
19

Approximation Algorithms for a Minimization Variant of the
Order-Preserving Submatrices and for Biclustering Problems

DORIT S. HOCHBAUM, University of California, Berkeley
ASAF LEVIN, The Technion

Finding a largest Order-Preserving SubMatrix, OPSM, is an important problem arising in the discovery of
patterns in gene expression. Ben-Dor et al. formulated the problem in Ben-Dor et al. [2003]. They further
showed that the problem is NP-complete and provided a greedy heuristic for the problem. The complement
of the OPSM problem, called MinOPSM, is to delete the least number of entries in the matrix so that the
remaining submatrix is order preserving. We devise a 5-approximation algorithm for the MinOPSM based
on a formulation of the problem as a quadratic, nonseparable set cover problem. An alternative formulation
combined with a primal-dual algorithm improves the approximation factor to 3. The complexity of both
algorithms for a matrix of size m × n is O(m2n). We further comment on the related biclustering problem.

Categories and Subject Descriptors: G.2.1 [Mathematics of Computing]: Discrete Mathematics—
Combinatorics

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Gene expression, order preserving, approximation algorithm,
biclustering

ACM Reference Format:
Hochbaum, D. S. and Levin A. 2013. Approximation algorithms for a minimization variant of the order-
preserving submatrices and for biclustering problems. ACM Trans. Algorithms 9, 2, Article 19 (March 2013),
12 pages.
DOI:http://dx.doi.org/10.1145/2438645.2438651

1. INTRODUCTION

According to Cheng and Church [2000]: “In expression data analysis, the uttermost im-
portant goal . . . is the finding of a set of genes showing strikingly similar up-regulation
and down-regulation under a set of conditions.”

The discovery of patterns in gene expression matrices is abstracted as the identi-
fication of an order-preserving submatrix. The input to the problem is an m × n real
gene expression matrix A = (aij). The entries in columns represent different gene ex-
pressions during a particular experiment or subject to a specific condition. A pattern
is a p × q submatrix B = (bij) of A so that all rows increase or decrease uniformly.
That is, for j1 �= j2 and for all i = 1, . . . p, bij1 < bij2 , or for all i = 1, . . . p, bij1 > bij2 .
This is equivalent to having a permutation of the q columns of B such that all rows
have (strictly) increasing elements: for j1 < j2 bij1 < bij2 for all i = 1, . . . p. The pattern

The research of D. S. Hochbaum was supported in part by NSF award nos. CMMI-1200592 and CBET-
0736232.
Authors’ addresses: D. S. Hochbaum, Department of Industrial Engineering and Operations Research, Uni-
versity of California, Berkeley, CA 94720; A. Levin (corresponding author), Faculty of Industrial Engineering
and Management, The Technion, 32000 Haifa, Israel; email: levinas@ie.technion.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1549-6325/2013/03-ART19 $15.00
DOI:http://dx.doi.org/10.1145/2438645.2438651

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

19:2 D. S. Hochbaum and A. Levin

expressed in the submatrix B might arise due to similar responses to different stages
of an experiment, or different conditions, representing similar response over time, or
representing distinct stages in the progress of a disease or in a cellular process. The
objective is to identify such submatrix B that has the largest number of elements in it.
The submatrix B is called order preserving.

The Order-Preserving SubMatrix (OPSM) problem is to identify a submatrix of A
that is order preserving so that the total number of entries in the submatrix is max-
imized. The problem is then to find a subset of columns of the given matrix A and a
permutation on these columns, and a subset of rows so that for the permutation on the
subset of columns all rows are monotone increasing.

Ben-Dor et al. [2003] formulated the OPSM problem and showed that in the general
case it is NP-hard. They proposed a greedy heuristic algorithm for finding a hidden
order-preserving submatrix.

For the OPSM problem we differentiate between two parts of the problem. One part
is to determine the permutation of the columns in the order-preserving submatrix. The
second part is to find a largest order-preserving submatrix that consists of a subset of
rows that conform to the determined permutation restricted to a subset of columns se-
lected. For the first part, for a data matrix Am×n the number of column permutations
is no more than n!. This number can be reduced considerably: The number of permuta-
tions may not exceed the number of rows m as we are only interested in permutations
that agree with at least one row. Therefore the approximation algorithm will be applied
for one row permutation at a time and select the largest OPSM found. We further ob-
serve that it is possible to replace the matrix A by n copies of itself, A =[A, A, . . . , A].
An order-preserving submatrix of A never contains two copies of the same column of
A as the entries are of equal value, instead of strictly increasing. Thus any OPSM of A
corresponds to an OPSM of A. In that case one can apply an optimal algorithm to the
matrix A with the identity permutation.

The search for the maximum order-preserving submatrix is equivalent to the com-
plementary problem of minimizing the number of entries in the matrix that are deleted
from the matrix A. This equivalence is with respect to the optimal solutions to both
problems, and does not carry to approximation algorithms’ equivalence. So the reduc-
tion between the two problems is not an approximation-preserving reduction. It is this
minimization problem named MinOPSM that we study here, and for which we provide
approximation algorithms. As demonstrated here, the formulation of the problem af-
fects greatly its solvability and the approximation algorithms that can be derived. Our
main contribution in this article is a 3-approximation algorithm for the MinOPSM
problem of complexity O(m2n). Our algorithm is based on the primal-dual scheme us-
ing a formulation of the problem with O(mn2) constraints for a given permutation of
the columns. We identify special properties of the problem that allow the algorithm
to consider only O(mn) constraints. This compact representation of the constraints
used throughout the algorithm contributes to small storage space and is the key-point
in our improved time complexity. Our approximation algorithms are the first known
approximation algorithms for the MinOPSM problem.

Note that the transformation of A with arbitrary permutation to A with the identity
permutation preserves the value of an optimal solutions to both the OPSM problem
and to the MinOPSM problem. However, when we apply approximation algorithms,
the transformation preserves the approximation ratio when applied to OPSM, but it
does not preserve the approximation ratio when applied to MinOPSM. Thus, our ap-
proximation algorithms for MinOPSM which use a fixed permutation will be applied
m times, once for each row.

As we are approximating MinOPSM and not the OPSM problem itself, our results
do not imply a constant approximation algorithm for OPSM.

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

Approximation Algorithms for a Variant of the Order-Preserving Submatrices 19:3

The OPSM and MinOPSM problems belong to a family of biclustering problems.
Biclustering was defined by Mirkin [1996] as the simultaneous clustering of both row
and column sets in a “data matrix”. One common specific biclustering problem refers to
a 0−1 matrix where the object is to find a largest submatrix that has all entries equal 1.
As we will see, the definition of the “size” of the submatrix affects the complexity of the
problem. We prove that one of these biclustering problems is related to a special case
of MinOPSM. The biclustering problems are observed to be node or edge deletion in a
bipartite graph so as to obtain a biclique (a complete bipartite graph). The relevance
of the results on approximating problems related to bicliques, in Hochbaum [1982], is
pointed out.

Article Outline. We describe in Section 2 our 5-approximation algorithm, and
present its analysis. This approximation algorithm serves to present the main ideas
that are used in Section 3 to obtain our improved 3-approximation algorithm for
MinOPSM. In Section 4 we consider the biclustering problem. Finally, Section 5 pro-
vides brief concluding remarks.

2. A FORMULATION OF MINOPSM AND A 5-APPROXIMATION ALGORITHM

2.1. MinOPSM Problem Formulation

As discussed in the Introduction, the MinOPSM problem is reducible to the problem
solved for one permutation: the identity permutation. The solution is taken to be the
best (giving a largest OPSM) among the m permutations corresponding to the m rows
of A.

Let ri be a binary variable that is equal to 1 if the corresponding row i is excluded
from the submatrix and cj is a binary variable equal to 1 if the corresponding column
j is excluded from the submatrix.

For each row i that has a pair of entries violating the monotone increasing order,
j < k and aij ≥ aik, both aij and aik cannot be present in the order-preserving subma-
trix. There are three possibilities: either row i is excluded from the order-preserving
submatrix, or column j is excluded, or column k is excluded. The following optimization
problem is then equivalent to MinOPSM.

(OPSM1) min
∑m

i=1 nri + ∑n
j=1 mcj − (

∑m
i=1 ri)(

∑n
j=1 cj)

subject to ri + cj + ck ≥ 1 ∀i and for allj < k such that aij ≥ aik
ri, cj binary ∀i, j.

In this formulation the objective function is the same as that of MinOPSM. To see
that, observe that each deleted entry is counted exactly once in the objective function
of OPSM1. This is because a deleted entry is counted exactly once in the first two terms
if either its row or its column are deleted but not both. If both the column and row of
a deleted entry are deleted then it is counted twice in the first two terms. But then
the number of such entries is counted in the third term of the objective function and
subtracted from the total.

It is evident from this formulation that this problem is a set cover problem (the
elements of the set cover instance are the constraints of OPSM1, and the sets are the
variables of this formulation where a set contains all constraints that will be satisfied
if we set the corresponding variable to 1), albeit with an objective that contains a
nonlinear term. The constraint matrix of this problem is that of a set cover where
each element can be covered by three sets at most. In other words, each row has at
most three 1s in it. For such a problem, with each row sum of the constraint matrix
not exceeding 3, the algorithm of Hochbaum [1982] gives a factor-3 approximation.
This is, however, for a linear objective set cover problem. So we can 3-approximate the

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

19:4 D. S. Hochbaum and A. Levin

problem with the linear part of the objective min
∑m

i=1 nri + ∑n
j=1 mcj. Let the number

of rows and columns in the 3-approximate solution to the linear set cover be RA, CA.

2.2. The Approximation Factor

Here we adjust the approximation factor of the set cover problem to account for the
nonlinear objective. The question we address is how different the approximation for
the objective of min

∑m
i=1 nri + ∑n

j=1 mcj is from the nonlinear objective?
Firstly

∑m
i=1 nri + ∑n

j=1 mcj > 2(
∑m

i=1 ri)(
∑n

j=1 cj). So this immediately yields a
6-approximation algorithm. With a tighter analysis we show next that this is a 5-
approximation algorithm.

Recall that RA = ∑m
i=1 ri and CA = ∑n

j=1 cj where ri and cj are according to the
solution obtained by the algorithm. Therefore, the solution derived by the algorithm,
RA, CA, corresponds to the (nonlinear) objective value aA − cA = nRA + mCA − RACA

where aA = nRA + mCA and cA = RACA. Consider the optimal solution (r∗, c∗) to the
linear programming relaxation of (OPSM1) with the linear objective function. Denote
RO = ∑m

i=1 r∗
i and CO = ∑n

j=1 c∗
j . Thus the optimal solution value is aO − cO = nRO +

mCO − ROCO where aO = nRO + mCO and cO = ROCO. Then,

aA−cA

aO−cO = aA

aO + aAcO−aOcA

aO(aO−cO)
≤ aA

aO + (aA−aO)cO

aO(aO−cO)
,

where the equality holds by simple arithmetic and the inequality holds because cA ≥
cO. This last inequality holds because the approximate solution is obtained by rounding
up the components of (r∗, c∗). Now aA ≤ 3aO follows from the performance guarantee
of the 3-approximation and therefore we conclude

aA−cA

aO−cO ≤ 3 + 2aOcO

aO(aO−cO)
= 3 + 2cO

aO−cO .

Furthermore, aO ≥ 2cO. So,

aA−cA

aO−cO ≤ 3 + 2cO

cO = 5.

This discussion has thus established the following.

LEMMA 2.1. The set cover approximation algorithm is a 5-approximation algorithm
for MinOPSM.

2.3. The Complexity

The algorithm of Bar-Yehuda and Even [1981] improves the complexity of the algo-
rithm of Hochbaum [1982] for the set cover problem. That algorithm selects one un-
covered element, or unsatisfied constraint, at a time, and a variable, or set, among the
candidates that can cover that element. The variable chosen in the cover is the variable
of minimum reduced cost. The algorithm then updates the reduced costs of other sets
that cover the same element so as to maintain dual feasibility (see Hochbaum [1996]
for details). The complexity of this approximation algorithm is linear in the number of
1s in the constraint matrix. Since each row in the constraint matrix has three 1s this
complexity is 3 times the number of constraints. We observe, however, that for each
row of the matrix there are at most O(n2) constraints for a total of O(mn2) constraints.

Although the formulation OPSM1 has O(mn2) constraints, we demonstrate that the
algorithm’s complexity is only O(mn). This is achieved by generating only O(mn) con-
straints throughout the execution of the algorithm.

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

Approximation Algorithms for a Variant of the Order-Preserving Submatrices 19:5

We note first that when a variable or a set, in set cover terminology, is selected in
the cover, it then covers and thus eliminates either all constraints corresponding to
a column or all constraints corresponding to a row depending on whether a column
or row variable were selected. Therefore the number of variable selection steps in the
algorithm is only O(m + n) and thus linear in the dimension of the matrix A. We next
address the complexity of each step. To simplify notation we define a conflict set for
each row i, Ci, as the collection of ordered pairs j1 < j2 such that aij1 ≥ aij2.

At each step of the algorithm, a violated constraint that is not satisfied by the cur-
rent solution needs to be identified and then either one column or one row is deleted.
In order to find a violated constraint, we maintain a queue Q of a subcollection of
the violated constraints, a linked list C of nondeleted columns, and a linked list R of
nondeleted rows (see Chapter 10 in Cormen et al. [2001] for definitions of these data
structures). Two columns j and k, for j < k, are said to be adjacent in C if j, k ∈ C and
for all columns t such that j < t < k, t /∈ C – namely, t has already been deleted. If j and
k are adjacent in C and j < k, we set k = next(j) in the linked list C. Throughout the
algorithm a violated constraint ri + cj + ck ≥ 1 is added to Q only if j and k are adjacent
in C and i ∈ R. In spite of this apparent restriction, we prove that if there is a violated
constraint, then there is at least one such constraint in Q.

LEMMA 2.2. If the set of violated constraints is nonempty, then there exists a vio-
lated constraint ri + cj + ck ≥ 1 such that j and k are adjacent in C and i ∈ R.

PROOF. Suppose by contradiction that the claim does not hold. Then each row is
monotone increasing along the sequence of nondeleted adjacent columns, as otherwise
there will be a constraint with adjacent columns. Hence the nondeleted entries form
an order-preserving submatrix and there are no violated constraints. This contradicts
the assumption that the set of violated constraints is nonempty.

We next describe the initialization of the data structures. R is initialized as the list
of all m rows, and similarly C is initialized as the list of all n columns where for all
j = 1, 2, . . . , n − 1 column j + 1 is the successor of column j in C (denoted as j + 1 =
next(j)). In all iterations we maintain C as a sorted list of indices of the nondeleted
columns. To initialize Q we need to traverse each row i of the matrix, and check for all
values of j = 1, 2, . . . , n−1 if (j, j+1) ∈ Ci (and if so add the constraint ri + cj + cj+1 ≥ 1
to Q). So Q is initialized to the following set of constraints {ri + cj + cj+1 ≥ 1 : i =
1, 2, . . . , m; (j, j+1) ∈ Ci}. This initialization of Q takes O(mn) time because we need to
check only O(n) pairs (j, j + 1) for all values of i. Hence, the initialization of our data
structures takes O(mn) time.

Each iteration begins by popping a constraint from Q. If this constraint is no longer
violated then it is discarded and the next constraint is popped from Q. If it is a violated
constraint we apply the iteration of the algorithm of Bar-Yehuda and Even [1981]. At
the end of the iteration, the algorithm determines whether to delete a row or a column.
If the algorithm deletes a column j, then denote by t the column immediately preceding
j in C prior to this deletion (so j = next(t)). Denote by k the successor of j in C prior to the
deletion of j from C (so k = next(j)). The algorithm then scans the undeleted rows of the
matrix and checks, for each row s ∈ R, whether the following constraint is satisfied:
as,t < as,k. If it is not satisfied, then the (violated) constraint rs + ct + ck ≥ 1 is pushed
to the queue Q. Therefore, when a column is deleted, there are at most O(m) possible
constraints to consider and check whether any of these constraints have to be pushed
into Q. We conclude that each iteration resulting in a deletion of a column incurs an
additional running time of O(m), whereas each iteration resulting in a deletion of a row
takes O(1) time. For this analysis of the running time, we charge the time of popping

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

19:6 D. S. Hochbaum and A. Levin

a constraint once it is no longer violated, to the iteration in which it was inserted to Q.
Therefore, the total running time of the resulting algorithm is O(mn).

At the end of the algorithm Q is empty, and hence, from Lemma 2.2, the result-
ing submatrix is order preserving. Since this approximation algorithm is repeated for
each row, ordering the matrix according to a monotone increasing ordering of the row
entries, the running time is O(m2n).

3. A PARTIAL COVER FORMULATION AND A 3-APPROXIMATION ALGORITHM

Here we consider an alternative formulation of the MinOPSM problem. This formula-
tion is conditioned on the number of rows deleted not exceeding (or rather equal to) a
given constant k while minimizing the number of columns deleted.

(OPSM2) min
∑n

j=1 cj

subject to ri + cj1 + cj2 ≥ 1 ∀i and ∀j1 < j2 such that aij1 ≥ aij2∑n
i=1 ri ≤ k

ri, cj binary ∀i, j

The requirement that the variables are binary can be replaced with nonnegativity
and integrality requirement. The upper bound of 1 on the values of the variables will
be satisfied in any optimal solution.

We observe that OPSM2 is a generalization of the partial vertex k-cover problem.
The latter problem is to find a vertex cover for at least |E|−k edges of a graph with the
least number (weight) of vertices. In the partial vertex k-cover problem’s formulation
there is a constraint for each edge ei = [j1, j2], rei + cj1 + cj2 ≥ 1. Thus in this problem
ri appears only once, in the one constraint that has j1 and j2 only. So in the partial
vertex cover problem ri = 1 means that i is not covered and cj1 = cj2 = 0. In contrast,
in OPSM2, ri is associated with a set of constraints, and ri = 1 if not all of them are
satisfied.

We now formulate the dual to the OPSM2 problem. Let the dual variables be uij1j2
and z the dual variable of the constraint bounding the number of deleted rows.

(Dual-OPSM) max
∑m

i=1
∑

(j1, j2)∈Ci
uij1 j2 − kz

subject to
∑

(j1, j2)∈Ci
uij1 j2 ≤ z, i = 1, . . . , m∑m

i=1
(∑

(j, j2)∈Ci
uij j2 + ∑

(j1, j)∈Ci
uij1 j

) ≤ 1 j = 1, . . . , n
uij1 j2 ≥ 0 ∀i and (j1, j2) ∈ Ci
z ≥ 0

We will maintain implicitly z = maxi
∑

(j1, j2)∈Ci
uij1 j2 . The approximation algorithm

we use here is a primal-dual algorithm.

3.1. Data Structures

Our algorithm uses the following data structures and maintains them in each
iteration.

The indices of the nondeleted columns are maintained as a linked list L. These
indices are sorted in monotone increasing order. For a column j ∈ L we denote by
next(j) the successor of j in L (that is, the minimum index k of a column in L such
that k > j). As in Section 2.3 j1 and j2 are said to be adjacent in L (for j1 < j2) if
j1, j2 ∈ L and j2 = next(j1). The algorithm makes use of the fact established in
Lemma 2.2 that if there is a violated constraint then there is one that involves
adjacent column indices in L.

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

Approximation Algorithms for a Variant of the Order-Preserving Submatrices 19:7

We note that whereas the sets Ci are fixed, these sets may include too many pairs
(at most O(n2) pairs in each such set). To reduce the resulting time complexity, we
maintain small subsets of these sets denoted as Ci(L) ⊆ Ci (these sets are dynamic and
hence changed along the algorithm). For each row i, we let Ci(L) be the set of all pairs
(j1, j2) in Ci such that j1 and j2 are adjacent in L. We assume that Ci(L) is an ordered
list of pairs (with arbitrary order). The main properties that we will use are derived
from Lemma 2.2: (1) Ci(L) = ∅ if and only if there are no j, k ∈ L such that j < k and
ai, j ≥ ai,k, and (2) throughout the algorithm |Ci(L)| ≤ n.

For each column j we maintain the total sum of the dual variables corresponding to
j, Uj, where

Uj =
m∑

i=1

⎛
⎝ ∑

j1=1,..., j−1:(j1, j)∈Ci

uij1 j +
∑

j2=j+1,...,n:(j, j2)∈Ci

uij j2

⎞
⎠ .

For each column j we further maintain a list of all positions in which j appears in Ci(L),
and a pointer from the column to its position in L.

3.2. The Algorithm

The algorithm works as follows: A dual feasible solution is initialized by setting uij1 j2 =
0 for all i and all (j1, j2) ∈ Ci, and z = 0. There is also a trivial (and infeasible)
primal solution consisting of the empty set of columns. To initialize the data structures
we let L consist of the indices 1, 2, . . . , n where for all j, j + 1 = next(j). For all j, Uj
is initialized to zero. We also initialized Ci(L) and the list of all positions in which j
appears in Ci(L) by traversing the input matrix once.

Each iteration of the primal-dual algorithm consists of increasing (simultaneously)
the dual variables uij1 j2 for all i such that Ci(L) �= ∅ and for (j1, j2) that is the first
pair in the list Ci(L). The increase is at a unit rate, and therefore z is also increased
at a unit rate. The dual variables are increased until at least one constraint for j,∑n

i=1
(∑

(j, j2)∈Ci
uij j2 + ∑

(j1, j)∈Ci
uij1 j

) ≤ 1 becomes tight. Then j is added to the set of
selected columns, and the list L and the sets Ci(L) are updated for all i.

The algorithm halts the first time when there are at least m − 3k row indices i such
that Ci(L) �= ∅. Then, we delete the rows i such that Ci(L) = ∅, and the columns that
were deleted along the way (i.e., the columns not in L). Since for the nondeleted rows
Ci(L) = ∅, we conclude that for a nondeleted row i there are no j, k ∈ L such that
(j, k) ∈ Ci.

3.3. A Fast Implementation

To find the selected column j it is necessary to determine which Uj becomes first equal
to one. Such j must obviously be a column where at least one of its dual variables is
increased during the current iteration. For each row i with Ci(L) �= ∅ we mark the two
columns j1, j2 that form the first pair, such that uij1 j2 is raised in the current iteration.
Thus Uj is raised at a rate equal to the number of marks the j-th column has. We can
hence find in O(m) time the value of j which is the new column selected in the solution,
as for each j we can compute the time point in which Uj will equal one (assuming it
increases in the same rate as defined for the current iteration). If there are several
columns j such that Uj = 1 simultaneously, then we arbitrarily pick one such column.
The other candidate columns will be tight in the next iterations assuming that there
will be increasing dual variable corresponding to them.

We claim that the update of Uj′ is done in O(m), per selection iteration, for all values
of j′. To see that, observe that it is necessary to update only the values of Uj′ such that

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

19:8 D. S. Hochbaum and A. Levin

column j′ is marked (at least once). Therefore, there are only O(m) update operations to
apply (at most two column indices per row of the matrix). Each such update operation
takes a constant time, because we know the number of marks of column j′, and Uj′ has
been increased (in the current iteration) at a rate equal to the number of marks that
column j′ has.

To complete the implementation details, consider the update of L (arising by the
deletion of column j) and the update of Ci(L) for all i. To update L, we find the location
of j in L in constant time using the columns pointers. If, prior to the deletion of j,
the predecessor of j in L was j1, and the successor of j in L is j2 (so next(j1) = j and
next(j) = j2), then L is updated by skipping over j and deleting the column pointer
of column j. This is done by setting next(j1) = j2. Thus the update of L is carried in
constant time. To implement the updates of Ci(L) for all i, note that the only pair of
columns that become adjacent in L are (j1, j2), for next(j1) = j and next(j) = j2. So
for each i, we check if (j1, j2) ∈ Ci. This involves checking whether aij1 ≥ aij2, which
is done in constant time for a fixed value of i. If so, we add (j1, j2) to Ci(L). We also
need to delete all positions in which j appears in Ci(L). This last step is performed
in O(m) time using the list maintained for column j. We conclude that each iteration
takes O(m) time.

THEOREM 3.1. The total running time of the algorithm for all values of k and a
fixed permutation of the columns is O(mn).

PROOF. The running time of the algorithm (for a given value of k) is O(mn) because
the number of iterations is at most the number of columns (as each iteration deletes
at least one column of the matrix). We next note that when we decrease k by 1 (i.e.,
k′ = k − 1) we do not need to restart the algorithm from scratch, as we can continue
the algorithm until there are at least m − 3k′ row indices such that Ci(L) = ∅. Hence,
the total running time of the algorithm for all values of k is also O(mn).

It remains to analyze the performance guarantee of the algorithm.

3.4. Approximation Ratio

The rate at which the dual variables are increased ensures that for each i such that
Ci(L) �= ∅,

∑
(j1, j2)∈Ci

uij1 j2 = z. This is so since both sides are increased at a unit rate
in each iteration as long as Ci(L) �= ∅. (Note that in the left-hand side there is at most
one term that is increased in a fixed iteration.)

Consider the iteration of the algorithm where k equals the number of deleted rows
in a fixed optimal solution. We note that the number of deleted rows is at most 3k.
We next show that the number of selected columns is at most three times the optimal
solution to MinOPSM.

THEOREM 3.2. The number of selected columns by the primal-dual algorithm is
at most 3 times the optimal number of selected columns in the optimal solution to
OPSM2.

PROOF. We allocate the dual cost to pay for the primal solution as follows. First,
consider the set Sk of the 3k last rows that have nonempty Ci(L) (breaking ties arbi-
trarily). For i ∈ Sk, for all (j1, j2) ∈ Ci we allocate the dual cost of uij1 j2 at most three
times as follows: once to pay for the row i, once to pay for column j1, and once to pay
for column j2. For i /∈ Sk, and for every (j1, j2) ∈ Ci the dual variable uij1 j2 is used
at most twice: once to pay for column j1 and once to pay for column j2. Note that for
i ∈ Sk the total payments for row i are exactly z (as z = ∑

(j1, j2)∈Ci
uij1 j2 throughout

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

Approximation Algorithms for a Variant of the Order-Preserving Submatrices 19:9

the algorithm because we increase both sides at the same rate), and hence the total
payment of all the rows is exactly 3kz. Therefore,

(Dual − OPSM) = 1
3

·
⎛
⎝3

∑
i

∑
(j1,j2)∈Ci

uij1j2 − 3kz

⎞
⎠

≥ 1
3

·
⎡
⎣2

∑
i

∑
(j1,j2)∈Ci

uij1j2 +
⎛
⎝∑

i∈Sk

∑
(j1,j2)∈Ci

uij1j2 − 3kz

⎞
⎠

⎤
⎦

= 1
3

· 2
∑

i

∑
(j1,j2)∈Ci

uij1j2 .

A deleted column receives payments of at least one, and therefore the number of
columns that the algorithm deletes is at most the total payments for the columns, and
hence it is at most 2

∑
i
∑

(j1,j2)∈Ci
uij1j2 . By the preceding inequality the total cost of the

primal solution is at most three times the (Dual-OPSM).

Therefore, our primal-dual algorithm provides the same performance guarantee as
the earlier algorithm (based on solving the linear program relaxation for each value of
R, C). Therefore, we establish the following.

THEOREM 3.3. There is a 3-approximation algorithm for MinOPSM and identity
permutation with running time of O(mn).

PROOF. Assume that the optimal solution deletes R rows and C columns. Then in
the iteration of the algorithm where k=R the algorithm will delete 3R rows and (at
most) 3C columns. The number of entries that the optimal solution deletes is nR+(m−
R)C whereas the algorithm deletes at most 3nR + (m − 3R)3C = 3nR + 3mC − 9RC ≤
3nR + 3mC − 3RC = 3 · (nR + (m − R)C) = 3OPT. And hence the algorithm is a
3-approximation algorithm for the minimization version.

Using the argument given in the Introduction we conclude that there is a 3 -
approximation algorithm for MinOPSM the running time of which is O(m2n).

The WEIGHTED MINOPSM problem is similar to MinOPSM except that each entry
of A has a nonnegative weight and the goal is to minimize the total weight of deleted
entries. We claim that our algorithm for MinOPSM can be extended to weighted
MinOPSM with the same approximation factor. To see this define a weight of a row
(column) to be the total weight of the entries in the row (column). Next apply the al-
gorithm for MinOPSM where a column j becomes tight when the Uj equals its weight,
and run the algorithm until the total weight of the rows with nonempty Ci(L) becomes
at most 3k (for the first time) and these rows are deleted. When k is increased we need
not restart the algorithm but rather continue to get the remainder of the candidate
solutions. In total there are at most n solutions that we consider, and using the same
analysis as in the unweighted case we get a 3-approximation algorithm. We have thus
established the following proposition.

PROPOSITION 3.4. There is a 3-approximation algorithm for the weighted
MinOPSM problem that runs in O(m2n) time.

4. THE BICLUSTERING PROBLEM

The biclustering problem is defined on a 0 − 1 input matrix A. The problem we call
here biclustering is to find a subset of columns and rows forming a largest submatrix

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

19:10 D. S. Hochbaum and A. Levin

Table I.

OBJECTIVE APPROXIMATION FACTOR (for the
FOR SUBMATRIX COMPLEXITY complementary minimization problem)

Maximum Weighted number of Polynomial time
rows and columns in all 1s submatrix
Maximum number of 1 entries NP-hard 2
Maximum weighted number of entries NP-hard 2
Maximum number of entries NP-hard unknown
and balanced
Maximum number of entries NP-hard 3
and Order-preserving (weighted)

The complexity of biclustering according to the objective and approximation factors for the com-
plementary minimization problem.

consisting entirely of 1 valued entries. The sense in which the submatrix is largest
impacts the complexity of the problem, as we see in Table I.

We first prove that the biclustering problem is at least as difficult as a special case
of the MinOPSM problem. We define the concept of an almost-order-preserving matrix.
A is almost-order preserving if for every i = 1, 2, . . . , m and every j = 1, 2, . . . , n − 2
and all k = 2, 3, . . . , n − j, ai,j < ai,j+k. To see that any order-preserving matrix is
also almost-order preserving note that we can define a matrix to be order preserving
if for every i = 1, 2, . . . , m and every j = 1, 2, . . . , n − 2 and all k = 1, 2, 3, . . . , n − j,
ai,j < ai,j+k. So the difference is that the constraints for the value k = 1 are present,
for order-preserving matrices, as well.

LEMMA 4.1. The bilclustering problem is at least as difficult as the special case of
MinOPSM where the input matrix is almost-order preserving.

PROOF. Given an input to the MinOPSM problem defined on an input matrix A
which is almost-order preserving. For such instances we construct a matrix Bm×(n−1)

such that Bij = 1 if ai,j < ai,j+1 and otherwise Bi,j = 0. Then, we need to delete some
rows and columns of B so that the resulting submatrix contains only 1’s and that the
number of deleted entries is smallest. This latter problem is the biclustering problem.

We now discuss the complexity of the different variants of the biclustering problem
explaining the entries in Table I.

Let the 0 − 1 matrix B be considered as an adjacency matrix of a bipartite graph
G = (V1 ∪ V2, E). The goal of finding a submatrix of 1s is then equivalent to finding a
complete bipartite subgraph in the bipartite graph G. A complete bipartite subgraph
in a bipartite graph is known as a biclique. Maximizing the sum of the number of
columns and rows in the submatrix is the equivalent to finding a biclique with max-
imum number of nodes. The complementary problem is to minimize the number of
deleted nodes in the bipartite graph so that the induced subgraph over the remaining
nodes is a biclique. This problem, which we name Biclustering-nodes, is formulated as
follows.

(Biclustering-nodes)min
∑m

i=1 ri + ∑n
j=1 cj

subject to ri + cj ≥ 1 ∀(i, j) such that bij = 0
ri, cj binary ∀i, j

Here ri is a binary variable indicating the deletion of row i of B, and cj is a binary
variable indicating the deletion of column j in B. This problem is polynomially solvable
since it is the (unweighted) vertex cover problem in bipartite graph (see also Hochbaum
[1998]). It is further solvable in strongly polynomial time by solving a respective min-
imum s, t-cut problem. Since the weighted vertex cover in a bipartite graph is also

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

Approximation Algorithms for a Variant of the Order-Preserving Submatrices 19:11

solvable in polynomial time with the same procedure, modifying the objective to be
weighted, min

∑m
i=1 wiri+

∑n
j=1 w′

jcj, the biclustering problem remains polynomial-time
solvable. Therefore, we can solve directly the maximization problem, of maximizing the
sum of the dimensions of the submatrix of all 1’s, in polynomial time.

Interestingly, if we want to maximize the number of elements in the submatrix, the
complexity of the problem changes. It is NP-hard as was shown by Peeters (see Peeters
[2003]), and for the weighted number of elements, a 2-approximation algorithm was
given in Hochbaum [1998]. That means that if the objective changes from the sum
of dimensions of the submatrix to the product of the number of rows and columns
the problem becomes hard. This is because to maximize the product, the dimensions
should be approximately equal, and the submatrix closer to being balanced.

For the objective of minimizing the number of deleted entries valued 1 (or number of
deleted edges in the bipartite graph) we present the following formulation. Here zij = 1
if element (i, j) is deleted from the selected submatrix.

(Biclustering-edges)min
∑m

i=1
∑n

j=1 zij

subject to ri + cj ≥ 1 ∀(i, j) such that bij = 0
zij ≥ ri
zij ≥ cj
ri, cj, zij binary ∀i, j

This formulation has at most two variables per inequality. Any such problem has
a 2-approximation algorithm derived from a minimum s, t-cut problem in a related
network, as described in Hochbaum et al. [1993].

In the biclustering problem of finding a largest square submatrix, the graph problem
is to find a balanced biclique (that is a biclique with equal sizes on both sides of the
bipartition) in a bipartite graph. This problem is known to be NP-hard [Garey and
Johnson 1979].

For this problem we suggest the following formulation.

(Balanced biclique) min
∑n

j=1 cj

subject to ri + cj ≥ 1 ∀(i, j) such that aij = 0∑m
i=1 ri ≤ m − n + ∑n

j=1 cj

ri, cj binary ∀i, j

We leave the analysis of the integrality gap of this formulation as well the ques-
tion on the existence of a better approximation algorithm for the Biclustering-edges
problem for future research.

5. CONCLUSIONS

In this article we consider the Order-Preserving SubMatrix problem. Finding an opti-
mal solution to this optimization problem is important for discovering patterns in gene
expression as discussed in earlier works. Our contribution is the design and analysis
of approximation algorithms for the problem. Our improved approximation algorithm
is a 3-approximation algorithm that runs in O(m2n) time. We note that the constants
hiding in the O notation are relatively small, and hence our algorithm has reasonable
running times for real-life instances.

In this article we used a definition of order-preserving submatrix, that is a p×q sub-
matrix B = (bij) of A and a permutation of the q columns of B such that all rows have
strictly increasing elements. Consider an alternative definition of order-preserving
submatrix as a submatrix B with a permutation of its columns such that all rows have

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

19:12 D. S. Hochbaum and A. Levin

nondecreasing elements. We note that this new definition of order-preserving subma-
trix does not change the optimization MinOPSM problem in the following sense: Given
an instance to the problem with this new definition and a fixed permutation of the
columns, we can always add jε for all entries of column j of the input matrix for a suffi-
ciently small value of ε (if all the entries in the input matrix are integer then ε = 1

n+1
is small enough). In that case, whenever the relaxed constraint bij1 ≤ bij2 is satisfied
we know that bij1 < bij2 also holds and vice versa. However, this new definition affects
the number of permutations that we need to consider. In this article we use the upper
bound m on the number of permutations since the output permutation must coincide
with at least one row. If the input matrix to the new definition contains equal numbers,
then each row may coincide with multiple permutations, and we need to consider each
of these permutations.

REFERENCES

Bar-Yehuda, R. and Even, S. 1981. A linear time approximation algorithm for the weighted vertex cover
problem. J. Algor. 2, 198–203.

Ben-Dor, A., Chor, B., Karp, R., and Yakhini, Z. 2003. Discovering local structure in gene expression data:
The order-preserving submatrix problem. J. Comput. Biol. 10, 3–4, 373–384.

Cheng, Y. and Church, G. M. 2000. Biclustering of expression data. In Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology (ISMB). 93–103.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. 2001. Introduction to Algorithms 2nd Ed. The
MIT Press.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 196.

Hochbaum, D. S. 1982. Approximation algorithms for the set covering and vertex cover problems. SIAM J.
Comput. 11, 3.

Hochbaum, D. S. 1996. Approximating covering and packing problems: Set cover, vertex cover, independent
set and related problems. In Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum Ed.,
PWS, Boston, 94–143.

Hochbaum, D. S. 1998. Approximating clique and biclique problems. J. Algor. 29, 174–200.
Hochbaum, D. S., Megiddo, N., Naor, J. and Tamir, A. 1993. Tight bounds and 2-approximation algorithms

for integer programs with two variables per inequality. Math. Program. 62, 69–83.
Mirkin, B. 1996. Mathematical Classification and Clustering. Kluwer.
Peeters, R. 2003. The maximum edge biclique problem is np-complete. ACM Trans. Discr. Appl. Math.131,

65-1–65-4.

Received April 2008; revised October 2012; accepted October 2012

ACM Transactions on Algorithms, Vol. 9, No. 2, Article 19, Publication date: March 2013.

