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Motivated by applications in freight handling and open-pit mining, Rhys, Balinski, and Picard studied the
problems of selection and closure in papers published in Management Science in 1970 and 1976. They

identified efficient algorithms based on linear programming and maximum-flow/minimum-cut procedures to
solve these problems. This research has had major impact well beyond the initial applications, reaching across
three decades and inspiring work on numerous applications and extensions. The extensions are nontrivial opti-
mization problems that are of theoretical interest. The applications ranged from evolving technologies, image
segmentation, revealed preferences, pricing, adjusting utilities for consistencies, just-in-time production, solving
certain integer programs in polynomial time, and providing efficient 2-approximation algorithms for a wide
variety of hard problems. A recent generalization to a convex objective function has even produced novel solu-
tions to prediction and Bayesian estimation problems. This paper surveys the streams of research stimulated by
these papers as an example of the impact of Management Science on the optimization field and an illustration of
the far-reaching implications of good original research.
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1. Introduction
In 1970 Rhys and Balinski independently published
papers inManagement Sciencemotivated by the freight-
handling terminals problem, which concerns setting
up links between terminals for the purpose of estab-
lishing transportation links, such as airline travel,
between cities. The opening of each link is associated
with profit or benefit generated from the operation of
that link. However, to operate a link it is necessary to
construct terminals at both ends, and thus incur the
fixed cost of construction on both ends.
This problem would have been resolved easily if

each link were independent from the others. How-
ever, once a terminal exists it can be used for links
with other cities that already have terminals. So it
may well happen that while the cost of a pair of termi-
nals exceeds the potential benefit of the link between
the pair, these terminals will be constructed neverthe-
less because the fixed costs of constructing the termi-
nals are shared among several links. Because of this
Rhys labelled it the shared fixed-cost problem. We fol-
low Balinski and refer to it as the selection problem.
The selection problem can be thought of formally

as follows: Each link is a set consisting of two cities
associated with a benefit value. Each terminal is an

item associated with a cost value. The objective is
to find a collection of sets so that their total benefit
minus the cost of the elements in their union is maxi-
mized. Although in the specific scenario of freight ter-
minals each set consists of two elements, in general,
sets could be of arbitrary size.
Lawler (1976), in his classical book, described the

selection problem—which he termed the provision-
ing problem—by a scenario resembling the knapsack
problem, which is well known to be NP-complete.
This scenario has you going on a hiking trip with
a knapsack to carry. Because your capability of car-
rying heavy weight is limited, you want to decide
which items to pack based on their usefulness and
utility. Many individual items are useless unless taken
in combination with other items. For example, taking
a bottle of wine without an opener is not of much use.
Another example is soup for your meal. For that pur-
pose you will require a few different items: canned
soup, an opener, a spoon, and a bowl, and possibly a
portable stove, pot, and fuel. Obviously the stove, pot,
and fuel could have other uses as well. Because of the
similarity of description, most people hearing the pro-
visioning problem description for the first time would
guess it is an intractable problem like the knapsack
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problem, yet, the selection problem is surprisingly
polynomial time solvable.
Given a set of items �1� � � � �n� each having an asso-

ciated cost, cj , and sets of items Si ⊆ �1� � � � �m� each
having benefit bi, the problem is to maximize the net
benefit, which is the total benefit of the sets selected
minus the total cost of items selected. A “selection”
corresponds to a collection of sets �Si � i ∈ J �, and the
selected items are �

⋃
Si� i ∈ J �.

To formulate the selection problem we define two
types of binary variables,

vj =
{
1 if item j is included
0 otherwise,

ui =
{
1 if set i is selected
0 otherwise,

which enables us to specify the following optimiza-
tion problem:

max
m∑
i=1
biui−

n∑
j=1

cjvj

subject to ui≤vj ∀j ∈Si� i=1�����m
ui�vj ∈�0�1�� i=1�����m� j=1�����n�

The constraints enforce the restriction that the benefit
of a set cannot be enjoyed unless all its items have
been paid for. The work of Rhys (1970) and Balinski
(1970) was to show that the selection problem can be
solved as a minimum-cut problem on a certain bipar-
tite network.
Picard (1976) generalized the selection problem to

the closure problem. The major application motivat-
ing Picard’s work was the open-pit mining problem.
The mining industry at the time, and to some extent
still today, was developing solution methods indepen-
dently of the operations research community. Picard’s
contribution was to unearth the link between the two
communities, and make possible the use of efficient
algorithms of the maximum-flow–minimum-cut prob-
lem in mining. In the opposite direction, Picard’s dis-
covery made possible the use of algorithms developed
for the mining and closure problem for the develop-
ment of new maximum-flow algorithms. Indeed, the
pseudoflow algorithm for maximum flow (Hochbaum
2002) is patterned after the algorithm of Lerchs and
Grossman (1965) used by the mining industry since
the 1960s.
Open-pit mining is a surface mining operation in

which blocks of earth are extracted from the surface to
retrieve the ore contained within. During the mining
process, the surface of the land is being continuously
excavated, and a deeper and deeper pit is formed
until the operation terminates. The final contour of
this pit mine is determined before mining operation

begins. To design the optimal pit—one that maxi-
mizes profit—the entire area is divided into blocks,
and the value of the ore in each block is estimated
by using geological information obtained from drill
cores. Each block has a weight associated with it that
represents the value of its ore minus the cost involved
in removing the block. While trying to maximize the
total weight of the blocks to be extracted, there are
also contour constraints that have to be observed.
These constraints specify the slope requirements of
the pit and precedence constraints that prevent blocks
from being mined before others on top of them. Sub-
ject to these constraints, the objective is to mine the
most profitable set of blocks.
The open-pit mining problem can be represented on

a directed graph G= �V �A�. Each block i corresponds
to a node with a weight bi representing the net value
of the individual block. The net value is computed as
the assessed value of the ore in that block, from which
the cost of extracting that block alone is deducted.
The weight can therefore be positive or negative or
zero. There is a directed arc �i� j� ∈A from node i to
node j if block i cannot be extracted before block j ,
which is in a layer above block i. This precedence
relationship is determined by the engineering slope
requirements. Suppose block i cannot be extracted
before block j , and block j cannot be extracted before
block k. By transitivity this implies that block i can-
not be extracted before block k. It is therefore neces-
sary only to include immediate successors as arcs in
the graph. The decision of which blocks to extract to
maximize profit is equivalent to finding a maximum
weight set of nodes in the graph such that all succes-
sors of all nodes are included in the set.
A set of nodes D⊆ V in a directed graph G= �V �A�

is called closed if all successors of nodes in D are also
in D. In other words, there is no arc from a node in D
to a node outside of D. The open-pit mining prob-
lem can be modeled as the maximum-closure problem
stated formally: Given a directed graph G = �V �A�
and node weights (positive or negative) bi for all i ∈ V ,
find a closed subset of nodes V ′ ⊆ V such that

∑
i∈V ′ bi

is maximum.
To formulate the maximum-closure problem, let xj

be a binary variable that is 1 if node j is in the clo-
sure, and 0 otherwise. Define bj to be the weight of the
node or the net benefit derived from the correspond-
ing block. Then we can write the following optimiza-
tion problem:

max
∑
j∈V

bj · xj

subject to xj − xi ≥ 0 ∀ �i� j� ∈A
0≤ xj ≤ 1 integer j ∈ V �

The maximum-closure problem is essentially a non-
bipartite version of the selection problem in the sense
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that there is no distinction between items and sets.
Picard showed that this generalization is also solvable
as a minimum-cut problem on some related graph.
The papers by Balinski (1970), Rhys (1970), and

Picard (1976) on the closure problem have had broad,
often unintended, impacts on theoretical and applied
research developments, which still continue today.
In this paper we present a list of problems that
extend the selection and closure problems in several
ways and a host of applications, some of which have
been discovered recently, that can be solved effec-
tively thanks to the techniques initially outlined in the
three pioneering papers of Balinski, Rhys, and Picard.
These extension problems have all been shown to be
solvable using a minimum-cut algorithm as a main
subroutine. Indeed, this nontrivial equivalence to the
minimum-cut problem is one of the surprising and
useful features of the works of Rhys, Balinski, and
Picard. This equivalence extends to generalization
of the closure. Minimum-cut models thus yield par-

Table 1 Extensions of the Selection/Closure Problems and Their Formulations

Problem Formulation Reference Application

Selection min
∑

i∈V wixi Rhys (1970), Balinski (1970) Freight terminals
s.t. xi − xj ≤ 0 for i ∈ V1� j ∈ V2� �i� j� ∈ A

0≤ xi ≤ 1 for i ∈ V

Closure max
∑

i∈V wixi Picard (1976) Open-pit mining
s.t. xi − xj ≤ 0 for �i� j� ∈ A

0≤ xi ≤ 1 for i ∈ V

Convex closure min
∑

i∈V wi �xi � Hochbaum and Prediction and
s.t. xi − xj ≤ 0 for �i� j� ∈ A Queyranne (2003) Bayesian estimation
li ≤ xi ≤ ui for i ∈ V

s-excess max
∑

i∈V wixi −
∑

�i� j�∈A uij zij Hochbaum Max-flow
s.t. xi − xj ≤ zij for �i� j� ∈ A Cell selection
0≤ xi ≤ 1 for i ∈ V

0≤ zij ≤ 1 for �i� j� ∈ A

Convex s-excess min
∑

i∈V wi �xi �−
∑

�i� j�∈A uij zij Hochbaum Image segmentation
s.t. xi − xj ≤ zij for �i� j� ∈ A

li ≤ xi ≤ ui for i ∈ V

0≤ zij ≤ Uij for �i� j� ∈ A

Monotone integer min
∑n

i=1 wixi Hochbaum and Bipartite vertex cover
programming (IPM) s.t. akxik

+ bkxjk
≤ ck for k = 1� � � � �m Naor (1994)

li ≤ xi ≤ ui for i = 1� � � � � n
ak and bk of opposite signs for k = 1� � � � �m

(Nonmonotone) IP2 min
∑n

i=1 wixi Hochbaum et al. (1993) Max-clique
s.t. akxik

+ bkxjk
≤ ck for k = 1� � � � �m Vertex cover

li ≤ xi ≤ ui for i = 1� � � � � n 2-SAT

2var min
∑n

i=1 wixi +
∑

Ukzk Hochbaum Forestry
s.t. akxik

+ bkxjk
≤ ck + zk for k = 1� � � � �m Postal services location

li ≤ xi ≤ ui for i = 1� � � � � n
0≤ zk ≤ �k for k = 1� � � � �m

Convex DMCNF min
∑n

i=1 wi�xi �+
∑

Uij �zij � Ahuja et al. (2004) Project Management
s.t. xi − xj ≤ cij + zij for �i� j� ∈ A Dial-a-ride
li ≤ xi ≤ ui for i ∈ V

0≤ zij for �i� j� ∈ A

ticularly powerful algorithms for a vast range of
applications.
Since the selection/closure problems and their

extensions have a broad range of applications in
numerous areas, the ability to solve these problems
efficiently using so-called combinatorial algorithms of
minimum cut is of substantial computational signif-
icance. For many of these applications getting quick
solutions is essential in practical contexts. Combinato-
rial algorithms—which do not apply algebraic oper-
ations that may lead to round-off errors, but rather
require only simple additions and multiplications—
are particularly desirable for their simplicity and effi-
ciency in such circumstances.
Table 1 summarizes the various problem defini-

tions, their formulations, and representative applica-
tions. All variables in the formulations, denoted by
xi or zij , are integers. So, 0≤ xi ≤ 1 is equivalent to
stating that xi is binary. The formulations of all prob-
lems other than IPM and IP2 are defined on a graph
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G= �V �A� (which is bipartite for the case of selection
only). The functions wi� � and Uij� � Uk� � are assumed
to be convex.
The remainder of the paper is organized as follows:

Section 2 shows the theoretical equivalence of selec-
tion, closure, and various extension problems to the
minimum-cut problem. Section 3 discusses a range of
applications that can be modeled as generalizations
of selection and closure problems. We conclude in §4
with some observations on the implications of this
historical survey for future research.

2. The Equivalence to Minimum Cut
2.1. The Selection Problem
The linear programming formulation of the selection
problem in Table 1 was given by Rhys (1970). This for-
mulation has in each constraint at most one coefficient
1 and one coefficient −1, which guarantees that the
constraint matrix is totally unimodular. Therefore each
basic solution is integer and in particular there is an
optimal linear programming solution that is integer.
Balinski showed how this formulation can be

solved more efficiently than with linear program-
ming by finding a minimum s, t-cut in a suitable
graph. The graph constructed is a bipartite graph
with nodes corresponding to sets V1 on one side
each with benefit weight bi, and nodes correspond-
ing to items V2 on the other, each with cost weight
−cj . The set of arcs is A= ��i� j� � j ∈ Si�, all of which
are assigned infinite capacity. It is easy to see that
the maximum-closure problem defined on this node-
weighted bipartite graph is the selection problem.

Figure 1 The Terminal Selection Problem
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We now append the graph with a source s and a sink
t and replace the weights by adding arcs from s to i
with capacity bi, and from j to t with capacity cj . An
s, t-cut separating source s from sink t is a partition
of the set of nodes �s� ∪ V1 ∪ V2 ∪ �t� to two subsets
S and T =S, so that s ∈ S and t ∈ T . The capacity of
a s, t-cut �S�T � is C�S�T �=∑

i∈S� j∈T uij , where uij are
the arc capacities. A s� t-cut of minimum capacity is a
minimum s, t-cut, or simply a minimum cut.
The equivalence of the selection problem to a min-

imum s� t-cut problem is demonstrated for a freight
terminals example similar to the one given by Rhys
(1970) in Figure 1(a). There are four potential termi-
nal locations and four links with the costs and ben-
efits indicated. Figure 1(b) shows the corresponding
bipartite network. Figure 1(c) shows the bipartite net-
work in which the maximum-flow and minimum-
cut problems are solved. The set of shaded nodes in
Figure 1(d) is the source set of the minimum cut,
which contains the optimal selection of terminals—
Terminals 2, 3 and 4. The value of the optimal
flow on each arc of finite capacity is indicated by
flow/capacity.
It is now shown that in general the source set of

a minimum cut is the union of the sets and ele-
ments of an optimal selection. Since arcs �i� j� have
infinite capacity, a feasible selection corresponds to a
finite-capacity cut. This is because the inclusion of a
set in the source set implies that all of its elements
are in the source set as well. For a finite cut �S�T �
the corresponding selection S\�s� is the collection of
sets S ∩ V1 and the union of elements in these sets
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S ∩V2. The net benefit of this selection is NetBen�S�=∑
i∈S∩V1 bi −

∑
j∈S∩V2 cj .

C�S�T � = ∑
i∈T∩V1

bi +
∑

j∈S∩V2
cj

= ∑
i∈V1

bi −
∑

i∈S∩V1
bi +

∑
j∈S∩V2

cj

= ∑
i∈V1

bi −NetBen�S��

Since
∑

i∈S∩V1 bi is a constant, a cut of minimum capac-
ity corresponds to a selection maximizing net benefit.

2.2. The Maximum-Closure Problem
Picard (1976) formulated the closure problem as a
quadratic 0-1 problem and showed how the latter can
be solved as minimum-cut problem. Although this
could have also been concluded from the works of
Rhys (1970) and Balinski (1970), as we see next, the
relationship was not fully understood at the time.
The selection problem is clearly a special case of

the closure problem. By casting the problem on the
direct bipartite graph constructed as in Figure 1(b),
any selection is a closed set. Recall that in a directed
graph G = �V �A�, a subset of the nodes D ⊂ V is
called closed if all successors of D are contained in D,
or if the set of nodes reachable from D is D.
On the other hand, and this justifies the opening

statement, any closure problem defined on a graph
G = �V �A� is also a special case of a selection prob-
lem defined on a bipartite graph. To see this, we let
all nodes of positive weight in the closure problem
be the set of nodes V1, and all nodes of negative
weight be the set V2. There is an arc from i ∈ V1 to
j ∈ V2 if j is in the closure of i, or, in other words,
if there is a path in G from i to j . We refer to this
construction as bipartizing the graph. Johnson (1968)
seems to be the first researcher who demonstrated
that the maximum-closure problem is equivalent to
the selection problem (maximum closure on bipartite
graphs), and that the selection problem is solvable by
a transportation algorithm. So, interestingly, Johnson’s
algorithm—devised for the maximum-closure prob-
lem and motivated specifically by the open-pit mining
application—was based on casting the problem first
as a selection problem. In general, bipartizing is not
computationally practical as it increases the number
of arcs in the graph.
Picard (1976) demonstrated that a minimum-cut

algorithm on a related graph solves the maximum-
closure problem. The related graph is constructed
by adding a source and a sink node, s and t, Ṽ = V ∪
�s� t�. Let V + = �j ∈ V � bj > 0�, and V − = �j ∈ V � bj < 0�.
The set of arcs in the related graph, Ã, is the set A
appended by arcs ��s�v� � v ∈ V +� ∪ ��v� t� � v ∈ V −�.

Figure 2 A Maximum Closure and Minimum Cut in a Closure Graph
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The capacity of all arcs in A is set to �, and the capac-
ity of all arcs adjacent to source or sink is �bv�: us�v = bv
for v ∈ V + and, uv� t =−bv for v ∈ V −. The source set
of a minimum cut separating s from t is also a maxi-
mum closure in the graph. The source set is obviously
closed as the minimum cut must be finite and thus
cannot include any arcs of A.
Let a finite cut be �S�S� in the graph G̃ = �Ṽ � Ã�.

Let B=∑
j∈V bj be the sum of all weights and, thus, a

fixed constant. The capacity of the cut �S�S� is,∑
j∈V−∩S

�bj � +
∑

j∈V+∩S
bj =

∑
j∈V−∩S

�bj � +
∑
j∈V

bj −
∑

j∈V+∩S
bj

= B−∑
j∈S

bj �

Hence minimizing the cut capacity is equivalent to
maximizing the total sum of weights of nodes in the
source set of the cut, which is closed. A schematic
description of a closure graph related to a maximum-
closure problem, where the source set of the mini-
mum cut is the maximum closed set, is depicted in
Figure 2.

2.3. The Convex Cost Closure Problem
A common problem in statistical estimation is that
observations do not satisfy preset ranking order
requirements. The challenge is to find an adjustment of
the observations that fits the ranking order constraints
and minimizes the total deviation penalty. The devia-
tion penalty is a convex function of the fitted values.
This problem motivated the introduction of the con-
vex cost closure (CCC) problem in (Hochbaum and
Queyranne 2003).
The CCC problem is defined formally on a directed

graph G = �V �A� and convex functions fj� � associ-
ated with each node j ∈ V . The formulation of the
CCC problem is then,

(CCC) min
∑
j∈V

fj�xj �

subject to xi − xj ≥ 0 ∀ �i� j� ∈A
lj ≤ xj ≤ uj integer j ∈ V �
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This problem generalizes the closure problem in that
the variables assume a range of integer values (rather
than being binary) and the objective is convex.
The threshold theorem of Hochbaum and Quey-

ranne (2003) is the key result that leads to an effi-
cient algorithm by reducing the convex problem to its
binary counterpart—the minimum-closure problem.
To sketch the main idea of the theorem we first

note that one can extend all the functions fi� � so
that they are convex in the range #l�u$ for l=mini li,
u=maxi ui. Let % be scalar and wi be the derivative or
subgradient of fi at %, wi = f ′

i �%�= fi�%+1�−fi�%�. Let
G% = �V �A� be a closure graph with node weights wi.
The threshold theorem states that for the optimal clo-
sure in G%, S%, the optimal values of the variables for
the convex problem x∗j are >% if j ∈ S%, or ≤% other-
wise. An example of such graph is given for the more
general convex s-excess or image-segmentation prob-
lem in Figure 4 of §3.6.
By repeated applications of the minimum-closure

algorithm on the graph G% for a range of values of
% in #l�u$, we obtain a partition of the set of vari-
ables and of the interval #l�u$ into up to n sub-
sets and subintervals where each subinterval contains
the optimal value of one subset of variables. More-
over, it is shown in Hochbaum and Queyranne (2003)
that this partition can be achieved with a parametric
minimum-cut procedure where % is the parameter.
The procedure used to solve the parametric

minimum-cut problem is a generalization of a proce-
dure devised by Gallo et al. (1989) for linear functions
of the parameter, which are based on the push-relabel
algorithm of Goldberg and Tarjan (1988). The gener-
alization for any monotone functions is described in
Hochbaum (2003) and in Hochbaum (2002) for both
the push-relabel algorithm and the pseudoflow algo-
rithm. The algorithm requires at each iteration finding
the integer minima of the convex functions, which is
accomplished with binary search in O�n logU� steps.
Note that the CCC problem generalizes the minimum-
cut problem and it is at least as hard as minimization
of n convex functions over bounded intervals. Hence
the run time cannot be improved unless the respec-
tive run times of the minimum-cut problem and min-
imizing convex functions can be improved. A proof
that optimization involving nonlinear nonquadratic
functions cannot be accomplished in strongly polyno-
mial time, and thus cannot be substantially improved
beyond the bound given, is provided in Hochbaum
(1994).

2.4. Integer Programming on Monotone
Inequalities

An inequality in two variables aixji − bixki ≥ ci is
said to be monotone if both ai and bi are nonnega-

tive or nonpositive. That is, the coefficients of the
two variables are of opposite signs. The formulation
of integer programming on monotone inequalities
is,

(IPM) min
n∑
j=1

wjxj

subject to aixji − bixki ≥ ci �i= 1� � � � �m�

lj ≤ xj ≤ uj� xj integer �j = 1� � � � �n��

where ai� bi� ci (i= 1� � � � �m), and wj (j = 1� � � � �n) are
rational, and coefficients ai and bi (i= 1� � � � �m) are of
the same sign.
Hochbaum and Naor (1994) devised an algorithm

to solve IPM by casting the problem as a closure prob-
lem on a graph, schematically depicted in Figure 3.
A directed closure graph G= �V �A� is created where,
for each variable value xj and value p in the interval
#lj � uj $, there is a node representing it. In the sequence
of nodes representing the values of variable xj there
is an arc �p� p − 1� from each node representing the
value p in the range to the node representing the
value p − 1. The node representing lj has an arc of
infinite capacity directed to it from the source node s.
Thus all lj nodes are in the closed set containing the
source s. The monotone inequalities are represented
by arcs. For each potential value p of variable xki , all
inequalities in which xki appears with negative coef-
ficient impose a minimum value on the variable xji

Figure 3 Representing the Inequality axi − bxj ≥ c Between the
Chains for xi and xj

uiwi

xi chain

❄...

...

❄

pwi

...
❄

li + 1wi

❄

liwili

xj chain

uj wj

❄

uj−1 wj

...
❄

p1 wj

❄...

...

❄

lj wjlj

✘✘✿ p1 = �bp+c
a �
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that appears in the same inequality with a positive
coefficient,

xji ≥
⌈
bip+ ci
ai

⌉
= p1�

This inequality is represented by an arc going from
node p of xki to node p1 of xji . If p1 > uji , then the
value p of the variable xki is infeasible, and the upper
bound of xki is reset to p − 1. A closed set contain-
ing s corresponds to a feasible solution to IPM where
the variable xj assumes the value of the largest node
representing it in the closed set.
The nodes are now assigned weights as follows:

Node lj of variable xj is assigned weight wjlj , and all
other nodes representing variable xj are assigned the
weight wj . A minimum-weight closed set corresponds
to an optimal solution to the minimization problem
IPM by setting the variables as the largest value in the
chain that is in the closed set. Thus the integer pro-
gramming on monotone inequalities is solved in the
complexity of minimum cut on a graph with O�nU�
nodes and O�mU� arcs −O�mnU 2 log�Un2/m�� for U
the largest variable range, U =maxnj=1��uj� − �lj��. It
should be noted that the dependence of the complex-
ity on U is pseudopolynomial. Nevertheless it is not
possible to replace this term by logU or eliminate it
altogether, as the problem of finding a feasible integer
solution on a set on monotone inequality is NP-hard.
For more details on this issue the reader is referred to
Hochbaum and Naor (1994).

2.4.1. Nonlinear Monotone Integer Programming.
The objective function in this problem is nonlinear
separable, with arbitrary functions wj� �.

(nonlin-IPM) min
n∑
j=1

wj�xj�

subject to aixji−bixki ≥ci �i=1�����m�
lj≤xj≤uj�

xj integer �j=1�����n��
The same algorithm used for IPM applies here with

the modification of the node weight assignments only.
Node lj of variable xj is assigned weight wj�lj �. For
the node representing the value p of variable xi, the
weight of the node is wj�p�−wj�p − 1�. The various
nodes in the chain of one variable xi may have differ-
ent signs, unlike the linear case of the problem IPM.
The complexity for solving the problem is the same
as that for the linear IPM, O�mnU 2 log�n2U/m��.

2.5. The Maximum s-Excess Problem
The s-excess problem is a variant of the maximum-
closure problem with a relaxation of the closure
requirement: Nodes that are successors of other nodes
in S (i.e., that have arcs originating from node of S

to these nodes) may be excluded from the set but at
a penalty that is equal to the capacity of those arcs.
In a closure graph these arcs are of infinite capacity.
For the s-excess problem the arcs have finite capaci-
ties representing the penalties for violating the closure
requirement.
The maximum s-excess problem is defined on a

directed graph G= �V �A�, with node weights (posi-
tive or negative) wi for all i ∈ V , and nonnegative arc
weights uij for all �i� j� ∈A. The objective is to find a
subset of nodes S ⊆ V such that

∑
i∈S wi −

∑
i∈S� j∈S uij

is maximum.
A generalized form of Picard’s (1976) theorem (see

§2.2) showing that the closure problem is equiva-
lent to the minimum-cut problem was proved for the
s-excess problem in Hochbaum (2002). The idea here
is to construct a graph as for the closure problem
except that the arc capacities not adjacent to source
and sink for �i� j� in A are the respective weights uij .
The source set of a minimum cut in the graph cre-
ated is shown to be the maximum s-excess set. The
interested reader is referred to Hochbaum (2002) for
details.
The s-excess problem has appeared in several forms

in the literature: The boolean quadratic minimization
problem with all of the quadratic terms having posi-
tive coefficients is a restatement of the s-excess prob-
lem. More closely related is the feasibility condition of
Gale (1957) for a network with supplies and demands,
or Hoffman’s (1960) for a network with lower and
upper bounds. Verifying feasibility is equivalent to
ensuring that the maximum s-excess is zero in a graph
with node weights equal to the respective supplies
and demands with opposite signs; if the s-excess is
positive, then there is no feasible flow satisfying the
supply and demand balance requirements. This prob-
lem also appeared under the names maximum-blocking
cut or maximum-surplus cut in Radzik (1993).

2.6. The Convex s-Excess Problem
The convex s-excess problem is a generalization of
the s-excess problem in allowing the variables to take
nonbinary integer values and variable weights fj� �
that are convex functions.

(Convex s-excess) min
∑
j∈V

fj�xj �+
∑

uijzij

subject to xi − xj ≤ zij for �i� j� ∈A
ūj ≥ xj ≥ lj j = 1� � � � �n

zij ≥ 0 �i� j� ∈A�

A threshold theorem for the convex s-excess
problem generalizing the one in Hochbaum and
Queyranne (2003) was proved in Hochbaum (2001b).
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The essence of the theorem is to reduce the con-
vex s-excess problem to the s-excess problem on
binary variables. In Hochbaum (2001b) it was shown
that generalizing the procedure used for the convex-
closure problem, one can solve the problem by
using the threshold theorem, solving a paramet-
ric minimum-cut procedure. The total complexity
of solving the convex s-excess problem is therefore
O�mn log�n2/m� + n logU�, the same as the convex-
closure problem. Similar arguments to those given in
§2.3 demonstrate that this complexity expression is the
best that can be achieved for the problem.

2.7. Monotone Integer Programs with Three
Variables per Inequality

Monotone integer programs on three variables per
inequality (2var) are characterized by constraints of
the form ax− by ≤ c+ z, where a and b are nonnega-
tive and the variable z appears only in that constraint.
The direction of the inequality is immaterial and the
coefficients a and b can assume any real value as long
as b ≥ 1. (Otherwise it would always be possible to
calibrate the coefficients so that the coefficient of z is
equal to 1.) Since any integer programming problem
can be expressed in three variables per inequality, the
restriction that z appears in one constraint limits the
applicability to a strict subset of integer programs.
The objective function in these integer programming
problems is unrestricted except that the functions of
z must be convex. This class of problems is of partic-
ular interest because of the large variety of problems
that are formulated as 2var.
A 2var problem is solved as an s-excess problem

on a graph with O�nU� nodes and O�mnU� arcs. For
details on this class of problems and a review of appli-
cations the reader is referred to Hochbaum (2002). The
same type of graph setup works to solve the problem
with the same complexity even for nonlinear objec-
tive function, min

∑n
i=1wi�xi� +

∑
ek�zk�, where wi� �

are general nonlinear functions and ek� � are convex
functions.

2.8. Convex Dual of Minimum-Cost
Network Flow

The formulation of Convex DMCNF has each struc-
tural constraint involving a pair of variables and pos-
sibly a third variable that appears in that constraint
only, and allows for the objective function to be con-
vex in all variables. The latter feature generalizes the
convex s-excess problem. Let the set of constraints
with three variables be E1 and the set of constraints
with two variables be E2. Let the set of variables be
V = �1� � � � �n�. The set of constraints E is partitioned
into two subsets E = E1 ∪ E2, with �E1� =m1, �E2� =m2,
�V � = n, and �E� =m1+m2 =m. Let the functions uuij � �

be convex. The problem addressed is,

(DMCNF) min
n∑
j=1

wj�xj�+
∑

�i�j�∈E1
uuij �zij �

subject to xi−xj≤cij+zij for �i�j�∈E1
xi−xj≤cij for �i�j�∈E2
lj≤xj≤uj j=1�����n
0≤zij≤-ij for �i�j�∈E1
xj integer for all j=1�����n
zij integer for all �i�j�∈E1�

The dual of DMCNF with linear objective function∑n
j=1wjxj +

∑
�i�j�∈E1 uuijzij is the minimum-cost net-

work flow problem (Flow).

(Flow) min
∑

ij∈E1∪E2
cijyij +

n∑
i=1

ui%i +
∑
ij∈E1

-ij.ij

subject to −∑
k

yik +
∑
k

yki −%i ≤wi i ∈ V

ūij ≥ yij − .ij ≥ 0 �i� j� ∈ E1
yij ≥ 0 �i� j� ∈ E1 ∪E2
.ij ≥ 0 �i� j� ∈ E1
%i ≥ 0 i= 1� � � � �n�

Flow is the formulation of a network flow problem
on a network with n nodes—one per structural con-
straint and a dummy node, r , serving as a root. The
variable %i represents the flow from node i to the
root. The inflow to node i exceeds the outflow by at
most wi. This quantity is assigned as capacity to arcs
going from node i to the root. The costs of these arcs
are ui. The costs of all other arcs not adjacent to root
is cij . For each such arc that belongs to E1 there is an
additional parallel arc of unbounded capacity with a
cost of cij + -ij . The amount of flow on this parallel
arc is .ij ; this flow is positive only if the flow on the
first arc has reached its capacity ūij .
Problem DMNCF is a monotone 2var problem that

has a totally unimodular constraint matrix—the coef-
ficients of xi and xj in the constraints are 1 and −1.
This property allows us to solve the problem in poly-
nomial time that depends on logU rather than on U ,
for U = maxj=1�����n��uj − lj ��. This is done with the
proximity-scaling algorithm of Hochbaum and Shan-
thikumar (1990), which is particularly efficient for
problems with small subdeterminants values. That
algorithm reduces the problem to a logarithmic num-
ber of scaled problems where for each one the range
U is at most O�n2� units, each of which is a 2var prob-
lem solvable by minimum-cut algorithm. This con-
struction is described in Ahuja et al. (2004).
A different and more efficient algorithm for the

same problem that does not rely on reduction to min-
imum cuts was devised by Ahuja et al. (2003).
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3. Applications
Much of the interest in selection and closure problems
stems from the wide range of practical applications
that can be modeled with them. In this section we
discuss some of the most important ones.

3.1. Optimal Kit of Parts and Tools as Selection
Problem

Mamer and Smith (1982) used the selection problem to
solve a problem of determining the optimal kit of parts
and tools for on-site equipment repairs. The model
they presented generalized previous approaches in
that part demands were not assumed to be inde-
pendent and allowed for the requirement of various
numbers of parts, as well as multiple part types per
job. Handling this dependence was made possible
by using the features of the selection problem. Even
though the model used by Mamer and Smith was
more realistic than previous models of this problem,
they were also able to solve it by a more efficient
algorithm than used previously—the minimum-cut
algorithm.

3.2. Prediction, Bayesian Estimation, and Other
Applications of Convex Closure

3.2.1. Multistage Production/Inventory. Maxwell
and Muckstadt (1983) considered nested power-of-two
policies in a multistage production/inventory problem. In
this continuous-time deterministic model demand for
end products arises at a constant rate. Intermediate
products are consumed in the production of other
products, as reflected by a directed graph �V �A�. For
given positive inventory-related holding costs gj and
production setup costs Kj , the problem is to find pro-
duction intervals Tj = T02

kj , with kj integer, that are
nested. That is Ti ≤ Tj for �i� j� ∈A. The objective is to
minimize the average total cost per unit time,

c�T �=∑
j

gjTj +Kj/Tj �

Roundy (1985) extended the Maxwell-Muckstadt
model by considering joint setup costs and relaxing
the nestedness condition. He showed that the total
cost for this case is

c�T �=∑
R

gRmax�Tj 3 j ∈R�+
∑
F

KF

/
�min�Tj 3 j ∈ F ���

where R and F are suitably defined subsets of prod-
ucts, and gR and KF are corresponding holding and
production costs. Although the constraints Ti ≤ Tj
thus disappear, the modeling capabilities of vari-
able upper-bound constraints are reflected in the
handling of joint setup costs and holding costs.
For that, Roundy extended the product set N by
adding the R and F sets, and “defined” correspond-

ing variables TR (TF , respectively) by the inequalities
Tj ≤ TR (TF ≤ Tj , resp.) for all j ∈ R (F , resp.). The
resulting problem is thus cast again into the Maxwell-
Muckstadt form above. Roundy’s major result is that
optimal power-of-two policies thus constructed are 94%
effective; that is, the cost of an optimal policy cannot be
less than 94% that of an optimum power-of-two pol-
icy. He also showed that searching for an optimal base
interval T0 yields a 98%-effective solution. The intro-
duction of CCC extends this approach to general con-
vex average cost functions fj�kj �= cj �T02

kj �. The 94%
and 98% effectiveness results, however, hold only for
the specific functions c� � above.

3.2.2. Bayesian Estimation Subject to Rank Order
Constraints. Statistical problems of partially ordered
estimation have been discussed extensively in the liter-
ature, (see, e.g., Veinott 1971 and Barlow et al. 1972).
Let p1� � � � � pn denote parameters to be jointly esti-
mated and let fj�xj � denote the loss associated with
estimating that pj = xj for j = 1� � � � �n. The model
being estimated may specify a partial order on the
parameters, as reflected by constraints xj ≤ xi for a set
A of pairs �i� j�, as well as simple upper and lower
bounds on the parameter values. If, in addition, the
model requires the parameter values to be integer,
then the problem of jointly estimating the parameter
values to minimize total loss is precisely an instance
of problem CCC. If there is no such integrality restric-
tion, then the problem is an instance of the continuous
relaxation of CCC.
The algorithm of Hochbaum and Queyranne

(2003) solves CCC with complexity O�mn log�n2/m�+
n logU�. In Bayesian estimation the functions are
typically quadratic where each term is of the form
��xi −6�/7�2 for 6 and 7 the mean and the standard
deviation of the distribution of the ith random vari-
able. For quadratic convex functions the algorithm
runs in strongly polynomial time O�mn log�n2/m� +
n logn�. For the isotonic regression problem, where
the order is linear, the running time improves to
O�n logn + n logU�, and thus the complexity of the
algorithm is O�n log�max�n�U���. Ahuja and Orlin
(2001) reported on a different O�n logU� time algo-
rithm for isotonic regression. The Bayesian estimation
problem has been researched extensively in the sta-
tistical study of observations. The book by Barlow
et al. (1972) provides an excellent review of applica-
tions and algorithms for Bayesian estimation subject
to rank order constraints.

3.2.3. Medical Prognosis. Medical prognosis in-
volves estimates of cure, complication, recurrence of
disease, length of stay in health-care facilities, or sur-
vival for a patient or group of patients. Accurate
assessment of a patient’s prognosis is essential for
determining an appropriate medical treatment plan.
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A wide range of techniques has been used for progno-
sis estimation varying from Markov chain techniques,
to regression, to linear programming, to genetic algo-
rithms and neural networks.
The process of assessing medical prognosis for

patients suffering from diseases such as cardiovascu-
lar illness, stroke, or various types of cancer relies
on past data and medical research generating knowl-
edge about the correlation between certain medical
measurements and the prognosis. This is a classical
Bayesian estimation scenario. There are initial pre-
dictions and prognosis estimates for specific cases
represented by arrays of medical measurements of rel-
evant parameters. There are observations of patient
data that have a partial ordering based on medical
knowledge and experience. A patient with certain
measurements is expected to have longer life span
before recurrence than another patient with a differ-
ent set of measurements. This is represented as order-
ing between pairs of cases indicating that one has
better prognosis than the other without specifically
quantifying it. There is a penalty for making an error
in overestimating and underestimating the time until
recurrence.
All medical prognosis methods use databases to

capture existing medical knowledge in the form of
cases represented by arrays of values of medical
parameters and estimated prognoses, for example, in
the form of time to recurrence in the case of heart
attack. Past experience also includes the relative rank
ordering between pairs of some cases indicating that
the prognosis for one is better than the prognosis for
the second. The estimates for known cases are given
with a certain confidence level. Existing techniques
focus on obtaining a prognosis in the form of binary
outcome indicating whether the prognosis is good or
bad.
Ryu et al. (2004) recently extended the range of

capabilities of medical prognosis by developing esti-
mates that provide a time interval (to next recur-
rence) rather than just a binary outcome. In their
model they include penalties for existing estimates in
the database. The penalties are in the form of a lin-
ear cost for deviating above or below the estimate
forming a convex piecewise linear function (with two
pieces each). With the linear penalties assumption and
allowing for partial order information—referred to
as monotonicity—the authors established that the lin-
ear programming problem modeling the problem of
finding adjusted estimates to minimize the deviation
penalties can be solved efficiently with a minimum-
cost network flow model.
The medical prognosis estimate problem fits ideally

into the CCC model. Each known case in the database
is represented as a node in the graph with a convex
penalty function associated with deviating from the

expected prognosis estimate. There is a partial order
between different cases represented by arcs in the
graph that indicate pairwise comparison �i� j� imply-
ing that a certain array of parameter readings of case
i leads to more favorable prognosis than the one
for case j . Allowing for general convex functions as
penalties permits a refinement of the representation
of the degree of confidence in past estimates. More-
over, the representation as a CCC problem and the
implied algorithm based on minimum cut is signifi-
cantly more efficient than the algorithm proposed for
the simpler linear penalties case.
The model can be further refined to allow ordering

that is known with uncertainty. When a violation of
the ordering is linear in the difference between the
estimates, that model is still solved with the same
complexity as CCC as a convex s-excess problem. If
the violation is arbitrary with convex costs for viola-
tion, the problem is then a convex DMCNF.

3.2.4. Firm Bankruptcy Risk Analysis. Assessing
a firm’s bankruptcy risk has long been an issue of
major concern to the financial and accounting com-
munities. A typical prediction model involves first
identifying a list of parameters that are deemed rele-
vant to corporate bankruptcy. Based on financial and
accounting knowledge and past data experience, there
are estimates of the bankruptcy risk of a firm charac-
terized by a given array of parameter values. There
is a partial order between pairs of arrays that corre-
spond to the assessment that the risk of bankruptcy
of a firm with one set of parameter values is higher
than that with another set. This ordering utilizes past
data and knowledge on correlations and causal pat-
terns between parameter values and scenarios and
bankruptcy risk.
To assess whether a firm is at risk of bankruptcy, a

common practice is to develop a linear model based
on regression analysis. This model is used along with
a threshold value. Plugging in the values of the param-
eters for a given corporation results in a real value
that is compared to the threshold value. If the value
is smaller than the threshold, then the risk of default-
ing is high; otherwise it is low. Hence these models
provide only binary information.
There are numerous examples of bankruptcy anal-

ysis that are of the linear regression type. One well-
known classical model is by Altman (1968). Altman
was also the first to successfully use stepwise multiple
discriminate analysis to develop a prediction model
with a high degree of accuracy. Using a sample of 66
companies in which 33 failed and 33 were successful,
Altman’s model achieved an accuracy rate of 95.0%.
Altman’s model uses the parameters

A= working capital/total assets
B= retained earnings/total assets
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C = earnings before interest and taxes/total assets
D= market value of equity/book value of total debt,

and
E = sales/total assets.

The linear model takes the following form:

Z= 1�2A+ 1�4B+ 3�3C + 0�6D+ 0�999E�

For Z < 2�675—the threshold value—the firm is clas-
sified as “failed.”
Another successful predictive model is the CA-Score

model. The threshold value in that model is deter-
mined so that if CA-Score < −0.3 then the firm is
classified as “failed.” The CA-Score model is reported
in Legault (1987) to have an average reliability rate
of 83% and is restricted to evaluating manufacturing
companies.
An optimization model based on CCC allows for

finer, and potentially more accurate, assessment of
the risk of failure and bankruptcy. Using the histori-
cal data base we associate with each firm’s array of
parameter values (a node) the length of time that has
elapsed since the reading of these parameter values
until bankruptcy. For firms that have not defaulted,
an estimated time to default can be introduced. Or,
if the estimate is that the firm is not to default, we
set a large value (simulating infinity) as the length of
time to defaulting. Using financial knowledge exper-
tise, there is a partial order (arcs) between data arrays
indicating which are more likely to default before
others.
When assessing or correcting estimates of time to

bankruptcy, we define a graph in which the nodes cor-
respond to firms or hypothetical arrays of parameter
values, and the estimated time to bankruptcy for each.
There are penalties in the form of convex function for
the cost of deviating from the given estimates of time
to bankruptcy. Arcs in the graph correspond to the
partial order. The problem of obtaining revised esti-
mates that minimize the total penalties is a convex
closure problem.
Solving this CCC problem provides information

on the estimated time to bankruptcy for each new
data point and may revise the existing estimates in
the database. This information is more refined than
the binary yes/no threshold information. Hence, the
model can then be used as a predictive tool as well as
to revise the estimates in the database and improve
the quality of the historical information as more data
becomes available.
Refining the model by allowing us to violate the

ordering at additional penalty is analogous to the
refinement of the medical prognosis model.

3.3. 2-Approximation Algorithms for Integer
Programming with Two Variables per
Inequality

Many optimization problems of scheduling, loca-
tion, resource allocation, capacity expansion, lot-
sizing, and other applications of primary concern to
management are NP-hard. There are no efficient algo-
rithms known for NP-hard problems, and it is widely
believed that no efficient algorithms exist. There is
nevertheless a need to solve such problems, and thus
a practical approach is to use heuristics that work
efficiently.
The quality of the solutions (or the size of the error)

delivered by a heuristic is naturally of concern. In
the analysis of approximation algorithms the goal is
to find among all efficient algorithms that provide
feasible solutions to a problem those that minimize
the worst-case error. The worst-case error, also known
as approximation ratio, is the largest ratio of the solu-
tion value divided by the optimum across all possible
problem instances. So a 2-approximation algorithm
guarantees that for any instance of the problem the
value of the solution delivered is, at most, twice the
optimum. In practice, the error observed is much
lower than the worst-case error bound. It has been
observed in practice that an algorithm with a smaller
approximation ratio tends to deliver better solutions.
This motivated the search for low ratio approxima-
tion algorithms. But the ad-hoc nature of this search
makes the derivation of results problem specific and
technically involved (e.g., many recent approxima-
tion algorithms depend on the use of the ellipsoid
method). Details on the background and current state
of research in approximation algorithms are available
in Hochbaum (1997).
It is therefore significant that, for a wide class of

problems, one can generate, immediately from the for-
mulation, 2-approximation algorithms using the clo-
sure problem. This class of problems are those that
can be formulated as IP2.
IP2 is an integer programming problem with each

constraint having at most two variables. Unlike the
monotone inequalities problem (IPM), the signs of the
coefficients are unrestricted. Problems with two vari-
ables per inequality are commonplace. Major prob-
lem categories include the vertex cover problem, the
independent set problem, a variant of the maximum-
clique problem, several types of satisfiability prob-
lems, and others. The problem formulation is

�IP2� min
n∑
j=1

wjxj

subject to aixji+bixki ≥ci �i=1�����m�
lj≤xj≤uj� xj integer �j=1�����n��
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Problem IP2 is in general NP-hard because the fun-
damental vertex cover problem is a special case of
IP2 with constraints on binary variables of the type
xi + xj ≥ 1. The vertex cover problem was among the
first problems to be proved NP-hard by Karp (1972).
For the vertex cover problem, the ratio of 2 is the

best (smallest) approximation ratio known, and accu-
mulating evidence points to the possibility that no
better approximation ratio can be obtained for the ver-
tex cover problem by a polynomial time algorithm. It
is therefore of interest that the vast set of problems
IP2 generalizing vertex cover all have polynomial
time (efficient) 2-approximation algorithms, all gener-
ated by solving a certain minimum-closure problem
Hochbaum et al. (1993). The main idea of the algo-
rithm is to reduce an IP2 problem to a monotone prob-
lem IPM. We give a sketch of this idea next.
Consider a generic nonmonotone inequality of the

form ax+ by ≥ c where a and b are of the same sign.
Each variable x is replaced by two variables, x+ and
x−, and each inequality by two monotone inequalities:

ax+ − by− ≥ c

−ax− + by+ ≥ c�

Any feasible solution to the two inequalities satisfy
a�x+ − x−� + b�y+ − y−� ≥ 2c. The upper and lower
bounds constraints lj ≤ xj ≤ uj are transformed to

lj ≤ x+j ≤ uj

−uj ≤ x−j ≤−lj �
In the objective function, the variable x is substi-

tuted by 1
2 �x

+ − x−�. Monotone inequalities remain so
by replacing the variables x and y in one inequal-
ity by x+ and y+, and in the second, by x− and y−,
respectively. Once the transformation is complete, the
integer programming on monotone inequalities can
be solved in integers as a minimum-closure problem.
The solution is mapped back to IP2 by the substi-
tution above that may create a half-integral solution.
Hochbaum et al. (1993) showed that for feasible IP2,
the half-integral solution can be rounded to an integer
solution that is a 2-approximate solution.
The complexity of the algorithm is dominated by

the complexity of the procedure in Hochbaum and
Naor (1994) for optimizing over a monotone system.
The running time is O�mnU 2 log�Un2/m�� for U =
maxj=1� ����n�uj − lj �.

3.4. Approximation Algorithms for 2var Problems
Like IP2, 2var problems can be approximated by a
process of “monotonizing” and “binarizing” the for-
mulation and solving the resulting formulation as an
s-excess problem. Mapping back the solution to the
original problem yields a half-integral solution. If a

feasible rounding can be found, then that rounded
integer solution is a 2-approximation. Details on the
procedure and a list of applications are provided in
Hochbaum (2002).

3.5. Applications of 2var
We sketch here two applications of 2var problems.

3.5.1. Forestry. The Generalized Independent Set
problem is a 2var problem generalizing the well-
known independent set problem. In the independent
set problem we seek a set of nodes of maximum total
weight so that no two are adjacent. In the General-
ized Independent Set problem it is permitted to have
adjacent nodes in the set, but at a penalty that may be
positive or negative. The independent set problem is
a special case of Generalized Independent Set where
the penalties are infinite. The formulation of the Gen-
eralized Independent Set problem is

(Gen-Ind-Set) max
∑
j∈V

wjxj−
∑

�i�j�∈E
cijzij

subject to xi+xj−zij≤1 �i�j�∈E
xi� zij binary for all i�j�

The Generalized Independent Set problem was
introduced by Hochbaum and Pathria (1997) as a
model of two forest harvesting optimization prob-
lems. The first problem assigns benefits for harvesting
forest cells and penalties for harvesting adjacent cells;
the second problem assigns benefits for harvesting
cells as well as benefits for creating borders that sepa-
rate harvested and unharvested cells. The objective is
to identify the set of cells to harvest to maximize the
net benefits.
Although not immediately apparent, these prob-

lems were shown in Hochbaum and Pathria (1997)
to be equivalent to the Generalized Independent Set
problem on a graph G = �V �E� with node weights
and edge weights. Approximation algorithms with a
worst-case ratio of 2 are then immediately implied.
The cell arrangement in forests is often gridlike. The

corresponding graph in that case is bipartite and the
problem is then a monotone 2var. The problems on
gridlike forest are then solved in polynomial time as
a closure problem.

3.5.2. Location of Competing Facilities. Another
application of the Generalized Independent Set prob-
lem is the problem of locating postal services (Ball
1992). Each potential location of the service has a
utility value associated with it. The value, however,
is diminished when several geographically proxi-
mal facilities compete for customers. Following the
principle of inclusion-exclusion, the second-order
approximation of that loss is represented by pairwise
interaction cost for every pair of potential facilities.
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The postal service problem is defined on a com-
plete graph G= �V �E� where the pairwise interaction
cost, cij , is assigned to every respective edge �i� j�.
Since Generalized Independent Set is a 2var problem,
half-integral solutions are immediately available by
solving the appropriate minimum-cut problem. Fur-
thermore, when the underlying graph for General-
ized Independent Set is bipartite then the problem
is monotone 2var and solvable in polynomial time
(Hochbaum and Pathria 1997). The location arrange-
ments can often be bipartite if they correspond, for
instance, to a grid street arrangement.

3.6. Applications of Convex s-Excess

3.6.1. Capacity Expansion. Capacity expansion
decisions are some of the most critical decisions made
by management, as the capacity level and its tech-
nological features affect capital investment and the
capability and quality of satisfying demand. Machine
costs have been rising over time with improved and
sophisticated technological progress and therefore the
decision to invest typically involves a capital outlay
that can affect the financial position of the firm. When
a specific machine model becomes available for acqui-
sition, its purchase can improve the competitiveness
of the firm. On the other hand, the price of the model
is likely to decrease over time as more advanced tech-
nology becomes available, thus delaying the acquisi-
tion can reduce costs.
Three recent papers have studied the capacity ex-

pansion problem: Çakaniyildirim et al. (2004), Zhang
et al. (2004), and Huh and Roundy (2002). In these
papers it is assumed that capacity cost is a decreas-
ing function over time, and a delay in acquisition may
result in lost sales if capacity is insufficient to meet
demand. With convex functions for lost-sales penal-
ties, balancing these requirements, as well as potential
inventory issues, is a CCC or convex s-excess problem.
Each point in time and a certain capacity level is

represented as a node in the graph. There are arcs
between earlier time periods and later time peri-
ods as well as between capacity selections and oth-
ers containing and complementing them. With each
node there is a lost-sale convex penalty function. Each
arc going between two nodes representing different
points in time and different capacities has the cost
of expanding the capacity before the later period and
potential cost of inventory. The problem of minimiz-
ing the cost of lost sales, cost of purchase, and costs of
inventory is a convex s-excess problem. With convex
costs on the arcs the problem is convex DMCNF.

3.6.2. The Image-Segmentation and Error Correc-
tion. In the problem of image segmentation an image
is transmitted and degraded by noise. The goal is to
reset the values of the colors to the pixels to minimize

the penalty for the deviation from the observed colors
and, furthermore, so that the discontinuity in terms
of separation of colors between adjacent pixels is as
small as possible.
Consider an image consisting of a set of pixels

each with a given color and a neighborhood relation
between pairs of pixels. In the image-segmentation
problem, each pixel gets a color assignment that may
be different from the given color of the pixel so that
neighboring pixels will tend to have the same color
assignment. The aim is to modify the given color val-
ues as little as possible while penalizing changes in
color between neighboring pixels. The penalty func-
tion thus has two components: the deviation cost that
accounts for modifying the color assignment of each
pixel, and the separation cost that penalizes pairwise
discontinuities in color assignment for each pair of
neighboring pixels.
Representing the image-segmentation problem as a

graph problem, we let the pixels be nodes in a graph
and the pairwise neighborhood relation be indicated
by edges between neighboring pixels. Each pairwise
adjacency relation �i� j� is replaced by a pair of two
opposing arcs �i� j�, and �j� i�, each carrying a capacity
representing the penalty function for the case that the
color of j is greater than the color of i and vice versa.
The set of directed arcs representing the adjacency (or
neighborhood) relation is denoted by A. We denote
the set of neighbors of i, or those nodes that have
pairwise relation with i, by N�i�. Thus the problem is
defined on a graph G= �V �A�.
Let each node j have a value gj associated with it—

the observed color. The problem is to assign an integer
value xj to each node j to minimize the penalty func-
tion. Let the K color shades be a set of ordered values
� = �q1� q2� � � � � qK�. Denote the assignment of a color
qp to pixel j by setting the variable xj = p. Each pixel
j is permitted to be assigned any color in a specified
range �qlj � � � � � quj �. For G� � the deviation-cost function
and F � � the separation-cost function the problem is,

min
ui≥xi≥li

∑
i∈V

Gi�gi� xi�+
∑
i∈V

∑
j∈N�i�

Fij �xi − xj��

This formulation is equivalent to the following con-
strained optimization problem, referred to as IS (for
image segmentation):

(IS) min
∑
j∈V

Gj�gj� xj�+
∑

�i� j�∈A
Fij �zij �

subject to xi − xj ≤ zij for �i� j� ∈A
uj ≥ xj ≥ lj j = 1� � � � �n

zij ≥ 0 �i� j� ∈A�
Notice that the refinements of the medical diagnosis

problem and the time-to-bankruptcy problem as well

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

32
.1

0.
23

0]
 o

n 
14

 M
ay

 2
01

8,
 a

t 0
1:

26
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Hochbaum: The Selection and Closure Problems
722 Management Science 50(6), pp. 709–723, © 2004 INFORMS

Figure 4 The Graph G�
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as the capacity expansion problem are all problems
formulated as IS.
The constraints of IS identify it as an s-excess prob-

lem. Depending on the objective function, the algo-
rithms will be either based on parametric minimum
cut as for the convex s-excess problem, or on multi-
ple calls for a minimum-cut procedure as for the con-
vex DMCNF. For G� � convex functions and F � � linear
functions the problem is the convex s-excess. If F � � are
convex as well then the problem is convex DMCNF
(Ahuja 2003).
The convex s-excess problem is solved in this case

as a minimum-cut problem on a graph parametrized
by % where source and sink adjacent arc capacities
are the derivatives of the respective node functions
Gj� � at %. An example of such a graph for a two-
dimensional image is given in Figure 4. In this exam-
ple, nodes k and w are “shrunk” with source and sink
respectively accounting for previous iterations where
it was established that k≤ % and w>%.

3.7. Applications of the Convex Dual of
Minimum-Cost Network Flow

A number of additional applications beyond those
presented here are described in Ahuja et al. (2003).

3.7.1. The Convex Penalty Image Segmentation.
When the functions F � � and G� � are both convex then
the IS problem is cast as a convex DMCNF. The algo-
rithms of Ahuja et al. (2003, 2004) solve this prob-
lem efficiently. The algorithm of Ahuja et al. (2004)
is based on reduction to the s-excess problem, and
it works also, at larger complexity, when the func-
tions G� � are nonlinear (rather than convex). The run-
ning time in that case depends on the largest interval
length U in which each variable is restricted and the
algorithm is thus pseudopolynomial.

3.7.2. Scheduling in Project Management. Sche-
duling in project management attempts to eliminate
waste by reducing slack times. This scheduling appli-
cation has been adapted by Ahuja et al. (2003) from
Levner and Nemirovsky (1991). We denote a project
by a directed graph G= �V �A�, where set A denotes
jobs, and the node set V denotes events (known as the
Activity-on-Arc model). The network G also captures
precedence relations among the arcs. The completion
times of all jobs are assumed to be fixed. Let tij denote
the time it takes to complete job �i� j�. (Notice that
tij is not a decision variable in this problem.) Let :i
denote the time for event i.
Consider the feasible event times, i.e., :is satisfy-

ing :j − :i ≥ tij for all �i� j� ∈A. With respect to these
event times, a job �i� j� will be completed at time
:i + tij but the jobs emanating from node j will start
at time :j . Let wij = :j − :i − tij denote the slack time,
and let Fij �wij � denote its associated penalty cost. This
penalty cost may capture the lost-opportunity cost of
the capital tied up or some other factors (such as per-
ishability or deterioration in quality) that make slack
times undesirable. There may also be some upper
bounds ;ij on slack times. We may assume without
loss of generality that the lower bound on slack time
is 0, since any other lower bound would be incorpo-
rated into the times to complete a task. The project-
scheduling problem is to obtain event times :is so
that the project is completed within the specified time
period T and the penalty cost associated with job
slacks is minimal. With this notation, the problem for-
mulation is,

(Schedule-PM) min
∑

�i� j�∈A
Fij �wij �

subject to :t − :s ≤ T

:j − :i =wij + tij

for all �i� j� ∈A
0≤wij ≤ ;ij

for all �i� j� ∈A
Because this problem is convex DMCNF, it can be

solved by reducing it to a sequence of minimum-cut
problems as described in Ahuja et al. (2004).

4. Conclusions
This survey is testimony to the broad and deep
impact of three papers on optimization subjects that
appeared in Management Science in the 1970s. The
influence of that research has extended far beyond
the motivating applications to theory and applica-
tions that could not have been envisioned at the time
the research was conducted. This underscores the
long-lasting value of truly good research that frames
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a problem in a generic way so that solutions and
methodology have power far beyond the application
at hand. It also illustrates the cumulative nature of the
research process by showing how solution of an ele-
mentary problem serves as a stepping stone to solu-
tion of much more complex problems.
Finally, looking back with pride on the impact of

old optimization work published in Management Sci-
ence makes us appreciate more deeply the need to
publish good optimization papers today. In addition
to addressing important contemporary management
problems, who knows what vital issues of the future
these works may impact?
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