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Abstract
Decision trees are a widely used method for classification, both alone and as the building blocks of multiple different ensem-
ble learning methods. The Max Cut decision tree introduced here involves novel modifications to a standard, baseline variant 
of a classification decision tree, CART Gini. One modification involves an alternative splitting metric, Max Cut, based on 
maximizing the distance between all pairs of observations that belong to separate classes and separate sides of the threshold 
value. The other modification, Node Means PCA, selects the decision feature from a linear combination of the input features 
constructed using an adjustment to principal component analysis (PCA) locally at each node. Our experiments show that 
this node-based, localized PCA with the Max Cut splitting metric can dramatically improve classification accuracy while 
also significantly decreasing computational time compared to the CART Gini decision tree. These improvements are most 
significant for higher-dimensional datasets. For the example dataset CIFAR-100, the modifications enabled a 49% improve-
ment in accuracy, relative to CART Gini, while providing a 6.8× speed up compared to the Scikit-Learn implementation 
of CART Gini. These introduced modifications are expected to dramatically advance the capabilities of decision trees for 
difficult classification tasks.

Keywords  Decision tree · Principal component analysis · Maximum cut · Classification

Introduction

One of the major interests of machine learning and data sci-
ence, in general, is developing methods that can correctly 
classify new observations. The decision tree is a widely 
used method for solving these classification tasks, favored 
for its simplicity and ease of use. The importance of deci-
sion trees is further increased by their use as the building 
block of even more advanced ensemble methods, such as 

the Random Forest [3]. At their core, decision trees are a 
series of branching questions, nodes, that eventually lead to 
a specific conclusion—in our case, what class an observation 
belongs to. The end goal for constructing decision trees is to 
understand what these branching rules should be, and what 
conclusion they lead to.

A popular implementation for constructing decision trees 
is the Classification and Regression Trees (CART) method 
[4]. CART’s popularity is in part due to readily available 
commercial-grade open-source implementations, such as 
that provided by Scikit-Learn [16]. In general, the CART 
methodology works by selecting the feature and respec-
tive threshold that is “best” according to a given splitting 
criterion. Specifically, the threshold is the value of a given 
feature i, such that the decision tree asks the question ‘is the 
value of feature i less than the threshold value’ to separate 
the observations into two sets (yes/no); and the splitting cri-
terion is the rule for evaluating a given feature and respec-
tive threshold. The CART methodology proceeds to find 
the feature and respective threshold for each of the two sets 
it just defined; this recursive pattern continues until every 
node is “pure” - that is, it contains a set of samples that all 
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belong to a single class. This paper explores modifications to 
two aspects of the CART variant that ultimately lead to the 
discovery of a decision tree variant with favorable accuracy 
and running time properties.

The first area of modification on the baseline decision 
tree is in regards to the splitting criterion. Our splitting pro-
cedure addresses a shortcoming of those traditionally used 
by CART: the partitions generated by the traditional split-
ting criterions, such as the Gini criterion (see Sect. “Split-
ting Criterion: Max Cut” for details on the Gini criterion), 
depend only on separating the different classes while ignor-
ing how similar these observations are in the space of their 
feature vectors. We believe that this similarity information 
is meaningful as it can be used to produce thresholds that 
separate the classes in a way that also separates observa-
tions that are dissimilar, resulting in decreased susceptibility 
to overfitting. Our Max Cut splitting criterion takes into 
account both class membership and feature similarity when 
deciding on the optimal split (see Sect. “Splitting Criterion: 
Max Cut” for details).

The second area of modification is in how the features 
are represented. If the feature vector �i is modified through 
a change of basis, the splits of the decision tree can be 
changed; therefore, this can have a significant impact on 
the performance of a decision tree. Here we explore bases 
alternatives for representing the feature vector. One way to 
find a natural basis to represent the feature vector is Principal 
Component Analysis (PCA), first proposed by Karl Pearson 
F.R.S. [7]. PCA iteratively finds the direction that accounts 
for the most variance in the data, given that it is orthogonal 
to all the directions previously found. The use of PCA has 
been previously studied in conjunction with CART, e.g. [13, 
14]; however, prior research focuses on the use of PCA as 
a dimensionality reducing preprocessing step. We advance 
on this by proposing a modified use of PCA, throughout 
the construction of the decision tree, at every node. This is 
motivated by the idea that distributions could vary in dif-
ferent subspaces of the feature space. Therefore, a mean-
ingful direction overall might not be significant in specific 
sub-spaces. To account for this, we introduce the follow-
ing two methods for finding locally meaningful directions 
Node Means PCA and Node Features PCA (see Sect. “Fea-
ture Representation” for details). Ultimately, after analyz-
ing the two different feature representations, Node Means 
PCA, which focuses on representing the differences in the 
classes, demonstrates significant increases in accuracy for 
high dimensional problems while also decreasing their cor-
responding runtime.

The benefits of the Max Cut splitting criterion along 
with Node Means PCA are demonstrated here via an 
extensive prototypical experimental comparison of our 
novel Max Cut Node Means PCA variant, which com-
bines the Max Cut splitting criterion and the Node Means 

PCA feature representation, to seven other variants using 
different combinations of splitting criterions and feature 
representations. Using python prototypes of the different 
variants, an experimental comparison is presented here 
covering more than 20,000 synthetic datasets (Sect. “Syn-
thetic Datasets”) with training set sizes ranging between 
100 and 300,000 and testing sets fixed at 100,000 observa-
tions. First binary classification problems (Sect. “Binary 
Classification”) are considered, followed by 10-class clas-
sification problems (Sect. “Multiclass Classification”). 
Using the synthetic data, the improvements to the base-
line CART variant are shown to be statistically significant. 
Similarly, results are attained for real-world datasets (Sect.  
“Real-World Datasets”). A preliminary version of these 
results was given in an earlier version of this paper [2]. 
These preliminary results demonstrated dramatic improve-
ments in both accuracy and computational time for the 
Max Cut Node Means PCA variant, with these advantages 
further pronounced with the dimensionality of the data.

Due to the success in improving accuracy and run time 
shown for the prototype implementation, we implemented a 
more advanced implementation of the Max Cut Node Means 
PCA variant, ‘MaxCutTree.’ This MaxCutTree implemen-
tation is shown here to achieve similar improvements in 
run times against a commercial-quality implementation of 
the baseline CART variant, Scikit-Learn. This is tested on 
45,000 additional synthetic datasets whose dimensions vary 
between 51 and 200, with the results replicating those for the 
prototype—namely increased accuracy and decreased run-
ning time for high dimensional datasets. The significance of 
these results is demonstrated here with the CIFAR-100 data-
set [11], which has 100 classes, 3,072 features, and 60,000 
total observations (of which 48,000 are used for training). 
In this case, our MaxCutTree implementation resulted in a 
49.4% increase in accuracy relative to the baseline CART 
while simultaneously providing a 6.8× speed up compared 
to the commercial-quality implementation.

Description of Variants

Splitting Criterion: Max Cut

Our splitting procedure, Max Cut, takes inspiration from the 
Maximum Cut problem, which in general is NP-complete 
[10]. Our use of Maximum Cut is in one dimension, based 
on distances with respect to a single feature, and restricted 
to a single threshold, which is polynomial-time solvable. 
Indeed, in the appendix, we show a linear-time implementa-
tion given the sorted observations. The Max Cut criterion 
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is to find the threshold � maximizing the expression in (1), 
where xi,j  represents the value of feature j for observation i, 
yi represent the class of observation i, and 1yi≠yk

 is equal to 
1 if yi ≠ yk and 0 otherwise.

Intuitively, the Max Cut criterion finds a partition such 
that observations in each set are far from the observations 
belonging to the other set and different classes. Given that 
the observations can be sorted based on any feature in 
O(n log n) and the linear-time implementation of Max Cut, 
we have an O(n log n) algorithm for solving this problem on 
any given feature, where n is the number of observations. 
It is important to note that this is the same asymptotic time 
complexity achieved for traditional splitting criterion.

A traditional splitting criterion is the commonly used Gini 
Impurity, which was provided in the original CART method-
ology [4]. Gini Impurity is defined in equation 2, where pc is 
the fraction of observations that belong to class c.

The Gini Impurity splitting criterion selects the feature and 
respective threshold such that the average Gini Impurity 
of the two resulting subsets, weighted by their cardinality, 
is minimized. We use the Gini impurity splitting criterion 
as the baseline to which the Max Cut splitting criterion is 
compared.

Feature Representation

Node Means PCA

We introduce two methods for finding locally meaningful 
bases. The first method that we consider is referred to as 
Node Means PCA. Node Means PCA is derived from the 
idea that it is not the directions that best describe the data, 
but rather the difference between the classes, that are impor-
tant. At every decision node, this procedure is performed on 
the original feature vectors using only the observations that 
have reached that node to find locally meaningful representa-
tions. The first step in this procedure is to think of the dataset 
in a one-vs-rest context, locally calculating the mean posi-
tion of each of the possible ‘rest’ collections, referred to as 
the ‘not-means.’ For example, if there are three local points 
(1, 0, 0), (0, 1, 0) , and (0, 0, 1), each belonging to classes A, 
B, and C respectively, then (0, 0.5, 0.5), (0.5, 0, 0.5), and 
(0.5, 0.5, 0) would be the resulting not-means, calculated 
by excluding the first, second, and third points respectively. 
These newly generated not-means vectors would be passed 

(1)
∑

{i|xi,j≤𝜃}

∑

{k|xk,j>𝜃}
1yi≠yk

|||xi,j − xk,j
|||

(2)
∑

c

pc
(
1 − pc

)

into the PCA algorithm to find a new basis, and the original 
features are then transformed into this new basis. It is impor-
tant to note that this transformation will necessarily result 
in a dimensionality reduction in the case where the number 
of classes locally present is less than the dimension of the 
original feature vector; this dimensionality reduction will 
result in asymptotic improvements to the splitting time given 
some weak assumptions (specified later in this section). 
The features in this new basis are then used as the input 
features to find the optimal threshold, instead of using the 
original features. Pseudocode for this variant can be found 
in Fig. 1 below where U represents the set of all observa-
tions at a given node, X and y represent the feature vectors 
and class associations respectively, C(y) is the set of class 
values in vector y, {i|∃yj = i} , U

−i = {u|u ∈ U, yu ≠ i} , and 
PCAMapping(X) is a function that returns a mapping T from 
the original feature space of X to its principal components.

To provide a visual demonstration of how the Node 
Means PCA variant works we introduce the following binary 

Fig. 1   High-level description of node means PCA variant [2]

Fig. 2   Example dataset for demonstrating the variants of the algo-
rithm
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classification dataset in two features, plotted in Fig. 2. Using 
the dataset in Fig. 2 and Node Means PCA in conjunction 
with the Max Cut splitting criterion at the second level of 
the decision tree one ends up with the following two local 
feature representations shown in Figs. 3 and 4 superimposed 
over the not-means and the data partition implied by the first 
cut respectively.

Node Features PCA

The second method that we consider is Node Features PCA. 
Like Node Means PCA, this variant is used at every deci-
sion node. The difference is that PCA is performed on the 

original feature vectors of the observations that have reached 
that node directly, instead of the not-means, to find the local 
principal components. These local principal components are 
then used as the input features to find the optimal threshold, 
rather than using the original features.

Feature Representation Comparison

We also included two traditional feature representations to 
understand how our modifications performed in the proto-
typical comparative study. The first, Original feature rep-
resentation, was simply the feature vector as given. The 
second, Pre PCA, to show that the advantages did not come 

Fig. 3   Demonstration of Node Means PCA calculation on the two sub-problems of a decision tree’s second level
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from simply using PCA, used the principal components gen-
erated on the whole training set as the feature representation.

One of the first advantages that can be noticed in regards 
to Node Means PCA is its asymptotic runtime. As a result of 
Gini Impurity and Max Cut having the same time complex-
ity, the following results on the time complexity of each vari-
ant hold regardless of the choice of splitting criterion. The 
time complexities, assuming a constant number of classes, 
for computing the optimal split at each node are given in 
Table 1, where n is the number of observations, d is the num-
ber of input features, and p is the number of principal com-
ponents considered. From this, we can see that so long as the 
dimension of the dataset is less than the number of observa-
tions, which is a fairly weak assumption, Node Means PCA 
will have an asymptotic computational advantage.

Decision Tree Variants: Max Cut Node Means PCA

To see the advantages of modifying the splitting criterion 
or the feature representation in the prototypical compara-
tive study, all the combinations between splitting criterion 
(Max Cut / Gini) and feature representation (Baseline / Pre 
PCA / Node Features PCA / Node Means PCA) discussed 
in Sects.  “Splitting Criterion: Max Cut” and 2.2 were 
studied. This produced a total of eight variants, including 
the Max Cut Node Means PCA variant. Table 2 provides 
the nomenclature used to refer to each of these different 
combinations.

Figure 5 provides a high-level description of a generic 
decision tree and how the splitting criterion and feature 
representation specification generates the eight variants. 

The notation used in Fig. 5 is as follows: U for the set of 
all observations; X, y for the feature vectors and classes, 
respectively. Let the “split” parameter function take the 
value of either Gini or MaxCut, which are functions that 
return the two subsets implied by the optimal split of their 
respective objective functions. Let featureType be 1, 2, 3, 
or 4 for Original, Pre PCA, Node Feature PCA, and Node 
Means PCA, respectively. Let PCA(X) be the function that 
return the principal components of X and meansPCA(X) 
the function from Fig. 1. Let C(y) be the set of class values 
of vector y, {i|∃yj = i} , and let U

−i = {u|u ∈ U, yu ≠ i}.
To provide an intuitive visual understanding of how 

these eight variants function differently, we present the par-
titions generated for the example dataset in Fig. 2 at depth 
two (Fig. 6) and fully fit (Fig. 7) for each of the variants. 
To further provide an understanding of how these vari-
ants work, the reader is referred to the provided animation 
(Online Resource 1) of their fitting. This visual representa-
tion provides insights into why Max Cut Node Means PCA 
works so well, since its partition lines more naturally follow 

Fig. 4   Node Means PCA representation for each sub problem at depth 2

Table 1   Time complexity of node splitting given a specific feature 
representation [2]

Feature Representation Time Complexity

Original / Pre PCA O(dn log n)

Node Features PCA O(n2p)

Node Means PCA O(d2 + n log n)
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the lines of the data as compared to the baseline CART 
implementation.

Prototypical Comparative Study

Prototype Implementations

To make as fair a time-based comparison as possible 
between the eight different variants, we implemented proto-
types of all eight in the Python programming language [17] 

to be used in our preliminary comparative study. Both the 
Gini Impurity and Max Cut optimal threshold calculation 
along a given feature were implemented as NumPy [15] vec-
tor operations to avoid the use of slower Python for loops, 
improving their runtime. Moreover, both utilize efficient 
O(n log n) implementations. The Scikit-Learn [16] package 
was used to perform PCA operations. We remark that both 
the Gini Impurity and Max Cut metric were implemented so 
that in the event of a tie, they favored thresholds that sepa-
rated the observations into sets of similar cardinality, and 
the threshold was chosen to be the mean value between the 
two closest points that should be separated. We also note that 
we used, for the stopping rule, either the node having one 
class present or no split existing such that both sides of the 
branch contain at least one observation. Other than the nec-
essarily different subroutines, to make time-based compari-
sons as consistent as possible, no difference existed between 
the different prototypes. Sect. “Advanced Implementation: 
MaxCutTree” will further verify runtime analysis derived by 
the prototype implementations by recreating runtime results 
for the Max Cut Node Means PCA variant compared to a 
commercial implementation when using a more advanced 
implementation.

Table 2   Variants’ nomenclature 
[2]

Feature Type Split Criteria

Gini Max Cut

(1) Original Gini Features Max Cut Features
(2) Pre PCA Gini Pre PCA Features Max Cut Pre PCA Features
(3) Node Features PCA Gini Node Features PCA Max Cut Node Features PCA
(4) Node Means PCA Gini Node Means PCA Max Cut Node Means PCA

Fig. 5   High-level description of decision tree fitting [2]

Fig. 6   Space partitions at depth 2 of each variant
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Synthetic Datasets

We first consider the performance of the eight variants on 
synthetic datasets, which provide key advantages compared 
to real-world datasets. Foremost, synthetic datasets allow 
for generating an arbitrary number of independent datasets. 
This allowed us to draw statistically significant conclusions 
from the 20,000 plus datasets we generated. We were able 
to generate an arbitrarily large number of training and test 
examples with datasets ranging from 100,100 to 400,000 
observations. This provides greater insights into the vari-
ants’ performances on larger datasets than could have been 
achieved using only real-world data. Lastly, synthetic data-
sets provide fine-grained control of the datasets’ different 
characteristics.

Experimental Design

The synthetic datasets were generated using the Scikit-Learn 
datasets.make_classification function [16]. This function 
generated one cluster for each of the classes. These clusters 
were then centered around the vertices of a hyper-cube of a 
specified dimension (one of the characteristics that we would 
modify). Random points would then be generated from a 
normal distribution around each cluster’s center, and these 
points would be assigned to that cluster’s corresponding 
class, except in 1% of cases where the class is randomly 
assigned. The features were then randomly linearly com-
bined within each cluster to generate covariance. The option 
of having redundant or repeated features was not used in 
our experiments. We use the option of adding an arbitrary 
number of random features to the feature vector as a second 
characteristic that we control.

We observed how the following four factors affected 
accuracy, wall clock time, and the number of leaves in the 
tree throughout our experiments. The factors controlled are: 

1.	 The number of training examples. We chose to fix 
the size of the testing set at 100,000 data points. For 
instance, if the training set consisted of 10,000 points, 
we would generate a dataset of 110,000 data points 
where 10,000 points would be randomly selected for 
training and the remaining 100,000 would be for testing.

2.	 The number of classes.
3.	 The number of informative features, referred to as the 

Dimension of Data in our results.
4.	 The number of meaningless (noisy) features, referred to 

as the Noise Dimension in our results.

We evaluated the variants’ results on 30 independently 
generated datasets for each combination of parameter set-
tings explored. For each of these datasets, the variants were 
presented with the same training/testing examples, which 
were standardized (zero mean and unit variance) using the 
Scikit-Learn StandardScaler [16] fit to the training exam-
ples. Standardization was used to make the distances in each 
feature more comparable, which will be important in the 
PCA analysis as well as finding the Max Cut. Note that both 
the Gini Impurity method and the orientation of the original 
feature vector are invariant under this transformation, indi-
cating that the baseline variant’s performance should also 
be invariant.

Relying on multiple independent datasets, we can cal-
culate the significance of our results for each data genera-
tion setting using a one-tailed Paired Sample T-Test. For 
each variant, j, and data generation setting we consider 

Fig. 7   Space partitions at full depth of each variant
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14 alternative hypotheses {Ai}
14
i=1

 and corresponding null 
hypotheses {Ni}

14
i=1

 . Specifically, let {Ai}
7
i=1

 represent the 
alternative hypotheses that variant j outperformed, in a 
pairwise comparison, each of the other seven variants. Con-
versely, let {Ai}

14
i=8

 represent the alternative hypotheses that 
variant j underperformed, in a pairwise comparison, each of 
the other seven variants. We then used the Holm-Bonferroni 
Method [9] to correct for multiple hypotheses testing, test-
ing for significance at the 5% level. In the case where all 
{Ni}

7
i=1

 were rejected, we labeled that data setting on the 
accuracy significance graph as “Best”. In the case where any 
of {Ni}

14
i=8

 were rejected we labeled that data setting on the 
accuracy significance graph as “Not Best”. Else we labeled 
the region as “Undecidable.”

All of these experiments were run on server nodes that 
each contained two Intel Xeon E5-2670 v2 CPUs for a total 
of 20 cores (no hyper-threading was used). Each decision 
tree was constructed using a single core and thread, such 
that up to 20 experiments were running simultaneously on 
a single node.

Binary Classification

The first set of experiments served to evaluate how the accu-
racy and run time of each variant varied with the size of the 
training set and the number of informative features. For this 
experiment, we set the noise dimension to zero. The results 
of these experiments are summarized in Figs. 8 and 9.

Examining Figs. 8 and 9, it is apparent that using locally 
meaningful feature representations (Node Features PCA / 
Node Means PCA) dramatically improves the accuracy when 

compared to the baseline, as well as the variant with PCA 
applied in preprocessing. Figure 9 makes it clear that, with 
statistical significance, the baseline variant is not the best 
performing variant on average. On the other hand, Fig. 9 
indicates that the most promising variants are Gini Node 
Features PCA, Gini Node Means PCA, and Max Cut Node 
Means PCA

We first consider Gini Node Means PCA vs. Max Cut 
Node Means PCA. When looking at Figs. 8 and 9, no signifi-
cant trends can be seen when comparing the two, except that 
Max Cut Node Means PCA seems to perform better more 
often for smaller training sets. We then examine the accu-
racy ratio of Max Cut Node Means PCA / Gini Node Means 
PCA for each of the 5,640 datasets in this experiment. From 
this analysis, we found the mean ratio to be 1.0003 and the 
sample standard deviation to be 0.0087, implying a 95% con-
fidence interval for the mean ratio of (1.00008, 1.00053). 
This implies that Max Cut Node Means PCA had a slight 
advantage over the Gini Node Means PCA when considering 
the average ratio. Therefore, we decided to compare Gini 
Node Features PCA vs. Max Cut Node Means PCA.

When considering Gini Node Features PCA vs. Max Cut 
Node Means PCA, the most prominent pattern that emerges 
is that Gini Node Features PCA performs better for large 
training sets (based on accuracy) and Max Cut Node Means 
PCA performs better for smaller training sets. This pattern 
of Max Cut Node Means PCA performing better for harder 
datasets can be seen in Fig. 10. It is important to note that 
this outperformance is almost entirely attributed to the 
choice of feature vector type as the same pattern emerges if 
Gini Node means PCA was used instead of Max Cut Node 
Means PCA. In the cases where 1000 training samples were 
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used, Node Means PCA, after a slight dip for low dimen-
sional data, increasingly outperforms Node Features PCA 
as the dimensionality increases. One reason for this is that 
Node Means PCA uses averaging, thereby reducing noise. 
As a result of the dimensionality reduction, Node Means 
PCA searches fewer basis vectors than Node Features PCA. 
In fact, in the binary case, there are only two classes; hence 
the Node Means PCA variant searches only two basis vectors 
to select a threshold.

Figure 11 is the histogram of all 5640 ratios of the Max 
Cut Node Means PCA Accuracy divided by the Gini Node 
Features PCA Accuracy. It is evident from the right skew in 
Fig. 11 that when Node Means PCA provides better accu-
racy, it does so considerably. On the other hand, when it 
provides less accuracy, it does so with only a minor loss. To 
further demonstrate this point, conditioned on the ratio being 
greater than 1 (which happens 49.6% of the time), the mean 
is 1.075, and the max is 1.430. When the ratio is conditioned 
to be less than 1 (which happens 50.4% of the time), the 
mean is 0.989, and the minimum is 0.915. This shows that 
Node Means PCA has the potential of a significant improve-
ment in accuracy with only a minor risk of accuracy loss.

Figure 12 shows the relative runtime for each of the dif-
ferent variations. When focusing on these experimental 
results for Node Means PCA vs. Node Features PCA, we 
see that Node Means PCA has significantly better properties 
concerning computational cost. Max Cut Node Means PCA 
took between 27 and 98% less time than Gini Node Features 
PCA to fit and between 21 and 98% less time than the base-
line variant. The computational efficiency of Node Means 
PCA is partially explained by the computational efficiency 
of the split as provided in Table 1. However, another factor is 
the size of the decision tree, for which the number of leaves 
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is a proxy. The mean number of leaves across all datasets is 
provided in Table 3.

Table 3 shows that the average number of leaves is signifi-
cantly less for Gini Node Features PCA, Gini Node Means 
PCA, and Max Cut Node Means PCA compared to the Base-
line variant. This reduction can help account for the signifi-
cant observed computational efficiency of the Node Means 
PCA vs. the Baseline. Therefore, considering the costs and 
benefits of computational time, accuracy, and robustness to 
higher-dimensional problems, the Node Means PCA variant 
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Fig. 12   Log ratio of mean CPU time for each of the variants with respect to the CPU time of the Gini Features baseline, for binary classification 
decision trees trained on synthetic data

Table 3   Mean Number of Leaves in Decision Tree [2]

Variant Mean 
# of 
Leaves

Baseline 1129
Gini Node Features PCA 418
Gini Node Means PCA 429
Max Cut Node Means PCA 448
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Fig. 13   Suitability of Mean accuracy to the addition of noise features for binary classification on synthetic data, with training set of size 10,000 
and test sets of size 100,000
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has the best performance, with a slight preference towards 
the Max Cut metric over Gini Impurity.

The second experiment considers the addition of 
noise features to see if the Localized PCA variants are 
negatively affected. For this experiment, the training set 
sizes were fixed to 10,000 and then for each combination 
of meaningful dimension in {5, 10, 15, ..., 50} and noise 
dimension in {0, 5, 10, ..., 50} , we generated and analyzed 
30 datasets. The results of this experiment can be seen 
in Fig. 13.

The major result of analyzing the addition of noise fea-
tures is that local features continue to provide significant 
benefits (seen in the darker shading of Fig. 13) except 
for a few minor exceptions. Specifically, when the real 
dimension was five and the noise dimension was greater 
than or equal to 15. This represents the cases where the 
noise features account for 75% or more of the available 
features and there are a small number of informative fea-
tures. We do note that the Gini based variants tend to 
outperform the Max Cut variants with the noise; however, 
the Max Cut Node Means PCA variant still provides, in 
the presence of noise, significant benefits compared to 
the baseline variant while not significantly under-per-
forming any of the other variants. Therefore, this experi-
ment shows that the Max Cut Node Means PCA variant 
is advantageous to use even when the noisiness of each 
feature is uncertain/unknown.

Through the analysis of synthetic binary data, the 
Max Cut Node Means PCA variant provides significant 
advantages. Precisely, the Max Cut Node Means PCA 
variant captures most of the accuracy benefits of using 
a unique feature representation at each node while also 
decreasing the running time. Together, these two benefits 

demonstrate the significant advancement to decision trees 
that the new Max Cut Node Means PCA variant provides.

Multiclass Classification

The next experiment investigates the impact of using 
data with ten classes rather than just two. Referring to 
the same steps as in Sect. “Binary Classification”, one 
can see how different training set sizes, informative 
dimension, and noise dimension can affect the variant’s 
performance. The main results derived from varying the 
training data size and the underlying dimension of the 
data can be seen in Figs.  14, 15, and 16. An important 
note is that these plots do not use a perfect logarithmic 
scale for the y-axis. The values for each horizontal bar 
are 102, 103, 104, 105, 2 × 105, and 3 × 105 (note that the 
last two are not 106 and 107 as one might initially suspect).

As seen in Fig. 15, the baseline Gini Features variant is 
“Not Best” for all tested synthetic dataset parameters. The 
prevalence of these “Not Best” markings indicates with sta-
tistical significance that the baseline is not the best variant 
on average, much like in the binary case (Sect. “Binary Clas-
sification”). The “Best” markings indicate, from an accuracy 
standpoint, that Max Cut Nodes Means PCA was the best 
option in most cases.

Moreover, Fig. 16 shows that Max Cut Nodes Means 
PCA provides significant computational advantages for high 
dimensional data (taking up to 93% less time). It can, how-
ever, take up to 22% longer when looking at low dimensional 
problems, which is not a fundamental issue. This is since 
lower-dimensional problems are computationally faster, so 
the increased relative time does not translate to significant 
realized computational time.
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Fig. 14   Mean accuracy of 10-class classification on synthetic data, evaluated on test sets of size 100,000 [2]
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Upon close inspection of Fig. 15, the markings indicate 
that the Gini Node Features variant may be the best option in 
terms of accuracy for larger training sets and fewer features. 
This is the same pattern that emerged in the binary case, and 
Fig.  17 allows for a closer comparison of these two variants, 
focusing specifically on the 300,000 case. It demonstrates 
that while Gini Node Features may outperform in the fewer 
dimensional, larger training set case, Max Cut Node Means 
PCA rapidly and dramatically outperforms Gini Node Fea-
tures as the number of features increases.

When the comparison is made between the Max Cut 
Node Means PCA variant and the Gini Node Means PCA 
variant, Fig. 18 helps demonstrates the marginal but statisti-
cally significant improvement by utilizing the Max Cut met-
ric. Specifically, the 95% confidence interval for the mean 
ratio between the accuracy of the Max Cut Node Means PCA 
variant and the Gini Node Means PCA variant is (1.0060,  
1.0071). Thus, we can conclude that the use of Max Cut does 
appear to improve accuracy on average.

When analyzing how the performance of the variants, 
reported in Fig. 19, was affected by the inclusion of noise 
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Fig. 15   Significance of mean accuracy of 10-class classification on synthetic data, evaluated on test sets of size 100,000 [2]
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features, the advantages of using Node Means PCA are 
apparent in most cases. Like in the binary case, the base-
line variant only has better performance in cases with very 
high percentages of noise features (greater than 50%) and 
few meaningful features. Since the improved accuracy of 
Max Cut Node Means PCA is still held for higher-dimen-
sional problems, even when the percentage of noise features 
exceeded 50%, we believe that the Max Cut Node Means 
PCA variant is broadly applicable.

Synthetic Dataset Results Summary

Extensive testing indicates that our localized PCA variants 
provide dramatic improvements over the baseline variant 
in all but the most extreme noise conditions. A thorough 
analysis of these localized PCA variants found that from an 
accuracy standpoint, Node Means PCA should be preferred 

for increasingly difficult classification tasks, particularly in 
higher-dimensional cases where there are more classes and/
or fewer training examples. Moreover, when Node Means 
PCA was not the best option, it was typically only outper-
formed by a small margin, and when it was the best option, 
it could dramatically improve results. Empirically, Node 
Means PCA results in significantly faster computation times 
than the baseline and Node Features variants. Thus, Node 
Means PCA provides dramatic improvements in both accu-
racy and run time.

We further compared the Max Cut and Gini Impurity 
metrics and found that when the Max Cut metric was used 
in conjunction with the Node Means PCA variant; it can 
increase a decision tree’s performance on average. Based on 
our experimentation on more than 20,000 diverse datasets, 
we generally recommend that Max Cut Node Means PCA be 
considered as an alternative to the traditional baseline vari-
ant. We have thus shown that for synthetic datasets, Max Cut 
Node Means PCA yields a significant and dramatic improve-
ment over the baseline variant in accuracy and computa-
tional efficiency. Next, we present the performance of our 
variant for real-world datasets.

Real‑World Datasets

We proceed to explore the effects of the eight different 
variants on real-world datasets, considering a total of six 
different datasets. We used the Iris dataset, Wine Quality 
dataset [5], and the Indian Liver Patient dataset (ILPD), all 
three taken from the UCI Machine Learning Repository [6]. 
The Wine Quality dataset is separated into two sets, red and 
white wines, and in our experimentation, we consider each 
of these sets as a single combined dataset and as individual 
sets. The wine’s classification was included as another fea-
ture in the combined dataset, one if red, zero otherwise. We 
also used the MNIST dataset [12], as well as the CIFAR-10 
and CIFAR-100 datasets [11]. Table  4 provides a brief over-
view of each of these datasets. Note that the ILPD dataset 
lists only 579 samples compared to the 583 in the dataset; 
this is since we removed samples with missing values.

These experiments on real-world data were run on server 
nodes that each contained two Intel Xeon E5-2670 v2 CPUs 
for a total of 20 cores (no hyper-threading was used). Each 
decision tree was constructed using a full server node utiliz-
ing parallel processing due to the NumPy vector operations. 
The total CPU time was used for these experiments rather 
than recording wall clock time as in the previous synthetic 
dataset experiments.

We considered each variant without scaling the features 
and with standardizing the features as a pre-processing 
step and then reported the best result. To evaluate the per-
formance of each variant, we used one of two methods: 
either 10 × 10 cross-validation (as in the case of Iris, ILPD, 
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Wine-Red, Wine-White, and Wine-Both), or an 80%–20% 
train-test data split (as in the case of MNIST, CIFAR-10, 
and CIFAR-100). The decision not to use 10 × 10 cross-
validation for the MNIST, CIFAR-10, and CIFAR-100 
datasets resulted from the significant computational 
requirements for computing these trees. Moreover, due to 
the large size of the datasets, the variance in accuracy 
should be lower than that in smaller datasets, implying 
that the 10 × 10 cross-validation would not be as beneficial. 
The results of these experiments are reported in Table 5, 
with the mean value provided for the Iris, ILPD, Wine-
Red, Wine-White, and Wine-Both datasets.

The results of the real-world analysis verify that the 
improvements in accuracy are similar to those in the syn-
thetic datasets. We found that in all but one of the prob-
lems analyzed, the Node Means PCA modification was 
the best option to use. For the ILPD dataset, the only data-
set in which a Node Means PCA variant did not achieve 
the highest accuracy, Node Means PCA achieved the 

second-highest accuracy. Moreover, the highest accuracy 
for the ILPD dataset was achieved by the Max Cut Pre 
PCA Features variant, which should have benefited from 
the unique structure of the dataset, namely the natural 
clustering of male and female observations when the first 
three principal components are analyzed [8]. Defining per-
formance as the percentage improvement in accuracy rela-
tive to the baseline variant (utilizing the better-performing 
metric between Max Cut and Gini), this modification had 
improvements of 1.6%, 3.7%, 1.9%, 1.9%, 1.9%, 6.3% 
33.3%, and 49.4% for each of the datasets.

Moreover, Max Cut was the best choice in six out of eight 
problems. Defining performance as the percentage improve-
ment of the best Max Cut variant compared to the best per-
forming Gini variant, Max Cut had improvements of 1.1%, 
0.9%, -0.3%, 0.0%, 0.5%, 0.2% 2.0%, and 6.9%. Finally, Max 
Cut Node Means PCA was the best choice in five out of eight 
problems and was tied for the best in one problem. Defin-
ing performance as the percentage improvement of accuracy 
compared to the baseline variant, Max Cut Node Means PCA 
represented an improvement of 1.6%, 2.0%, 1.0%, 1.9%, 1.9%, 
6.3%, 33.3%, and 49.4%.

Table 5 shows that Max Cut Node Means PCA is invari-
ably the fastest variant for larger problems. Although Max Cut 
Node Means PCA took more time for small datasets, we do 
not believe this discounts its overall performance. Regardless 
of the variant chosen, the decision trees are fit in a negligible 
amount of time for the smaller datasets relative to the larger 
datasets. Moreover, Max Cut Node Means PCA still provides 
the previously mentioned accuracy benefits. For the larger 
datasets, such as CIFAR-100, the Max Cut Node Means PCA 
variant reduced the required CPU time by 94% compared to 
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Fig. 19   Mean accuracy robustness for 10-class classification on synthetic data, with training set of size 10,000 and test sets of size 100,000

Table 4   Dataset Characteristics [2]

Dataset Samples Features Classes

Iris 150 4 3
ILPD 579 10 2
Wine-Red 1599 11 6
Wine-White 4898 11 7
Wine-Both 6497 12 7
MNIST 70,000 784 10
CIFAR-10 60,000 3072 10
CIFAR-100 60,000 3072 100
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Table 5   Results of Real-World Dataset Experiments [2]

Iris ILPD

Accuracy Relative Time Scaled Accuracy Relative Time Scaled

Gini Features 0.945 1.000 False 0.652 01.000 False
Gini Pre PCA Features 0.941 1.000 True 0.671 15.872 False
Gini Node Features PCA 0.944 1.309 True 0.660 18.134 False
Gini Node Means PCA 0.950 0.894 False 0.676 07.147 True
Max Cut Features 0.947 1.032 True 0.649 01.333 True
Max Cut Pre PCA Features 0.950 0.915 False 0.682 16.168 True
Max Cut Node Features PCA 0.941 1.213 False 0.653 17.136 False
Max Cut Node Means PCA 0.960 0.798 False 0.665 00.467 True

Wine-Red Wine-White

Accuracy Relative Time Scaled Accuracy Relative Time Scaled

Gini Features 0.626 01.000 False 0.623 1.000 False
Gini Pre PCA Features 0.636 03.229 True 0.615 1.216 True
Gini Node Features PCA 0.619 11.690 True 0.615 8.301 True
Gini Node Means PCA 0.638 06.707 True 0.635 3.788 True
Max Cut Features 0.629 00.799 True 0.627 0.548 True
Max Cut Pre PCA Features 0.632 03.308 True 0.628 1.076 True
Max Cut Node Features PCA 0.636 12.479 True 0.634 8.740 True
Max Cut Node Means PCA 0.631 05.539 True 0.635 4.449 True

Wine-Both MNIST

Accuracy Relative Time Scaled Accuracy Relative Time Scaled

Gini Features 0.624 1.000 False 0.869 1.000 False
Gini Pre PCA Features 0.617 1.214 False 0.823 1.558 True
Gini Node Features PCA 0.608 9.122 True 0.863 2.612 False
Gini Node Means PCA 0.633 4.231 True 0.922 0.186 False
Max Cut Features 0.623 0.648 True 0.847 0.744 False
Max Cut Pre PCA Features 0.626 1.046 True 0.866 1.091 False
Max Cut Node Features PCA 0.633 9.755 True 0.897 1.552 False
Max Cut Node Means PCA 0.636 4.251 True 0.924 0.093 False

CIFAR-10 CIFAR-100

Accuracy Relative Time Scaled Accuracy Relative Time Scaled

Gini Features 0.262 1.000 False 0.083 1.000 False
Gini Pre PCA Features 0.246 1.162 False 0.073 1.259 False
Gini Node Features PCA 0.290 1.173 False 0.090 1.010 True
Gini Node Means PCA 0.342 0.085 False 0.116 0.132 False
Max Cut Features 0.243 1.313 False 0.077 0.626 False
Max Cut Pre PCA Features 0.271 1.503 False 0.090 0.637 False
Max Cut Node Features PCA 0.309 1.034 True 0.109 0.491 False
Max Cut Node Means PCA 0.349 0.075 False 0.124 0.061 True

The best value in each category is indicated in bold
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the baseline variant. Thus, Max Cut Node Means PCA pro-
vides significant computational and accuracy advantages.

Advanced Implementation: MaxCutTree

To compare our running time results with commercial-qual-
ity implementations of decision trees, we implemented the 
Max Cut Node Means PCA as a python package “MaxCut-
Tree” using Cython [1]. We then compare the CPU time 
required to train a decision tree using MaxCutTree to the 
commercial quality Scikit-Learn implementation of CART. 
We first compare our new implementation by repeating the 
first experiment from both Sects.  “Binary Classification” 
and “Multiclass Classification” with the added extension of 
including problems where the dimension of the feature vec-
tor is up to 200. The results of this are presented in Figs. 20 
and 21 where we mark the areas where the MaxCutTree 
implementation outperforms with ‘/’ markings.

Figure 20 shows that our MaxCutTree implementation 
provides runtime advantages compared to a commercial 
baseline for sufficiently large or high dimensional data-
sets. This pattern of the computational advantages increas-
ing with the dimension of the feature vector is the same 
as can be seen in the runtime analysis for the prototype 
implementations (see Figs. 12 and 16). Specifically, our 
MaxCutTree implementation outperforms the commercial 
implementation in both the Binary and Multiclass case for 
the largest problems, the upper right-hand corner, which 
are also the problems that take the longest to fit. Moreover, 
the computational improvements provided by our imple-
mentation are precisely where the MaxCutTree variant 
provides the most improvements to accuracy, as shown in 
Fig. 21 where MaxCutTree can achieve an accuracy over 3× 
that of the Scikit–Learn variant (note as MaxCutTree and 
Scikit–Learn are only specific implementations of the Max 
Cut Node Means PCA and Gini Features variants respec-
tively, the accuracy results are the same as for the prototype 
implementations).

These computational speed-ups are attained for real-
world datasets as well: Table 6 provides the speed-up fac-
tor of MaxCutTree for the three largest real-world dataset 
problems presented in Sect. “Real-World Datasets”. There-
fore, replicating the pattern seen in the prototype imple-
mentation analysis when compared against a commercial 
implementation providing further credence to the run time 
advantages of the Max Cut Node Means PCA variant. Fur-
ther, it is anticipated that even more advanced optimizations 
such as memory management, once fully implemented, will 
further decrease the size of the problems for which com-
putational advantages are realized against commercial 
implementations.

Conclusions

This paper shows the benefits of two important modifica-
tions to the CART methodology for constructing classifica-
tion decision trees. We first introduced a Max Cut based 
metric for determining the optimal binary split as an alter-
native to the Gini Impurity method (see appendix for an 
O(n log n) implementation of Max Cut along a single fea-
ture). We then introduced Node Means PCA to determine 
locally meaningful directions for considering splits with a 
focus on discriminating between classes. Together these 
modifications form our novel Max Cut Node Means PCA 
variant. We first make a theoretical comment on how these 
modifications are reflected in the asymptotic runtime of node 
splitting and observe that Node Means PCA improves upon 
the traditional method.

Our extensive experimental analysis included more than 
20,000 synthetically generated datasets with training sizes 
ranging from 100 to 300,000 and the number of informa-
tive features ranging between 4 and 50. We considered both 
binary and 10-class classification tasks. These experiments 
demonstrate the significant improvements in increased accu-
racy and decreased computational time provided by utilizing 
the Max Cut Node Means PCA variant. Furthermore, we 
show that the accuracy improvements become even more 
substantial as the dimension of the data and/or the number 
of classes increases and that the runtime improves with the 
dimension and size of the datasets.

Analysis was also done on real-world datasets. Our 
results indicate that the Max Cut Node Means PCA vari-
ant remains advantageous even in real-world applications. 
For example, we show that in the case of CIFAR-100 (100 
classes, 3,072 features, and 48,000 training points out of 
60,000 total), our variant results in a 49.4% increase in 
accuracy performance compared to the baseline CART 
variant, while simultaneously providing a 6.8× speed up 
compared to the Scikit-Learn implementation when using 
our MaxCutTree implementation. The Max Cut Node 
Means PCA variant (MaxCutTree) helps bring decision 
trees into the world of big, high-dimensional data. Our 
experiments demonstrate the significant improvements that 
the Max Cut Node Means PCA variant has on constructing 
classification decision trees for these types of datasets. 
Further research on how these novel decision trees affect 
the performance of ensemble methods may lead to even 
greater advancements in the area.
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Appendix

Implementation of Max Cut Metric in O(n log n):
The first step is to sort the observations in ascending 

order such that xi,j < xk,j ∀i < k , which is known to be 
implemented in O(n log n) time. There are a total of n pos-
sible splits to consider; let the value achieved by the split 
between xi,j and xk,j be referred to as �i . We will now show 
that given �i−1 , �i can be computed in constant time. It is 
evident that the following equality holds:

 Since 
∑

t 1yi≠yt
xt,j and

∑
t 1yi≠yt

  are only dependent on the 
class of observation i,  these can be calculated once for each 
class c  and recorded as Sc   and Nc  respectively. Then, 
�i = �i−1 + Syi − xi,jNyi

Therefore, the complexity of the split 
per feature is O(n log n).
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Fig. 20   Log ratio of mean CPU time with respect to Scikit-Learn, 
for MaxCutTree Binary and 10-class classification decision tree con-
struction on synthetic data
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Fig. 21   Log ratio of mean accuracy with respect to Scikit-Learn, for 
MaxCutTree Binary and 10-class classification decision tree con-
struction on synthetic data

Table 6   MaxCutTree vs. Scikit-Learn

The best value in each category is indicated in bold

MNIST CIFAR-10 CIFAR-100

MaxCutTree 0:02.91 0:20.65 0:57.89
Scikit-Learn 0:09.39 2:06.37 6:33.78
Speed-Up Factor 3.2× 6.1× 6.8×
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