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Abstract
We present an optimally-competitive algorithm for the problem of maximum online
perfect bipartite matching with i.i.d. arrivals. In this problem, we are given a known
set of workers, a distribution over job types, and non-negative utility weights for
each pair of worker and job types. At each time step, a job is drawn i.i.d. from the
distribution over job types. Upon arrival, the job must be irrevocably assigned to a
worker and cannot be dropped. The goal is to maximize the expected sum of utilities
after all jobs are assigned. We introduce DISPATCH, a 0.5-competitive, randomized
algorithm.We also prove that 0.5-competitive is the best possible. When a job arrives,
DISPATCH first selects a “preferred worker” and assigns the job to this worker if it
is available. The preferred worker is determined based on an optimal solution to a
fractional transportation problem. If the preferred worker is not available, DISPATCH

randomly selects a worker from the available workers.
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1 Introduction

We consider the problem of maximum online perfect bipartite matching. Suppose
that we have a set of jobs and a set of workers. At every time step, a single job arrives
to be served by one of the workers. Upon a job’s arrival, we observe the utility of
assigning the job to each of the workers. We must immediately decide which worker
will serve the job. Once a worker is assigned a job, the worker is busy and cannot be
assigned to another job. Jobs continue to arrive until all workers are busy.

It is natural to model this problem setup as a bipartite graph, where there is an
edge between each worker and job. The weight of the edge equals the non-negative
utility of assigning that worker to that job. The assignment of workers to jobs will
form a perfect matching in this bipartite graph. Our goal is to design a dispatching
algorithm that maximizes the expected sum of utilities of the perfect matching.

In this work, we consider the maximum online perfect bipartite matching problem
with independent and identically distributed (i.i.d.) arrivals. This means that, at each
time step, a job is drawn i.i.d. from a known distribution over job types.

We introduce the randomized algorithm DISPATCH for the problem of online
weighted perfect bipartite matching with i.i.d. arrivals. DISPATCH is 0.5-competitive
algorithm: the total expected utility of the perfect matching produced by DISPATCH

is at least half of the total expected utility of an optimal algorithm that knows the job
arrival sequence in advance.We also describe a family of problem instances for which
0.5 is the best-possible competitive ratio. The DISPATCH algorithm, thus, achieves
the best-possible competitive ratio. In contrast, the same problem with adversarial
job arrivals cannot be bounded, as observed by Feldman et al. [8].

To assign workers to jobs, DISPATCH first selects a preferred worker. This
preferred worker is determined based on an optimal solution to a fractional trans-
portation problem. If the preferred worker is available, then the job is assigned to this
worker. Otherwise, DISPATCH randomly selects a worker from the available workers.

1.1 RelatedWork

Our work resides in the space of online matching problems. We review several
variants of online matching, including the maximum (imperfect) bipartite matching
problem and the minimum (perfect) bipartite matching problem. We also review the
closely-related k-Server problem. For each of these problems, several arrival models
are considered. Arrival models including adversarial, where the adversary chooses
jobs and their arrival order; random order, where the adversary chooses jobs but not
their arrival order; and i.i.d., where the adversary specifies a probability distribution
over job types and each arrival is sampled independently from the distribution. We
briefly describe each of these problems and present best-known results, contrasting
it to the setting considered here. A summary is in Table 1.

1.1.1 MaximumOnline (Imperfect) Bipartite Matching

The maximum online (imperfect) bipartite matching problem is defined on a bipartite
graph with n known workers and n jobs that arrive one at a time. Jobs either get
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Table 1 Best-known competitive ratios and impossibility bounds for online bipartite matching problems

Sense Matching Arrivals Restrictions Best Known Best possible

Max Imperfect Advers. 0/1 0.632 [12] 0.632 [12]

Max Imperfect Rand. Ord. 0/1 0.696 [16] 0.823 [18]

Max Imperfect Rand. Ord. None 0.368 [13] 0.368 [13]

Max Imperfect i.i.d. None 0.730 [4] 0.745 [6]

Min Perfect Advers. Metric O(log2(n)) [3] Ω(log(n)) [20]

Min Perfect Rand. Ord. Metric 2 log (n) [21] 2 log (n) [21]

Max Perfect Adversarial None − 0 [8]

Max Perfect i.i.d. None 1
2
� 1

2
�

�: Results presented in this paper

assigned to a worker or are discarded. The goal is to maximize the cardinality (or
sum of weights) of the resulting matching. In contrast to our problem, jobs may be
the discarded and the resulting matching may be imperfect.

For the unweighted problem with adversarial arrivals, Karp, Vazirani, and Vazi-
rani [12] showed a best-possible algorithm that achieves a competitive ratio of
1 − 1

e
≈ 0.632. Variations of the problem have been proposed: addition of edge or

vertex weights, the use of budgets, different arrival models, etc. Mehta [19] provides
an excellent overview of this literature. When the arrivals are in a random order, it is
possible to do better than 1− 1

e
. Mahdian and Yan [16], in 2011, achieved a competi-

tive ratio of 0.696. Manshadi et al. [18] showed that you cannot do better than 0.823.
If the problem also has weights, then the best-possible competitive ratio is 0.368 by a
reduction from the secretary problem as shown by Kesselheim et al. [13]. They also
give an algorithm that attains this competitive ratio.

The problem has also been studied when the jobs are drawn i.i.d. from a known
distribution. This problem is also referred to as Online Stochastic Matching. The first
result to break the 1 − 1

e
barrier for the unweighted case was the 0.67-competitive

algorithm of Feldman et al. [9] in 2009. To date, the best-known competitive ratio
of 0.730 is due to Brubach et al [4]. This is close the best-known bound of 0.745 by
Correa et al. [6].

1.1.2 Online Minimum (Perfect) Bipartite Matching

The online minimum (perfect) bipartite matching addresses the question of finding
a minimum cost perfect matching on a bipartite graph with n workers and n jobs.
Given any arbitrary sequence of jobs arriving one by one, each job needs to be irre-
vocably assigned to worker on arrival. This problem is the minimization version of
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the problem considered in this work. However, the obtained competitive ratios do not
transfer.

The problem was first considered by Khuller, Mitchell, and Vazirani [14] and
independently by Kalyanasundaram and Pruhs [11]. If the weights are arbitrary, then
the competitive ratio cannot be bounded. To address this, both papers considered the
restriction where the edge weights are distances in some metric on the set of vertices.
They give a 2n−1 competitive algorithm, which is the best-possible for deterministic
algorithms. When randomized algorithms are allowed, the best-known competitive
ratio is O(log2(n)) by Bansal et al. [3]. If the arrival order is also randomized, then
Raghvendra [21] shows that 2 log (n) is attainable. He also shows that this is the best
possible.

1.1.3 k -Server Problem

In the k-server problem, k workers are distributed at initial positions in a metric
space. Jobs are elements of the same metric space and arrive one at a time. When a
job arrives, it must be assigned to a worker which moves to the job’s location. The
goal in the k-server problem is to minimize the total distance traveled by all workers
to serve the sequence of jobs. After an assignment, the worker remains available for
assignment to new jobs. This reassignment distinguishes the k-server problem from
ours, where workers are fixed to a job once assigned.

The k-server problem was introduced by Manasse, McGeoch, and Sleater [17]. A
review of the k-server problem literature was written by Koutsoupias [15]. For ran-
domized algorithms in discrete metrics, the competitive ratio O(log2 (k) log (n)) was
attained by Bubeck et al. [5], where n is the number of points in the discrete metric
space. On the other hand, Ω(log (k)) is a known lower bound. In the i.i.d. setting,
Dehghani et al. [7] consider a different kind of competitive ratio: they give an online
algorithm with a cost no worse than O(log (n)) times the cost of the optimal online
algorithm.

1.2 Applications

We offer four examples of settings where the model of maximum online perfect
bipartite matching with i.i.d. arrivals may be suitable. These examples are not
intended to be exhaustive, only to illustrate how the model can be applied in diverse
settings.

In the first setting, consider the problem of assigning medical practitioners to
patients arriving in an emergency room [23]. Here, workers represent medical prac-
titioners, the jobs are the patients that arrive, and the job type is determined by the
patient’s symptoms. Most patients arrive unannounced, forming a stochastic arrival
sequence. Since not every practitioner is equally suitable to treat a given patient, the
goal is to assign practitioners to arriving patients such that practitioners and patients
are well-matched in the resulting assignment.

In the second setting, consider customers calling a call center [2]. The customer
calls arrive stochastically and needs to be assigned to an operator, the worker. The
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callers are typically asked to categorize their problem and are routed accordingly. The
utility is a measure of the operator’s expertise in handling the particular call type.

In the third setting, consider the problem of matching ad impressions to customers
in an online marketplace for e.g. travel, lodgings, or insurance [19]. In this case, the
customers are the jobs, arriving one at a time. Customers are characterized into types
based on their demographic information and any other factors that may affect the
bids of advertisers, such as previous activity on the site. Unlike general search engine
advertising, the business needs of an online marketplace dictate that an advertisement
must be shown. The utility of displaying an advertisement is the increase in revenue
from the customer.

In the fourth setting, consider the problem of matching drivers to riders in a ride-
sharing system [1]. Trips are bucketed geographically according to the regions in
which the ride starts and ends. More granular regions result in more job types. The
utility of a pairing between driver and rider depends on many aspects, but is not
limited to the distance and duration of the trip, the current location of the driver, and
the driver’s desire to go to the trip’s destination.

The arrival sequence of jobs in many of these applications can be cast as a Poisson
process. When jobs are split into sub-processes according to their type, the resulting
process is a Poisson splitting process. It is well-known that the sub-processes are
independent Poisson processes and that the distribution of waiting times in a Poisson
process is memoryless [22]. As a result, the arrival type of the jobs is i.i.d. when the
the distribution over types is (approximately) independent of time. The i.i.d arrival
model, as used here, is thus well-suited when an arrival sequence is a Poisson process.

1.3 Structure of this Work

This paper is organized as follows. Section 2 formally introduces the problem of
online perfect bipartite matching with i.i.d. arrivals and defines the concept of com-
petitive ratio. Section 3 describes DISPATCH, presents an example to demonstrate the
algorithm, and provides the proof that DISPATCH is 0.5-competitive. Section 4 intro-
duces a family of instances of the online perfect bipartite matching problem for which
no online algorithm performs better than 1

2 in terms of competitive ratio. Finally,
Section 5 summarizes the results and suggests directions for future research.

2 Preliminaries

The set of workers is denoted by W with size n = |W |. The set J denotes the set of
job types with size k = |J |. For every worker w ∈ W and job type j ∈ J there is a
utility of uwj ≥ 0 for assigning a job of type j to worker w. Let D(J ) be a known
probability distribution over the job types.

At every time step t = 1, . . . , n, a single job is drawn i.i.d. from J according toD.
The job must be irrevocably assigned to a worker before the next job arrives. Workers
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are no longer available after they have been assigned a job. Let rj denote the expected
number of jobs of type j that arrive. After n steps, each worker is assigned to one
job and the resulting assignment forms a perfect matching. Our goal is to design a
procedure such that the expected sum of the utilities of the resulting perfect matching
is as high as possible.

Throughout this work, we will repeatedly use two bipartite graphs; the expectation
graph G and the realization graph ̂G. The expectation graph G = (W, J, E) is a
complete bipartite graph defined over the set of workers W and the set of job types
J . An edge [w, j ] ∈ E has associated utility uwj ≥ 0, for w ∈ W and j ∈ J . The
realization graph ̂G = (W, ̂J , ̂E) is the random bipartite graph obtained after all n

jobs have arrived. ̂J denotes the set of n jobs that arrived. We use ĵt ∈ ̂J to denote
the job that arrives at time t and jt ∈ J to denote its job type. The edge set ̂E consists
of all worker-job pairs, such that ̂G is a complete bipartite graph defined over W

and ̂J . Every edge [w, ĵ ] ∈ ̂E has utility uwj , where j is the job type of job ĵ . It is
important to remember that the expectation graph G is deterministic and known in
advance whereas the realization graph ̂G is a random graph representing a realization
of the job arrival process and is revealed over time.

An instance of the online perfect bipartite matching problem with i.i.d. arrivals is
defined by the set of workers W , the job types J , non-negative utilities uwj , and a
distribution over the job types D(J ). Equivalently, the expectation graph G and the
distribution D(J ) defines an instance of this problem. Here we analyze the family
of potentially randomized algorithms that return a perfect matching M̂ on ̂G. The
performance of an algorithm ALG for a single realization ̂G is given by:

ALG(̂G) = E

⎡

⎣

∑

[w,j ]∈E

uwj Iwj

⎤

⎦ ,

where Iwj is a random indicator variable that equals 1 if ALG assigned a job of
type j to worker w and equals 0 otherwise. For a given problem instance defined by
expectation graph G and distribution D(J ), E

[

ALG(̂G)
]

measures the algorithm’s
expected performance over samples of ̂G from G according to D(J ).

The worst-case performance across instances is measured by the competitive ratio.
Let OPT (̂G) be the maximum weight perfect matching in the realization graph
̂G and let E

[

OPT (̂G)
]

be its expectation across different realizations for a given
expectation graph G and distributionD(J ). E

[

OPT (̂G)
]

measures the performance
of an optimal algorithm that has full information about the arrival sequence. This is

known as an adaptive online adversary. The ratio
E

[

ALG(̂G)
]

E
[

OPT (̂G)
] measures the perfor-

mance of ALG relative to the optimal algorithm for a given instance of the problem.
The competitive ratio is the worst-case, i.e. lowest, ratio among all possible instances
of the expectation graph G and distributions D(J ):
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Definition 1 (Competitive Ratio) An algorithm ALG is said to have a competitive
ratio of α when α is the largest value such that, for all instances of the expectation
graph G and distribution D(J ),

α ≤ E
[

ALG(̂G)
]

E
[

OPT (̂G)
] .

2.1 Bounding the Performance of OPT

It is difficult to compute E
[

OPT (̂G)
]

directly. We show that the randomness in ̂G

reduces the expected value of the optimal perfect matching compared to the value of
the optimal transportation problem where the number of jobs of each type is equal to
its expectation. This offline transportation problem is then used to guide the online
assignment.

A similar approach was used in the context of unweighted online imperfect
bipartite matching by Feldman et al. [9] and Haepler et al. [10]. Here, we use a
transportation problem instead of a maximum weight matching. We also bound the
performance of OPT differently.

Recall that, in expectation, rj jobs of job type j ∈ J will arrive in Ĝ. An optimal
fractional matching of these jobs is obtained by solving a fractional transportation
problem on the expectation graph G, where each job type has a demand of rj and
each worker has a supply of 1 and the sum of utilities is maximized.

Formally, let fwj ≥ 0 be the flow from worker w ∈ W to job type j ∈ J . This
can be interpreted as a fractional assignment of worker w to jobs of job type j . We
define the transportation problem T PP :

T PP (G) = max
fwj ≥0

∑

w∈W

∑

j∈J

uwjfwj ,

∑

w∈W

fwj = rj ∀j ∈ J,

∑

j∈J

fwj = 1 ∀w ∈ W .

Let f ∗
wj be an optimal flow on edge [w, j ] ∈ E.

We claim that E
[

OPT (̂G)
] ≤ T PP (G). The reason is that the weighted aver-

age of perfect matchings OPT (̂G) forms a feasible solution to the transportation
problem above.

Lemma 1 Given any expectation graph G and distribution over job types D(J ),

E
[

OPT (̂G)
] ≤ T PP (G).
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Proof Assign each edge in G an indicator variable Iwj , which takes on the value 1
if OPT assigns worker w to a job of type j in ̂G and 0 otherwise. We claim that
fwj = E

[

Iwj

]

forms a feasible solution to the transportation problem in G. Indeed,

∑

w∈W

E
[

Iwj

] = E

[

∑

w∈J

Iwj

]

= rj ,
∑

j∈J

E
[

Iwj

] = E

⎡

⎣

∑

j∈J

Iwj

⎤

⎦ = 1.

SinceE
[

Iwj

]

is feasible for the transportation problem, it must have objective smaller
than T PP (G):

E
[

OPT (̂G)
] = E

⎡

⎣

∑

[w,j ]∈E

uwj Iwj

⎤

⎦ =
∑

[w,j ]∈E

uijE
[

Iwj

] ≤ T PP (G).

This implies that we can bound the performance of an algorithm with respect to
T PP (G). We apply this technique in Section 3.3.

3 A 1/2-Competitive Algorithm

3.1 The DISPATCH Algorithm

Before any jobs arrive, DISPATCH solves the offline transportation problem T PP

on the expectation graph G. We find an optimal flow f ∗
wj from workers to jobs.

Throughout the online stage, the algorithm reconstructs this flow between job types
and workers as much as possible. For each arriving job, a preferred worker wP is
randomly selected with a probability proportional to the optimal flow f ∗ between the
corresponding job type and the worker in the transportation problem. If the preferred
worker is no longer available, then the job is assigned to a worker selected uniformly
at random from the set of available workers AW . We refer to this worker as the
assigned worker wA. The resulting assignment forms a perfect matching on ̂G since
each worker is assigned at most once and each job is assigned to a worker.

In the context of online bipartite matching, the idea of using an offline solution
to guide the online algorithm was used in the “Suggested Matching” algorithm [9]
and subsequent work, e.g. [10]. Our algorithm differs in two ways. First, the offline
solution is a transportation problem instead of a maximum weight matching prob-
lem. Second, the job is randomly assigned instead of discarded when the preferred
worker is no longer available. This random selection ensures that we obtain a perfect
matching and is crucial for Lemma 3. The analysis of the competitive performance
of DISPATCH is also novel except for Lemma 2.

The algorithm is formally defined in Algorithm 1. We prove the following result:
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Theorem 1 DISPATCH achieves a competitive ratio of at least 1
2 for the online

perfect bipartite matching problem with i.i.d. arrivals.

3.2 Example

To illustrate DISPATCH, we consider the example shown in Fig. 1. The example has
five workers (n = 5) and three job types (k = 3). The expectation graph is shown in
Fig. 1a. Note that the distribution over job types, D(J ), is fully specified by rj . An
instance of the realization graph is shown in Fig. 1c.

Figure 1b shows f ∗, the solution to the transportation problem on G that is used
by DISPATCH. The corresponding objective value is T PP (G) = 8. Figure 1d to h
show the arrival of the jobs and the corresponding assignment made by DISPATCH.
Figure 1h illustrates an instance where the preferred worker selected by DISPATCH

is not available, and a different worker is assigned. For this particular realization ̂G,
the perfect matching constructed by DISPATCH has a total utility 6, while the optimal
perfect matching on ̂G has a total utility 8. Note that these values are for this particular
realization of ̂G. The performance guarantee is with respect to the expectation over
all realizations of ̂G.
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Fig. 1 An example of the DISPATCH algorithm on the realization graph shown in Fig. 1c. The underlying
expectation graph G with n = 5 and k = 3 is shown in Fig. 1a. In Fig. 1d up to h, the numbers in
parenthesis denote the probability of selecting that worker as the preferred worker. Red edges represent
the assignment made by the algorithm, thick black edges are previous assignments, and blue edges mark
unavailable preferred workers. Figure 1h shows an instance where the preferred worker is busy
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3.3 Proof of 1
2 -Competitiveness

To prove that the perfect matching produced by DISPATCH has a competitive ratio of
a 1

2 , we rely on a key feature of DISPATCH: It maintains the invariant, Lemma 4, that
workers are equally likely to be available even though the distribution over job types
may not be uniform. To prove this invariant, we first show that both the preferred and
the assigned worker are selected uniformly across workers. Recall that the preferred
worker may be different than the assigned worker. In fact, the preferred worker does
not have to be available and could have been assigned to another job already. Lemma
2 states this formally for the selection of the preferred worker. The observation under-
lying this lemma is that each worker is selected with a probability proportional to the
total flow f ∗ originating at the worker, which is equal to one for each worker.

Throughout this section we use additional notation. Let the random variable WP
t

represent the preferred worker for the job arriving at time t , and let the random vari-
able WA

t be the assigned worker. Furthermore, let the random set AWt consist of
the available workers when the job at time t arrives. We make no further assump-
tions on the expectation graph G and/or distribution D(J ) other than those outlined
in Section 2. Lemmas and theorems in this section are therefore applicable to all
problem instances.

Lemma 2 At each time t , the preferred worker WP
t is drawn uniformly from all

workers:

P

(

WP
t = w

)

= 1

n
for all w ∈ W and t = 1, . . . , n.

Proof By conditioning on the job type jt at stage t and using the law of total
probability, we can rewrite the probability of selecting worker w as:

P

(

WP
t = w

)

=
∑

j∈J

P

(

WP
t = w|jt = j

)

P (jt = j) .

Since the jobs are drawn i.i.d., a job of type j is selected with probability
P (jt = j) = rj

n
, by definition of rj . Given a job of type j , the algorithm selects a

worker w as the preferred worker with probability P
(

WP
t = w|jt = j

) = f ∗
wj

rj
. Thus,

P

(

WP
t = w

)

=
∑

j∈J

f ∗
wj

rj

rj

n
=

∑

j∈J

f ∗
wj

n
.

Finally, recall that every worker supplies a unit of flow in the offline transportation
problem, equivalent to the expected number of jobs it serves. The edges adjacent to
worker w must thus transport a unit of flow, so

∑

j f ∗
wj = 1. Thus, P

(

WP
t = w

)

= 1
n
.
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Next we show that the assigned worker is selected uniformly at random from the
set of available workers. For this lemma to hold, it is crucial that the draw of the
assigned worker is done uniformly at random when the preferred worker is not avail-
able. Recall that WA

t is the assigned worker for the job arriving at time t and that
AWt are the available workers before the job arrives.

Lemma 3 At each time step t , the assigned worker WP
t is drawn uniformly from the

available workers:

P

(

WA
t = w|w ∈ AWt

)

= 1

n − (t − 1)
.

Proof Assume that w is fixed and that w ∈ AWt . There are two ways for w to be
the assigned worker. Either w is the preferred worker or the preferred worker is not
available and w is randomly selected. We express this as:

P

(

WA
t = w|w ∈ AWt

)

= P

(

WP
t = w|w ∈ AWt

)

+P

(

WA
t = w|WP

t /∈ AWt, w ∈ AWt

)

×P

(

WP
t /∈ AWt |w ∈ AWt

)

The selection of WP
t is independent of whether w ∈ AWt . Therefore,

P

(

WA
t = w|w ∈ AWt

)

= P

(

WP
t = w

)

+P

(

WA
t =w|WP

t /∈ AWt, w ∈ AWt

)

P

(

WP
t /∈ AWt

)

Now we use three observations to complete the proof. First, Lemma 2 implies
that P

(

WP
t = w

) = 1
n
. Second, since there are t − 1 busy workers, Lemma 2

implies that P
(

WP
t /∈ AWt

) = (t−1)
n

. Third, the fact that the assigned worker is
drawn uniformly at random when the preferred worker is not available implies that
¶WA

t = w|WP
t /∈ AWt, w ∈ AWt = 1

n−(t−1) . Thus,

P

(

WA
t = w|w ∈ AWt

)

= 1

n
+ 1

n − (t − 1)

(t − 1)

n
= 1

n − (t − 1)
.

Lemma 3 specifies each available worker is equally likely to be assigned to the
next job. As a consequence, we can derive the probability that a worker is still
available after t − 1 jobs have arrived:

Lemma 4 DISPATCH maintains the following invariant throughout the online stage:

P (w ∈ AWt) = n − (t − 1)

n
for all w ∈ W and t = 1, . . . , n.
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Proof At every time step, a worker is chosen randomly from the remaining available
workers, as shown in Lemma 3. The probability that an available worker in time step
t is still available in time step t + 1 is:

P (w ∈ AWt+1|w ∈ AWt) = 1 − P

(

WA
t = w|w ∈ AWt

)

= 1 − 1

n − (t − 1)
= n − t

n − (t − 1)
.

Thus, the probability of being available for the t th job is equal to:

P (w ∈ AWt) =
t

∏

i=1

¶w ∈ AWt |w ∈ AWt−1

= n − (t − 1)

n − (t − 2)

n − (t − 2)

n − (t − 3)
. . .

n − 1

n
= n − (t − 1)

n
.

From Lemma 4, we know the probability that a worker is available at each time
step. We use this to bound the probability that a worker w is assigned to a job with
job type j by DISPATCH. We use the indicator random variable Iwj . Iwj = 1 when
the DISPATCH assigns worker w to a job with job type j , and Iwj = 0 otherwise.
We bound the probability with respect to f ∗

wj in T PP (G). By bounding the algo-
rithm’s performance with respect to T PP (G) we can bound the competitive ratio of
DISPATCH. See Section 2.1 for more details.

Lemma 5 Given a perfect matching M̂ constructed by DISPATCH, the probability
that worker w is assigned to a job of type j is bounded by:

P
(

Iwj = 1
) ≥ 1

2
f ∗

wj .

Proof If Iwj = 1, then worker w must have been assigned to a job of type j in one
of the time steps. Thus, Iwj = ∑n

t=1 I t
wj where I t

wj is indicator for whether worker
w is assigned to a job of type j at time step t :

P
(

Iwj = 1
) =

n
∑

t=1

P

(

I t
wj = 1

)

.

Let us bound the probability P
(

I t
wj = 1

)

for all t = 1, . . . , n. First, we condition on

the job type arriving at time t . Note that jt must equal j :

P

(

I t
wj = 1

)

= P

(

I t
wj = 1|jt = j

)

P (jt = j) .

Recall that there are two ways for worker w to be assigned after a job of type j

arrives. Either w is the preferred worker and is assigned the job, or another worker
w′ is selected as the preferred worker but is not available. w is then selected as the
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assigned worker. We lower bound the probability that worker w is assigned for the
job of type j by considering only the case where w is the preferred worker.

P

(

I t
wj = 1

)

≥ P

(

w ∈ AWt, W
P
t = w|jt = j

)

P (jt = j)

= P (w ∈ AWt)P
(

WP
t = w|jt = j

)

P (jt = j)

= n − (t − 1)

n

f ∗
wj

rj

rj

n

= 1

n

n − (t − 1)

n
f ∗

wj .

For the first equality, we use that the job type at time t and the selection of the
preferred worker are independent from whether w is available at time t . The sec-
ond equality follows from Lemma 4, the weighted random selection of the preferred
worker, and the job arrival process.

We use P

(

I t
wj = 1

)

= 1
n

n−(t−1)
n

f ∗
wj to bound the total probability of assigning

worker w for a job of type j :

P
(

Iwj = 1
) =

n
∑

t=1

P

(

I t
wj = 1

)

≥
n

∑

t=1

1

n

n − (t − 1)

n
f ∗

wj = 1

2

n + 1

n
f ∗

wj ≥ 1

2
f ∗

wj .

Lemma 5 bounds the probability that worker w is matched to a job of type j .
By linearity of expectation, Theorem 1 and the 1

2 competitive ratio follow almost
immediately from Lemma 5.

Proof of Theorem 1 The expected utility returned by the algorithm is a weighted sum
of indicators Iwj , where Iwj = 1 when worker w is assigned to a job of type j and 0
otherwise. Note that each worker is assigned to at most one job (type). We can then
apply Lemma 5 to bound the probability P(Iwj = 1) and the expected utility of the
algorithm:

E
[

DISPATCH(̂G)
] = E

⎡

⎣

∑

w∈W,j∈J

uwj Iwj

⎤

⎦

=
∑

w∈W,j∈J

uwjE
[

Iwj

]

=
∑

w∈W,j∈J

uwj¶Iwj = 1

≥ 1

2

∑

w∈W,j∈J

uwjf
∗
wj = 1

2
T PP (G).

Note that the inequality requires that the utility weights are non-negative.
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Finally, we apply Lemma 1 to obtain a bound on the competitive ratio attained by
DISPATCH for any expectation graph G and distribution D(J ):

E
[

DISPATCH(̂G)
] ≥ 1

2
T PP (G) ≥ 1

2
E

[

OPT (̂G)
]

4 Best-Possible Competitive Ratio

We present here a family of instances for which any online algorithm attains a com-
petitive ratio of at most 1

2 . The DISPATCH algorithm guarantees a competitive ratio
of 1

2 and is thus optimal with respect to competitive ratio.

Theorem 2 For the online perfect bipartite matching problem with an i.i.d. arrival
process, no online algorithm can achieve a competitive ratio better than 1

2 .

Proof Consider an instance G with the number of job types k = n + 1. Let the job
types be indexed from 0 to n and the workers from 1 to n. Job types 1 to n each arrive
with probability p/n and job type 0 arrives with probability 1 − p. For this graph,
we set uwj = 1 if w = j and to 0 otherwise. This implies uw,0 = 0 for all w ∈ W .
See Fig. 2 for an illustration.

Note that OPT gains a utility of one per unique job type in {1, . . . , n} that arrives.
The expected number of unique job types is computed by considering each job type as
a geometric random variable with a success probability of p

n
. Thus, E

[

OPT (̂G)
] =

n
(

1 − (

1 − p
n

)n).
For any online algorithm ALG∗, t − 1 workers are no longer available at time step

t regardless of the strategy. Thus, with probability (1 − p) + p t−1
n

the increase in

Fig. 2 Expectation graph
G = (W, J,E) used in the
proof of Theorem 2. Edges in
black have a utility of 1 and
edges in gray have a utility of 0
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utility is zero. Thus, the total expected utility increases by at most p
n−(t−1)

n
in time

step t . The total expected utility obtained by ALG∗ is then:

E
[

ALG∗(̂G)
] ≤ p

n

n
+ p

n − 1

n
+ p

n − 2

n
+ · · · + p

1

n
= 1

2
p(n + 1)

We compute the relevant ratio and then take the limit as n goes to infinity:

lim
n→∞

E
[

ALG∗(̂G)
]

E
[

OPT (̂G)
] = lim

n→∞

1
2p(n + 1)

n
(

1 − (

1 − p
n

)n) = 1/2 · p

1 − e−p

Since p can take on any value in the interval (0, 1), we consider the limit as p goes
to zero:

lim
p→0+

1/2 · p

1 − e−p
= 1

2
.

Corollary 1 DISPATCH achieves the best-possible competitive ratio of 1
2 for the

Online Perfect Bipartite Matching problem.

5 Conclusion

In this paper, we examine the problem of online perfect bipartite matching with
i.i.d. arrivals from a known distribution. We present the DISPATCH algorithm. It
attains a competitive ratio of 1

2 . We show that this is the best possible. Thus, the
algorithm DISPATCH is optimal in terms of competitive ratio.

There is an intriguing difference between online perfect bipartite matching algo-
rithms for minimization and the DISPATCH algorithm for maximization. Whereas the
competitive ratio for minimization is bounded logarithmically, a constant bound was
obtained for maximization with i.i.d. arrivals. This raises the question of whether a
constant competitive ratio is possible for minimization with i.i.d. arrivals.

It may be possible to translate the analysis in this work to other contexts. Our
analysis relied on two key ideas; the use of the expectation graph and proving that,
regardless of how the jobs arrive, the DISPATCH algorithm effectively translates the
non-uniform sampling over jobs to a uniform sampling over workers.
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