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The problem of group ranking, also known as rank aggregation, has been studied in contexts varying from
sports, to multicriteria decision making, to machine learning, to ranking Web pages, and to behavioral

issues. The dynamics of the group aggregation of individual decisions has been a subject of central impor-
tance in decision theory. We present here a new paradigm using an optimization framework that addresses
major shortcomings that exist in current models of group ranking. Moreover, the framework provides a spe-
cific performance measure for the quality of the aggregate ranking as per its deviations from the individual
decision-makers’ rankings.
The new model for the group-ranking problem presented here is based on rankings provided with intensity—

that is, the degree of preference is quantified. The model allows for flexibility in decision protocols and can
take into consideration imprecise beliefs, less than full confidence in some of the rankings, and differentiating
between the expertise of the reviewers. Our approach relaxes frequently made assumptions of: certain beliefs in
pairwise rankings; homogeneity implying equal expertise of all decision makers with respect to all evaluations;
and full list requirement according to which each decision maker evaluates and ranks all objects. The option of
preserving the ranks in certain subsets is also addressed in the model here. Significantly, our model is a natural
extension and generalization of existing models, yet it is solvable in polynomial time. The group-rankings
models are linked to network flow techniques.

Key words : network flow; group ranking; decision making
History : Accepted by Wallace J. Hopp, optimization and modeling; received January 5, 2005. This paper was
with the authors 2 months for 2 revisions.

1. Introduction
This paper presents a framework, models, and algo-
rithms for the group decision making in the process of
ranking and comparing a list of projects. The essence
of the group-ranking problem is the task of consoli-
dating and aggregating the individuals’ rankings so
as to obtain a group ranking that is in some sense rep-
resentative of the individuals’ rankings. The problem
has been studied extensively, and has appeared under
many guises.
One application that motivated our study is the

National Science Foundation (NSF) process of evalu-
ation and ranking of proposals. Recently, Cook et al.
(2005) investigated the allocation of the ranking tasks
to individuals in the context of the NSF process. The
NSF group-ranking problem is similar to that of rank-
ing athletes whose performance has been achieved
in different competitions, different heats, or differ-
ent weather conditions. Another well-known simi-
lar example is that of ranking students based on
their grade point average. Each instructor evaluates
a proper subset of the universal set of students. The
evaluation is in the form of grades and, consequently,

also a corresponding ranking of all students in each
instructor’s class. The ranking of all students based
on their collection of grades from different instruc-
tors’ classes is a group-ranking problem. The grade
point average (GPA) is the methodology used to rank
the universal set of students by all reviewers—the
instructors. GPA is an example of using what we call
here the weights-only model of group ranking.
Some types of group rankings are based on pair-

wise rankings only. Pairwise rankings are the typical
input in sports competitions such as tennis, football,
baseball, etc. The group-ranking problem here is to
determine an overall aggregate ranking of all teams,
or players, based on the collections of pairwise rank-
ings that are generated from the outcomes of pair
competitions or games.
The individuals in the group that provide their as-

sessments are referred to here as reviewers. The objects
evaluated are called projects. The collection of all
projects is referred to as the universal set. A ranking is a
pairwise comparison that can be provided with mag-
nitude of the degree of preference, intensity ranking; or
in terms of ordinal preferences only, preference ranking.
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These are sometimes referred to also as cardinal versus
ordinal preferences.
One feature of the NSF group-ranking problem, and

the students’ ranking, is that each reviewer provides a
partial list that evaluates and compares only a proper
subset of the proposals. A great deal of the litera-
ture, however, is concerned with models that assume
a full list for each reviewer. That is, each reviewer
is assumed to compare and submit a ranking of the
entire universal set. Those models that assume full
lists rankings cannot be used in our context of group-
ranking problems.
The modelling of the group-ranking problem de-

pends on the format of the evaluations provided by
the set of reviewers. We classify the possible modes
of format into four cases.
1. Reviewers submit a list of weights only for all

projects reviewed.
2. Reviewers submit the preference rankings only of

pairs of projects reviewed without assigning weights.
In this variant there is no implied information about
the intensity of each ranking.
3. Reviewers submit intensity rankings only that

include a measure of the preference of one project to
the other in each ranked pair.
4. Reviewers submit both weights and rankings.
The most common procedure of group ranking is

the weights-only process, in which the evaluation of
each reviewer consists of giving a weight/score to
each project reviewed. In the weights-only model the
reviewers do not express any preference, except for
what is implicit in the weights. That is, the larger
the weight, the more preferred the project, so the
ordering by weight is the ranking of the reviewer
and the ratio, or the difference between the weights
assigned to i and j , wi/wj or wi − wj , reflects the
intensity of the pairwise comparison of the pair. The
popularity of the weights-only model is attributed to
its simplicity and the algorithmic ease of reaching a
group decision—the group ranking is based on order-
ing according to the average weight. As we discuss
later, the weights-only process suffers from shortcom-
ings and biases in the aggregate ranking that results.
In NSF review panels, the group ranking is based

on ordering of the simple averages of the submit-
ted weights. In some scientific conferences’ program
committees the reviewers provide, in addition to each
weight, a confidence factor in their own evaluation
(this is a common practice in computer science con-
ferences, e.g., STOC, FOCS, and SODA). The group
weight is then the weighted average that weighs
more heavily the higher the confidence evaluations.
While this procedure refines the aggregate ranking
by taking the confidence levels into consideration, the
approach still does not take into account the order-
ing of each reviewer in the form of the implied rank-
ings of individual reviewers. Further, the weights

provided by each reviewer, although reflective of indi-
vidual reviewers’ rankings, have their magnitude cho-
sen on a subjective scale. It is possible that many, or
even most, of the rankings of the reviewers implicit
in the weights will be reversed in this process. Such
an adverse case is shown in Example 4.1 in §4.
The preference rankings-only procedure presents its

own set of challenges, as demonstrated, for instance,
in Arrow’s theorem (1963)—more on that below. The
Kemeny-Snell optimal ordering of minimizing the
deviation of the aggregate ranking in terms of revers-
ing the least number of preferences is burdened by
computational difficulties—it is an NP-hard optimiza-
tion problem (see §5). We state for this problem a
simple 1

2 -approximation algorithm and note its con-
nection to the minimum arc feedback set problem.
We also show that if a classification of the reviewed
projects as preferred and nonpreferred is sufficient,
then the Kemeny-Snell optimal ordering is achieved
in polynomial time.
Even with the intensity rankings procedures, with

or without weights, there has not been a unified
approach to date. Such a unified approach is one of
the central contributions of this paper. We argue here
that intensity rankings are the preferred mode of out-
put (with or without accompanying weights), over-
coming many of the drawbacks in approaches used
in group rankings to date.

1.1. Relevant Research
The important subject of voting and elections inspired
extensive studies on group ranking with preference
rankings. A prominent “impossibility” result in this
area is Arrow’s (1963) fundamental theorem prov-
ing that no voting scheme can guarantee five natu-
ral fairness properties: universal domain, transitivity,
unanimity, independence with respect to irrelevant
alternatives referred to here as rank reversal, and non-
dictatorship. Kemeny and Snell (1962) proposed an
axiomatic approach for dealing with preference rank-
ing that models the problem as minimizing the devia-
tion from individual rankings defined by the distance
between two complete rankings. Bartholdi et al. (1989)
considered computational issues related to this model
in the context of elections and voting.
One study by Keener (1993) addresses the rankings

of football teams. Keener discussed the trade-off be-
tween using preference rankings and intensity rank-
ings, and the important role of the Perron-Frobenius
theorem regarding the conditions that guarantee a
positive unique solution eigenvector r to the system
Ar = �r. To understand the link of group ranking to
this linear system, consider intensity rankings that
quantify how much project i (team i in this context)
is preferred to project j by a positive number aij ,
which is greater than 1 if i is preferred to j , and less
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than 1 otherwise. Now the rank of i is proportional
to the strength of its ranking calibrated by the ranks
of the projects that it is compared to,

∑
j aij rj , because

being preferred to a highly ranked team obviously
contributes more to the strength of a team’s own rank
than being preferred to a lesser-ranked team. The rank
of each project is then reasonably presumed to be pro-
portional to this calibrated rank, and thus

�ri =
∑

j

aij rj � (1)

The solution to this system of equations plays an
important role in the analytic hierarchical process, as
discussed in §2.2.
For intensity rankings, Duke et al. (2002) stud-

ied public support for various aspects and trade-
offs relating to land preservation. Alho and Kan-
gas (1997) studied forest-planning performance by a
group, and Cardùs et al. (1982) presented an appli-
cation of group decision making for development
of a research program for the National Institute of
Handicapped Research and for the Rehabilitation Ser-
vices Administration. In the late 1970s, Saaty (1977,
1980) developed the analytic hierarchy process (AHP),
which became a leading approach to multicriteria
decision making. That technique has also been used in
applications requiring group rankings that use inten-
sity rankings. Over the last 25 years, the AHP has
been applied in more than 30 diverse areas to rank,
select, evaluate, and benchmark decision alternatives.
Good surveys on this subject are available in Saaty
and Vargas (1998), and Golden et al. (1989). The
AHP and many other methods used in group-ranking
work on consolidating full-ranking lists, that is, each
reviewer would have to review and rank all projects,
which limits the applicability of the technique. The
AHP’s core technique relies on finding an eigenvec-
tor, as per the Perron-Frobenius theorem, that serves
as the vector of weights.
The recognition that preferences might be expressed

with only limited certainty was identified early on
by Brans and Vincke (1985), and later by Fuller
and Carlsson (1996). These models address deci-
sion makers that express vaguely defined preferences
due to imprecise beliefs or conflicts and compet-
ing aspirations. To date, only heuristic methodology
has been applied to those fuzzy preference models.
Recently, fuzzy models were addressed by Fernandez
and Olemdo (2005), who proposed an evolutionary
algorithm.
We also consider here multicriteria decision mak-

ing, which is typically studied separately from the
group-ranking problem. We demonstrate that there
is a modelling overlap between the problems of
multicriteria decision making and aggregate ranking,

although these two subjects are often pursued sep-
arately and are considered distinct. One good sur-
vey of multicriteria methodology is provided by Roy
(1996).

1.2. Contributions
The results presented here include a framework that
unifies several streams of research and offers an in-
tegrated approach for the group-ranking problem
and multicriteria decision making. We clarify the
links between these problems and between the differ-
ent approaches and models that have been used to
address the aggregate planning problem.
We study properties of the weights-only approach

and the preference-ranking approach. For the first one,
we demonstrate the drawbacks in representing the
opinions of the reviewers in the final aggregate rank-
ing. For the second, we review the Kemeny-Snell
model of looking for a close solution in terms of min-
imum reversals of reviewers’ rankings. Although this
optimization problem is shown to be NP-hard, we give
a simple approximation algorithm, and show that the
2-rank special case is polynomially solvable. Further,
we generalize this closeness optimization for the inten-
sity rankings, and intensity rankings and weights out-
put from reviewers, and show how it generalizes work
done by others.
The advantages of the intensity rankings devia-

tion model are in the degree of flexibility and control
it offers the decision makers and the existence of a
polynomial-time algorithm for reaching a group rank-
ing that is optimal according to a well-defined and
transparent performance measure.
In our framework, we relax the assumptions made

in many existing approaches, and overcome common
shortcomings, including:
• The lack of performance measure that assesses

the quality of one aggregate ranking as compared to
another. Our model allows us to articulate precisely
the definition of optimality of an aggregate ranking.
• The homogeneity assumption frequently made

is that all reviewers contribute equally to the group
decision. We allow differentiation between reviewers
according to their expertise, and according to their
expertise in specific projects and specific pairwise
comparisons.
• Many existing group-ranking models require the

provision of full lists by the reviewers. The model
proposed here allows partial lists.
• The assumption of certainty in rankings submit-

ted by reviewers is relaxed here. We allow preferences
to be expressed with specified confidence level, or
limited belief, thus providing solutions (in polynomial
time) to fuzzy models as well.
• The phenomenon of rank reversal (see §3) in the

presence of irrelevant alternatives was pointed out as a
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shortcoming of voting schemes by Arrow. Even meth-
ods using intensity rankings such as AHP do not have
a built-in mechanism for rank preservation/retention.
The model proposed here has such a mechanism to
protect a partial ordering while adding new projects
to the set to be evaluated.
• Our model applies to reconciling contradictions

in multicriteria decision making as well as in group
ranking.
• Unlike other models, the model here is computa-

tionally efficient and can be applied to the large-scale
rankings effort of an aggregate ranking that is best
according to some specified performance measure. We
further make a nontrivial link between group-ranking
problems and flow-and-graph problems.
The procedure developed here is to be used as a

normative approach to generate aggregate ranking of
a group for given individual rankings. It also has,
however, the potential of being used as a descriptive
model in order to explain how economic behavior of
a group is generated from the utility functions of indi-
viduals. Namely, by an inverse problem paradigm,
one can seek the values of confidences and intensities
that can explain the outcome aggregate ranking.
The presence of partial lists raises a related ques-

tion: how to allocate the ranking tasks to individual
reviewers when the lists are partial. If each reviewer
can evaluate only a subset of the universal set, then
it is possible that some pairs are not comparable,
even within the implied ranking. (For definitions of
implied ranking and consistency closure, see §2.) In
that case, the group ranking will not be a full order.
Cook et al. (2005) address this issue in their paper
in the NSF context: Each reviewer is to be assigned
a partial list of no more than k projects contained in
their set of expertise. In order to achieve comparability
and full order, Cook et al. assumed that all possible
pairs must be reviewed and compared by at least one
reviewer. The problem then is to pick a subset for each
reviewer of size no larger than k so the union of all
pair reviews of all the reviewers covers the entire

(
n
2

)

pairs. We call this problem the k-allocation prob-
lem. Cook et al. proposed an integer programming
formulation of the k-allocation problem and pro-
posed a heuristic algorithm to generate good feasi-
ble solutions. In a companion paper, Hochbaum and
Levin (2006), we address the k-allocation problem
and show that it is polynomial for k ≤ 2 and NP-
complete for k≥ 3. We provide several approximation
algorithms and discuss the trade-off between their
performance and ease of application.

1.3. Outline
We begin by analyzing a fundamental property of a
ranking, consistency, defined in §2. We consider how
transitivity is the analog of consistency for ordinal

ranks and formalize the graph interpretations of both
transitivity and consistency. This section includes the
definition of the notions of implied ranking and con-
sistency closure and a formalization of the group-
ranking problem as a graph problem.
The phenomenon of rank reversal violating order-

ing or projects in the presence of irrelevant alter-
natives is reviewed in §3. This phenomenon is
illustrated there for AHP, which is a dominant app-
roach using intensity rankings. The weights-only pro-
cedure and its potential shortcomings are described
in §4. The preferences ordinal model is addressed
in §5. We describe the Kemeny-Snell optimal ordering
as a minimum deviation function and demonstrate
the NP-hardness of finding the minimum deviation
for ordinal rankings. We discuss a 1

2 -approximation
algorithm for the problem and show that a special
case of 2-ranking is solvable in polynomial time.
The intensity-ranking model and a discussion on the
equivalence of the multicriteria and aggregate rank-
ing problems are presented in §6. We also present in
that section the minimum deviation model for cardi-
nal/intensity rankings, their link to the flow problem,
and polynomial-time algorithms. In §7 we present a
model that includes both weights and ranking for
robustness purposes and point out an interesting
analogy to the image segmentation problem. The for-
mulation and solutions under different conditions are
presented. We conclude with final remarks and future
directions for research in §8.

2. The Consistency of Rankings
2.1. Ordinal Rankings—Transitivity
An essential property of a ranking is that of transi-
tivity. We denote the (weak) order relation signifying
that i is ranked at least as highly as j by i � j . An
order relation � is said to be transitive if it satisfies
for all i, j , k� i� j and j � k⇒ i� k.
We formalize the rankings of a set of projects

V = 
1� � � � �n� as a directed graph G= �V �A�, with a
set of nodes V and a set of arcs A so that the ordered
pair �i� j� ∈A if i� j . The transitivity of the preference
order is equivalent to the property of acyclicity of the
corresponding directed graph G= �V �A�. A graph is
said to be acyclic if it does not contain a directed
cycle. It is well known that acyclic directed graphs
admit a topological ordering, which is an assignment of
distinct indices from 
1� � � � �n� to the n nodes (repre-
senting the projects) so that for every arc �i� j� in the
graph i > j . The values of the indices of the topolog-
ical ordering can serve as the underlying weights of
the respective objects. The topological ordering of an
acyclic graph can be found in linear time.
When the rankings submitted are partial lists the

graph may not be complete—that is, there might be
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some arcs missing between pairs of nodes. The prop-
erty of transitivity allows us, however, to identify
implied rankings. To do that we consider the tran-
sitive closure of the graph. To obtain the transitive
closure, we find, for each node i, the set of nodes
R�i� reachable from i along a directed path. Therefore,
j ∈ R�i� if there exists at least one sequence of arcs
�i� i1�� �i1� i2�� � � � � �ik� j�. Due to the transitivity prop-
erty, we can add arc �i� j� to the graph if j ∈ R�i�. If
the arc �j� i� is already present, then the order is not
transitive.
It should be noted, however, that acyclic graphs

whose transitive closure is not complete (i.e., the
graphs do not have an arc, or a directed path, between
each pair of nodes) do not represent a full order. If
the order is partial, then some pairs of projects may
be incomparable, and the topological ordering is not
unique. An example of this phenomenon is demon-
strated in Figure 1, showing an acyclic graph with
node indices that form a topological ordering (i.e., if
�i� j� is an arc, then the index of i is smaller than the
index of j). An alternative topological ordering num-
bers Node 3 before Node 2, as these two nodes are
incomparable.

2.2. The Consistency of Cardinal Rankings
Intensity rankings provide a quantifier to the prefer-
ence. This quantifier is used either in the additive sense
or in the multiplicative sense. When additive, the inten-
sity represents the extent of the difference between the
two projects. The multiplicative intensity preference
represents the ratio of the strengths of the ranks of the
two projects compared.
Let the intensity rankings be given in the form of

a matrix A= �aij �, where aij is the magnitude of pref-
erence of project i to j . The matrix is complete if all
entries are present and generated from full lists, and
partial otherwise.
The notion of consistency in a multiplicative sense,

used, e.g., by Saaty (1977, 1980) for complete matri-
ces, is that for each triple i, j , k, aij · ajk = aik. This is
equivalent to the existence of a set of weights wi for
i= 1� � � � �n so that aij =wi/wj . Such a set of weights,
called a priority vector, is not unique, because for any

Figure 1 A Partial-Order Graph for the Ordinal Ranking Example

1 4

2

3

5

consistent set of weights w1� � � � �wn and a scalar c, the
set cw1� � � � � cwn is also a priority vector. Therefore, we
can arbitrarily choose w1 = 1 to ensure a unique set
of weights corresponding to consistent intensity rank-
ings. The second definition of consistency is in the
additive sense, (e.g., Ali et al. 1986), where for each
triplet i, j , k, aij +ajk = aik. In this case there is a set of
weights wi for i= 1� � � � �n so that aij =wi−wj . Again,
the vector of weights is not unique, because one can
add a constant and get the same set of differences.
Here we can anchor the set uniquely by setting w1 = 0.
Both definitions of additive and multiplicative consis-
tency are equivalent because the logarithms of the aijs
that are consistent in the multiplicative sense yield
rankings that are consistent in the additive sense, and
vice versa. Therefore, any discussion of one type of
consistency applies to the other.
For A = �aij �, a matrix of intensity rankings in the

multiplicative sense, the values of all aijs are positive;
and if aij > 1, then i is preferred to j ; and if aij < 1,
then j is preferred to i. Therefore, for consistent rank-
ings aij = 1/aji for all i, j . Similarly, for A = �aij �, a
matrix of intensity rankings in the additive sense, the
value of aij is positive (negative), indicating that i is
preferred to j (j preferred to i) and the magnitude �aij �
indicates the intensity of that preference. Here, aij =
−aji for all i, j , and the matrix is skew symmetric.
Skew symmetry is a necessary condition for the con-
sistency of a rankings matrix, but not sufficient. Some
of the literature on finding “close” consistent rank-
ings assumes that the (inconsistent) preference matrix
is skew symmetric in that it satisfies this necessary
condition.
One important implication of the notion of con-

sistency is that in a consistent rankings matrix each
column and row contain the full information on the
entire matrix. For instance, given the ith column,
�ai1� ai2� � � � � ain� of a consistent ranking matrix in the
multiplicative sense and setting w1 = 1, one can gen-
erate all pairwise rankings as akj = aki · aij = aij/aik.
For an incomplete matrix we construct the consis-

tent closure by placing, for every missing i, j entry,
a value generated from a sequence of entries, �i� k1��
�k1� k2�� � � � � �kp� j� if such a sequence exists, and let i=
k0 and j = kp+1. The value aij is then set to

∏p+1
l=1 akl−1� kl if

the rankings are expressed in the multiplicative sense,
and aij =

∑p+1
l=1 akl−1� kl if the rankings are expressed in

the additive sense. If such a sequence does not exist,
then the (multiplicative) matrix does not satisfy the
necessary condition of the Perron-Frobenius theorem
in that there are pairs that are incomparable, directly
or indirectly, and Equation (1) does not have a unique
positive solution. If there is at least one such sequence
for each pair (we choose one arbitrarily if there is
more than one sequence), then this process completes
the matrix. Notice that if for each missing ranking
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there is only a single sequence of rankings comparing
the two, then the matrix resulting from the comple-
tion process is necessarily consistent.
The intensity rankings are represented on a graph

G= �V �A� with a set of nodes V , one for each project,
and a pair of weighted arcs for each pairwise ranking
with aij the intensity of the ranking of i to j and −aij
the intensity of ranking of j to i. The graph can be
a “multigraph” in the sense that there is more than
one arc between i and j . For each missing arc �i� j� in
the graph, the consistent closure is formed by adding
that arc with a weight equal to the “length” of some
path from node i to node j . The length is the sum of
the additive intensities along the path. If there is more
than one path between two nodes and the sum of the
intensities along the different paths is not equal, then
the ranking is not consistent. We thus proved,

Theorem 2.1. In a consistent ranking represented on a
graph, the lengths of all directed paths between each pair
of nodes is the same.

This theorem allows us to present the problem of
group ranking as a graph problem of inverse paths,
discussed in §6.3.
How to measure the extent of the inconsistency of

the joint rankings of the reviewers is a question that
lies at the heart of the group-ranking problem. One
such measure of the extent of inconsistency is part of
the AHP. AHP was developed by Saaty (1977, 1980)
in the late 1970s, and has become a leading approach
to multicriteria decision making. For this reason we
sketch it briefly, along with Saaty’s associated mea-
sure of inconsistency.
In AHP, the decision problem is modeled as a hier-

archy of criteria, subcriteria, and alternatives. The
method features a decomposition of the problem to a
hierarchy of simpler components, extracting experts’
judgements and then synthesizing those judgements.
After the hierarchy is constructed, the decision maker
assesses the intensities in a pairwise comparison
matrix. Thus, given n alternatives, the decision maker
provides n× �n− 1� pairwise comparisons that assess
the relative importance of every alternative to each of
the others. An important backbone of the technique
is the generation of the priority vector as the eigen-
vector of the matrix A = �aij �. Suppose the matrix is
consistent and the vector of weights is w = �wi�ni=1.
Then aij = wi/wj . Summing up over all j , we obtain∑n
j=1 aijwj = nwi. Therefore, in matrix notation the vec-

tor of weights w satisfies Aw = nw. This vector of
weights is, hence, the eigenvector that consists of the
weights assigned to each project or each criterion
under the multiplicative model, but only if the matrix
is consistent. Otherwise, the eigenvector forms some

approximation of the preference weights. The mea-
sure of approximation for a skew-symmetric inconsis-
tent matrix defined by Saaty (1980) is the consistency
index (C.I.),

C�I�= �max −n
n− 1

� (2)

where �max is the maximum eigenvalue of the matrix.
A matrix is said to be consistent if and only if C.I. is
zero. This is equivalent to the conditions aij · ajk = aik
for all i, j , k. This notion of consistency can only be
applied to skew-symmetric matrices, that is, matrices
that satisfy aij = 1/aji for all i < j .
While the consistency index is zero for a consistent

matrix, which is a desirable property of any measure
of consistency, it is not known how the resulting pri-
ority vector’s ranking reflects or deviates from the
individual reviewers’ rankings, and according to what
measure.

3. Rank Reversal
The lack of robustness of AHP, along with other
weight-generation methods, is manifested in the phe-
nomenon of rank reversal, by which adding an incon-
sequential alternative can change the order of weights
of the top-ranking preferences. This issue is discussed
by Belton and Gear (1983), Saaty (1987), and Finan
and Hurley (1996, 2002). Rank reversal is illustrated
in the following example.
Consider the (skew-symmetric) multiplicative com-

parison matrix (only the upper triangle matrix is
shown):

1 1�2 1�2

1 1�5

1

Solving the above problem using Expert Choice
(2005), a commercial tool for computing weights using
the eigenvector method, yields the priority vector
�0�373�0�356�0�271�. We now add a project that is
nearly redundant (all the alternatives are clearly better
than this one).

1 1�2 1�2 6

1 1�5 8

1 7

1

The priority vector corresponding to this matrix is
�0�335�0�347�0�273�0�046�. Notice that in the first vec-
tor Project 1 has a greater weight than Project 2, while
in the second vector Project 2 has greater weight than
Project 1. Thus, the addition of a near-redundant alter-
native has changed the ranking of projects. Part of the
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problem driving the rank reversal phenomenon in the
priority vector is that the eigenvector methodology
cannot capture the information that Project 4 is incon-
sequential and should affect the ranking less than the
other three projects.
In order to prevent rank reversal when an alterna-

tive is added to the universal set, the group ranking
should be generated while satisfying rank preservation.
We discuss how rank preservation can be executed in
our model.

4. Weights Only
In the model where reviewers submit only weights for
the projects reviewed, the reviewers do not express
any preference except for what is implicit in the
weights. That is, the larger the weight, the more pre-
ferred the project. As noted in the introduction, this
model is the one used by the NSF and by program
committees of conferences. Each reviewer submits
a list of weights, which corresponds to a ranking,
for the projects evaluated. In the panels of NSF, the
final weight is a simple average of the submitted
weight. In many program committees the reviewers
include, in addition to each weight, a confidence fac-
tor in their own evaluation. The group weight then
is the weighted average that weighs more heavily the
higher the confidence weights. The drawback of this
approach is that it does not take into account the pref-
erences in the form of the implied rankings of individ-
ual reviewers. As we show in the next (pathological)
example, it is possible that most implied reviewers’
rankings will be reversed in this process.
Example 4.1. Consider the procedure of taking

average weights for n projects labeled 
0�1�2� � � � �
n− 1�. There are m+ 1 reviewers, and each of them
reviews the n projects. Reviewer i (for i= 1�2� � � � �m)
assigns project j the weight j . The last reviewer
assigns project j the weight �mn+ 1� · �n− j�. Each of
the first m reviewers prefers the lower-labeled projects
to the higher-labeled projects. However, if we take the
average weights of all the reviewers, then the overall
ranking based on the average weights will be exactly
the opposite. This shows that one reviewer can dom-
inate all other reviewers.
Another well-known context in which such an

adverse outcome is possible is in measuring and rank-
ing the performance of students based on their grade
point average. Some instructors tend to assign higher
grades than others (and naturally become more pop-
ular). Although the relative ranking of each instructor
reflects the instructor’s evaluation of the students and
their respective rank in class, the grade point aver-
age can bias the ranking in favor of students who
took courses with instructors using a more generous
grading scale. This illustrates that the weights-only

approach has biases in reflecting the evaluations of
the reviewers in the group.
We remark that a weights-only procedure is not

guaranteed to produce a permutation rankings where
each rank position is unique.

5. Preference Rankings Only
Kemeny and Snell (1962) studied the group-ranking
problem with preference rankings only. Their model
attempted to overcome the difficulties posed by
Arrow’s theorem. Their model’s goal is to minimize
the number of reviewers’ rankings reversed.
We quantify the preference rankings for the pur-

pose of formulating the optimization model as plij = 1
if reviewer l prefers i to j and 0 otherwise, in which
case plji = 1. Let Sij be the set of reviewers who pre-
fer i to j and Sji be the set of reviewers preferring j
to i. Therefore, for zij a binary variable indicating
the group ranking, the objective of reversing the
least number of reviewers’ rankings is, min

∑
i<j Fij �zij �

where,
Fij �zij �= �Sji� · zij + �Sij � · zji� (3)

In other words, this function assigns the group con-
sensus of i preferred to j , a penalty proportional to
the number of reviewers that chose an opposite rank-
ing. We call this problem the minimum rankings rever-
sal problem. Unfortunately, this problem is in general
NP-hard:

Theorem 5.1. The minimum rankings reversal problem
is NP-hard.

Proof. The problem of choosing zij so as to mini-
mize the function

∑n
j=1

∑n
i=j+1 Fij �zij � is an instance of

the minimum arc feedback set problem (see Karp
1972). That problem is defined on an arc weighted
complete directed graph G = �V �A�, where for each
pair of nodes i� j ∈ V , �i� j�� �j� i� ∈A. The problem is
to delete a minimum weight subset of the arcs so that
the remaining graph is acyclic. The problem is known
to be NP-hard in the strong sense.
We let the weight of arc �i� j� be �Sij �, the num-

ber of reviewers that chose the ranking of i preferred
to j . The acyclicity of the generated graph created by
deleting a minimum weight subset of arcs is the prop-
erty equivalent to transitivity of preference rankings
because an acyclic graph admits a topological order.
That is, an assignment of values from 1 to n so that
each arc �i� j� indicating that i is preferred to j has the
respective indices to satisfy wi >wj . Those values can
serve as the weights of the respective nodes. �

A special case of the minimum rankings reversal
problem is the 2-rank problem. For the 2-rank prob-
lem the objective is to assign two rank levels only, so
as to create a ranking of one subset of projects above
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another subset while minimizing rankings reversals.
This special case is polynomially solvable:

Theorem 5.2. The 2-rank problem is solvable in poly-
nomial time, O�mn log�n2/m��.

Proof. Construct the graph G = �V �A� as in the
proof of Theorem 5.1. We are seeking a partition of
the set of nodes V to V1, V2, so that the nodes in V1
have a higher rank than those in V2. The objective of
minimizing rank reversals is

∑
�i� j�∈�V1�V2� �Sji�.

The directed minimum 2-cut problem is to find a
bipartition of the set of nodes, V = V1 ∪V2 that mini-
mize the capacity of the cut from V1 to V2, C�V1�V2�=∑
�i� j�∈�V1�V2� wij for wij the weight of arc �i� j�. The

2-rank problem is thus the same as the problem of
finding a directed minimum 2-cut.
The most efficient algorithm for the directed mini-

mum 2-cut problem is by Hao and Orlin (1994), with a
complexity of O�mn log�n2/m�� for a graph on �V � = n
nodes and �A� =m arcs. �

For the minimum arc-feedback problem there are
no constant factor approximation algorithms known.
The best-known approximation algorithm for the
minimization problem was devised by Seymour
(1995), and it provides a ratio of the algorithm solu-
tion divided by the optimum, which is not exceeding
O�logn log logn�. That algorithm was further refined
by Even et al. in 1998.
In a maximization form, the problem is to retain a

set of arcs of maximum weight so that the retained
arcs form an acyclic graph—that is, so as to maximize
the weight of rankings that match the reviewers’ rank-
ings. We call this problem the maximum rankings non-
reversal problem. There is a known easy approximation
algorithm for this problem (attributed to “folklore;”
see p. 361 in Hochbaum 1997).

Lemma 5.1. There is a linear time 1
2 -approximation

algorithm for the maximum rankings nonreversal problem.

Proof. We assign to each node a unique and arbi-
trary index (node weight) from 
1� � � � �n� and com-
pare the total weight of the set of arcs �i� j� with i < j
to the total weight of the set of arcs with i > j . Remov-
ing the smaller weight set retains at least half of the
total sum of weights of all arcs in the graph, and thus
it is a 1

2 -approximation. �

Cohen et al. (1999) devised a greedylike algorithm
for this problem, which they proved, using a rather
elaborate proof, that is a 1

2 -approximation. They were
apparently not aware of this easily provable and
known result.
This approximation algorithm can also incorporate

rank preservation for a subset. For that subset the
induced ranking has topological order associated with
it that provides weights consistent with the preserved
subset. For all these, the weight of each arc is set to 


so as to make sure it is not reversed. We note that
there is no better than 1

2 -approximation known for the
maximization version of the arc feedback set problem.
Another nice property of this acyclic subgraph ap-

proximation algorithm is that it is used when all pos-
sible pairwise comparison arcs are present—the graph
is a complete directed graph. Therefore, when the sub-
graph is selected, the indexing chosen corresponds to
a full order ranking without ties—a permutation.
A reasonable rounding heuristic often used in group

decision rankings is to have each reviewer rank a sub-
set of the projects by assigning integer-valued weights
to those projects. The group decision is made by
adding the integer values for each project and rank-
ing them according to this aggregate sum (from larger
to smaller, say). We show that this frequently used
heuristic can have arbitrarily bad performance. We
call this the rank-sum heuristic. Assuming that each
reviewer is reviewing exactly two projects, then with-
out loss of generality, we can assume that the weights
that he/she assigns are 0/1, with 1 assigned to the
higher-ranked project. Therefore, we can model these
preferences as a directed graph G over the nodes

1�2� � � � �n� with an arc �i� j� for each reviewer that
prefers i to j . Therefore, the weight assigned to a
project i according to the rank-sum heuristic equals its
out-degree in G. Note that the rank-sum heuristic is
applied in trying to solve an instance of the maximum
rankings nonreversal problem. We next show that this
heuristic does not provide any constant approxima-
tion ratio.
Remark 5.1. The rank-sum heuristic does not pro-

vide any constant factor performance guarantee.
Proof. Consider the following counterexample on

a ranking graph with the nodes 
1�2� � � � �n� and the
arcs 
�1�n− 1�� �1�n�� ∪ 
�i�1� � 2 ≤ i ≤ n− 2�. In this
graph, Node 1 has out-degree 2, nodes i for 2 ≤ i ≤
n − 2 have out-degree 1, and nodes n − 1, n have
out-degree 0. Therefore, the outcome of the rank-sum
heuristic is the ordering 1�2� � � � �n. This ordering has
value 2. However, G is acyclic (with a topological
order 2�3� � � � �n − 2�1�n − 1�n) and has n − 1 arcs.
Therefore, the optimal solution has value n− 1. The
approximation ratio of the rank-sum heuristic cannot
be better than 2/�n−1�, and therefore it does not pro-
vide any constant factor performance guarantee. �

We remark that the adverse performance of the
rank-sum heuristic does not apply if one replaces the
sum of the ranks by the average of the ranks—that is,
the ratio between the sum of the ranks by the num-
ber of reviewers that review this project. In that case,
the average rank of Project 1 is 2/�n− 1�, the average
rank of project i for 2≤ i≤ n−2 is 1, the average rank
of projects n− 1 and n is 0, and the resulting group
ranking in this example is optimal. The example we
give for the case of weights only applies however for
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the average rank heuristic and demonstrates that its
performance can also be bad.
A second Kemeny-Snell goal that has been dis-

cussed in the literature is associated with the input
where each reviewer provides a full list consisting of
a permutation of the reviewed projects. The goal is
to identify a (group) permutation (that is, a unique
assignment of ranks for a full order) so that the
sum of distances of the group permutation from each
reviewer’s permutation is minimized. The distance
between two permutations is the minimum number
of adjacent pairwise exchanges between the two per-
mutations (sometime referred to as the bubble-sort dis-
tance). Finding such optimal aggregate permutation
was proved to be NP-hard by Bartholdi et al. (1989).
Hardness results for this problem were tightened in
special cases by Dwork et al. (2001).
We show in the next section that the intensity-

analogs of the goal functions discussed here have the
advantage of being polynomial-time solvable.

6. Intensity Rankings Only
We present here an optimization model for group
ranking with intensity-rankings input from review-
ers generalizing models developed for multicriteria
decision making. We first establish that the prob-
lem of multicriteria decision making is equivalent to
group ranking, and conclude that our model is appli-
cable to that problem as well. We then demonstrate
how the group-ranking model relates to the inverse
paths problem and to the minimum-cost network
flow problem.

6.1. Consistency of Multicriteria Decision Making
and Its Equivalence to Group Ranking

Past research that addressed the group-ranking prob-
lem as a minimum of deviation optimization problem
has appeared in the context of multicriteria decision
making. In the problem of multicriteria decision mak-
ing, the decision makers (possibly a single person),
generate a ranking of the universal set using differ-
ent criteria. The problem arises when the rankings
based on the different criteria are jointly inconsis-
tent. Formally, this is expressed as a ranking matrix
where each column of the matrix represents the rank-
ing with respect to one criterion. The problem then
is to reconcile those different rankings into an aggre-
gate consistent ranking that is close in some sense
to the individual criteria’s rankings. We show here
that achieving a consistent ranking that is “similar”
to a given inconsistent ranking is equivalent to attain-
ing a group ranking that is “close” to the reviewers
assessments.
In this area, the model of Saaty and Vargas (1984)

employs the least-squares method to determine the
values of the weights that form a consistent ranking

that closely approximates a given inconsistent rank-
ing matrix �aij �. Their objective function is to minimize
the proximity measured by

∑n
i=1

∑n
j=1�log aij− logwi+

logwj�2. Chandran et al. (2005) presented an alter-
native linear programming approach to the model
of Saaty and Vargas, for the problem of identifying
weights of a consistent rankings at minimum error.
In their formulation, the objective is to minimize the
deviation error as absolute value,

∑
i<j �xi−xj− log aij �,

where xi represents the logarithm of the weight of
project i. Defining both these optimization problems
on the variables xi representing the weight of i, and
zij representing the resulting optimal additive rank-
ing, the objective functions are

∑n
i=1

∑n
j=1�log aij − zij �2

and
∑
i<j �zij − log aij �, respectively. This optimization

is then subject to consistency constraints of the form:

xi− xj = zij � (4)

We refer to the problem of finding a close consis-
tent matrix as (CM) (for consistent matrix). Note that
fixing x1 = 0 implies that the values of the weight
variables xi are in the range "−M�M$, for M =
max�i� j� � log aij �.
In the context of group ranking, Ali et al. (1986)

explored a scenario where L reviewers provide rank-
ings only, and no project weights. The intensity rank-
ing of reviewer l is given as a skew-symmetric matrix
of intensity values �plij �, l = 1� � � � �L. The weights
implied by each ranking are not given explicitly.
Ali et al. (1986) posed the chosen group intensity

ranking as intensity numbers zij that satisfy, for each
pair 1≤ i≤ n− 2 and k= i+ 2� � � � �n; zik =

∑k−1
j=1 zj� j+1.

This latter condition is obviously equivalent to the
consistency constraints with some underlying weights
vector x and zij = xi − xj . The objective function they
choose is to minimize the sum of the absolute devi-
ation of zij from the intensity of preferences of all
L reviewers,

∑
i<j

∑L
l=1 �plij − zij �� The formulation used

by Ali et al. (1986) assumes that intensity values
are integers in the range "−h�h$. It is also implic-
itly assumed that individual reviewers’ rankings form
skew-symmetric matrices that are consistent. The for-
mulation of the problem by Ali et al. is referred to
here as (ACK) (after the initials of the authors).

(ACK) Min
∑

i<j

L∑

l=1
�plij − zij �

subject to zik−
k−1∑

j=i
zj� j+1 = 0

for i= 1� � � � �n− 2� i+ 2≤ k≤ n
1−h≤zij≤h−1 zi�j integer, for all i� j�

Ali et al. showed how to solve the (ACK) problem
with a linear programming routine. They noted the
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total unimodularity of the constraint matrix, but did
not make any use of this fact to achieve computational
efficiency.
Our model is the close rankings (CR) problem

formulated on the additive aggregate ranking vari-
ables zij and the weights variables xi and Fij � � general
convex functions,

(CR) Min
∑

i<j

Fij �zij �

subject to xi− xj = zij for i < j

−n≤ xj ≤ n j = 1� � � � �n

−n≤ zij ≤ n integer, for all i� j�

We argue that the two problems (CM) and (ACK)
are in fact the same, and both are generalized by
(CR), which minimizes some measure of closeness. It
is concluded that the models introduced in Saaty and
Vargas (1984), Ali et al. (1986), and Chandran et al.
(2005) are all special cases of (CR).

Theorem 6.1. The problem of finding a close consis-
tent ranking is equivalent to the problem of finding a
group ranking that is close to the rankings of individual
reviewers, and both are formulated as convex optimization
problems.

Proof. For the problem (ACK) of finding group
rankings close to the L individuals’ rankings, we let
each reviewer provide a ranking matrix �plij �. This
ranking matrix is assumed to be consistent; thus,
there are underlying weights wli corresponding to
each ranking so that �plij �=wli −wlj and wl1 = 0.
We now generate an L×n matrix where the lth col-

umn represents the complete rankings of reviewer l
expressed as pairwise comparisons to project l. If the
number of projects is less than the number of review-
ers, L> n, then reviewer l expresses the preferences as
compared to project l�modn− 1�, where the projects
are numbered 0�1� � � � �n − 1. Therefore, the lth col-
umn has ail =wli−wll . Now, the matrix �aij � is not con-
sistent if the reviewers are not in full agreement, so
finding overall “close” consistent rankings is equiva-
lent to finding weights xi so that aij = xi− xj .
To model the problem, we let the variable xi be the

weight consistent with the group ranking that is to
be assigned to project i, and x1 = 0. We normalize the
values of the rankings by dividing each value of plij
by M , for M = maxi� j� l �plij �. With n projects, integer
intensities, and setting x1 = 0, it is thus sufficient to
choose xi as an integer in the range "−n�n$.
We generalize the deviation measuring objective

function by using any convex function Fij �zij �. Such
functions min

∑
i<j Fij �zij � include the case of the

absolute deviation function of Ali et al. (1986),
Fij �zij � =

∑L
l=1 �wli − wlj − zij �. An alternative choice

of Fij � � could be the quadratic convex function
∑L
l=1'

l
ij �p

l
ij − zij �2, where the coefficients 'lij reflect the

weight, and thus the confidence, in the ranking of
reviewer l for the pair ij , and replacing the term
plij by w

l
i − wlj . If some reviewers’ rankings are not

necessarily consistent, then such weights cannot be
assumed to exist and an appropriate objective func-
tion depends on both plij and zij , such as the function
Fij �zij �=

∑L
l=1 �plij − zij � of (ACK).

The problem of reaching group rankings with qua-
dratic function penalties, as in Saaty and Vargas
(1984), is a special case of (CR) where for xi represent-
ing logwi, the quadratic objective function is Fij �zij �=
�log aij − zij �2. This link between the models of Saaty
and Vargas and of Ali et al. has not been previously
observed, and neither has the recognition of the exis-
tence of such efficient algorithms for the problem. The
problem studied by Chandran et al. is identical to that
studied by Ali et al. (1986) when one replaces the indi-
vidual rankings plij by a column of aij in the matrix.
Therefore, in terms of modelling, the problem of

finding consistent rankings that are close to given
inconsistent rankings is identical to the problem of
obtaining group rankings from individual rankings
that is close to those in some sense. �

The optimal objective value of (CR) provides a mea-
sure of how far a consistent ranking can be from the
given inconsistent ranking according to the closeness
measure deemed appropriate—the objective function.
In this sense, this is a more explicit consistency index
than C.I., which is not associated with any specific
interpretation of distance corresponding to the C.I.
value.

6.2. Inverse Paths and Aggregate Ranking
The problem of modifying an inconsistent ranking so
as to make it consistent is related to the problem of
inverse shortest paths on a graph. To see this, consider
a directed nonsimple (with multiple arcs) graph G=
�V �A� where arc �i� j� ∈A has intensity of aij associ-
ated with it in the additive model, and an arc in the
opposite direction �j� i� of intensity −aij . For any pair
of nodes i, j , let a directed path on k nodes from i= v0
to j = vk be Pij = �i� v2� � � � � vk−1� j�. The total length of
the path Pij is

∑k−1
p=1 avp�vp+1 , which is also equal to the

intensity of the ranking of i relative to j if the ranking
is consistent. Of course, if there are several intensities
assigned to �i� j�, they all have to modified so they
are equal in a consistent ranking.
As shown in Theorem 2.1, a matrix is inconsistent if

and only if there exist two paths in the graph between
two nodes of different lengths.
The inverse equal-paths problem is defined on a

directed graph with arc lengths. The problem is to
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modify the lengths of the arcs so that all paths
between each pair of nodes will be of the same length,
and the penalty for the deviation from the given
weights is minimum. This problem is thus the same
as the problem of modifying a ranking so as to make
it consistent. This and other versions of the inverse
paths problems, such as—given the pairwise paths
and their prescribed distances, modify the weights
so as to minimize the penalty of the deviations and
so that the pairwise distances are as prescribed—are
studied in Hochbaum (2002).
A unique feature of the inverse paths problem in

the context of a consistent aggregate ranking is that
the skew-symmetry implies that for each arc present,
there is an arc in the opposite direction. Therefore,
having equal paths between two nodes is equivalent
to having all direct cycles going through the pair of
nodes of length zero.

6.3. A Model and Algorithm for Group Rankings
with Intensity Rankings

The model formalizing the group ranking in the pres-
ence of intensity rankings only is the convex opti-
mization model (CR) that generalizes the models of
Ali et al. (1986), of Saaty and Vargas (1984), and of
Chandran et al. (2005). This model formulation makes
it possible to include rank preservation within the
model. It is also straightforward to deal with a sce-
nario partial lists (that is, not all pairwise comparisons
are available). In order to incorporate rank preserva-
tion for a certain subset of directed arcs AS ⊆ A, we
add constraints of the form

xi ≥ xj� ∀ �i� j� ∈AS�
Theorem 6.2. For Fij �zij � convex, the problem (CR)

with rank preservation constraints is solved in time
O�mn log�n2/m� logn�.

Proof. The convex problem (CR) is a special case
of the convex dual of minimum-cost network flow
(DMCNF). The formulation of the problem (DMCNF)
with general convex objective function is,

�DMCNF� Min
n∑

j=1
wj�xj�+

∑

�i� j�∈E
eij �zij �

subject to xi− xj ≤ cij + zij for �i� j� ∈ E
lj ≤ xj ≤ uj j = 1� � � � �n

-ij ≤ zij ≤ .ij for �i� j� ∈ E
xj integer for all j = 1� � � � �n�

In this formulation wj� � and eij � � are convex func-
tions, cij are arbitrary constants, and lj , uj and -ij , .ij
are arbitrary lower and upper bounds on the vari-
ables xi and zij . The constraints’ coefficients form a

totally unimodular matrix. For values of x and c that
are integer, the values of z are integer as well.
Ahuja et al. (2003), showed that (DMCNF) general-

izes the (CR) formulation. Namely, the constraints can
be written as the consistency constraints (4) where the
functions eij � � are replaced by other (convex) func-
tions Fij � �. Moreover, adding rank-preservation con-
straints of the form xi ≥ xj , ∀ �i� j� ∈ AS preserves
the total unimodularity of the matrix of constraints’
coefficients, and the problem is still an instance of
(DMCNF).
In Ahuja et al. (2003), the authors presented a

polynomial-time algorithm for (DMCNF) with a con-
vex objective function, which is the most efficient
algorithm known to date for the problem. The com-
plexity of the algorithm is O�mn log�n2/m� log�nC��
for C = max
uj − lj �. In the case of (CR), it is
sufficient to find integer weights in "−n�n$, and
thus C = n. Therefore, the combinatorial algorithm of
Ahuja et al. (2003) works in strongly polynomial time,
O�mn log�n2/m� logn�. �

The algorithm of Ahuja et al. (2003) improves the
complexity substantially compared to the linear pro-
gramming approach proposed by Ali et al. (1986).
It also improves in terms of the flexibility of choice
of the objective function beyond absolute value, as
appropriate under the circumstances. The efficiency of
the algorithm is important to be able to reach a group
decision according to the set criteria within a practical
time window.
Another generalization that the model allows is for

a partial-order scenario where not all pairwise rank-
ings are given by all reviewers. For a set Sij of review-
ers evaluating the pair "i� j$ the functions are of the
form Fij �zij �= Fij ��plij �l∈Sij � zij �.
Remark 6.1. The (CR) model appears similar to

the Kemeny-Snell problem with the (linear) objective
function (3). Suppose this function is used in the (CR)
model; then the optimal solution will be of value zero
and all xi are equal in the optimal solution. In the
model of intensity ranking, however, a value of zero
for some pair zij = 0 does penalize the objective func-
tion, as it potentially deviates from some other val-
ues of intensity ranking for �i� j� set by some of the
reviewers.
Remark 6.2. The model (CR) where the objective

function is quadratic separable, (Fij � � is quadratic for
all i, j), can be solved also in O�n3� as follows: We
first replace zij with xi − xj for all i and j , using the
equality constraints of (CR) to generate a quadratic
objective function of the variables x1�x2� � � � � xn. We
then replace x1 by 0. This quadratic multivariate
problem can be solved using a general method for
unconstrained convex optimization such as Newton’s
method or the conjugate gradient method. When the
objective function is quadratic, the Newton’s method
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is guaranteed to reach a global optimal solution in one
iteration, and this takes O�n3� (this time complexity is
dominated by the time it takes to compute the inverse
of the Hessian matrix). Alternatively, we can replace
the use of Newton’s method by the conjugate gra-
dient method that reaches a global optimal solution
after n lines search (again when restricted to quadratic
goal function). Computing a direction for the search
in the kth iteration takes O�nk� time, and computing
the next point using a line search takes a constant time
(along a line our goal function is a quadratic function
of one variable and it is easy to compute its mini-
mum point in constant time). Therefore, the conjugate
gradient method takes also O�n3� time. We point out
that for dense graphs (where m= /�n2�) and quadratic
functions, this new algorithm is faster than the one of
Theorem 6.2.
We next show a numerical example of model (CR)

and its optimal solution.
Example 6.1. We specify only arcs �i� j� that indi-

cate that i is preferred to j , with a nonnegative value
for the intensity of the difference. The opposite arcs
have the negative of the intensity value with the same
belief level and are thus redundant—including them
will double the value of the objective function penalty.
Belief levels are specified as probabilities in the range
"0�1$. In our example shown in Figure 2, the pair
�x�y� next to an arc indicates that one reviewer spec-
ifies x as the belief level and y as the intensity of the
preference. For a reviewer preferring 1 to 2 with a dif-
ference of 2 and belief level of 0�7, �0�7�2�, the penalty
term is chosen as the quadratic function, 0�7�z12−2�2.
Given the graph of rankings and beliefs as shown

in Figure 2, the objective function is to minimize:

0�5�z12 − 0�5�2 + 0�7�z12 − 2�2 + 0�8�z21 − 2�2

+ 0�9�z23 − 1�5�2 + 0�7�z13 − 2�2 + 0�5�z31 − 1�2

+ 0�5�z43 − 2�2 + 0�9�z43 − 1�2 + 0�5�z43 − 2�2

+ 0�9�z43 − 1�2�

Figure 2 The Graph for Example 6.1, Where Each Pairwise Ranking Is
Expressed as a Pair �x� y �, Where x Is the Belief Level and
y Is the Intensity of the Preference
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Setting zij = xi − xj and fixing x1 = 0, we obtain the
new goal function:

2�9x22 − 2�6x2 + 4�9x23 + 12�1x3 − 1�8x2x3

+ 2�8x24 − 7�6x4 − 5�6x3x4 + 17�25�

The optimal solution is, �x1�x2�x3�x4� = �0�0�1335�
−1�0142�0�3429�. The group ranking �4�2�1�3� with
this deviation function has a minimum penalty value
of 9.6373. This ranking reverses three pairwise pref-
erences of reviewers—two preferring 1 to 2 and one
preferring 3 to 1. However, the level of belief in these
preferences is relatively low, and we cannot get any
other ranking that will have a lower value of the
penalty.

7. Weights and Rankings
Having reviewers provide both weights and rankings
seems to be redundant, as the set of weights can be
translated to a ranking and vice versa. Nevertheless,
reviewers might be inconsistent in their own evalua-
tions, and submitting both weights and rankings per-
mits us to assign levels of confidence separately to
the weights and to the pairwise rankings. This extra
information can serve the role of capturing the eval-
uations of the reviewers more robustly than is possi-
ble with weights alone or rankings alone. We demon-
strate here that this problem is linked to the image seg-
mentation problem, and thus algorithms for that prob-
lem apply directly to the group ranking with weights
and rankings.
In the procedure considered here, the output of the

review process consists of both weights and intensity
rankings (in the additive model). It is reasonable that
the rankings of individual reviewers will be consis-
tent with the individual’s weights, i.e., �plij �=wli −wlj ,
but it is not mandatory according to our model. Also,
all reviewers might be advised to anchor their rank-
ings by setting wl1 = 0, but this is not required. If any
single weight is set to 0, and a difference of one level
in ranking is quantified as 1, then the range for the
weights is in the interval "−n�n$. The reviewers are
permitted, however, to also use noninteger differences
in ranks.
The problem is to assign both weights and rankings

so as to minimize a deviation function that has two
components. One component is the deviation cost for
the penalty of choosing a weight that deviates from
the weights selected by the reviewers. The deviation
cost function can take into account the confidence
level in the weights assigned by individual reviewers
giving a higher penalty for deviating from higher con-
fidence weight. The second component is the separa-
tion costs, which determine a ranking consistent with
the weights. That is, project i is ranked higher than
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project j if the final weight assigned is higher for i
than for j . The separation cost is the cost for the final
group ranking of deviating from the ranking of each
of the reviewers.
The terminology of “separation” and “deviation”

costs borrows from the context of the problem of image
segmentation and error correction (see Hochbaum
2001), which is shown to be related to the group-
ranking problem. In the image segmentation set-up a
transmitted image is degraded by noise. The assump-
tion is that a “correct” image tends to have areas of
uniform color. The goal is to reset the values of the
colors of the pixels so as to minimize the penalty for
the deviation from the observed colors, and further-
more, so that the discontinuity in terms of separation
of colors between adjacent pixels is as small as pos-
sible. Thus, the aim is to modify the given color val-
ues as little as possible while penalizing changes in
color between neighboring pixels. The penalty func-
tion there has two components: the deviation cost that
accounts for modifying the color assignment of each
pixel, and the separation cost that penalizes pairwise
discontinuities in color assignment for each pair of
neighboring pixels.
Representing the image segmentation problem as a

graph problem, we let the pixels be nodes in a graph
and the pairwise neighborhood relation be indicated
by edges between neighboring pixels. Each pairwise
adjacency relation 
i� j� is replaced by a pair of two
opposing arcs �i� j� and �j� i�, each carrying a capacity
representing the penalty function for the case that the
color of j is greater than the color of i, and vice versa.
The set of directed arcs representing the adjacency (or
neighborhood) relation is denoted by A. We denote
the set of neighbors of i, or those nodes that have
pairwise relation with i, by N�i�. Thus, the problem
is defined on a graph G= �V �A�. Each node j has the
observed value gj associated with it. The problem is to
assign an integer value xj , selected from a spectrum of
K colors, to each node j so as to minimize the penalty
function. For gi the color of pixel i, G� � the deviation
cost function, and F � � the separation cost function, the
problem’s objective function is

Min
ui≥xi≥li

∑

i∈V
Gi�gi� xi�+

∑

i∈V

∑

j∈N�i�
Fij �xi− xj��

The image segmentation problem is equivalent to
the group-ranking problem except that it is a “single
value” problem, in the sense that the problem instance
is given with one value for the weight (pixel color)
and one specific function for the separation deter-
mined by the absolute value of the weight difference.
In the group-ranking problem there are multiple val-
ues assigned to each node, one for each reviewer, and
multiple values assigned to each pair, one for each
reviewer that has ranked the pair.

Figure 3 The Graph for the Group Decision Problem

j XjXi

Sij{wi }k � Ri

(k) {wj }k � Rj

(k)

i

Sji

Our formalization of the group-ranking problem as
a graph problem is described schematically in Fig-
ure 3. Each project is a node in the graph, and each
pairwise comparison of projects i and j is a pair of
opposing arcs between i and j . Each node i has a
set of reviewers Ri that have provided weights wli ,
l ∈Ri. The weights for node i take values in the range
"−n�n$. Each pair of nodes i, j has a set of review-
ers in Ri∩Rj providing relative ranking. Let Sij be the
set of reviewers that prefer i to j and Sji be the set of
reviewers preferring j to i. Obviously, Sij∪Sji =Ri∩Rj .
For zij = max
0�xi − xj�, zji = max
0�xj − xi�, G� �

denoting the deviation cost function, and F � � denoting
the separation cost function, then the group-ranking
formulation is referred to as (GD) (standing for group
decision):

(GD) Min
∑

j∈V
Gj��w

l
i�l∈Ri � xj�+

∑

i<j

Fij �zij � zji�

subject to xi− xj ≤ zij for all i� j

xj − xi ≤ zji for all i� j

n≥ xj ≥−n j = 1� � � � �n

zji� zij ≥ 0 �i� j� ∈ E�
Using the algorithms devised in Hochbaum (2001)

for the image segmentation problem, we note that
the case when the functions Fij � � are linear is rele-
vant to the group ranking. This is the case, e.g., for
Equation (3), Fij �zij � zji�= 'ij ��Sji� · zij + �Sij � · zji�. Here,
because the weights are given in addition to the rank-
ings and there is a penalty for deviating from the
weights, the solution is not trivial as was remarked in
the case of intensity rankings only, Remark 6.1.

Theorem 7.1. (a) If Gj� � are convex for all j and
Fij �zij �= eijzij are linear for all i and j , then (GD) is solv-
able in time O�mn log�n2/m��.

(b) If Gj� � and Fij � � are convex for all i and j ,
then (GD) is solvable in strongly polynomial time, i.e.,
O�mn log�n2/m� logn�.

(c) If Gj� � are arbitrary nonlinear functions and Fij � �
are convex for all i and j , then the problem is solved in the
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time required to find a minimum s� t-cut in a graph on n2

nodes and mn2 arcs, i.e., O�mn3 log�n2/m��.

Proof. The solution method follows the proce-
dures used by Hochbaum for the image segmentation
problem, in 2001. The algorithms there are stated for
the range of the variables xi in "−U�U$. The running
times here are deduced from those by setting n=U .
(a) The running time of the algorithm in this case

is the same as the running time required to solve
the parametric minimum cut on a respective graph of
same size, i.e., O�mn log�n2/m��.
(b) If both functions Gj� � and Fij � � are convex, then

the problem is an instance of the convex dual of min-
imum cost network flow (DMCNF). Using the algo-
rithm of Ahuja et al. (2003), we can solve this problem
in complexity O�mn log�n2/m� logn�.
(c) If Gj� � are arbitrary nonlinear functions and

Fij � � are convex functions for all i and j , then the
problem is solvable by a minimum cut on a graph
on n2 nodes and mn2 arcs, O�mn3 log�n2/m��, (Ahuja
et al. 2004). This case is of interest, e.g., when the
appropriate measure is to penalize any deviation from
the weight given regardless of the magnitude of the
deviation. �

8. Conclusions
In this paper we analyze the practice of group rank-
ings and recommend algorithms and procedures to
improve on this practice. Our study indicates that
a robust approach is based on reviewers providing
intensity rankings with belief levels and possibly also
project weights. The solution for the group ranking is
then optimal with regard to a specific measure deter-
mined in advance by the reviewers or some central
authority.
It will be interesting to further investigate the

descriptive properties of this approach. That is, by
observing a group decision, the challenge is to
describe the implicit belief parameters provided by
reviewers and how those affect the dynamics of group
decision.
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