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Abstract: Backbone, the set of variables that are fixed across all optimal solutions, captures key structural properties
of combinatorial optimization problems. The backbone provides interpretable indicators of problem hard-
ness and, as demonstrated by recent research in SAT, valuable supervision targets for learning-based methods.
Yet, the Pseudo-Boolean Optimization (PBO) domain has lacked dedicated tools for its extraction. Here we
introduce three new backbone extractors for Pseudo-Boolean Optimization (PBO): ROUNDINGBACK, a PBO-
native extractor built on top of RoundingSAT; GUROBACK, an extractor built on top of the MILP solver
Gurobi; and NAPBACK, a pipeline that converts PBO instances into SAT using NaPS and delegates the back-
bone extraction to CadiBack, a backbone extractor for SAT. Additionally, we propose two heuristic variants of
ROUNDINGBACK: RB-WP (weighted-propagation ordering) and RB-PG (diversity-driven phase guidance).
Each extractor demonstrates distinct strengths tailored to different domain applications. On the PBO Competi-
tion 2024 OPT-Lin benchmark, RB-PG achieves the highest extraction coverage (223 of 335 instances, 67%),
outperforming GUROBACK and NAPBACK. Our experimental evaluation also shows that ROUNDINGBACK,
GUROBACK and NAPBACK are complementary, and it is often the case that when an extractor fails, another
is fit. Beyond algorithmic performance, a large-scale analysis over more than eight thousand instances shows
a bimodal distribution distinguishing flexible and rigid problem classes. We also show that the correlation
between backbone density and problem hardness is domain-specific. All extracted backbones are publicly
released to foster future research in learning-based PBO and structural instance analysis.

1 INTRODUCTION

solver diversity, as reflected in the PBO Compe-
tition 2024.!  Unlike SAT competitions—where

Combinatorial optimization problems permeate di-
verse domains (Mironov and Zhang, 2006; Arito
et al., 2012). Pseudo-Boolean Optimization (PBO),
which extends Boolean satisfiability (SAT) with ob-
jective functions and pseudo-Boolean constraints,
represents a particularly significant class with appli-
cations ranging from circuit verification (Wille et al.,
2011) to resource allocation (Ribas et al., 2012).
Developing efficient PBO solving techniques re-
mains a central challenge in computer science. Re-
cent years have witnessed substantial growth in
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most solvers adopt Conflict-Driven Clause Learning
(CDCL) variants (Biere et al., 2024; Eén and Sorens-
son, 2006)—PBO solvers employ a broad spectrum
of strategies including Branch-and-Bound (Land and
Doig, 2010), Branch-and-Cut (Padberg and Rinaldi,
1991), CDCL (Marques-Silva and Sakallah, 1999),
PBO-to-SAT translation (Sakai and Nabeshima,
2015), and hybrid approaches (Elffers and Nordstrom,
2018; Jabs et al., 2024). This methodological diver-
sity yields complementary performance profiles, with
solvers excelling in different application domains de-
pending on the structural properties of the instances.
One promising direction is the analysis of the
backbones of the instances—the sets of variables that
retain fixed values across all optimal solutions. The
backbone of an instance represents its “frozen core"
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and directly encodes its structural rigidity (Slaney
et al.,, 2001). They offer an interpretable, domain-
independent lens through which to study problem
hardness and can serve as natural supervision tar-
gets for DL models, providing ground-truth signals
aligned with fundamental properties of the solutions
as demonstrated in SAT (Wang et al., 2024).

In this work, we present a large-scale empirical
study of backbone properties across more than eight
thousand PBO instances drawn from around forty do-
mains. As illustrated in Figure 1, we find that back-
bone density often exhibits strong Spearman corre-
lation (or inverse correlation) with solver difficulty
across diverse domains. In some domains, denser
backbones make instances harder, while in others its
presence is favorable for the solving process.

Despite their central role in understanding opti-
mization structure, backbone identification remains
challenging. For NP-hard problems, exact back-
bone extraction is Co-NP-Hard (Janota et al., 2015).
While efficient extraction methods exist for SAT, the
PBO domain still lacks dedicated backbone extrac-
tion techniques—a significant gap given PBO’s im-
portance across many optimization applications.

This paper addresses this gap by introducing three
new PBO backbone extractors: GUROBACK that re-
lies on the MILP solver Gurobi, NAPBACK that is an
straight forward pipeline that converts a PBO instance
to SAT (using NaPs (Sakai and Nabeshima, 2015))
and extracts the backbone using Cadiback (Biere
et al.,, 2023) (an extractor for SAT), and finally
ROUNDINGBACK a native backbone extractor for
PBO built on top of RoundingSat (Elffers and Nord-
strom, 2018), a PBO solver that integrates conflict-
driven search with cutting-plane reasoning and LP re-
laxations via SoPlex (Bolusani et al., 2024).

We extend the PBO native extractor ROUNDING-
BACK (referred to as RB-BASE) with two heuristic
variants that significantly improve performance: RB-
WP, which prioritizes variables by their propagation
activity, and RB-PG, which employs diversity-driven
phase selection (Nadel, 2011) to explore the solution
space more effectively.

Our comprehensive evaluation on 335 instances
from the PBO Competition 2024 OPT-Lin track
demonstrates that RB-PG achieves the highest cov-
erage (223 instances, 67%), followed by GUROBACK
and NAPBACK. This is notable, since Gurobi is the
solver in the portfolio that performs the best when
solving these PBO instances.

Our contributions are:

1. We introduce ROUNDINGBACK, the first native
backbone extractor for PBO, along with two
heuristic variants.

2. We introduce GUROBACK and NAPBACK, new
PBO-backbone extractors based on Gurobi and
established SAT-technologies respectively.

3. We demonstrate that ROUNDINGBACK vari-
ants outperform GUROBACK and NAPBACK
on the PBO Competition 2024 OPT-Lin track
benchmark set, while revealing meaningful
domain-specific complementarity among all
methods—suggesting future potential for hybrid
or portfolio approaches.

4. We release a public repository of backbones for
8,351 PBO instances from recent competitions.

The remainder of this paper is organized as fol-
lows: Section 2 discusses related work and back-
ground. Section 3 details our extraction methods
and heuristic variants. Section 4 presents our exper-
imental evaluation, characterizes the PBO Competi-
tion 2024 dataset, and analyzes backbone distribu-
tions. Section 5 concludes with a summary of con-
tributions and future research directions.

2 RELATED WORK

2.1 Backbone Extraction in SAT

For decisional problems, the backbone comprises
pairs (variable,value) that appear in every satisfying
assignment. In Boolean Satisfiability (SAT), this rep-
resents literals (a variable or its negation) that must be
true in all models of a given instance. Early studies
of backbones such as (Parkes, 1997; Monasson et al.,
1999; Achlioptas et al., 2000) showed that backbone
size correlates with propositional problem hardness.
For many problem families, larger backbones indicate
more tightly constrained problems, increasing solu-
tion difficulty (Codish et al., 2013). Determining a
SAT instance’s backbone is Co-NP-Complete (Kilby
et al., 2005).

The backbone concept extends to optimization
problems as pairs (variable, value) present in all op-
timal solutions. While some domains (e.g., graph
coloring) show positive correlation between backbone
size and hardness, others (e.g., blocks world planning,
TSP) exhibit weaker or inverse relationships (Slaney
et al., 2001). Nevertheless, backbone detection re-
mains valuable: large backbones signal potential mis-
assignments that can lead solvers into unproductive
search paths (Slaney et al., 2001), and in some prob-
lems (e.g., TSP), early identification of some vari-
ables in the backbone enables the decomposition into
more tractable subproblems (Schneider et al., 1996).



Janota et al. (Janota et al., 2015) established
the algorithmic foundations for SAT backbone ex-
traction, introducing iterative literal testing, chunk-
based probing, model-based filtering, and core-based
identification. The current state-of-the-art extractor
CadiBack (Biere et al., 2023) combines these tech-
niques—adaptive chunking with model filtering and
improved model rotation via watched literals—within
the CaDiCaL solver (Biere et al., 2024). It starts by
identifying an initial model and initializing a set of
candidate literals, filtering out those for which the po-
larity can be flipped (i.e., negating the literal also re-
sults in a satisfying assignment). The remaining can-
didates are examined in chunks using adaptive sizing:
if all literals in a chunk are part of the backbone, the
chunk size increases; otherwise, the solver returns a
new model to filter the candidate list, and the chunk
size resets.

2.2 Pseudo-Boolean Optimization
Solvers

Pseudo-Boolean Optimization (PBO) serves as
an effective intermediate formalism between
SAT/MaxSAT and Mixed Integer Programming
(MIP), offering powerful modeling capabilities for
optimization problems. Standard SAT solving with
Conflict-Driven Clause Learning (CDCL) faces
limitations when reasoning over combinatorial
constraints due to resolution proof system limitations
(Haken, 1985). Pseudo-Boolean constraints—linear
inequalities of the form Y!' | ¢;l; > b over Boolean
literals /; with natural coefficients ¢; and bound
b—provide a more expressive alternative while
enabling adaptation of SAT-based techniques.

PBO is NP-hard and no single solver consistently
outperforms all others (Smith-Miles et al., 2014),
and performance depends heavily on instance char-
acteristics (Pezo et al., 2025). Different solving
paradigms have emerged, each with distinct strengths.
RoundingSat (Elffers and Nordstrom, 2018) inte-
grates conflict-driven search with cutting planes rea-
soning, learning linear inequalities instead of clauses.
It incorporates ILP techniques, including LP relax-
ations due to its integration with the SoPlex LP
solver (Bolusani et al., 2024). This hybrid approach
has influenced several leading PBO solvers (Jabs
et al., 2024; Ihalainen et al., 2024; Devriendt, 2020)
and provides the foundation for one of our back-
bone extraction methods. Gurobi (Gurobi Optimiza-
tion, LLC, 2024), a commercial MIP solver, handles
PBO through Branch & Bound, cutting planes (Go-
mory (Gomory, 1958), MIR (Wolsey and Nemhauser,
1999)), and parallel processing, and also constitutes

Data: PBO instance ¢ = (C, f) with constraints C
and objective f

Result: Backbone set B

(sat,0,5") < solve(9);

assert sat = true;

C+ CU{f(x) =S}

B+ 0, k<1,

A+ [ €0];# RB-WP sorts by propagation

score

while A # 0 do

k' < min(k,|A]);

I < pick k' literals from A;

¢« (CU{¥Lrerl = 1},0);

(sat’,0') < solve(¢); % RB-PG applies

pguide

if sat’ = true then

A A\{feA|c(t) £ (0)};

A<+ A\ { € A|@U{l} is satisfiable};

k+1;

else

B+ BUT;

A+~ A\T;

C+—CUu{l|teT}

k< 2-k;

end

end
return B;
Algorithm 1: General backbone extraction algorithm.

the base for another of our extraction methods. NaPS
(Sakai and Nabeshima, 2015) converts PBO con-
straints into CNF using Reduced Ordered Binary De-
cision Diagrams (ROBDDs) (Bryant, 1986), enabling
the use of efficient SAT solvers like MiniSat+ (Eén
and Sorensson, 2006). We use Naps inside the other
backbone extraction method presented here. Unlike
SAT, backbone detection for PBO remains largely un-
explored, motivating the development of extraction
tools using these diverse solver paradigms.

3 BACKBONE EXTRACTION
FOR PBO

Notation. A literal ¢ is either a variable x or its
negation —x; 7 denotes the complement of /. An as-
signment ¢ maps variables to {0,1}; o(¢) denotes
the truth value of ¢ under . A literal ¢ is flippable
in assignment ¢ if inverting its polarity satisfiability
is maintained, verified by checking that constraints
where ¢ appears with the same polarity as in 6 remain
satisfied when ¢ is negated.

Algorithm 1 generalizes CadiBack (Biere et al.,
2023) for PBO. It transforms optimization problems
into decision variants by solving the instance min f (x)
such that C(x) (a set of constraints over x) is satis-



fied to optimality by first obtaining the optimal solu-
tion objective S*, and reformulating the problem to
find x such that (C(x) A {f(x) = S*}). The extrac-
tion employs adaptive chunking: for each chunk I’ it
tests whether negating at least one literal (Y e ? > 1)
remains satisfiable. If unsatisfiable, all literals in I
are backbone members and chunk size doubles; oth-
erwise, non-backbone literals are filtered and chunk
size resets to 1. Although A is represented as a set
for readability, implementations maintain it as an or-
dered list where ordering influences extraction effi-
ciency (exploited by RB-WP).

3.1 ROUNDINGBACK: Native PBO
Backbone Extractor

ROUNDINGBACK is our primary contribution: a
native C++ backbone extractor built on Round-
ingSat (Elffers and Nordstrom, 2018) that extends
CadiBack’s algorithm (Biere et al., 2023) to the
PBO domain. RoundingSat’s hybrid architecture in-
tegrates conflict-driven search with cutting planes
reasoning and LP relaxations via SoPlex (Bolusani
et al., 2024), combining the strengths of CDCL
and ILP techniques. Unlike pure LP-based ap-
proaches (e.g., Gurobi) or PBO-to-SAT conversions
(e.g., NaPS), ROUNDINGBACK operates directly on
pseudo-boolean constraints while leveraging this hy-
brid solver foundation.

Key advantages of the RoundingSat founda-
tion include: (1) hybrid reasoning combining ex-
act arithmetic over arbitrary-precision integers with
LP relaxations, avoiding the numerical instability
of pure floating-point approaches while benefiting
from LP bounds; (2) native pseudo-boolean propa-
gation, avoiding the overhead and information loss
of CNF translation; (3) cutting planes reasoning, en-
abling stronger inference than pure clause learning.
The source code is available at:https://github.com/
matiasfrancia/roundingback.git.

We extended ROUNDINGBACK with two heuris-
tic variants that significantly improve extraction cov-
erage by guiding variable selection and search explo-
ration. These variants modify different components of
the extraction process while preserving correctness.
Throughout the paper, we refer to the baseline (Al-
gorithm 1) as RB-BASE, and the two heuristic vari-
ants as RB-WP (Weighted Propagation) and RB-PG
(Phase Guidance), respectively.

3.1.1 ROUNDINGBACK-WP: Weighted
Propagation Ordering

The baseline ROUNDINGBACK uses lexicograph-
ical variable ordering when selecting backbone
candidates to test, treating all variables equally.
ROUNDINGBACK-WP instead prioritizes variables
by their propagation activity during the initial solu-
tion phase. When variable v participates in a reason
constraint that propagates another variable, its score
increases by:
coefficient(v, reason)

max coefficient(reason)
Variables are then ordered by descending score for
backbone testing. This heuristic prioritizes checking
variables whose values most frequently cause propa-
gations, as these are more likely to be structural con-
straints (backbone members) rather than free choices.

score(v) +=

3.1.2 ROUNDINGBACK-PG (PGuide):
Diversity-Driven Phase Selection

While ROUNDINGBACK-WP reorders backbone can-
didates, ROUNDINGBACK-PG maintains lexico-
graphical ordering but modifies RoundingSat’s in-
ternal search behavior to explore the solution space
more effectively. Since the backbone extraction al-
gorithm repeatedly solves modified versions of the
same PBO instance, ROUNDINGBACK-PG exploits
this structure by applying the pguide heuristic from
Nadel (Nadel, 2011), originally developed for gener-
ating diverse SAT solutions.

The pguide heuristic tracks the polarity (0 or 1)
assigned to each variable across previously found so-
lutions. For each variable u, it maintains a potential
I1, = p, — n,. When selecting a decision variable’s
polarity during CDCL search, pguide biases against
the majority polarity: if I, > 0, assign 0; if IT, <0,
assign 1. This increases solution diversity, enabling
the solver to explore different regions of the search
space.

In the backbone extraction context, this diversity-
driven exploration reduces redundant solver calls
when testing non-backbone variables, as the solver
more effectively finds alternative satisfying assign-
ments that demonstrate that a set of variables does
not belong to the backbone. While Nadel et al. pro-
pose additional variants (e.g., pbcpguide with looka-
head propagation), we use the base pguide heuristic
as it provides strong performance gains without the
computational overhead of more sophisticated alter-
natives.

We evaluate ROUNDINGBACK’s performance
against two additional backbone extractors that cor-
respond to different solving paradigms: GUROBACK



and NAPBACK. Both implement sound adaptations
of the CadiBack algorithm, and we provide pub-
licly available implementations, enabling compre-
hensive comparative analysis across LP-based, SAT-
conversion, and native PBO approaches. The source
code of all three extractors will be made public upon
acceptance.

3.2 GUROBACK: MILP-Based
Extraction

GUROBACK implements Algorithm 1 using Gurobi’s
C++ API (Gurobi Optimization, LLC, 2024), lever-
aging the industry-standard commercial solver for
mixed-integer programming. It transforms PBO in-
stances into Gurobi’s MIP representation, then ap-
plies the CadiBack extraction loop. For single-
variable chunks, it adjusts variable bounds directly;
for multi-variable chunks I' with solution assign-
ment O, it partitions [ into I'y = {x € T | o(x) = 1}
and Iy = {x € I' | o(x) = 0}, adding the constraint
Yier, (1 —x)+ Yxer, X = 1 to enforce value changes.
If the new model remains feasible, then we remove
variables from the candidates list by checking against
the original solution we got. We do not perform the
additional flippable checking. In case the new model
becomes infeasible, we update the backbone set, the
candidates list, and the restrictions of the original
problem accordingly, as shown in Algorithm 1
Gurobi’s highly-optimized LP engine, advanced
cutting planes (Gomory (Gomory, 1958), MIR
(Wolsey and Nembhauser, 1999)), and parallel pro-
cessing is expected to provide strong performance.
On the contrary, Floating-point arithmetic can intro-
duce numerical instability on instances with large
coefficients. The source code is available at:https:
//github.com/bryan-alvarado-ulloa/guroback.

3.3 NAPBACK: SAT-based Extraction

NAPBACK is a pipeline composed by different SAT
technologies: Given the optimal solution cost (com-
puted either by Naps, Gurobi or RoundingSAT) (1)
PBO instances are transformed to decisional instances
as in ROUNDINGBACK and GUROBACK, (2) the de-
cisional PB instance is converted to CNF using a
ROBDD-based encoding (Bryant, 1986) with NaPS
(Sakai and Nabeshima, 2015); (3) CadiBack (Biere
et al., 2023) is run in the SAT instance to ex-
tract the SAT backbone; (4) the extracted backbone
is converted back to original PBO variables using
NaPS’s variable correspondence. This pipeline is
implemented via Bash scripts coordinating NaPS,
CadiBack, and a Python mapping utility.

NAPBACK exploits the mature SAT ecosystem
and CadiBack’s proven efficiency. However, CNF
translations introduce auxiliary variables and ob-
scures PBO-specific structure; ROBDD construction
can be costly for large constraints. The source
code of NAPBACK is available at:https://github.com/
bryan-alvarado-ulloa/napback

4 EXPERIMENTAL EVALUATION
AND ANALYSIS

Experimental Setup. All experiments were con-
ducted on compute nodes with Intel Xeon E5-2670 v3
processors (24 cores per node) and 64 GB RAM. We
used RoundingSat (commit hash d34b6be), Gurobi
v10.0.0rc2, NaPS 1.02b5, and CadiBack 0.2.1 (CaD-
iCaL version 2.0.0). Each extractor was allocated a
one-hour wall-clock time limit per instance.

4.1 Computing the Backbones of the
OPT-LIN PBO Dataset

To extract and share the backbones of as many in-
stances as possible from the PBO Competition 2024
OPT-Lin track, we implemented a three-phase proce-
dure on the complete dataset of 14,849 instances:

Phase 1 (Solving): We evaluated three
solvers—Gurobi, NaPS, and RoundingSat—on
all instances with a 10-minute time limit per instance.
This phase identified 10,224 instances (69%) that
were solved to optimality by at least one solver.

Phase 2 (Backbone Extraction): For each solved
instance, we assigned the fastest solver to its corre-
sponding extractor (GUROBACK for Gurobi, NAP-
BAcK for NaPS, RB-BASE for RoundingSat), with a
one-hour time limit. Our intuition was that the fastest
solver would also be the most efficient extractor, since
each extractor builds on its respective solver.

Phase 3 (Dataset Collection): We successfully
extracted backbones for 8,351 instances (56% of the
original dataset, 82% of solved instances) that com-
pleted within the time limit. The extracted back-
bones are publicly available at: https://github.com/
matiasfrancia/dataset-pbo-backbones.

4.2 Backbone Structure and Problem
Hardness Analysis

Figure 1 shows the relationship between backbone
density—the proportion of variables fixed across all
optimal solutions—and solving time across 31 prob-
lem domains. For each domain, we selected the
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Figure 1: Per-domain correlation between backbone density and solving time. Red indicates positive correlations (larger
backbones make instances harder), blue indicates negative correlations (larger backbones make instances easier), and gray
indicates non-significant results (p > 0.05). Light green shows domains where all instances have empty backbones; dark
green shows domains where all instances have complete backbones. Error bars represent 95% confidence intervals where
the intervals do not cross zero are statistically significant. Sample sizes shown in the middle panel vary considerably across

domains.

single best solver among RoundingSat, Gurobi, and
NaPS based on average solving time. Correlations
were computed using the instances solved by the best
solver for each domain, yielding over 8,000 instances
with both backbone and runtime data. When the best
solver failed to solve an instance, we used results
from alternative solvers when available. Domains
with fewer than 10 instances were excluded from the
analysis. Of the 31 domains examined, 13 show sta-
tistically significant correlations (p < 0.05), split be-
tween 7 positive and 6 negative.

We used Spearman correlation rather than Pearson
due to the heavy-tailed distribution of solving times.
Statistical significance was assessed via two-tailed
tests with o = 0.05. Significance depends on both
correlation strength and sample size—weaker corre-
lations require larger samples to achieve significance.

Several domains show strong positive correla-
tions, where denser backbones correspond to longer
solving times. Haplotype Inference exhibits a clear
positive relationship (p = 0.51, p < 0.001), as does

Network Routing (p = 0.49, p < 0.001). Conversely,
Latin Square Optimization shows a strong negative
correlation (p = —0.72, p < 0.001), where higher
backbone density corresponds to faster solving. This
suggests that, in this domain, fixed structural con-
straints help prune the search space more effectively.

The dataset exhibits a pronounced bimodal distri-
bution in backbone density: approximately 11% of in-
stances have completely empty backbones (density =
0.0), while another 14% are fully constrained (density
= 1.0). This bimodality suggests two distinct problem
classes. Under-constrained problems have high flex-
ibility, while fully-constrained instances have unique
optimal solutions. These findings establish that back-
bone density is a domain-sensitive indicator of prob-
lem hardness.
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Figure 2: Cactus plot comparing extraction time and in-
stances solved. RB-PG leads with 223 instances, followed
by RB-WP (221), RB-BASE (218), GUROBACK (207), and
NAPBACK (176).

4.3 Comparing Five Backbone
Extractors

To evaluate performance and complementarity of all
backbone extraction methods, we conducted exper-
iments on 335 instances from the PBO Competi-
tion 2024 OPT-LIN evaluation benchmark for which
the optimal objective value is known. This bench-
mark represents the official instances used to rank
competition participants. We compared five extrac-
tors: three ROUNDINGBACK variants—RB-BASE,
RB-WP, and RB-PG—alongside GUROBACK and
NAPBACK. To isolate the backbone extraction phase,
we provided each extractor with known optimal val-
ues at initialization.

Figure 2 presents a cactus plot summarizing ex-
traction performance. The ROUNDINGBACK variants
achieve the highest coverage: RB-PG leads with 223
instances, followed by RB-WP (221) and RB-BASE
(218). GUROBACK (207) and NAPBACK (176) show
lower coverage but reveal complementary strengths.
This is remarkable since Gurobi is the best base solver
for this benchmark, yet the by-default extractor is
RB-PG.

Figure 3 reveals domain-specific performance pat-
terns. The ROUNDINGBACK variants achieve su-
perior performance in domains like Upgradability,
Latin Square Optimization, and Planning. Mean-
while, GUROBACK achieves unique wins in Max-Cut
and Vertex Cover, suggesting MILP-based relaxations
uncover backbone implications that SAT-style propa-
gation misses. Similarly, NAPBACK excels in SAT-
friendly domains such as Haplotype Inference.

The differences among RB-BASE, RB-WP, and

RB-PG remain marginal across domains. In con-
trast, the complementarity between ROUNDING-
BACK, GUROBACK, and NAPBACK is substantial:
when one method fails, another often succeeds.
This suggests that a portfolio combining RB-PG
with GUROBACK would cover nearly all observed
strengths.

We also identify high-variance domains—such as
Stable Marriage, Feature Selection, Haplotype Infer-
ence, Planning and Multiple Constant Multiplication,
where extractors behave very differently, highlighting
algorithm—domain interactions that warrant future in-
vestigation. Conversely, domains like University of
Bologna (MIP), Proof Complexity (Pebbling + Pi-
geonhole), and Graph Benchmarks from BHOSLIB
remain challenging for all methods, suggesting oppor-
tunities for new solving and extraction strategies.

S CONCLUSIONS AND FUTURE
WORK

We introduced ROUNDINGBACK, the first native
backbone extractor for Pseudo-Boolean Optimiza-
tion, along with two heuristic variants: RB-
WP (propagation-weighted ordering) and RB-PG
(diversity-driven phase guidance), and two fur-
ther MIP-based and SAT-based extractors named
GUROBACK and NAPBACK. On the PBO Compe-
tition 2024 OPT-Lin benchmark, RB-PG achieved
the highest extraction coverage, outperforming
GUROBACK and NAPBACK. Despite this overall su-
periority, our analysis reveals strong domain-specific
complementarity. Beyond extractor design, our large-
scale backbone analysis demonstrates that backbone
density exhibits strong Spearman correlation (or in-
verse correlation) with solving time for some do-
mains, and displays a pronounced bimodality separat-
ing under-constrained and over-constrained instances.
These findings confirm that backbones can serve as
robust indicators of problem hardness across hetero-
geneous PBO domains.

We release backbones for 8,35/ competition in-
stances to support learning-based methods and struc-
tural analysis. Future work includes portfolio mod-
els exploiting method complementarity, learning-
based extractor selection, extended benchmark cover-
age, and integrating backbone prediction into solver
pipelines.
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Figure 3: Extractor performance across problem domains. Each dot shows the success rate of a backbone extractor on
instances from a specific domain. Colors distinguish methods, and pie markers indicate ties. Domains sorted by weighted

average success rate.
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