (i, j ) ∈ A
uj ≥ xj ≥ ` j j = 1, . . . ,n
zij ≥ 0 (i, j ) ∈ A.

Obviously, the Convex s-excess problem is identical to the (IS) problem. Note that
the arc weightseij are of interest only when positive. Otherwise, the problem is
unbounded.

A feasible solution to the problem is specified in terms of the values of the vector
x andz. It is however sufficient to specify the values ofx alone, since the values ofz
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are uniquely determined byx. That is, in an optimal solutionzij = max{xi − xj , 0}.
It is therefore sufficient to only specify the values ofx in an optimal solution.

3.2. THE THRESHOLD THEOREM. We define the s-excess problem on a graph
Gα for α an integer scalar. Let the weights of nodes inGα bewi = f ′i (α) where
f ′i (α) are the subgradients offi ( ) atα, fi (α)− fi (α−1). Let the subgradient value
of function fi (x) to be equal toM at values ofx > ui , and to−M for valuesx < `i ,
for M a suitably large value. With this extension, the box constraints are uniform
for all variables,u ≥ xj ≥ ` and we chooseα ∈ (`, u). Let the arc weights be
uij = eij .

In a graph with arc capacitiesuij and two disjoint sets of nodesA, B⊂V , we
use the notationC(A, B) to denote the total capacity of arcs from theA to B,∑

i∈A, j∈B uij .
In case there are several optimal s-excess sets, we term aminimal minimum

s-excess set to be a minimum s-excess set that does not contain other mini-
mum s-excess sets. Similarly, we term amaximal minimum s-excess set as a
minimum s-excess set that is not contained in another minimum s-excess set.

The threshold theorem establishes that all elementsi in the minimum
s-excess setS∗ in Gα satisfy that in an optimal solution to the convex s-excess
problem,x∗, x∗i ≤ α, and all elementsj in the complement ofS∗ satisfy that
x∗j > α. The theorem is an extension of the threshold theorem of Hochbaum and
Queyranne [2000] used in the context ofconvex closure problems.

THEOREM 3.1. Let S∗ be the maximal minimum s-excess set in the graph Gα.
Then there is an optimal solutionx∗ to the corresponding convex s-excess problem
satisfying, x∗i ≥ α if i ∈ S∗ and x∗i < α if i ∈ S̄∗.

PROOF. Let S∗ be a maximal minimum s-excess set, and suppose it violates
the theorem. Then for every optimal solutionx∗ there is a subsetS◦ ⊆ S∗ such that
x∗j < α for all j ∈ S◦, or there is a subsetS1 ⊆ S̄∗ such thatx∗j ≥ α for all j ∈ S1.

Suppose there exists a subsetS◦ then select among all optimal solutions for which
the violation inS∗ is on a subset ofS◦ the one for which

∑
j∈S◦ x∗j is maximum.

SinceS∗ is a minimum s-excess set, the contribution of adding the setS◦ to the set
S∗ \ S◦ must be nonpositive

1◦ =
∑
j∈S◦

w j + C(S◦, S̄∗)− C(S∗\S◦, S◦) ≤ 0.

Now, for ε > 0, consider a solutionx′ defined as follows:

x′i =
{

x∗i if i 6∈ S◦

x∗i + ε if i ∈ S◦.

Then,P(x′) ≤ P(x∗)+ε1◦ ≤ P(x∗). (Note that the first inequality may be strict
since the termC(S◦, S̄∗) may not be fully accounted for some arcs in (S◦, S̄∗) that
havex∗i < x∗j , and then the corresponding value ofzij = 0 does not change forx′ for
ε small enough. That proves that this situation is impossible since a strict inequality
contradicts optimality.) Therefore, the solutionx′ is optimal, the violation inS∗ is
only in a subset ofS∗, and

∑
j∈S◦ x′j >

∑
j∈S◦ x∗j , which is a contradiction to the

maximality ofx∗.
We conclude that in every optimal solutionx∗, x∗i ≥ α for i ∈ S∗.
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FIG. 1. The graphGα.

Now suppose there exists a setS1 ⊆ S̄∗ as above in an optimal solutionx∗. Since
S1 is not in a maximal minimum s-excess set its contribution to the objective must
be positive

11 =
∑
j∈S1

w j + C(S1, S̄∗\S1)− C(S∗, S1) > 0.

Now, for δ = min j∈S1(x∗j − α)+ ε > 0, let a solutionx′′ be defined as follows:

x′′i =
{

x∗i if i 6∈ S1

x∗i − δ if i ∈ S1.

In the solutionx′′ all arcs (i, j ) ∈ (S1, S̄∗\S1) have x′i > x′j and thus the
corresponding values ofzij are positive for all these arcs. Therefore, the term∑

(i, j )∈(S1,S̄∗\S1) uij zij is reduced byδC(S1, S̄∗\S1). The term
∑

(i, j )∈(S∗,S1) uij zij may
go up, but by no more thanδC(S∗, S1).

Thus,P(x′′) ≤ P(x∗)−δ11 < P(x∗), which contradicts the optimality ofx∗.

3.3. AN ILLUSTRATED EXAMPLE. Consider a grid of pixels in the plane with
pixels considered neighbors if they are adjacent horizontally or vertically. Thus,
each pixel has up to four neighbors. Consider the graphGα where nodek having
been shrunk with the source and nodew shrunk with the sink. The process of
shrinking subsets of nodes with source or sink is part of the parametric algorithm
that applies to the graphGα. The arcs between nodes that have been shrunk and other
nodes in the graph appear as arcs between source or sink and the respective nodes.
In the example illustrated in the graph in Figure 1, letf ′z(α), f ′i (α), f ′q(α) < 0
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FIG. 2. A schematic description of the part of the network onO(nU) nodes andO(mU).

and f ′j (α) > 0. The algorithm we present has the complexity of solving for the
minimum cut on the graph in Figure 1.

In case the functionsF( ) are not linear, a larger network is required. For each
pair of adjacent nodes, the network contains construction as given in Figure 2. The
network containsui − `i + u j − ` j nodes and a similar number of arcs for each
pair of adjacent pixelsi and j . For simplicity of illustration in this graph, we let
f ′i (k) < 0 for all `i ≤ k ≤ ui and f ′j (k) > 0 for all ` j ≤ k ≤ u j .

4. The Algorithm

One obvious method of using the threshold theorem for solving the convex s-excess
(or (IS)) problem is to perform a search by calling for the solution of the s-excess
problem for all integer values ofα in the interval (̀ , u). When done, the output of
such process is a partition of the set of variablesV into q sets, and the interval into
q disjoint intervals, so that all variables in the same set have their optimal value
lie in the same interval. The goal would be to find, for each variablexj , the largest
of value ofα for which it is still in the source set and the smallest value ofα for
which it is no longer in the source set. With this information, we narrow down
the value ofxj at an optimal solution to an interval defined by these values. We
later show that once these intervals are identified, all variables assigned to the same
interval assume the same value in that interval, and that value can be determined in
polynomial time. One drawback of the approach just described is that it makesU
calls to a minimum-cut procedure, and is thus pseudopolynomial.
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It is easy to see that a binary-search-type approach could be used to implement
the procedure of identifying the intervals to a polynomial time procedure. Next,
we show that one can do better still by implementing the process of identifying the
set and interval partitioning in strongly polynomial time and in the complexity of
solving a single minimum-cut problem.

4.1. THE PARAMETRIC GRAPH Gλ. We create a graph with parametric capaci-
tiesGλ = (V, A). Each nodej ∈ V has an arc froms going into the node with ca-
pacity−min{0, f ′j (λ)}, and an arc fromj to the sinkt with capacity max{0, f ′j (λ)}.
The capacities of the arcs adjacent to source in this graph are monotone nonin-
creasing as a function ofλ, and the arcs adjacent to sink are all with capacities that
are monotone nondecreasing as a function ofλ. Note that each node is connected
with a positive capacity arc, either to source or to sink, but not to both. Denote the
source set of a minimum cut in the graphGλ by Sλ. Let all arcs (i, j ) that are neither
adjacent to source nor to sink carry the capacityuij .

Let` be the lowest lower bound on any of thexj variables andu the largest upper
bound. Consider varying the value ofλ in the interval [̀ , u]. Since for all variables
j ∈ V and the valuè , f ′j (`) = −M, S̀ = V , and atu, f ′j (u) = M andSu = ∅.
As the value ofλ increases, the sink set becomes larger and contains the previous
sink sets corresponding to smaller values ofλ. The source set is becoming smaller
with increasing values ofλ and each contains the source sets that are generated for
larger values ofλ. Our goal is to identify for each variable the largest value ofλ, λ
so that the variable is still in the minimum s-excess set, and the smallest value ofλ,
λ̄, so the variable is not in the s-excess set. Then, the optimal value of this variable
is in [λ, λ̄).

For larger values ofλ, additional nodes join the sink set of the cut. Asλ grows,
the value of the cut changes as a function ofλ that is the sum of the capacities of the
nodes adjacent to source that are in the sink set, and nodes adjacent to sink that are
in the source set. That function has a breakpoint, callednode shifting breakpoint,
where a node switches from the source set to the sink set. The value ofλ for node
xj is the value of the breakpoint when nodej joins the source set of the minimum
cut. The value of̄λ is the next node shifting breakpoint.

Since the source set of a minimum cut can only shrink with increasing values of
λ, then

Sk ⊇ Sk+1 for all k.

Let the output of the parametric search process be a set of up ton node-shifting
breakpoints,̀ = λ1 < λ2 < · · · < λq < u. Then,

V = Sλ1 ⊃ Sλ2 ⊃ · · · ⊃ Sλq ⊃ ∅ = Sλq+1.

The total number of breakpoints cannot exceedn, q < n, since each is associated
with at least one node shifting from source set to sink set. LetS(i ) = Sλi − Sλi+1,
for i = 1, . . . ,q.

LEMMA 4.1. For j ∈ S(k), the value of xj at an optimal solution, x∗j , is the
argument minimizing,
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min
x∈[λk,λk+1)

∑
i∈S(k)

fi (x)+ x ·
q∑

p=k+1

C(S(k), S(p))− x ·
∑
p<k

C(S(p), S(k)).

PROOF. First, we show that all variables in each setS(k) assume the same
value in an optimal solution. Next, we will demonstrate that this value is the one
minimizing the function given in the lemma statement.

According to the threshold theorem,λk is the largest value so that forj ∈ S(k),
xj ≥ λk, andλk+1 is the smallest value so thatxj < λk+1. Thus, all variablesxi ,
with i ∈ S(k), have their optimal value lie in the interval [λk, λk+1). Suppose two
variables inS(k) assume different optimal values in the intervalx∗i1 < x∗i2. Then there
exists a valueλ ∈ [x∗i1, x∗i2] so that the source setSλ contains the nodei2 but noti1.
But there is no breakpoint in [λk, λk+1), which is a contradiction.

Let αk ∈ [λk, λk+1) be the common value of the variables inS(k), for k =
1, . . . ,q. Thenα1 < α2 < · · · < αq. Now the objective value of the convex
s-excess problem is,

min
q∑

k=1

∑
i∈S(k)

fi (αk)+
q∑

k=2

k−1∑
p=1

∑
i∈S(k), j∈S(p)

ei j (αk − αp) = min
q∑

k=1

Lk(αk).

This expression is separable into functions ofαk where,

Lk(αk) =
∑

i∈S(k)

fi (αk)+ αk ·
k−1∑
p=1

C(S(k), S(p))− αk ·
q∑

p=k

C(S(p), S(k)).

4.2. IDENTIFYING AN INTEGERNODE-SHIFTING BREAKPOINT. Let the maximal
minimum cut source set inGλ be denoted bySmax

λ and the minimal minimum cut
source set, bySmin

λ .
The source set of a minimum cut ofGλ remains invariant forλ varying in the

range [k−1, k) for k integer although the value of the cut may change. This is since
the objective function can be assumed to be piecewise linear convex with integer
breakpoints. Thus, in order to verify thatλ is a node-shifting breakpoint, it suffices
to compareSmin

λ with Smax
λ+ε for ε > 0 small enough. In our case we only consider

integer values ofλ, andε = 1 is a small enough value: IfSmin
λ ⊃ Smax

λ+1, thenλ is a
node-shifting breakpoint.

The existence of a breakpoint in an interval (λ1, λ2) is confirmed if and only if
Smin
λ1
⊃ Smax

λ2
.

4.2.1. Parametric Analysis. We assume henceforth that our minimum cut algo-
rithm delivers as output bothSmin

λ andSmax
λ . We further assume that the procedure

min-cut (Gλ) returns both the minimal and maximal source sets of minimum cuts
(if different), Smin

λ , Smax
λ , andSmax

λ+1.
For a given interval (λ1, λ2), where arc capacities do not contain a breakpointbj

where a node switches from being connected to source to being connected to sink,
we can find all node-shifting breakpoints by using the procedureparametric.

The procedure uses the operation “contract” of a set of nodes with the source
or with the sink. All arcs that were adjacent to the contracted set become, after
the contract operation, adjacent to the node—source or sink—that the set was
contracted with.
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Procedure parametric (λ1, λ2, Smin
λ1

, Smax
λ2

)
Contract:s← s∪ Smax

λ2
, t ← t ∪ S̄min

λ1
.

If V = {s, t}, or, if λ2 − λ1 ≤ 1, halt “no breakpoints”.
Else, letλ∗ = b(λ1 + λ2)/2c.
Call min-cut(Gλ∗ ) for the outputSmin

λ∗ , Smax
λ∗

If λ∗ is a breakpoint, outputλ∗. Else continue,
Call parametric (λ1, λ

∗, Smin
λ1

, Smax
λ∗ )

Call parametric (λ∗, λ2, Smin
λ∗ , Smax

λ2
)

end

The choice ofλ∗ as the median in the interval (λ1, λ2) is unimportant. Any
integer value interior to the interval will work correctly. Verifying whetherλ∗ is a
breakpoint is equivalent to one of the conditions being satisfied:

(i) Smin
λ1
⊃ Smax

λ∗ andλ∗ − λ1 ≤ 1, or

(ii) Smin
λ∗ ⊃ Smax

λ2
andλ2− λ∗ ≤ 1.

The analysis of the complexity of the procedure follows arguments used in
Gallo et al. [1989] for the push-relabel algorithm. This analysis applies also for
the pseudoflow algorithm in all its variants [Hochbaum 1998b]: For a given in-
terval, where we search for breakpoints, we run the algorithm twice. Once from
the lower endpoint of the interval where the maximal source set of the cut ob-
tained at that value shrunk into the source, and a second time from the highest
endpoint of the interval where the maximal sink set of the cut is shrunk into
the sink. The runs proceed for the graph and reverse graph till the first one is
done. The newly found cut subdivides the graph into source set and sink set
of sizes (n1,m1) and (n2,m2) for the number of nodes and arcs in each. One
of these induced subgraphs is smaller in terms of the number of nodes, say
n1 ≤ (1/2)n. In that smaller subgraph, two new runs are initiated from both end-
points. In the larger interval, however, wecontinuethe previous runs using two
properties:

—Reflectivity. The complexity of the algorithm remains the same whether running
it on the graph or reverse graph.

—Monotonicity. Running the algorithm on a monotone sequence of parameter
values has the same complexity as a single run.

Under these properties, one run is “reflected” to the opposite endpoint (thus
viewed as monotone continuation), and the other run continues as a monotone
continuation). Letm1 + m2 ≤ m, n1 + n2 ≤ n andn1 ≤ (1/2)n. The running
time T (m, n) is the running time required by the algorithm to solve the problem
on a graph withm arcs andn nodes. LetQ be a constant, then using the push-
relabel algorithm formin-cut (Gλ∗) the running time function satisfies the recursive
equation,

T (m, n) = T (m1, n1)+ T (m2, n2)+ 2Qm1n1 log
n2

1

m1
.

The solution to the recursive equation with the minimum-cut algorithm imple-
mented as push-relabel algorithm isT (m, n) = O(mnlogn2/m).
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4.3. THE FORMAL DESCRIPTION OF THEALGORITHM. Let` be the lowest lower
bound on any of the variablesxj andu the largest upper bound. LetU = u− `.
procedure minimum s-excess (G, f j , j = 1, . . . ,n)

Step (1). Call parametric (`, u, ∅,V).
Let the output be a set of up ton breakpointsλ1 < λ2 < · · · < λq.
Let S(k) = Sλk \ Sλk+1.

Step (2). For k = 1, . . . ,q find the integer minimum of the convex function,

min
x∈[λk,λk+1)

Lk(x) = min
x∈[λk,λk+1)

∑
i∈S(k)

fi (x)+ x ·
q∑

p=k+1

C(S(k), S(p))− x ·
∑
p<k

C(S(p), S(k)).

Let the argument of the minimum beαk, for k = 1, . . . ,q.
Step (3). Output the optimal solutionx∗ where,x∗j = αk for j ∈ S(k).

In Step (2), identifying the minimum argumentαk of a convex function, amounts
to searching, in the sorted array of derivative valuesL ′k(x)= ∑i∈S(k) f ′i (x) +∑q

p=k+1 C(S(k), S(p)) −∑p<k C(S(p), S(k)), for a last integer valueq′ so that
Lk(q′) is negative. Then, compareLk(q′) andLk(q′ + 1) and the lower is the de-
sired minimum. This can be accomplished using binary search inO(log(λk+1−λk))
time per function and no more thanO(n logU ) total complexity.

4.4. THE COMPLEXITY OF THE ALGORITHM. The parametric search generating
all breakpoints in Step (1) is implemented in timeT(n,m), which is, for example,
O(mnlogn2/m). The second step of the algorithm requires finding all the integer
minima of the convex functions for a total complexity ofO(n logU ). Step (3) is
accomplished inO(n) time. The total run time of the algorithm is thus,

O

(
mnlog

n2

m
+ n logU

)
.

5. Conclusions

We present here a particularly efficient algorithm for image segmentation problem
with convex deviation cost and linear separation cost. It is further shown that the
problem can be solved in polynomial time, but not as efficiently, when the separa-
tion cost is convex as well, and in pseudopolynomial time,T(nU,mU) when the
deviation cost is nonconvex and the separation cost is convex. When the separation
cost is noncovex theproblem is NP-hard even for fixedU . It would be of interest
to investigate whether NP-hard instances of the problem, with nonlinear separation
costs, can be addressed by relaxing the problem to the polynomially solvable ver-
sion solved here. Specifically, there may be a potential for using the formulation
here in achieving alternative approximation results for these problems.
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