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Abstract: Adjacency-clustering is a new concept of capturing phenomena in the presence of
spatial dependencies, or Neighborhood Effect (NE). The technique is applied here to prediction
problems in the presence of NE that arise in manufacturing system monitoring, quality control
and yield prediction. This work is motivated by Integrated Circuit Manufacturing (ICM) process
that involves multiple steps and is exceedingly expensive. Spatial variation of parameters across
each wafer, where the circuits are positioned, result from equipment or process limitations, and
a circuit is likely to be defective if its neighbors on the wafer are defective as well. The existence
of this Neighborhood Effect, while recognized, is not well captured in traditional modeling
approaches. The challenge is to extrapolate, from given samples, the patterns of the defects
and predict accurately the yield of the process. The patterns are effectively identified using
adjacency-clustering that is achieved with the graph-theoretic separation-deviation model, also
known as the Markov Random Field (MRF) model. The use of the technique is shown to identify
the defects’ patterns and provide dramatic improvements in the accuracy of yield prediction as
compared to state-of-the-art methods.
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1. INTRODUCTION

The process of ICM is highly complex and costly and
involves hundreds of chemical or physical processing steps
Yuan et al. (2011). Key processes include wafer fabrication,
wafer probe, assembly or packaging and final test. The
degree of manufacturing success is measured by yield,
defined as the average ratio of the number of usable devices
that pass tests after completing processes to the number
of potential usable devices at the initiation of the process
Kim and Kuo (1999). Accurate yield prediction is critical
for managers to estimate productivity, production cost
and make scheduling decisions. Moreover, yield prediction
enables the detection processing problems in early pro-
duction stages, which is crucial to quality improvement.
A major challenge in predicting yields in the ICM pro-
cess is the presence of spatial variation. Spatial variation
of parameters across each wafer, where the circuits are
positioned, results from equipment or process limitations,
and a circuit is likely to be defective if its neighbors on the
wafer are defective as well. The existence of this Neighbor-
hood Effect (NE), while recognized, is not well captured
in traditional modeling approaches. The challenge is to
extrapolate, from given samples, the patterns of the defects
and predict accurately the yield of the process.

We review here a new approach of adjacency-clustering
(AC) for prediction problems in the presence of spatial de-
pendencies that arise in manufacturing system monitoring,
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quality control and yield prediction. This approach was
first presented by Hochbaum and Liu (2018). Adjacency-
clustering is based on the graph-theoretic separation-
deviation optimization problem, also known as the Markov
Random Field (MRF) problem. MRF is to minimize a
sum of penalty functions assigned to deviating from the
priors, which are the observations derived from sampling,
and penalties assigned to the violations of the spatial
dependencies. This generates clusters that differentiate
between segments that are characterized by varying levels
of defect density while being as contiguous as possible.
These clusters provide essential information about the spa-
tial characteristics of defect patterns that enable detection
of processing problems at early production stages and is
used for process optimization and control. Hochbaum and
Liu (2018) showed how to utilize the adjacency-clustering
results to deliver highly accurate yield prediction as com-
pared to state-of-the-art statistical techniques.

The adjacency-clustering problem can furthermore be
solved optimally with an efficient algorithm, devised by
Hochbaum (2001), that uses a parametric cut procedure
to solve the respective MRF problem.

Spatial variation is an issue of key concern in ICM since
it plays a crucial role not only for process optimization
and control, but also for design of circuits that are robust
to such variation. Spatial variation in ICM is manifested
by the non-uniformity of defect patterns across the wafer,
with e.g. more defects as the distance from the center of
the wafer increases. This non-uniformity is caused by the
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nature of the manufacturing process. Among existing tech-
niques, Chen and Liu (2000) employed neural networks
in order to recognize spatial defect patterns. Di Palma
et al. (2005) tested the approach of Chen and Liu on
simulated and real data set. White Jr et al. (2008) de-
veloped a procedure to detect different arrangements and
shapes of defect aggregations (clusters). Recently, several
recognition techniques based on support vector machines
(SVM) have been tested on wafer defect data to identify
different defect patterns (e.g. see Li and Huang 2009, Chao
and Tong 2009, Yuan et al. 2010 and Wu et al. 2015).
Ooi et al. (2013) developed an automatic defect pattern
recognition system integrating feature extraction, selection
and classification techniques. These methods are helpful
in diagnosis but they do not explore how defect patterns
can help yield prediction. The method of Hochbaum and
Liu (2018) is the first to utilize defect clustering patterns
in order to improve yield prediction results. Furthermore,
this method is of independent interest for the purpose of
identifying defect patterns with an optimization algorithm.

Most current methods for yield prediction ignore the spa-
tial variation issue. The classical yield model assumes the
number of defects on a chip follows Poisson distribution
with density λ, which indicates the average number of de-
fects on a chip and is uniform across chips and wafers. The
yield is then estimated as the probability that no defects
occur on a chip. In later research, the assumption of a con-
stant λ was relaxed and instead λ was assumed to follow
a certain distribution. Two popular such models are Mur-
phy’s model and Seeds’ model in Murphy (1964); Seeds
(1967). One shortcoming of the Poisson model is that in
practice defects tend not to be randomly distributed, but
rather tend to be clustered Bae et al. (2007); Hansen et al.
(1997), that is, manifest the NE phenomenon.

Whereas Poisson model is widely used, it often underes-
timates the yield considerably for wafers with clustered
defects Stapper et al. (1983); Stapper (1989). To overcome
this limitation, Stapper (1983), in Stapper et al. (1983),
derived a negative binomial model in which the probability
that a fault occurs in a chip depends on the number of
faults already on the chip. This model is equivalent to as-
suming that λ follows a gamma distribution Stapper et al.
(1983). Albin and Friedman (1989) introduced the Ney-
man distribution to model defects in which both the num-
ber of clusters and the number of defects within each clus-
ter follow Poisson distribution with different densities Al-
bin and Friedman (1989). Although the negative binomial
model and the Neyman model take the clustering of defects
into account, they fail to capture the spatial information of
chips. Bae et al. (2007) proposed the incorporation of posi-
tional information of chips with Poisson, negative binomial
and zero-inflated Poisson regression models Bae et al.
(2007). Although these regression models improve yield
prediction, estimation issues remain challenging. The two
main methods, Bayesian method and maximum likelihood
estimation method, that are employed in the parameter
estimation of regression models, have major shortcomings.
The Bayesian method is based on Markov chain Monte
Carlo (MCMC) and is time consuming and unstable for
small-size samples. The maximum likelihood estimation
method tends to provide very loose interval estimates for
parameters Ghosh et al. (2006). In addition, for samples

showing complicated spatial patterns, it is hard to choose
covariates and set up the linear relationship in regression
models.

Krueger and Montgomery Krueger and Montgomery
(2014a) suggested to strengthen yield prediction models by
considering temporal relationships between samples from
different batches and samples over time. This adds to the
”spatial” dependencies a temporal dimension and a form
of correlation, or adjacency, dimension between different
batches. Krueger and Montgomery (2014) introduced gen-
eralized linear mixed models (GLMM) for yield predic-
tion that incorporate regression approaches taking into
account these correlations and demonstrated that consid-
ering these additional relationships improves the quality of
yield prediction. It is noted that the adjacency-clustering
approach is capable of incorporating these correlations
(via the separation penalty functions described in Section
2). Because of its strong accuracy results as compared to
generalized linear models (GLM) the adjacency-clustering
with correlations is expected to improve yield predictions
even further.

2. THE SEPARATION-DEVIATION MODEL,
COMPLEXITY, AND ALGORITHMS

The input to the Markov Random Field (MRF) consists
of priors on a subset of the objects and spatial depen-
dencies between pairs of spatial neighbors, implying that
their estimated values should be “similar”. The estimated
values, or predictions, are so as to achieve a balance of two
different goals: One goal is to minimize the deviation cost
which is the cost of assigning a value different than the
observation. The second goal is to minimize the separa-
tion cost which penalizes, for each object, the assignment
of a predicted value which is different from that of the
neighbor. The minimization of the combination of these
two penalty functions is the separation-deviation problem,
and the optimal values associated with the objects are the
predicted true values.

The separation-deviation problem has been extensively
studied in the context of image segmentation where the
priors are “color” values associated with pixels. Over
the past three decades, non-polynomial algorithms were
devised in e.g. Blake and Zisserman (1987); Ishikawa and
Geiger (1998), and later polynomial time algorithms for
general convex separable penalty functions and special
cases in Hochbaum (2001); Ahuja et al. (2003); Hochbaum
(2013).

The MRF problem is formalized on a given graph G =
(V,E), where each object is represented as a node in V ,
and N(i) is the set of neighbors of node i ∈ V . For each
j ∈ N(i) the pair of nodes {i, j} have an edge [i, j] ∈ E
connecting them. Each node i ∈ V that has a prior value
associated with it has a deviation function Gi(). For di
the observed label for node i the deviation function is of
the form Gi(xi − di), where xi is the output label of node
i. Each edge between neighboring nodes [i, j] ∈ E has an
associated separation function Fij(xi − xj). The sets Xi

are collections of discrete labels that can be assumed by
variables xi. The problem formulation is then,
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(MRF) min
∑
i∈V

Gi(xi) +
∑
i∈V

∑
j∈N(i)

Fij(xi − xj)

subject to xi ∈ Xi ∀ i ∈ V.

The complexity of MRF depends on the form of the
penalty functions. This complexity of MRF was classified
according to the properties of the penalty functions in
Hochbaum (2001) for feasible solution sets of consecu-
tive integers Xi = {�i, �i+1, . . . , ui}, and in Hochbaum
(2013) for non-consecutive values algorithm. For convex
penalty functions MRF is polynomial time solvable, and
for non-convex the problem is NP-hard. The cases when
the deviation penalty functions are convex and the sep-
aration penalty functions are (bi-)linear (defined below)
was shown by Hochbaum Hochbaum (2001) to be solvable
in polynomial time using a parametric cut procedure.
Furthermore, it was shown there that the complexity of
the algorithm is the fastest possible. The case where both
separation and deviation penalty functions are convex
were also shown to be solvable very efficiently, and within
a multiplicative log factor of fastest possible, by Ahuja
et al. (2004, 2003). For non-convex deviation functions
and convex separation functions the problem is solved in
pseudo-polynomial time, that depends on the number of
label values, or the range of the variables. This running
time is the time required to solve a minimum cut problem
on a graph with number of nodes that depends on the
number of labels Ahuja et al. (2004) and it is unimprovable
because the respective problem is weakly NP-hard. When
both type of penalty functions are non-convex the MRF
problem is NP-hard. These results, all for multi-labels
MRF, are summarized in Table 1.

The notation used in Table 1 includes: U = maxi |Xi|, the
number of labels; n = |V |, the number of nodes in the
graph; m = |E|, the number of edges in the graph; and
T (n,m) the complexity of the minimum s, t-cut problem
on a graph with n nodes and m arcs or edges. A bi-linear
separation function is defined to be a (two) piecewise linear
function with a linear function in the range xi ≥ xj and a
linear function in the range xj ≥ xi, of the form:

Fij(xi − xj) =

{
uij(xi − xj) if xi > xj

0 if xi = xj

uji(xj − xi) if xi < xj .

Table 1. Complexity of MRF problems. The
references are: [AHO03] Ahuja et al. (2003);
[Hoc01] Hochbaum (2001); [AHO04] Ahuja

et al. (2004).

Deviation Separation Complexity Ref.
function function

Convex Convex O(mn log n2

m
lognU) [AHO03]

Convex Bilinear O(mn log n2

m
+ n logU) [Hoc01]

Quadratic Bilinear O(mn log n2

m
) [Hoc01]

General convex O(mnU2 log n2U
m

) [AHO04]

Linear Nonlinear NP-hard [Hoc01]

It is noted that the complexities of the algorithms of
Hochbaum (2001) and Ahuja et al. (2004) stated in Table
1 for convex-bilinear, quadratic-bilinear and nonlinear-
convex, are provably fastest possible.

3. MRF FOR YIELD PREDICTION AND
EXPERIMENTAL RESULTS

Our yield prediction approach works by first partitioning
the wafer into clusters incorporating the neighborhood
effect so that each cluster consists of chips that share
the same estimated likelihood – yield level. In different
clusters the yield level differs. Once the clusters have been
identified, the overall wafer yield level is a weighted (by
size) combination of the yield levels in the clusters.

Let (d1, d2, . . . , dn) be observed number of defects on a
wafer map with n chips, where di represents the observed
number of defects at the i-th chip. This observed number
is not necessarily provided for all chips on the map. If
unavailable for position i, di is considered a “don’t-care”
value and there is no penalty term for deviating from
that value. The wafer map is represented as a graph G =
(V,E) where nodes represent chips and edges define the
neighborhood relationship, here selected as the 4-neighbor
system (rook-move neighborhood). The goal is to associate
with each chip a label xi that indicates the cluster it
belongs to. For Xi the list of labels that characterize the
clusters, general, xi ∈ Xi, we select the set of values
{0, 1, . . . , k}, where k is a parameter set by the user. The
choice of k implies that there are (k + 1) potential labels
that characterize the yield level of each chip. For instance,
if k = 2, a wafer is partitioned into three types of clusters:
non-defective (xi = 0), medium defective (xi = 1) and
highly defective (xi = 2). Another possible choice, for a
wafer with number of fatal defects that vary, say, between
0 and 5, to let Xi = {0, 2, 5} with the same interpretation,
non-defective, medium and highly defective.

We select here uniform quadratic deviation functions and
absolute value separation functions: The deviation func-
tion Gi(xi) = (di−xi)

2 is commonly used in image restora-
tion Boykov et al. (1999). For the separation penalties we
let Fij(xi − xj) = α · |xi − xj |. The factor α is a scalar
that is used to balance the separation versus the deviation
penalties. The selection of α is selected here to be uniform
for all pairs as there is no predominant difference between
pairs. The problem is then,

min
∑
i∈V

(xi − di)
2 +

∑
[i,j]∈E

α|xi − xj |

subject to xi ∈ {0, 1, . . . , k} ∀ i ∈ V.

To solve the problem we apply the parametric cut proce-
dure of Hochbaum (2001). The adjacency-clustering pro-
cedure was applied to four wafer maps: One is from Tygai
and Bayoumi (1994) Tyagi et al. (1994) and three from
Yuan et al. (2011) Yuan et al. (2011).

We first present the effect of the different parameters on
the resulting clusters for the first wafer map, in Figure 1.
The effect of increasing the number of cluster labels k for
k (=1,2,3) (going down the rows of images), the clusters
corresponding to positive values of the label are becoming
more differentiated into small contiguous groups. Each
cluster is indicated by a different color with redder color
implying higher congregation of defects. The tests were run
for four different values of α (=0.1,0.5,1,2) across columns
from left to right respectively. The effect of higher values
of α is manifested in the tendency to create larger, more
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(MRF) min
∑
i∈V

Gi(xi) +
∑
i∈V

∑
j∈N(i)

Fij(xi − xj)

subject to xi ∈ Xi ∀ i ∈ V.

The complexity of MRF depends on the form of the
penalty functions. This complexity of MRF was classified
according to the properties of the penalty functions in
Hochbaum (2001) for feasible solution sets of consecu-
tive integers Xi = {�i, �i+1, . . . , ui}, and in Hochbaum
(2013) for non-consecutive values algorithm. For convex
penalty functions MRF is polynomial time solvable, and
for non-convex the problem is NP-hard. The cases when
the deviation penalty functions are convex and the sep-
aration penalty functions are (bi-)linear (defined below)
was shown by Hochbaum Hochbaum (2001) to be solvable
in polynomial time using a parametric cut procedure.
Furthermore, it was shown there that the complexity of
the algorithm is the fastest possible. The case where both
separation and deviation penalty functions are convex
were also shown to be solvable very efficiently, and within
a multiplicative log factor of fastest possible, by Ahuja
et al. (2004, 2003). For non-convex deviation functions
and convex separation functions the problem is solved in
pseudo-polynomial time, that depends on the number of
label values, or the range of the variables. This running
time is the time required to solve a minimum cut problem
on a graph with number of nodes that depends on the
number of labels Ahuja et al. (2004) and it is unimprovable
because the respective problem is weakly NP-hard. When
both type of penalty functions are non-convex the MRF
problem is NP-hard. These results, all for multi-labels
MRF, are summarized in Table 1.

The notation used in Table 1 includes: U = maxi |Xi|, the
number of labels; n = |V |, the number of nodes in the
graph; m = |E|, the number of edges in the graph; and
T (n,m) the complexity of the minimum s, t-cut problem
on a graph with n nodes and m arcs or edges. A bi-linear
separation function is defined to be a (two) piecewise linear
function with a linear function in the range xi ≥ xj and a
linear function in the range xj ≥ xi, of the form:

Fij(xi − xj) =

{
uij(xi − xj) if xi > xj

0 if xi = xj

uji(xj − xi) if xi < xj .

Table 1. Complexity of MRF problems. The
references are: [AHO03] Ahuja et al. (2003);
[Hoc01] Hochbaum (2001); [AHO04] Ahuja

et al. (2004).

Deviation Separation Complexity Ref.
function function

Convex Convex O(mn log n2

m
lognU) [AHO03]

Convex Bilinear O(mn log n2

m
+ n logU) [Hoc01]

Quadratic Bilinear O(mn log n2

m
) [Hoc01]

General convex O(mnU2 log n2U
m

) [AHO04]

Linear Nonlinear NP-hard [Hoc01]

It is noted that the complexities of the algorithms of
Hochbaum (2001) and Ahuja et al. (2004) stated in Table
1 for convex-bilinear, quadratic-bilinear and nonlinear-
convex, are provably fastest possible.

3. MRF FOR YIELD PREDICTION AND
EXPERIMENTAL RESULTS

Our yield prediction approach works by first partitioning
the wafer into clusters incorporating the neighborhood
effect so that each cluster consists of chips that share
the same estimated likelihood – yield level. In different
clusters the yield level differs. Once the clusters have been
identified, the overall wafer yield level is a weighted (by
size) combination of the yield levels in the clusters.

Let (d1, d2, . . . , dn) be observed number of defects on a
wafer map with n chips, where di represents the observed
number of defects at the i-th chip. This observed number
is not necessarily provided for all chips on the map. If
unavailable for position i, di is considered a “don’t-care”
value and there is no penalty term for deviating from
that value. The wafer map is represented as a graph G =
(V,E) where nodes represent chips and edges define the
neighborhood relationship, here selected as the 4-neighbor
system (rook-move neighborhood). The goal is to associate
with each chip a label xi that indicates the cluster it
belongs to. For Xi the list of labels that characterize the
clusters, general, xi ∈ Xi, we select the set of values
{0, 1, . . . , k}, where k is a parameter set by the user. The
choice of k implies that there are (k + 1) potential labels
that characterize the yield level of each chip. For instance,
if k = 2, a wafer is partitioned into three types of clusters:
non-defective (xi = 0), medium defective (xi = 1) and
highly defective (xi = 2). Another possible choice, for a
wafer with number of fatal defects that vary, say, between
0 and 5, to let Xi = {0, 2, 5} with the same interpretation,
non-defective, medium and highly defective.

We select here uniform quadratic deviation functions and
absolute value separation functions: The deviation func-
tion Gi(xi) = (di−xi)

2 is commonly used in image restora-
tion Boykov et al. (1999). For the separation penalties we
let Fij(xi − xj) = α · |xi − xj |. The factor α is a scalar
that is used to balance the separation versus the deviation
penalties. The selection of α is selected here to be uniform
for all pairs as there is no predominant difference between
pairs. The problem is then,

min
∑
i∈V

(xi − di)
2 +

∑
[i,j]∈E

α|xi − xj |

subject to xi ∈ {0, 1, . . . , k} ∀ i ∈ V.

To solve the problem we apply the parametric cut proce-
dure of Hochbaum (2001). The adjacency-clustering pro-
cedure was applied to four wafer maps: One is from Tygai
and Bayoumi (1994) Tyagi et al. (1994) and three from
Yuan et al. (2011) Yuan et al. (2011).

We first present the effect of the different parameters on
the resulting clusters for the first wafer map, in Figure 1.
The effect of increasing the number of cluster labels k for
k (=1,2,3) (going down the rows of images), the clusters
corresponding to positive values of the label are becoming
more differentiated into small contiguous groups. Each
cluster is indicated by a different color with redder color
implying higher congregation of defects. The tests were run
for four different values of α (=0.1,0.5,1,2) across columns
from left to right respectively. The effect of higher values
of α is manifested in the tendency to create larger, more
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Fig. 1. Separation-deviation clustering results for wafer map 1 (source Hochbaum and Liu (2018).)

cohesive, clusters. This is due to the heavier emphasis
on the separation penalty as the value of α increases.
The pattern observed here, for wafer map 1, is that
high defect density clusters are positioned near the center
and four corners of the wafer, which may imply possible
manufacturing problems.

3.1 Yield Prediction

For the attained clusters, the overall yield is determined as
follows: For cluster Cj , λj is the average number of defects
in the cluster and the yield is estimated as exp(−λj). That
is, for each cluster we used the Poisson yield model for the
cluster’s yield prediction. We describe below the use of
other yield models for each cluster.

The total yield is determined as the weighted average of

cluster yields,
∑�

j=1 |Cj | exp(−λj)/
∑�

j=1 |Cj |. The stan-
dard performance measure is the relative absolute bias

(Yuan et al. (2011)),
|True yield−Estimated yield|

True yield
.

From our empirical results, and use of machine learning
techniques for selecting the parameter values (not de-
scribed here for lack of space), the selection of α = 1 dom-
inates other values, and selecting the value k = 2 yields
fairly close results to those for the best selected value. With
these parameters we implemented the adjacency-clustering
approach with the Poisson model for each cluster. The
results of the comparison of the relative absolute bias of
the adjacency-clustering model with the classical Poisson
model and Poisson regression model are presented in Table
2. The results indicate that Poisson regression is more
accurate than Poisson, and the separation-deviation model
is significantly more accurate than both of them.

3.2 Adjacency-Clustering with Different Yield models

In addition to the Poisson yield model, the negative bino-
mial model is also widely used in yield prediction. Com-
pared with Poisson model, it is less likely to underestimate
the yield (Kim 2011). Following negative binomial model,
the yield for cluster j is given by ŷj = (1+λj/γj)

−γj , where
γj is called the cluster parameter. There are multiple ways
of determining γj (see Cunningham 1990 for details), and

we adopt the method of moments with γj =
λ2
j

σ2
j
−λj

where

σ2
j is the variance of the number of defects per chip for the

cluster. Three different yield models applied to the clusters
of adjacency-clustering are used here: (1) AC-NB model:
negative binomial yield model is fitted to each cluster; (2)
AC-NBP model: negative binomial yield model is fitted
to non-defective clusters (cluster with “0”s) while Poisson
yield model is fitted to defective clusters (of label > 1);
(3) AC-PNB model: Poisson yield model is fitted to the
non-defective cluster while negative binomial yield model
is applied to defective clusters. These were tested on the
four wafers for different combinations of α and k. We select
the parameter values that yield the lowest prediction errors
(AC-NB: α = 0.7, k = 3; AC-NBP: α = 0.6, k = 1; AC-
PNB: α = 0.7, k = 3). (Experimental results for the choice
of these parameter values are provided in Hochbaum and
Liu (2018).) It should be noted that the choice of α = 1
and k = 2 achieves similar results to the above parameters
with average gaps of 0.0036, 0.0019 and 0.0083 for AC-NB,
AC-NBP and AC-PNB respectively.

The prediction results of these three AC models are com-
pared with negative binomial model and negative binomial
regression model in Table 3. In negative binomial regres-
sion model,the same covariates are selected as in Poisson
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Table 2. Yield predictionfor AC with Poisson
model and Poisson regression model (source

Hochbaum and Liu (2018).)

Model
Data set 1 2 3 4

True yield 79.50% 84.40% 89.90% 79.30%

Poisson model
Yield prediction 52.33% 74.90% 87.90% 72.20%

Relative Absolute Bias 34.18% 11.26% 2.22% 8.95%

Poisson regression model
Yield prediction 55.30% 79.40% 88.40% 72.60%

Relative Absolute Bias 30.44% 5.92% 1.67% 8.45%

Adjacency-clustering model Yield prediction 81.09% 82.84% 89.38% 78.49%

(α = 1, k = 2) Relative Absolute Bias 2.00% 1.85% 0.58% 1.02%

regression model, and the coefficients are estimated using
maximum likelihood method, which is implemented in
glm.nb() in R.

The results in Table 3 indicate that AC-NB is the best
model to use uniformly. Specifically, AC-NB model out-
performs other models for wafer 3 and wafer 4, AC-NBP
model yields the best result for wafer 1 and AC-PNB
model gives the best result for wafer 2. Compared with
the negative binomial model, AC-NB model improves the
prediction result by a factor between 2 and 14. Compared
with negative binomial regression model, the error of AC-
NB model is lower on wafers 2 and 4 and about the same
for wafer 3, and a bit worse for wafer 1. The reason why
in some of the cases AC-PNB and AC-NBP perform bet-
ter than AC-NB is that combining different yield models
works better in cases of unstable manufacturing processes
that render different defect behaviors in different areas on
the wafer. Among all these, AC-NB model is uniformly the
most robust and therefore it is a recommended method for
yield prediction.

4. CONCLUSION

We present here the adjacency-clustering method for yield
prediction which is unique in that it generates first defect-
pattern clusters characterized by the level of defects ex-
pected within the clusters. The contiguity of these clus-
ters, and the respective neighborhood effect, is a trade-off
parameter incorporated into the optimization problem of
MRF used to identify such clusters. The generated clusters
are then used by the yield prediction task, by generating
yield prediction for each homogeneous cluster and then
combining the results. The power of adjacency-clustering
for yield prediction was demonstrated by Hochbaum and
Liu (2018) via an extensive empirical study for real and
simulated data sets in which significant improvements in
yield prediction were attained. For simulated data sets
the results indicated that the method provides significant
improvement in yield prediction as compared to existing
statistical techniques. It was further observed that as the
neighboring effect increases in the simulated data sets, the
advantage provided by AC gets magnified.

Future work is to include longitudinal correlations between
and within batches of samples as introduced by Krueger
and Montgomery (2014b), who showed that considering
these additional relationships improves the quality of yield
prediction. Still, their approach ignores the neighborhood

effect. We expect that the incorporation of these correla-
tions in the adjacency-clustering approach will result in
yet further improvements in yield prediction.

Finally, the generation of the defect-pattern clusters with
adjacency-clustering has not yet been explored as to its
potential in identifying issues in the manufacturing pro-
cess. Since the generation of the clusters is done with an
optimization process that takes into consideration the con-
fidence in the priors and the strength of the neighborhood
effect in different areas (through a judicious selection of
the deviation and separation functions) it has the potential
of improving on the state-of-the-art in identifying spatial
variations and defect patterns.
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maximum likelihood method, which is implemented in
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The results in Table 3 indicate that AC-NB is the best
model to use uniformly. Specifically, AC-NB model out-
performs other models for wafer 3 and wafer 4, AC-NBP
model yields the best result for wafer 1 and AC-PNB
model gives the best result for wafer 2. Compared with
the negative binomial model, AC-NB model improves the
prediction result by a factor between 2 and 14. Compared
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ter than AC-NB is that combining different yield models
works better in cases of unstable manufacturing processes
that render different defect behaviors in different areas on
the wafer. Among all these, AC-NB model is uniformly the
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prediction which is unique in that it generates first defect-
pattern clusters characterized by the level of defects ex-
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MRF used to identify such clusters. The generated clusters
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Liu (2018) via an extensive empirical study for real and
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yield prediction were attained. For simulated data sets
the results indicated that the method provides significant
improvement in yield prediction as compared to existing
statistical techniques. It was further observed that as the
neighboring effect increases in the simulated data sets, the
advantage provided by AC gets magnified.
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and within batches of samples as introduced by Krueger
and Montgomery (2014b), who showed that considering
these additional relationships improves the quality of yield
prediction. Still, their approach ignores the neighborhood
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tions in the adjacency-clustering approach will result in
yet further improvements in yield prediction.

Finally, the generation of the defect-pattern clusters with
adjacency-clustering has not yet been explored as to its
potential in identifying issues in the manufacturing pro-
cess. Since the generation of the clusters is done with an
optimization process that takes into consideration the con-
fidence in the priors and the strength of the neighborhood
effect in different areas (through a judicious selection of
the deviation and separation functions) it has the potential
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Table 3. Yield prediction for: AC-NB, AC-
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