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The input to an inverse shortest path lengths problem
(ISPL) consists of a graph G with arc weights, and a col-
lection of source-sink pairs with prescribed distances
that do not necessarily conform to the shortest path
lengths in G. The goal is to modify the arc weights, sub-
ject to a penalty on the deviation from the given weights,
so that the shortest path lengths are equal to the pre-
scribed values. We show that although ISPL is an NP-hard
problem, several ISPL classes are polynomially solvable.
These cases include ISPL where the collection of the
pairs share a single source and all other nodes as desti-
nations (the single-source all-sink problem SAISPL). For
the case where the collection contains a single node pair
(the single-source single-sink problem SSISPL), we iden-
tify conditions on the uniformity of the penalty functions
and on the original arc weights, which make SSISPL poly-
nomially solvable. These results cannot be strengthened
significantly as the general single-source ISPL is NP-hard
and the all-sink case, with more than one source, is also
NP-hard. We further provide a convex programming for-
mulation for a relaxation of ISPL in which the shortest
path lengths are only required to be no less than the
given values (LBISPL). It is demonstrated how this com-
pact formulation leads to efficient algorithms for ISPL.
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1. INTRODUCTION

When solving an optimization problem, it is usually
assumed that problem parameters such as costs or capacities
are known exactly. Frequently, however, the input parame-
ters are often only estimates and errors in the estimation may
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lead to poor decisions. In certain circumstances, additional
information may be available, such as the optimal solution or
optimal objective value. We would like to use this information
to attain better estimates for the unknown parameters.

The idea of inverse optimization is to adjust the values
of the parameters so that the observed solutions or objective
values are indeed optimal and the adjusted values differ from
the given estimates by as little as possible. The difference is
measured in terms of a penalty function. The goal is to adjust
the parameters while minimizing the total penalty. In this
article, we study the inverse shortest path lengths problem
(ISPL), in which the weights of the arcs in a network are
adjusted so that the lengths of the shortest paths between a
collection of source-sink pairs are equal to the prescribed
observed values.

Burton and Toint [6] were the first to investigate the
inverse version of the shortest path problem. Since then, dif-
ferent inverse optimization problems have been considered
by various authors (see [12] for a comprehensive survey).
We distinguish between two categories of inverse problems:
inverse solution optimization and inverse objective value
optimization. The inverse solution optimization problem is
to adjust the cost vector in order to make a prescribed given
solution optimal. Numerous combinatorial problems have
been studied in this category including inverse shortest path
[4, 6, 7, 24], inverse minimum spanning tree [2, 13, 19], and
other inverse combinatorial problems [8, 9, 17, 22, 23]. The
second category, inverse objective value problem, has drawn
less attention than the first one. In an inverse objective value
problem, a desired solution is not provided in advance but
rather a desired objective value. The problem here is to find a
cost vector under which the optimal objective value is equal
to the prescribed value. In general, problems of the first cat-
egory are comparatively easier than problems of the second
category. It is shown in [3] that certain types of inverse solu-
tion problems (restricted in terms of the penalty functions)
are polynomially solvable if the corresponding (noninverse)
optimization problems are polynomially solvable. On the
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other hand, Ahmed and Guan [1] have shown that the inverse
objective value problem for a linear program is NP-hard. The
ISPL belongs to the second category: for prescribed distances
between a collection of source-sink pairs, it finds the mini-
mum cost modification of the arc weights so that the shortest
path lengths are equal to the prescribed values.

The work by Fekete et al. [10] is one of the few that address
combinatorial inverse objective value problems. The problem
they investigate is to assign arc weights (rather than modify or
adjust weights) for a set of arcs in a given graph such that cer-
tain shortest path lengths are equal to the prescribed values.
In this problem, there is no penalty for modifying the weight
of an arc. As such, this problem is a special case of ISPL with
zero modification cost for each arc. We refer to this problem as
the feasible inverse shortest path lengths problem (FISPL).
FISPL is shown to be NP-complete in [10]. Additionally,
they suggest restricted situations in which FISPL becomes
tractable: where there is only one source node (single-source
FISPL), or each source node is paired up with all other nodes
as sinks (all-sink FISPL).

Hung [15] also studies the FISPL problem. Hung iden-
tifies polynomially solvable cases based on the structure of
the physical network. He also develops a heuristic for FISPL
using an implicit formulation which, in general, has exponen-
tially many constraints. Hung’s algorithm relies on constraint
generation techniques.

Burton et al. [5] study a relaxation of ISPL in which the
shortest path lengths are required to be no more than cer-
tain upper bounds. This problem is referred to as the upper
bounding inverse shortest path lengths problem (UBISPL).
They prove that even this restricted case of ISPL is NP-hard.
They also propose a heuristic to find a local optimum and
prove that it is finitely convergent.

Zhang et al. [25–27] address a special case of UBISPL in
which there is a single source. They show that the problem is
polynomially solvable under the �∞ norm but NP-hard even
to achieve an approximate solution under either the �1 or the
�2 norm. They also provide a heuristic method to solve the
problem approximately on a spanning tree.

The focus of this paper, like [10], is on the complexity of
special cases of ISPL. We prove that ISPL is strictly harder
than FISPL by demonstrating that the single-source and the
all-sink problems, the two polynomially solvable cases of
FISPL, are NP-hard as ISPL problems. Another contribution
is in devising polynomial time algorithms for some classes
of the single source ISPL problem. We also study the lower
bounding inverse shortest path lengths problem (LBISPL), in
which the shortest path lengths are required to be no less than
certain lower bounds. We show that LBISPL is polynomial
time solvable using a compact convex programming formu-
lation. This formulation can be especially useful in designing
efficient heuristics for ISPL.

The rest of this article is organized as follows. In Section 2,
we provide a formal definition of the ISPL problem and intro-
duce some notation. Section 3 discusses complexity issues
where we prove that two polynomial classes for FISPL are
NP-complete for ISPL. We also identify a further restricted

class for which ISPL becomes polynomially solvable. In
Section 4, we provide the formulation of LBISPL as a convex
programming problem with a polynomial number of linear
constraints. We further discuss how this formulation can be
used to design efficient algorithms for ISPL. The last section
is devoted to a restricted case of ISPL, in which only one
source-sink pair is specified (SSISPL). Using the polyno-
mial time solvability of LBISPL, we prove that SSISPL is
polynomial time solvable if certain technical conditions hold
on the parameters and the penalty function.

2. PRELIMINARIES AND AN EXAMPLE

We denote a vector by boldface letters, so x is a vector,
and xi is the ith component of x. An arc is indicated by an
ordered pair (i, j) and an edge by [i, j]. A directed path from
i1 through i2, . . . , ik is presented as (i1, i2, . . . , ik).

An instance of the ISPL consists of two directed graphs
defined on the same set of nodes V . The graph G = (V , A)

has a nonnegative weight vector c indicating the original
estimates of weights for each arc. The paths between the
sources and the destinations are routed in G. A second graph
Gd = (V , Ad) provides the pairwise distance dij ≥ 0 as
the prescribed shortest path length between the pair i, j, for
every source-sink pair i, j ∈ V . We refer to the first graph
as the network and the second as the distance graph of the
instance. For ease of notation, the ISPL instance is written
as G(c) = (V , A, c) and Gd(d) = (V , Ad , d). In addition, we
let Pst(x) denote a shortest path from s to t in G(x), Dst(x)

denote the length of Pst(x), and D(P, x) denote the length of
path P in G(x).

The input to ISPL also includes the penalty function for
the deviation of arc weights in the network. For each arc
(i, j) ∈ A, there is a function fij : � �→ �+, where fij(xij −cij)

is the cost of modifying the cost of arc (i, j) from cij to xij.
We assume that fij() is a convex function which is monoton-
ically decreasing on (−∞, 0] and monotonically increasing
on [0, ∞). It is commonly assumed that the penalty functions
satisfy fij(0) = 0, for all (i, j) ∈ A, but this is not necessary
for the analysis in this article to hold.

Given the network G(c) and the distance graph Gd(d), a
weight vector x : A �→ �|A|

+ is said to be Gd-satisfying if
Dst(x) = dst for all arcs (s, t) ∈ Ad . The ISPL is to find a
Gd-satisfying weight assignment x on G that minimizes the
total penalty cost F(x) = ∑

(i,j)∈A fij(xij − cij).
The distance graph Gd = (V , Ad) is said to be a source

star (sink star) from (to) s, if all arcs in Ad have s as their
common tail (head). A star is either a source star or a sink
star. Gd is called a complete star if Ad = {s} × (V\{s}) or
Ad = (V\{s}) × {s}.

An instance of ISPL is said to be a Single-Source ISPL
(SISPL) if Gd is a source star. Similarly, an All-Sink ISPL
(AISPL) is an ISPL instance whose distance graph is a union
of complete stars. A Single-Source All-Sink ISPL (SAISPL)
is both an SISPL and an AISPL with a distance graph that is a
complete star. A Single-Source Single-Sink ISPL (SSISPL) is
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TABLE 1. Abbreviations of problem classes.

Abbreviation Problem description

ISPL Inverse shortest path lengths problem
FISPL Feasible ISPL
SISPL Single-source ISPL
AISPL All-sink ISPL
SAISPL Single-source all-sink ISPL
SSISPL Single-source single-sink ISPL
SFISPL Single-source FISPL
AFISPL All-sink FISPL
LBISPL Lower bounding ISPL
UBISPL Upper bounding ISPL

an ISPL with a distance graph containing a single arc. Special
cases of FISPL are defined analogously.

Table 1 lists the abbreviations of these problem classes.
The FISPL problem is shown to be NP-complete in [10].

It follows that ISPL is NP-hard, since it is a generalization
of FISPL. The NP-completeness result of FISPL is proved
through a reduction of the 3-SAT problem to a constructed
instance of FISPL. We will not repeat the proof here but
rather provide an example illustrating the difficulty of solving
FISPL.

Consider an FISPL instance with the physical graph G
as shown in Figure 1. The distance graph Gd has five arcs
in Ad = {(a, c), (d, f ), (g, i), (m, n), (p, q)}, with the pre-
scribed shortest path lengths dac = ddf = dgi = 1 and
dmn = dpq = 0. A Gd-satisfying weight assignment x must
satisfy xab + xbc = 1 since (a, b, c) is the only path from a
to c. Similarly, we have xde + xef = 1 and xgh + xhi = 1.
We introduce boolean variables y1, y2, and y3, defined as
follows:

y1 =



F if xab = 0,
T if xbc = 0,
unspecified otherwise.

y2 =



F if xde = 0,
T if xef = 0,
unspecified otherwise.

y3 =



F if xgh = 0,
T if xhi = 0,
unspecified otherwise.

Since (m, a, b, n), (m, d, e, n), and (m, g, h, n) are the only
three directed paths from m to n, and the length of the shortest
path from m to n is dmn = 0, at least one of xab, xde, and xgh

must be zero, hence the logical statement ȳ1
∨

ȳ2
∨

ȳ3 must
be true. Similarly, dpq = 0 implies that y1

∨
y2

∨
y3 is true.

Therefore, this FISPL instance has a Gd-satisfying weight
assignment if and only if there exists a truth assignment
for the logical statement (ȳ1

∨
ȳ2

∨
ȳ3)

∧
(y1

∨
y2

∨
y3).

Using a similar reduction, any 3-SAT problem can be solved
through a Gd-satisfying weight assignment for an FISPL
instance.

3. COMPLEXITY OF ISPL AND RESTRICTED
CASES

3.1. NP-Hardness of ISPL

Fekete et al. [10] conducted a thorough study of the com-
plexity of the FISPL. We note that FISPL can be taken as
a special case of ISPL where fij() = 0, for all (i, j) ∈ A.
Since ISPL is at least as hard as FISPL, and the latter is
NP-complete, ISPL is NP-hard.

3.2. NP-Hardness of SISPL and AISPL

Here, we delineate the difference in complexity between
ISPL and FISPL problems: while both problems are NP-hard,
ISPL is strictly harder than FISPL. Fekete et al. [10] identified
two polynomial cases for FISPL, where the distance graph
is a star (SFISPL) or a union of complete stars (AFISPL).
In contrast, we show here that both SISPL and AISPL are
NP-hard.

Theorem 3.1. SISPL is NP-hard.

Proof. We give a reduction from the Minimum Weight
Steiner Tree Problem (MStT), defined as follows. Given a
graph G = (V , E), a weight function c : E �→ �|E|

+ , and a set
of terminal nodes R ⊆ V where |R| ≥ 3, is there a subtree of
G that contains all nodes in R and has a total weight of less
than or equal to W? Without loss of generality, we assume
that cij > 0 for all [i, j] ∈ E.

For a given instance G = (V , E, c), R ⊆ V of MStT,
we construct an instance Ĝ(ĉ) = (V , Â, ĉ), Ĝd(V , Âd , d̂) of
SISPL as follows:

Â = {(i, j), (j, i) | [i, j] ∈ E},
ĉij = ĉji = wij, ∀[i, j] ∈ E.

For s an arbitrary node in R, define:

Âd = {(s, t) | t ∈ R \ {s}};
d̂st = 0, ∀(s, t) ∈ Âd .

FIG. 1. An instance of ISPL.

22 NETWORKS—2010—DOI 10.1002/net



FIG. 2. Constructing an SISPL instance from an MStT instance.

Finally, let the penalty function be

fij(xij) = |xij − ĉij|, ∀(i, j) ∈ Â.

Figure 2 illustrates how to construct an SISPL instance
from an MStT instance. The graph on the left is an instance
of MStT, with all terminal nodes shown in black. The graph
on the right is the SISPL instance, where the solid lines stand
for arcs in the network and the dotted lines represent arcs
in the distance graph. The zeros along the lines indicate the
weights of the arcs in the distance.

We claim that there is a Steiner tree with weight no more
than W if and only if there is a solution to the SISPL instance
whose modification cost does not exceed W .

Let x be a solution of the SISPL instance. We assume that

xij =



0 if (i, j) is on a shortest path from s to,
a terminal node,

ĉij otherwise.

This assumption does not affect the generality of the proof
since if there exist (i, j) ∈ Â such that xij 	= ĉij, and (i, j)
is not on any shortest path, then we can always change xij

to ĉij without affecting the feasibility, and this new weight
assignment can only cost less.

Define T̂ = {(i, j) ∈ Â | xij = 0}. We make a further
assumption that T̂ is a directed tree rooted at s. If not, we
can find an arc (i, j) whose deletion from T̂ does not affect
the connectivity from s to any other terminal node. By letting
xij = 0, we obtain a feasible weight assignment with a lower
penalty cost.

Let T = {[i, j] ∈ E | (i, j) ∈ T̂ or (j, i) ∈ T̂}. T is a
Steiner tree of G since it connects s with every other terminal
node. Finally, we show that F(x) = ∑

(i,j)∈Â fij(xij − ĉij) =∑
[i,j]∈T cij. The only nontrivial part of the proof is that at

most one of xij and xji can be zero, due to the fact that T̂ is
acyclic.

Conversely, if the MStT instance has a solution T ,
we define the following weight assignment for the SISPL
instance:

xij =



0 if [i, j] ∈ T and i is closer to s than j in T ,
than j in T ,

ĉij otherwise.

This weight assignment yields a path of zero length in Ĝ
between s and every other terminal node. These paths are
the shortest because of the nonnegativity of arc weights. The
penalty cost associated with x is F(x) = ∑

(i,j)∈Â fij(xij −
ĉij) = ∑

[i,j]∈T cij.
The above is a reduction of the MStT instance to an ISPL

instance whose distance graph is a source star. To attain the
reduction to an ISPL instance whose distance graph is a sink
star, one needs only to reverse all the arcs in the network and
distance graph. ■

Theorem 3.2. AISPL is NP-hard.

Proof. The NP-hardness of AISPL is derived from the
reduction of the Hamiltonian Cycle problem (HC): given a
graph G = (V , E), is there a cycle in G that visits each node
exactly once?

Let G = (V , E) be an instance of HC. We construct an
instance Ĝ(ĉ) = (V , Â, ĉ), Ĝd(V , Âd , d̂) of AISPL as follows:

Â = {(i, j), (j, i) | [i, j] ∈ E};
ĉij = 1, ∀(i, j) ∈ Â;

Âd = {(u, v) | u, v ∈ V , u 	= v};
d̂uv = 0, ∀(u, v) ∈ Âd .

The penalty function is defined as:

fij(xij) = |xij − ĉij|, ∀(i, j) ∈ Â.

We claim that there is a Hamiltonian cycle in G, if and
only if the AISPL instance has a solution that costs no more
than |V |.

Suppose x is a solution to the AISPL instance and F(x) =∑
(i,j)∈Â fij(xij) ≤ |V |. Define Ĉ = {(i, j) ∈ E | xij = 0}. Since

there is a zero length path between each pair of nodes in Ĉ
and |Ĉ| ≤ ∑

(i,j)∈Â fij(xij) ≤ |V |, Ĉ must be a directed cycle
that visits each node exactly once. We can easily construct
a Hamiltonian cycle of G by letting C = {[i, j] | (i, j) ∈
Ĉ or (j, i) ∈ Ĉ}.

Conversely, if there exists a Hamiltonian cycle C in G, we
can define a feasible weight assignment x for Ĝ as follows.
Order the nodes in the cyclical order that they appear on C,
starting from an arbitrary node s ∈ V and in an arbitrary
direction. Let xij = 0, if node j is visited right after node i,
otherwise xij = 1. Under this weight assignment, there is a
path of length 0 between each ordered pair of nodes in Ĝ.
These paths must be shortest due to the nonnegativity of arc
weights. The total penalty cost associated with this weight
assignment is equal to |V |. ■
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3.3. A Polynomially Solvable Case

From the proof of Theorem 3.1 it is evident that the single-
source ISPL problem shares some similarity with the Steiner
tree problem in the sense that the union of shortest paths forms
a tree that connects the source node with all the sink nodes.
The minimum Steiner tree problem reduces to the tractable
minimum spanning tree problem if all nodes in the graph are
terminal nodes. Analogously, we will show that ISPL can be
solved in polynomial time if its distance graph is a complete
star. It is interesting to note that this special case is in the
intersection of the single-source and all-sink case.

The proof of the complexity of SAISPL is based on the
following lemma.

Lemma 3.1. Let G(c) = (V , A, c), Gd = (V , Ad , d) be an
instance of SAISPL, where Ad = {(s, j) | j ∈ V , j 	= s} forms
a complete star. An optimal weight assignment x satisfies:

xij =



dsj − dsi if cij < dsj − dsi or (i, j) is on a shortest,
path from s to j,

cij otherwise.

Proof. A necessary condition for Dsi(x) = dsi and
Dsj(x) = dsj is that xij ≥ dsj − dsi, for each (i, j) ∈ A. If
the original weight cij < dsj − dsi, then xij = dsj − dsi satis-
fies the above condition, as well as minimizes the penalty cost
on (i, j). On the other hand, if cij ≥ dsj − dsi, xij = dsj − dsi

only if (i, j) is on a shortest path from s to j. If (i, j) is not
on any shortest path, xij should equal to cij, otherwise the
solution is suboptimal. ■

Theorem 3.3. SAISPL is polynomially solvable.

Proof. Let G = (V , A, c), Gd = (V , Ad , d) be an
instance of SAISPL, where Ad = {(s, j) | j ∈ V , j 	= s}
forms a complete star. Without loss of generality, we assume
that cij ≥ dsj − dsi for all (i, j) ∈ A. If there is (i, j) ∈ A

such that cij < dsj − dsi, then from Lemma 3.1 an optimal
solution x always satisfies xij = dsj − dsi, and the solution
does not change if we let cij = dsj − dsi. We just need to add
the penalty on (i, j) to the total cost.

Under this assumption, the weight on (i, j) in an optimal
solution is either dsj − dsi or cij. An arc (i, j) is said to be
admissible if xij = dsj − dsi, and then (i, j) is on a shortest
path from s to j. The above discussion reduces our problem
to finding the cheapest way of making a subset of arcs that
connect s to every other node in the graph admissible. The
cost of making (i, j) admissible is:

wij =
{

fij(dsj − dsi − cij) if dsj − dsi ≥ 0,
∞ otherwise.

This problem is equivalent to the Minimum Weight
Arborescence Problem studied in [20].

Figure 3 illustrates an example of a reduction of an
SAISPL instance (G, Gd) to a Minimum Weight Arbores-
cence instance G′. Numbers along lines indicate the arc
weights. The penalty functions used in this example are
fij(xij − cij) = |xij − cij| for all arcs (i, j).

The algorithm to find a solution x to the SAISPL instance
is summarized below. Let a routine, which returns the min-
imum weight arborescence rooted at s among the set of
arcs A and with respect to the weight function w be called
MWA(A, s, w).

Step 0. Let A′ = �.

Step 1. For each (i, j) ∈ A, calculate x̃ij = dsj −dsi. If x̃ij ≥ 0,
A′ = A′ ∪ {(i, j)}.
Step 2. For each (i, j) ∈ A′, let

wij =
{

fij(x̃ij − cij) if cij ≥ x̃ij

0 if cij < x̃ij.

Step 3. Find T = MWA(A′, s, w).

FIG. 3. Reducing an SAISPL instance to the Minimum Weight Arborescence Problem.
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FIG. 4. Complexities of FISPL and ISPL.

Step 4. Set

xij =
{

x̃ij if cij ≤ x̃ij or (i, j) ∈ T ,
cij otherwise.

Note that the minimum modification cost is not equal to the
total weight on the minimum weight arborescence, because
we do not count the cost to “bring up” arc weights, which is
a constant. The actual modification cost is

F(x) =
∑

(i,j)∈A

fij(xij − cij)

=
∑

(i,j)∈T

wij +
∑

(i,j)∈A | cij<x̃ij

fij(x̃ij − cij).

The complexity of finding a minimum weight arbores-
cence dominates all other steps. Tarjan’s algorithm runs in
O(|A| · log |V |) time (see [20]), which is clearly polyno-
mial. ■

Recall that FISPL is a special case of ISPL where the mod-
ification cost functions are zero. Although both problems are
NP-hard, they differ in complexity when the distance graphs
have special structures. Specifically, SFISPL and AFISPL are
polynomially solvable, whereas SISPL and AISPL are NP-
hard. A polynomial case of ISPL is SAISPL, which belongs
to both of the SISPL and the AISPL cases. Figure 4 provides
a diagram to compare the complexities of these problems.

4. LBISPL AND AN ALGORITHM FOR ISPL

In this section, we study a relaxation of ISPL, in which
the shortest path lengths are required to be no less than
certain lower bounds (LBISPL). LBISPL and its complemen-
tary problem, upper bounding ISPL (UBISPL), are studied
by Burton and Toint [5] and the latter is shown to be
NP-complete. Although it is admitted in [5] that LBISPL
should be easier, their formulation for LBISPL consists of
an exponential number of constraints. We provide a compact
convex programming formulation for LBISPL and demon-
strate how this formulation can be applied to develop an
efficient approximate algorithm for ISPL.

4.1. A Compact Formulation for LBISPL

Let G = (V , A, c), Gd = (V , Ad , d) be an instance of
LBISPL, where Ad = {(sk , tk) | k ∈ K} and Lk = dsk ,dk is
the lower bound on Dsk ,tk . We use a formulation of LBISPL
given in [14]:

Min F(x) =
∑

(i,j)∈A

fij(xij − cij) (1a)

s.t. pk
j − pk

i ≤ xij ∀k ∈ K , ∀(i, j) ∈ A (1b)

pk
sk

= 0 ∀k ∈ K (1c)

pk
tk

≥ Lk ∀k ∈ K (1d)

pk ≥ 0 ∀k ∈ K (1e)

To see that this formulation is indeed valid for LBISPL,
note that for any (x, p) satisfying (1b)–(1e), x is a feasible
solution to the LBISPL instance. This is because Dsk ,i(x) ≥
pk

i for all k ∈ K and i ∈ V . We prove this by induction on the
number of arcs in the shortest path.

First, if the shortest path from sk to i consists of only one
arc, then Dsk ,i(x) = xsk ,i ≥ pk

i − pk
sk

= pk
i . Next, suppose

Dsk ,i(x) ≥ pk
i holds for all k ∈ K and i ∈ V , given that

all shortest paths from sk to i use no more than � arcs. For a
shortest path from sk to j using �+1 arcs, let i be the last node
on the path visited before j. It follows that the path from sk to
i is also the shortest. Therefore, Dsk ,j(x) = Dsk ,i(x) + xij ≥
pk

i + pk
j − pk

i = pk
j , where the inequality follows from the

inductive assumption and constraint (1c).
Consequently, we have that the inequalities Dsk ,tk (x) ≥

pk
tk

≥ Lk hold for all k ∈ K ; i.e., x is a feasible solution to the
LBISPL instance.

Conversely, if x is a feasible weight assignment for the
LBISPL instance, define pk

i = Dsk ,i(x) for all k ∈ K and i ∈
V . Then (x, p) satisfies (1b)–(1e), since pk

j − pk
i = Dsk ,j(x)−

Dsk ,i(x) ≤ xij, for all k ∈ K and (i, j) ∈ A.
Formulation (1a)–(1e) is a convex programming problem

with linear constraints and separable objective function. This
type of problem can be solved in polynomial time using the
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interior-point method, given that the objective function satis-
fies a self-concordance condition, in which its third derivative
is assumed to be bounded in terms of its second derivative
(see [11], [18], and [21]). Specifically, Kortanek and Zhu [16]
introduce an O(n log ε) algorithm to find ε-approximate solu-
tions for linearly constrained convex programing problems
with n variables. Their algorithm imposes a scaled Lipschitz
condition on the objective function, which is satisfied by a
linear, convex quadratic, or the entropy function.

4.2. An Algorithm for ISPL

Hung [15] has proposed a heuristic algorithm for FISPL,
which can be easily adapted to address the ISPL problem. The
idea is to take the LBISPL relaxation of an ISPL instance,
by imposing a penalty on the gap between the lengths of
the shortest paths and the desired values. Because of the
unavailability of a compact formulation, the relaxed prob-
lem is solved by row generation in [15]. Since the solution of
LBISPL is a repeatedly called subroutine, the use of the con-
vex programming formulation ((1a)–(1e)) greatly improves
the efficiency of this algorithm.

Another difficulty is due to the lack of knowledge of the
shortest paths. We use the initiation of the estimates of the
shortest paths lengths as in [15], to be the shortest paths in
G(c). After solving the LBISPL relaxation, we update the
estimated paths to the shortest paths under the current weight
assignment and reoptimize the problem. This procedure is
repeated until the estimated paths are indeed shortest with
respect to the modified arc weights. The detailed algorithm
is stated below, for an ISPL instance G = (V , A, c), Gd =
(V , Ad , d), and Ad = {(sk , tk) | k ∈ K}. Note that α is the
penalty multiplier on the infeasibility gap, and flag is used to
indicate whether or not the set of estimated paths is modified
in an iteration.

Relaxation Heuristic

Step 0. Set � = 0 and flag = 0. For each k ∈ K , set P�
k to be

a shortest path from sk to tk under weight assignment c.

Step 1. Find a solution x� to the following problem
LBISPL(�):

LBISPL(�) Min
∑

(i,j)∈A

fij(xij − cij)

+
∑
k∈K

αk


 ∑

(i,j)∈P�
k

xij − dsk ,tk


 (2a)

s.t. pk
j − pk

i ≤ xij ∀ k ∈ K , (i, j) ∈ A (2b)

pk
sk

= 0 ∀ k ∈ K (2c)

pk
tk

≥ dsk ,tk ∀ k ∈ K (2d)

pk ≥ 0 ∀ k ∈ K . (2e)

Step 2. For each k ∈ K , if P�
k is the shortest under weight

assignment x�, set P�+1
k = P�

k ; otherwise set P�+1
k to be an

arbitrary shortest path from sk to tk under x�. If P�+1
k 	= P�

k
for some k ∈ K , set flag= 1; otherwise set flag = 0.

Step 3. If flag = 0, terminate and output x�. Otherwise set
� = � + 1 and go to Step 1.

Next, we discuss the finite convergence of the algorithm.

Lemma 4.1. The optimal objective value of (2a)-(2e)
decreases at each iteration.

Proof. Define z�(x) to be the objective value of
LBISPL(�) associated with weight assignment x. The fol-
lowing assertion holds:

z�+1
(

x�+1
)

≤ z�+1(x�) =
∑

(i,j)∈A

fij
(

x�
ij − cij

)

+
∑
k∈K

αk

[
D

(
P�

k , x�
)

− dk

]

<
∑

(i,j)∈A

fij
(

x�
ij − cij

)

+
∑
k∈K

αk

[
D

(
P�+1

k , x�
)

− dk

]
= z�(x�),

where the first inequality follows from the fact that x�+1 is
optimal to LBISPL(� + 1). The second (strict) inequality is
due to the fact that P�+1

k is a shortest path between sk and tk
under the weight assignment x�, and P�+1

k is strictly shorter
than P�

k for at least one k ∈ K . ■

Theorem 4.1. The Relaxation Heuristic is finitely conver-
gent.

Proof. The number of paths between two nodes is finite,
since there are finite number of arcs in the graph. As a conse-
quence, the number of combinations of the estimated shortest
paths used in an iteration is also finite. Furthermore, each of
these combinations is considered at most once because the
objective function is strictly decreasing from Lemma 4.1.
Therefore, the algorithm terminates in a finite number of
steps. ■

5. SINGLE-SOURCE SINGLE-SINK ISPL

One major difficulty associated with solving ISPL is that
the modification of the weight of a single arc can affect the
lengths of shortest paths between more than one source-sink
pair. This issue is not present if the distance graph consists
of only one source-sink pair. In this section, we show that
single-source single-sink ISPL (SSISPL) is polynomial time
solvable under certain assumptions on the parameters and the
cost function.

The discussion in this section addresses the SSISPL
instance G = (V , A, c), Gd = (V , Ad , d) where Ad = {(s, t)}.
To simplify the discussion we define the length of a shortest
s − t path in G(x) as D(x) = Dst(x) and the desired length
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as d = dst . The complexity results of SSISPL are based on
the following lemmas.

Lemma 5.1. The SSISPL instance is equivalent to its
LBISPL relaxation if D(c) < d.

Proof. Suppose that x is an optimal solution to the
LBISPL relaxation. Then it must be true that D(x) = d and
thus x is optimal for SSISPL. Otherwise suppose D(x) > d.
Since D(c) < d, there must be an arc (i, j) ∈ A such that
xij > cij. We define a new weight assignment x′ as follows:

x′
e =

{
xe − ε e = (i, j)
xe e ∈ A \ {(i, j)},

where ε = min{D(x) − d, xij − cij}.
Since D(x′) ≥ D(x)− ε ≥ d, x′ is also a feasible solution

to the LBISPL relaxation. Furthermore, the penalty cost asso-
ciated with x′ is strictly less than that associated with x. This
contradicts the assumption that x is optimal to the LBISPL
relaxation. ■

Next we show that if D(c) > d, then SSISPL is equiv-
alent to a new problem CPP, defined as follows. Let P
be a path from s to t. For a constant d ≥ D(c), we
define x(P, d) = argminx{F(x)| D(P, x) = d, x ≥ 0} and
C(P, d) = F(x(P, d)). The cheapest path problem (CPP) is
to find an s − t path that minimizes C(P, d); i.e., the problem
is to find an s − t path whose length is cheapest to reduce
to d.

Lemma 5.2. The SSISPL instance is equivalent to the CPP
problem if D(c) > d.

Proof. Suppose that P′ is an s − t path that minimizes
C(P, d). We define x′ = x(P′, d), and claim that x′ is an
optimal solution to the SSISPL instance.

To prove the feasibility of x′, we only need to show that P′
is a shortest path in G(x′), since by construction we have
D(P′, x′) = d. If P′ is not the shortest under x′, let P′′
be an s − t path such that D(P′′, x′) < D(P′, x′) = d,
and let D(P′′, x′) = d − ε for some ε > 0. Because
D(P′′, c) ≥ D(c) > d, C(P′′, d) must be decreasing in
d; i.e., given that the original length of P′′ is higher than
the target length, the modification cost is lower as the tar-
get length increases. Therefore, C(P′′, d) < C(P′′, d − ε),
and C(P′′, d − ε) ≤ F(x′), following from the definition of
C(P, d). Putting these together, we have C(P′′, d) < F(x′) =
C(P′, d). This contradicts the assumption that P′ minimizes
C(P, d).

The optimality of x′ is straight forward, since F(x′) =
C(P′, d) is the lowest cost to modify any s − t path to have
length d. This completes the proof. ■

We next identify some polynomial cases of CPP.

Lemma 5.3. CPP is polynomially solvable if fij(xij −cij) =
|xij − cij|, ∀(i, j) ∈ A.

Proof. If fij(xij) = |xij − cij| for all (i, j) ∈ A, the cost
of reducing the length of a path is equal to the difference
between the path length and the desired value. Therefore, the
problem is reduced to finding a shortest s − t path in G(c).
Since c ≥ 0, Dijkstra’s algorithm can be used to find the
shortest path. The complexity is O(|A| + |V | log |V |). ■

We now consider a wider range of penalty functions. We
say that a penalty function f is uniform to a convex function
g : � �→ �+ if fij(xij − cij) = g(xij − cij), for all (i, j) ∈ A

and x ∈ �|A|
+ . The following lemmas characterize solutions

to the cheapest path with such uniform penalty functions.

Lemma 5.4. Let P be an s − t path and |P| be the number
of arcs it uses. If f is uniform to g and cij − D(P,c)−d

|P| ≥ 0 for

all (i, j) ∈ A, then C(P, d) = |P| · g(
L(P)−d

|P| ).

Proof. From the definition, C(P, d) is the optimum
objective value of the following mathematical programming
problem (3a)–(3c):

Min
∑

(i,j)∈A

g(xij − cij) (3a)

s.t.
∑

(i,j)∈P

xij = d (3b)

x ≥ 0. (3c)

Substituting tij = cij − xij and dropping the nonnegativity
constraint, we get

Min
∑

(i,j)∈A

g(tij) (4a)

s.t.
∑

(i,j)∈P

tij = D(P, c) − d. (4b)

The Karush-Kuhn-Tucker conditions for the above problem
are:

g′(tij) + λ = 0, ∀(i, j) ∈ P

g′(tij) = 0, ∀(i, j) ∈ A \ P.

A solution satisfying these conditions is

t∗ij =
{

D(P,c)−d
|P| if (i, j) ∈ P

0 otherwise,

and

x∗
ij =

{
cij − D(P,c)−d

|P| if (i, j) ∈ P
cij otherwise.

Since cij − D(P,c)−d
N(P)

≥ 0, for all (i, j) ∈ A, x∗ is also
a solution to (3). Therefore, C(P, d) = F(x∗) = |P| ·
g(

D(P,c)−d
|P| ). ■
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Lemma 5.5. CPP is polynomially solvable if f is uniform
to g and cmax − cmin ≤ d

|V |−1 .

Proof. Let P be an arbitrary s − t path with |P| arcs. For
each arc (i, j) ∈ P, it follows that

cij − D(P, c) − d

|P| =
[

cij − D(P, c)
|P|

]
+ d

|P|
≥ (cmin − cmax) + d

|P|
≥ (cmin − cmax) + d

|V | − 1
≥ 0.

The first inequality holds since the difference between the
weight of one arc and the average weight on the path cannot
exceed the difference between cmin and cmax. The second
inequality follows as a simple path consists of no more than
|V | − 1 arcs.

From Lemma 5.4 we know that C(P, d) = |P| ·
g(

D(P,c)−d
N(P)

), which depends only on D(P, c) and |P|. Since
D(P, c) > d, among all s − t paths using a fixed number of
arcs, the shortest one minimizes C(P, d).

Finding the shortest simple path length from s to t using
exactly k arcs is an NP-hard problem (for k = n − 1 it would
solve the Hamiltonian path problem). However, as we show
here, it is sufficient to find the shortest, among all paths (sim-
ple and nonsimple), path length using exactly k arcs, Sk(t).
For Sk(t), the length of a simple path of exactly k arcs, the
minimum of C(P, d) is equal to

min
1≤k≤|V |−1

{
k · g

(
Sk(t) − d

k

)}
.

The value of Sk(t) for paths that could be nonsimple can
be evaluated using dynamic programming: Let Sk(j) be the
shortest path length from s to j using exactly k arcs, for all j ∈
V \{s} and k = 0, 1, . . . , |V |−1. The recursive equations and
the boundary conditions used in the dynamic programming
are

Sk(j) = min

{
min

(i,j)∈A
{Sk−1(i) + cij}, ∞

}
,

∀ 1 ≤ k ≤ |V | − 1, j ∈ V ;

S0(s) = 0, S0(j) = ∞, ∀j ∈ V \ {s}.
It is easy to see, by induction, that Sk(t) is the length of

a path with k arcs from s to t, which has value ∞ if there
is no path with exactly k arcs: This is true initially and then
assuming it is true for k−1, the dynamic programming recur-
sion guarantees that the length of the path with k arcs to any
node j is Sk(j). For each 1 ≤ k ≤ |V | − 1, either Sk(t) = ∞,
i.e., there is no s − t path with exactly k arcs, or the dynamic
programming algorithm yields an s − t path Pk with exactly
k arcs, which is the shortest among all s − t paths using the
same number of arcs (the path Pk may be non-simple).

Define k∗ = argmin{k · g((D(Pk , c) − d)/k) : 1 ≤ k ≤
|V | − 1} (by convention, we let D(Pk , c) = ∞ if there is no

s − t path using exactly k arcs). We claim that P∗ = Pk∗
is

a simple path, and it is the cheapest among all simple paths
from s to t. The proof is by contradiction, as shown next.

Suppose that P∗ is nonsimple, so we can find a different
s − t path P′ that only uses a subset of arcs in P∗. Let k′ < k∗
be the number of arcs in P′. Also let x∗ = x(P∗, d) be the
cheapest modification on P∗; i.e., x∗

ij = cij−(D(P∗, c)−d)/k∗
if (i, j) ∈ P∗, and x∗

ij = cij otherwise. It follows that

C(P∗, d) = k∗g((D(P∗, c) − d)/k∗)
> k′g((D(P∗, c) − d)/k∗)
= C(P′, D(P′, x∗))
≥ C(P′, d).

where the first inequality follows directly from k′ < k∗; the
second equation is based on the definition of the function
C; and the last inequality is due to the fact that x∗ ≥ 0 and
D(P′, x∗) ≤ D(P∗, x∗) = d, and that C(P, d) is decreas-
ing in d given that D(P, c) > d. It is also clear that
C(P′, d) ≥ C(Pk′

, d), since D(P′, c) ≥ D(Pk′
, d). This leads

to the contradiction that C(P∗, d) > C(Pk′
, d).

Next, we show that P∗ is the cheapest among all simple
s − t paths. Let P̂ be an arbitrary simple path that uses k̂ arcs.
It follows that

C(P̂, d) ≥ C(Pk̂ , d) ≥ C(P∗, d).

The complexity of the dynamic programming procedure
is O(|A| · |V |) and it dominates all other steps. The algorithm
stated above thus runs in polynomial time. ■

Finally, we summarize the complexity results of SSISPL:

Theorem 5.1. SSISPL is polynomially solvable if one or
more of the following conditions are satisfied:

• D(c) < d;
• D(c) > d and fij(xij − cij) = |xij − cij| for all (i, j) ∈ A;
• D(c) > d, f is uniform to a convex function, and cmax −cmin ≤

d
|V |−1 .

Proof. The correctness of the above theorem follows
from Lemmas 5.1–5.5. ■

6. CONCLUSIONS

In this article we study the complexity of certain ISPL, as
a generalization of the FISPL investigated in [10]. We show
that ISPL is strictly harder than FISPL as demonstrated in the
special cases where the distance graph is a star or a union of
complete stars. We also provide a polynomial time algorithm
for the more restricted case where the distance graph is a com-
plete star. We then consider a relaxation of ISPL, in which
the shortest path lengths are required to be no less than some
prescribed lower bounds (LBISPL). We provide a compact
convex programming formulation for LBISPL and demon-
strate how it can be utilized to develop a heuristic algorithm
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for ISPL. Also based on this formulation for LBISPL, we
prove that the single-source ISPL problem is polynomially
solvable if certain conditions hold on the penalty function
and the original weight assignment.
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