
Path of Solutions for Fused Lasso Problems

Torpong Nitayanont a, Cheng Lu b and Dorit S. Hochbaum c

Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, CA, U.S.A.

Keywords: Fused Lasso, Path of Solutions, Minimum Cut, Hyperparameter Selection, Signal Processing.

Abstract: In a fused lasso problem on sequential data, the objective consists of two competing terms: the fidelity term
and the regularization term. The two terms are often balanced with a tradeoff parameter, the value of which
affects the solution, yet the extent of the effect is not a priori known. To address this, there is an interest in
generating the path of solutions which maps values of this parameter to a solution. Even though there are
infinite values of the parameter, we show that for the fused lasso problem with convex piecewise linear fidelity
functions, the number of different solutions is bounded by n2q where n is the number of variables and q is the
number of breakpoints in the fidelity functions. Our path of solutions algorithm, PoS, is based on an efficient
minimum cut technique. We compare our PoS algorithm with a state-of-the-art solver, Gurobi, on synthetic
data. The results show that PoS generates all solutions whereas Gurobi identifies less than 22% of the number
of solutions, on comparable running time. Even allowing for hundreds of times factor increase in time limit,
compared with PoS, Gurobi still cannot generate all the solutions.

1 INTRODUCTION

We consider here the class of convex piecewise linear
fused lasso problems:

(PFL) min
x1,...,xn

n

∑
i=1

f pl
i (xi)+λ

n−1

∑
i=1

|xi − xi+1| (1)

where each fidelity function f pl
i (xi) is a convex piece-

wise linear function and λ is a parameter that controls
the tradeoff between the fidelity term and the regular-
ization term, which penalizes the differences between
consecutive variables.

Applications of problems in the class of PFL in-
clude the study of DNA copy number gains and losses
on chromosomes using Comparative Genomic Hy-
bridization (CGH) (Eilers and De Menezes, 2005). In
CGH, each piecewise linear function takes the form
of τ(xi −ai)++(1−τ)(ai −xi)+ for a given τ ∈ [0,1]
and data point ai, and the problem is called quantile
regression. In signal processing (Storath et al., 2016),
each piecewise linear function is f pl

i (xi) = wi|xi −ai|
for a given weight wi and data point ai. Each piece-
wise linear function in these examples contains ex-
actly one breakpoint.

a https://orcid.org/0009-0002-6976-1951
b https://orcid.org/0000-0001-5137-7199
c https://orcid.org/0000-0002-2498-0512

Clearly, the optimal solution of PFL (1) varies
with regard to the tradeoff parameter λ. In the works
mentioned above, the choice of λ is either handpicked
(Storath et al., 2016) or selected via cross validation
(Eilers and De Menezes, 2005). However, there could
still be λ values outside of the search range that lead
to desirable results, which go unnoticed, or the reso-
lution of the cross validation grid search could still be
made finer. Our goal is to find the path of solutions to
PFL for all λ ∈ [0,∞), that is we want to identify a set
of ranges or intervals of λ (we call them λ-ranges) that
span [0,∞), i.e. Λ = {[0,λ1), [λ1,λ2), . . . , [λm,∞)},
such that the solutions to PFL for two values of λ from
the same range are similar.

In addition to the identification of the set of λ-
ranges, we also find the optimal solution for each
λ-range, {x∗([0,λ1)),x

∗([λ1,λ2)), . . . ,x
∗([λm,∞))}.

Note that we use the notation of x∗(λ) to refer to the
solution of PFL for a specific value of λ. The notation
of x∗([λ1,λ2)), for example, refers to the optimal so-
lution to PFL for any value of λ in the range [λ1,λ2).
It also implies that the solution for all values of λ in
this range are identical.

The relevant literature on finding the path of solu-
tions include the work on fused-lasso signal approx-
imator (FLSA) by Hoefling (2010). The problem is

Nitayanont, T., Lu, C. and Hochbaum, D.
Path of Solutions for Fused Lasso Problems.
DOI: 10.5220/0012433200003654
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2024), pages 107-118
ISBN: 978-989-758-684-2; ISSN: 2184-4313
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

107

defined as follows:

min
x1,...,xn

1
2

n

∑
i=1

(xi −ai)
2 +λ1

n

∑
i=1

|xi|+λ2

n−1

∑
i=1

|xi − xi+1|

Hoefling (2010) solves for the optimal solution
x∗(λ1,λ2) for all λ1 and λ2 by first finding the
solution for λ1 = 0 in terms of λ2, x∗(0,λ2), in
O(n logn). Then, x∗(λ1,λ2) is computed as a func-
tion of x∗(0,λ2). Tibshirani (2011) presents path of
solution algorithms to a generalized lasso problem,
which is formulated as

min
x∈Rn

1
2
∥b−Ax∥2

2 +λ∥Dx∥1

for different configurations of A and D such as when
D is an arbitrary matrix and A = I. Note that the reg-
ularization term of this problem can be made equiva-
lent to our regularization term, ∑

n−1
i=1 |xi − xi+1|, when

D is set to an appropriate matrix.
Another work on the path of solutions is the work

by Wang et al. (2006), which solves the regularized
least absolute deviation regression problem (RLAD):

min
x∈Rp

||y−Ax||1 +λ||x||1

given A ∈ Rn×p,y ∈ Rn for every possible value of λ

in O(log(np) min(p,n)2). They applied their method
on the image reconstruction problem.

Generalized isotonic median regression or GIMR
problem, which has the following formulation:

(GIMR) min
x1,...,xn

n

∑
i=1

f pl
i (xi)+

n−1

∑
i=1

di,i+1 · (xi − xi+1)+

+
n−1

∑
i=1

di+1,i · (xi+1 − xi)+ (2)

for a given set of {di,i+1,di+1,i}n−1
i=1 , is solved by an

algorithm, called HL-algorithm hereafter, in the work
of Hochbaum and Lu (2017). HL-algorithm solves
GIMR by formulating the problem into a sequence
of minimum cut problems, which can be solved ef-
ficiently in O(q logn) where q is the total number of
breakpoints in fidelity functions. This is the best com-
plexity for solving GIMR to date. PFL is a special
case of GIMR and therefore can be solved, for a fixed
λ, using the HL-algorithm. The path of solutions al-
gorithm proposed here that solves PFL for all λ ≥ 0 is
an extension of the HL algorithm. We introduce here
the notations and concepts that will be used through-
out the paper.
Notation and Preliminaries. GIMR (2) can be
viewed as defined on a bi-directional path graph G =
(V,A) with node set V = {1,2, . . . ,n} and arc set
A = {(i, i+ 1),(i+ 1, i)}i=1,...,n−1. Each node i ∈ V

corresponds to the variable xi. Let the node interval
[i, j] in the graph G for i ≤ j be the subset of consec-
utive nodes in V,{i, i+1, . . . , j−1, j}.

We define an associated graph Gst with the set of
vertices Vst = V ∪{s, t} and the set of arcs Ast = A∪
As∪At . The two appended nodes s and t are called the
source and the sink node, respectively. As = {(s, i) :
i ∈ V} and At = {(i, t) : i ∈ V} are the sets of source
adjacent arcs and sink adjacent arcs. Each arc (i, j) ∈
Ast has an associated nonnegative capacity ci, j.

An s, t-cut is a partition of Vst ,({s}∪ S,T ∪{t}),
where T = S̄=V\S. For simplicity, we refer to an s, t-
cut partition as (S,T). We refer to S as the source set
of the cut, excluding s, and T the sink set, excluding
t. For each node i ∈ V , we define its status in graph
Gst as status(i) = s if i ∈ S (referred as an s-node),
otherwise status(i) = t)(i ∈ T) (referred as a t-node).

The capacity of a cut (S,T) is defined as C({s}∪
S,T ∪{t}) where C (V1,V2) = ∑i∈V1, j∈V2 ci, j. A mini-
mum s, t-cut in Gst is an s, t-cut (S,T) that minimizes
C({s}∪S,T ∪{t}). Hereafter, any reference to a min-
imum cut is to the unique minimum s, t-cut with the
maximal source set, that is, the source set that is not
contained in any other source set of a minimum cut in
case that there are multiple minimum cuts.

A convex piecewise linear function f pl
i (xi) is

specified by its ascending list of qi breakpoints, ai,1 <
ai,2 < .. . < ai,qi , and the slopes of the qi + 1 linear
pieces between every two adjacent breakpoints, de-
noted by wi,0 < wi,1 < .. . < wi,qi . To define a break-
point more formally, each convex piecewise linear
function f pl

i (xi) can be viewed as a maximum of mul-
tiple affine functions, which are sorted according to
their slopes. We call the x-coordinate of an intersec-
tion of two consecutive affine functions a breakpoint.
Let the sorted list of the union of q breakpoints of
all the n convex piecewise linear functions be ai1, j1 <
ai2, j2 < .. . < aiq, jq (w.l.o.g. we may assume that the
n sets of breakpoints are disjoint (Hochbaum and Lu,
2017)), where aik, jk , the k-th breakpoint in the sorted
list, is the breakpoint between the (jk −1)-th and the
jk-th linear pieces of f pl

ik

(
xik

)
.

Overview of Paper. Section 2 describes the algo-
rithm that solves PFL (1) for a fixed value of λ, the
HL-algorithm. In Section 3, we give a description of
the path of solutions algorithm, or PoS, for ℓ1-fidelity
fused lasso problem. In Section 4, we generalize it
to PFL with convex piecewise linear fidelity function.
We provide the bound of the number of different so-
lutions of PFL across all nonnegative λ values as well
as the time complexity of the algorithm in Section 5.
Lastly, we conclude with experimental results in Sec-
tion 6.

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

108

Figure 1: Gst(α): For node i, if its right sub-gradient at
α, (f pl

i)′(α), is negative, s is connected to i with an arc of
capacity cs,i = −(f pl

i)′(α). Otherwise, i is connected to t
with an arc of capacity ci,t = (f pl

i)′(α).

2 ALGORITHM THAT SOLVES
FUSED LASSO FOR A FIXED
VALUE OF λ

The PFL problem (1) that we consider in this work
can be solved for a fixed λ using the HL-algorithm,
introduced by Hochbaum and Lu (2017). The HL-
algorithm solves problems in the class of generalized
isotonic median regression or GIMR (2). PFL is a
special case of GIMR (2) when di,i+1 = di+1,i = λ

for all i ∈ {1,2, ...,n − 1}. In this section, we give
a description of how the HL-algorithm solves GIMR,
which also explains for the case of PFL.

We construct a parametric graph Gst(α) =
(Vst ,Ast), shown in Figure 1, that is associated with
the bi-directional path graph G=(V,A), for any scalar
value α. The capacities of arcs (i, i+1),(i+1, i) ∈ A
are ci,i+1 = di,i+1 and ci+1,i = di+1,i respectively. Arc
(s, i)∈ As has capacity cs,i = max{0,−(f pl

i)′(α)} and
arc (i, t) ∈ At has capacity ci,t = max{0,(f pl

i)′(α)},
where (f pl

i)′(α) is the right sub-gradient of function
f pl
i (·) at argument α. (One can select instead the left

sub-gradient.) For any given value of α, we have ei-
ther cs,i = 0 or ci,t = 0, that is, i is never connected to
both s and t for the same α.

The link between the minimum cut for any given
value of α and the optimal solution to GIMR (2) is
characterized in the following threshold theorem:

Theorem 2.1 (Threshold theorem (Hochbaum,
2001)). For any given α, let S∗ be the maximal source
set of the minimum cut in graph Gst(α). Then, there is
an optimal solution x∗ to GIMR (2) satisfying x∗i ≥ α

if i ∈ S∗ and x∗i < α if i ∈ T ∗.

An important property of Gst(α) is that the capac-
ities of source adjacent arcs and sink adjacent arcs are
nonincreasing and nondecreasing functions of α, re-
spectively. The capacities of all the other arcs are con-
stants. This implies the following nested cut property:

Lemma 2.2 (Nested cut property (Gallo et al., 1989;
Hochbaum, 2001, 2008)). For any two parameter val-
ues α1 ≤ α2, let Sα1 and Sα2 be the respective max-

imal source set of the minimum cuts of Gst(α1) and
Gst(α2), then Sα1 ⊇ Sα2 .

We remark that the above threshold theorem and
nested cut property both work not only for GIMR
(2) defined on a bi-path graph, but also for a gen-
eralization of GIMR that is defined on arbitrary (di-
rected) graphs, where the regularization term may pe-
nalize the difference between arbitrary pairs of vari-
ables rather than just consecutive variables.

Based on the threshold theorem, it is sufficient
to solve the minimum cuts in the parametric graph
Gst(α) for all values of α, in order to solve GIMR (2).
In piecewise linear functions, the right sub-gradients
for α values between any two adjacent breakpoints
are constant. Thus, the source and sink adjacent arc
capacities remain constant for α between any two ad-
jacent breakpoint values in the sorted list of break-
points over all the n convex piecewise linear func-
tions. This result leads to the following lemma given
by Hochbaum and Lu (2017).

Lemma 2.3. The minimum cuts in Gst(α) remain
unchanged for α assuming any value between any
two adjacent breakpoints in the sorted list of break-
points of all the n convex piecewise linear functions,
{ f pl

i (xi)}i=1,...,n.

Thus, the values of α to be considered can be re-
stricted to the set of breakpoints of the n convex piece-
wise linear functions, { f pl

i (xi)}i=1,...,n. The HL algo-
rithm solves GIMR (2) by efficiently computing the
minimum cuts of Gst(α) for subsequent values of α

in the ascending list of breakpoints, ai1, j1 < ai2, j2 <
.. . < aiq, jq .

Let Gk, for k ≥ 1, denote the parametric graph
Gst(α) for α equal to aik, jk , i.e., Gk = Gst(aik, jk). For
k = 0, we let G0 = Gst(ai1, j1 − ε) for a small value
of ε > 0. Let (Sk,Tk) be the minimum cut in Gk,
for k ≥ 0. Recall that Sk is the maximal source set.
The nested cut property (Lemma 2.2) implies that
Sk ⊇ Sk+1 for k ≥ 0. Based on the threshold theorem
and the nested cut property, we know that for each
node j ∈ {1, . . . ,n}, x∗j = aik, jk for the index k such
that j ∈ Sk−1 and j ∈ Tk.

The HL-algorithm generates the respective mini-
mum cuts of Gk in increasing order of k. It is shown
by Hochbaum and Lu (2017) that (Sk,Tk) can be com-
puted from (Sk−1,Tk−1) in time O(logn). Hence the
total complexity of the algorithm is O(q logn). The
efficiency of updating (Sk,Tk) from (Sk−1,Tk−1) is
based on the following key results.

The update of the graph from Gk−1 to Gk is simple
as it only involves a change in the capacities of the
source and sink adjacent arcs of ik,(s, ik) and (ik, t).
Recall that from Gk−1 to Gk, the right sub-gradient

Path of Solutions for Fused Lasso Problems

109

(f pl
ik
)′ changes from wik, jk−1, the slope of the k-th lin-

ear piece of f pl
ik

, to wik, jk , the slope of the (k+ 1)-th

linear piece of f pl
ik

. Thus, the changes of cs,ik and cik,t
from Gk−1 to Gk depend on the signs of wik, jk−1 and
wik, jk , which have three possible cases.
Case 1. wik, jk−1 ≤ 0,wik, jk ≤ 0 : cs,ik changes from
−wik, jk−1 to −wik, jk while cik,t remains zero.
Case 2. wik, jk−1 ≤ 0,wik, jk ≥ 0 : cs,ik changes from
−wik, jk−1 to 0 and cik,t changes from 0 to wik, jk .
Case 3. wik, jk−1 ≥ 0,wik, jk ≥ 0 : cik,t changes from
wik, jk−1 to wik, jk while cs,ik remains zero.

Note that the update from Gk−1 to Gk does not
involve the values of di,i+1 and di+1,i in GIMR (2), of
which both take the values of λ in PFL (1).

Based on the nested cut property, for any node
i, if i ∈ Tk−1, then i remains in Tk and the sink set
for all subsequent cuts. Hence, an update of the
minimum cut in Gk from the minimum cut in Gk−1
can only involve shifting some nodes from source set
Sk−1 to sink set Tk. Formally, the relation between
(Sk−1,Tk−1) and (Sk,Tk) is characterized in Lemma
2.4 and 2.5 given by Hochbaum and Lu (2017):

Lemma 2.4. If ik ∈ Tk−1, then (Sk,Tk) = (Sk−1,Tk−1).

We define s-interval in graph G to be the interval
of consecutive s-nodes, that is the set of consecutive
nodes that are in the source set S of the minimum cut
of G. An s-interval containing i refers to an interval of
s-nodes in G that contains node i. If i is a t-node, then
such s-interval is an empty interval. The maximal s-
interval containing i refers to the s-interval containing
i that is not a subset of any other such s-intervals.

Lemma 2.5. If ik ∈ Sk−1, then all the nodes that
change their status from s in Gk−1 to t in Gk must
form a (possibly empty) s-interval of ik in Gk−1.

Both lemmas imply that the derivation of the min-
imum cut in Gk from the minimum cut in Gk−1 can
be done by finding an optimal s-interval of nodes
containing ik that change their status from s to t.
If this interval of nodes, referred to as node sta-
tus change interval, is [ikl , ikr] then it follows that
(Sk,Tk) = (Sk−1\[ikl , ikr],Tk−1 ∪ [ikl , ikr]). Combining
this with the threshold theorem (Theorem 2.1), all xi
for i ∈ [ikl , ikr] have their optimal solutions in GIMR
(2) equal to aik, jk .

To find the node status change interval from Gk−1
to Gk that gives the minimum cut in Gk, we rely on
the following lemma from Hochbaum and Lu (2017).

Lemma 2.6. Given the maximal s-interval contain-
ing ik in Gk−1, [ikl , ikr], the node status change inter-
val [ik1, ik2] is the optimal solution to the following

problem defined on Gk

min
[ik1,ik2]

C({s},[ik1, ik2])+C([ikl , ikr]\[ik1, ik2],{t}) (3)

+C([ikl , ikr]\[ik1, ik2], [ik1, ik2]]∪{ikl −1, ikr +1})
s.t. ik ∈[ik1, ik2]⊆ [ikl , ikr] or [ik1, ik2] = /0

Solving problem (3) in Lemma 2.6 can be easier
than directly solving the minimum cut problem on
Gk. Our path of solutions algorithm rely on all of
the stated theorems and lemmas, but particularly on
Lemma 2.5 and 2.6.

3 PATH OF SOLUTIONS
ALGORITHM FOR ℓ1 FIDELITY
FUNCTIONS

The proposed path of solutions algorithm, or PoS,
finds the optimal solution x∗ for all nonnegative λ.
We first demonstrate in this section how PoS solves a
specific PFL problem, the ℓ1-fidelity fused lasso:

(ℓ1-PFL) min
x1,...,xn

n

∑
i=1

wi|xi −ai|+λ

n−1

∑
i=1

|xi − xi+1| (4)

for all nonnegative λ, given a set of breakpoints
{ai}n

i=1 and a set of positive penalty weights {wi}n
i=1.

As we consider ℓ1-PFL, which is a special case
of both GIMR and PFL, we substitute some notations
introduced in Section 2 by simpler terms.

For ℓ1-PFL, f pl
i =wi|xi−ai| consists of two linear

pieces and a single breakpoint ai. wi,0 = −wi,wi,1 =
wi and ai,0 = ai. Moreover, both di,i+1 and di+1,i are
equal to λ. Similar to the HL-algorithm, we let the
indices i1, i2, ..., in be the sorted indices of n break-
points such that ai1 < ai,2 < .. . < ain . In the graph
Gk or Gst(aik), the weights of the source adjacent arc
(s, i) ∈ As and the sink adjacent arc (i, t) ∈ At are

cs,i =

{
−wi if ai < aik
0 otherwise

, ci,t =

{
0 if ai < aik
wi otherwise

The arcs (i, i+1) and (i+1, i) have weights equal to
λ, for i ∈ {1,2, . . . ,n− 1}. The HL-algorithm com-
putes the optimal solution of problem (4) by solving
for the minimum cuts of graphs G0,G1, . . . ,Gn.

At iteration k of the HL-algorithm, we update the
graph from Gk−1 to Gk and compute the minimum cut
solution (Sk,Tk), which allows us to discover the op-
timal solutions of variables whose nodes are in Tk but
not in Tk−1, as explained last section. In PoS where
we consider all λ ∈ [0,∞), the minimum cut solutions
of Gk for different values of λ may be different. To
reflect the dependence on λ, we use the notations of

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

110

Gk(λ) and (Sk(λ),Tk(λ)) for the graph and its mini-
mum cut solutions at step k of the algorithm. We may
revert to the notations of Gk and (Sk,Tk) when we dis-
cuss the graph for any λ in general.

The overall idea of PoS is as follow: at the first
iteration of the algorithm, we start with the graph
G0 and the range of all possible values of λ, [0,∞),
denoted by Λ0, on which all values of λ result in
the same minimum cut (S0(λ),T0(λ)) where S0(λ) =
{1, . . . ,n} and T0(λ) = /0. We then update the graph
to G1 and partition Λ0 into different ranges of λ such
that λ in the same range has the same minimum cut
solution (S1(λ),T1(λ)). The resulting set of ranges of
λ for G1 is denoted Λ1. For conciseness, we call each
range of values of λ a λ-range.

At iteration k, we start with a set of ranges of
λ-values, denoted by Λk−1, spanning [0,∞), such
that each λ-range Λ ∈ Λk−1 corresponds to a par-
ticular minimum cut solution (Sk−1(Λ),Tk−1(Λ)) of
Gk−1(Λ). We update Gk−1 to Gk, and partition each
λ-range in Λk−1 into smaller λ-ranges according to
the solutions of (Sk,Tk). These λ-ranges that are off-
spring of ranges in Λk−1 together form the set Λk.
The set Λk is then passed onto the next iteration.

We explain the first iteration of PoS in Subsection
3.1. Subsection 3.2 describes the iteration k. In Sub-
section 3.2.1, we show the computation of the mini-
mum cuts of Gk given the minimum cut solutions of
Gk−1. Subsection 3.2.2 completes the iteration k by
using the minimum cut solutions to partition λ-ranges
from the previous iteration. We conclude with the out-
puts upon the completion of PoS in Subsection 3.3.

3.1 First Iteration of the Path of
Solutions Algorithm

At the beginning of the first iteration, it is clear that
the minimum cut (S0(λ),T0(λ)) of G0(λ), shown in
Figure 2, is always ({1,2, ...,n},{}) for any λ∈ [0,∞)
since all nodes are connected to s and none is con-
nected to t. We let Λ0 denote the set of λ-ranges
such that for λ1 and λ2 that are in the same λ-range,
we have (S0(λ1),T0(λ1)) = (S0(λ2),T0(λ2)). Since
there is only one solution of (S0(λ),T0(λ)) across all
λ ∈ [0,∞), we have Λ0 = {[0,∞)}.

The first step of the algorithm is to determine
the minimum cuts (S1(λ),T1(λ)) of G1(λ), in Figure
3. We consider the outcomes of the cut capacity in
terms of λ, for each possible case of T1(λ) accord-
ing to Lemma 2.5, which states that T1(λ)\T0(λ) must
form an s-interval containing i1 in G0(λ). Since all
nodes in G0(λ) are s-nodes for all λ, possible T1(λ)
are node intervals with the form of [i1l , i1r] where
i1 ∈ [i1l , i1r] ⊆ [1,n]. We group them into cases such

that the coefficient of λ in the cut capacity of each
case is different from other cases.
Case 1. T1(λ) = /0. None of the nodes changes its
status from s to t. C(S1(λ),T1(λ)) = wi1 .
Case 2. T1(λ) = [1,n].

C(S1(λ),T1(λ)) = (∑n
i=1 wi)−wi1

Case 3. T1(λ) consists of some, but not all, nodes.
There are three subcases.
Case 3.1. T1(λ) = [1, i1r] where i1 ≤ i1r < n.

C(S1(λ),T1(λ)) = λ+mini1≤i1r<n(∑
i1r
i=1 wi)−wi1

The optimal T1(λ) under Case 3.1 is [1, i1], when
i1r = i1, with C(S1(λ),T1(λ)) = λ+∑

i1−1
i=1 wi.

Case 3.2. T1(λ) = [i1l ,n] where 1 < i1l ≤ i1.
C(S1(λ),T1(λ)) = λ+min1<i1l≤i1(∑

n
i=i1l

wi)−wi1
The optimal T1(λ) under Case 3.2 is [i1,n], when

i1l = i1, with C(S1(λ),T1(λ)) = λ+∑
n
i=i1+1 wi.

Case 3.3. T1(λ) = [i1l , i1r] where 1 < i1l ≤
i1 and i1 ≤ i1r < n. C(S1(λ),T1(λ)) = 2λ +

min1<i1l≤i1
i1≤i1r<n

(∑
i1r
i=i1l

wi)−wi1 . The optimal T1(λ) under

Case 3.3 is {i1} or [i1, i1], when i1l = 1 and i1r = 1.
C(S1(λ),T1(λ)) = 2λ.

The computations of the optimal cuts in Case 3.1,
3.2 and 3.3. rely on the fact that {wi}n

i=1 are positive.
Notice that the comparison between solutions with

similar coefficients of λ in the cut capacity is indepen-
dent of λ. For instance, Case 3.1, with the cut capac-
ity λ+∑

i1−1
i=1 wi, and Case 3.2, with the cut capacity of

λ+∑
n
i=i1+1 wi, have the same coefficient of λ, which

1, in their cut capacities. Determining which one is
more optimal is independent of λ. We only need to
compare the constant terms of the two cases.

Let T ρ denote the cut with the smallest term con-
stant among the cuts whose coefficients of λ are equal
to ρ, and cρ denote the corresponding minimum con-
stant terms. The cut capacity due to the sink set T ρ is
then equal to ρλ+ cρ. If multiple cut solutions have
the smallest constant, we select the cut solution that
results in the largest source set possible, due to the
maximal source set requirement.

For ρ = 0, we compare Case 1 and Case 2. c0 =
min(wi1 ,(∑

n
i=1 wi)− wi1). If wi1 ≤ (∑n

i=1 wi)− wi1)

then T 0 = /0 (Case 1), otherwise, T 0 = [1,n] (Case
2). Notice that when wi1 = (∑n

i=1 wi)−wi1), we select
T 0 = /0 (Case 1) rather than [1,n] (Case 2) since T 0 =
/0 always results in a larger source set.

For ρ = 1, we compare Case 3.1 and Case
3.2. c1 = min(∑i1−1

i=1 wi,∑
n
i=i1+1 wi). If ∑

i1−1
i=1 wi <

∑
n
i=i1+1 wi then T 1 = [1, i1] (Case 3.1). If ∑

i1−1
i=1 wi >

∑
n
i=i1+1 wi then T 1 = [i1,n] (Case 3.2). However,

if ∑
i1−1
i=1 wi = ∑

n
i=i1+1 wi, we select the one, between

Case 3.1 and 3.2, that results in a larger source set.

Path of Solutions for Fused Lasso Problems

111

Figure 2: G0(λ) for ℓ1-PFL (1).

Figure 3: G1(λ) for ℓ1-PFL (1).

For ρ = 2, there is only one case, Case 3.3, whose
coefficients of λ in cut capacity is 2. The cut capacity
of Case 3.3, T1(λ) = {i1}, is 2λ. Hence, c2 = 0 and
T 2 = {i1}.

With the notations of T ρ and cρ, we compare the
capacities between cases of T1(λ) listed above and
give the optimal solution of T1(λ) for different λ in-
tervals as follow:

If T 0 = /0 then

T1(λ) =

T 0, if λ ≥ c0

2 and λ ≥ c0 − c1

T 1, if λ < c0 − c1 and λ > c1

T 2 if λ ≤ c1 and λ < c0
2

(5)

However, if T 0 = [1,n] then

T1(λ) =

T 0, if λ > c0

2 and λ > c0 − c1

T 1, if λ ≤ c0 − c1 and λ > c1

T 2 if λ ≤ c1 and λ ≤ c0
2

(6)

The derivation of both (5) and (6) comes from the
comparison of three cut capacities: c0, λ + c1 and
2λ, of which we select the smallest one for different
ranges of λ. The difference between (5) and (6) is
a result of the fact that we always select the solution
with the maximal source set. Hence, for λ such that
T 0 and T 1 are equally optimal, we select the one with
a larger source set. When T 0 = /0, T 0 is always pre-
ferred. When T 0 = [1,n], T 1 is always preferred. The
comparison for such situation between T 0 and T 2, and
between T 1 and T 2 can be done similarly.

Note that when 2c1 > c0, the second case in (5)
does not exist since c1 > c0−c1. Hence, when T 0 = /0

and 2c1 > c0, the solution of T1(λ) is

T1(λ) =

{
T 0, if λ ≥ c0

2
T 2 otherwise

(5.1)

Otherwise, when T 0 = /0 and 2c1 ≤ c0,

T1(λ) =

T 0, if λ ≥ c0 − c1

T 1, if c1 < λ < c0 − c1

T 2 if λ ≤ c1

(5.2)

For the case where T 0 = [1,n], we can write the so-
lutions of T1(λ) for when 2c1 > c0 and 2c1 ≤ c0 in
a similar way as (5.1) and (5.2), which we omit here
due to the space limit.

Suppose the given weights {wi}n
i=1 and break-

points {ai}n
i=1 result in the case where T 0 = /0 and

2c1 ≤ c0, in which the solution of T1(λ) is (5.2).
We divide the λ-range [0,∞) into three λ-ranges:
[0,c1],(c1,c0 − c1) and [c0 − c1,∞). We denote this
set of λ-ranges by Λ1, i.e. Λ1 = {[0,c1],(c1,c0 −
c1), [c0 − c1,∞)}. Each λ-range in Λ1 has a different
solution of T1(λ), according to (5.2).

When appropriate, we may use the notation of
T1(Λ) in place of T1(λ) for λ ∈ Λ ∈Λ1 to emphasize
the fact that T1(λ) for all λ ∈ Λ are identical.

The first iteration of PoS ends here as we obtain
the set Λ1 and the minimum cut solutions of G1 for λ-
ranges in Λ1. In the next iteration of PoS, we solve for
the minimum cuts of the graph G2 for each λ-range
in Λ1, which is then partitioned further according to
their minimum cut solutions. The subsequent itera-
tions of PoS will be elaborated in the next section.

Figure 4 illustrates Λ0,Λ1 and Λ2 which are
the sets of λ-ranges that lead to different minimum
cut solutions. Each λ-range in Λ2 corresponds
to a particular sequence of minimum cut solution
{T0(λ),T1(λ),T2(λ)}.

The process continues until we complete the it-
eration n of the algorithm and obtain the set of
λ-ranges Λn. Each λ-range in Λn corresponds
to a particular sequence of minimum cut solution
{T0(λ),T1(λ), . . . ,Tn(λ)}, which corresponds to a par-
ticular solution of x∗(λ).

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

112

Figure 4: λ-Ranges according to the minimum cut solutions of G0(λ), G1(λ) and G2(λ).

3.2 Iteration k of the Path of Solutions
Algorithm

Iteration k of the algorithm involves similar steps and
has the same goal as in the first iteration, that is to
partition each λ-range from the previous iteration ac-
cording to their respective minimum cut solutions.

3.2.1 Finding the Minimum Cuts of Gk(λ)

By the end of iteration k− 1, we have found the set
of λ-ranges, Λk−1, and (Sk−1(Λ),Tk−1(Λ) for each
Λ ∈ Λk−1. Our goal in the iteration k is to find
the minimum cut solution (Sk(λ),Tk(λ)) of the graph
Gk(λ) for λ in each Λ ∈Λk−1. This minimum cut so-
lution might contain several cases depending on the
value of λ, like the result in (5). These different cases
will then divide the λ-range Λ into smaller λ-ranges.

If ik ∈ Tk−1(λ), then according to Lemma 2.4, the
minimum cut solution (Sk(λ),Tk(λ)) is then equal to
(Sk−1(λ),Tk−1(λ)). A more interesting and less trivial
case is when ik ∈ Sk−1(λ).

We discussed toward the end of Section 2 that,
based on Lemma 2.5, finding the minimum cut
(Sk(λ),Tk(λ)) of Gk(λ) is equivalent to finding the
node status change interval in Sk−1(λ) that move to
Tk(λ). According to Lemma 2.6, given the maxi-
mal s-interval containing ik in Gk−1(λ), [ikl , ikr], we
can find the node status change interval containing ik,
[ik1, ik2], by solving problem (3) defined on Gk(λ), re-
stated here:

min
[ik1,ik2]

C({s},[ik1, ik2])+C([ikl , ikr]\[ik1, ik2],{t}) (3)

+C([ikl , ikr]\[ik1, ik2], [ik1, ik2]]∪{ikl −1, ikr +1})
s.t. ik ∈[ik1, ik2]⊆ [ikl , ikr] or [ik1, ik2] = /0

For each Λ ∈ Λk−1, we know its max-
imal s-interval containing ik, [ikl , ikr], from
(Sk−1(Λ),Tk−1(Λ)). To solve for the node sta-
tus change interval [ik1, ik2], we write out the cost (3)
for different feasible solutions of [ik1, ik2] ⊆ [ikl , ikr],
for general λ ∈ [0,∞). Similar to the computation
of T1(λ) in Subsection 3.1, the cost functions for
different possible cases of [ik1, ik2] may have different
coefficients of λ. These different coefficients of λ

Figure 5: Example when 1 < ikl < ik1 ≤ ik ≤ ik2 < ikr <
n. Here, we only show arcs of weight λ, which connect
consecutive nodes.

in (3) are contingent upon the positions of ik and
[ik1, ik2], as well as [ikl , ikr].

Consider, for example, the most typical case of the
maximal s-interval containing ik, [ikl , ikr], such that
ikl ∈ (1, ik) and ikr ∈ (ik,n). Different cases of [ik1, ik2]
that are feasible solutions to problem (3) consist of:
Case 1. ik1 ∈ (ik1, ik] and ik2 ∈ [ik, ikr), illustrated
in Figure 5. The cost function (3) due to this case
of [ik1, ik2] can be written as 4λ + ∑

ik2
i=ik1

wi · 1(ai >

aik)+∑
ik1−1
i=ikl

wi ·1(ai ≤ aik)+∑
ikr
i=ik2+1 wi ·1(ai ≤ aik).

The first term is the cost due to arcs of weight λ.
There are 4 such arcs of weights λ that connect nodes
in [ikl , ikr]\[ik1, ik2], which remain in the source set
Sk(λ), to other nodes in the sink set Tk(λ). The co-
efficients of λ is then equal to 4. These 4 arcs are
displayed in bold in Figure 5.

The second term is the sum of the weights w for
nodes in [ik1, ik2] that are still connected to the node s.
The sum of the third term and the fourth term is the
sum of the weights w for nodes in [ikl , ik1 −1]∪ [ik2 +
1, ikr] that are connected to the node t.

The optimal node status change interval for Case
1 is argmin[ik1,ik2]:ik1∈(ik1,ik],ik2∈[ik,ikr) ∑

ik2
i=ik1

wi · 1(ai >

aik)+∑
ik1−1
i=ikl

wi ·1(ai ≤ aik)+∑
ikr
i=ik2+1 wi ·1(ai ≤ aik).

Case 2. There are two subcases.
Case 2.1. ik1 = ikl , ik2 ∈ [ik, ikr). The cost is 2λ +

∑
ik2
i=ikl

wi ·1(ai > aik)+∑
ikr
i=ik2+1 wi ·1(ai ≤ aik).

Case 2.2. ik1 ∈ (ik1, ik], ik2 = ikr. The cost is equal to
2λ+∑

ikr
i=ik1

wi ·1(ai > aik)+∑
ik1−1
i=ikl

wi ·1(ai ≤ aik).
Case 3. [ik1, ik2] is an empty interval, that is,
[ik1, ik2] ⊆ Sk(λ). The cost function can be written as
2λ+∑

ikr
i=ikl

wi ·1(ai ≤ aik).

Case 4. ik1 = ikl , ik2 = ikr. The cost is ∑
ikr
i=ikl

wi ·1(ai >

aik).

Path of Solutions for Fused Lasso Problems

113

Let [ik1, ik2]
ρ denote the node status change in-

terval with the smallest cost among all s-intervals in
[ikl , ikr] whose coeffcients of λ in the cost are ρ, for
ρ = 0,2,4. This is a similar notation as in Subsection
3.1. For ρ = 0, there is only one case, that is Case 4.
For ρ = 2, we compare Case 2 and 3. For ρ = 4, there
is only one case, Case 1. We do not provide explicit
forms of [ik1, ik2]

ρ here due to the space limit.
With the same method as presented in Subsection

3.1, we can write out the optimal solution of [ikl , ikr]
in the following form:

[ik1, ik2](λ) =

[ik1, ik2]

0, if λ > τ2

[ik1, ik2]
2, if τ1 ≤ λ ≤ τ2

[ik1, ik2]
4 if λ ≤ τ1

(7)

(see the next paragraph for the solution when λ =
τ1) where τ1 and τ2 are the threshold values that
split λ ∈ [0,∞) into ranges. τ1 and τ2 can be ob-
tained by comparing the objective functions (3) due
to [ik1, ik2]

0, [ik1, ik2]
2and [ik1, ik2]

4.
Remark here that when λ = τ1, we select between

[ik1, ik2]
2 and [ik1, ik2]

4 the solution that results in a
larger source set, as it depends on the problem in-
stance. When λ = τ2, we always prefer [ik1, ik2]

2 over
[ik1, ik2]

0 = [ikl , ikr].
We see for this example of [ikl , ikr], where ikl ∈

(1, ik) and ikr ∈ (ik,n), that there can be up to 3 differ-
ent solutions, as shown in (7), due to 3 different co-
efficients of λ in the cost function across all possible
cases of [ik1, ik2]. These 3 different solutions corre-
spond to 3 λ-ranges, [0,τ1], [τ1,τ2] and (τ2,∞).

For other types of the maximal s-interval contain-
ing ik, [ikl , ikr], we list all possible coefficients of λ

and the number of solutions of the node status change
interval, [ik1, ik2], in Table 1.

We have shown here the procedure to find the node
status change interval [ik1, ik2] from Gk−1(λ) to Gk(λ),
for any λ ≥ 0, given a maximal s-interval containing
ik, [ikl , ikr], which can be obtained from the minimum
cut (Sk−1(λ),Tk−1(λ)). Next, we show how we apply
this procedure to partition each λ-ranges in Λk−1 and
get the set Λk to complete the iteration k of PoS.

3.2.2 Partitioning of λ-Ranges

The implication of the procedure in Subsection 3.2.1
is that λ-ranges in Λk−1 that have the same maximal
s-interval containing ik in Gk−1 also have the same
node status change interval solution. Therefore, the fi-
nal step of the iteration k of PoS is to group λ-ranges
in Λk−1 based on their maximal s-intervals contain-
ing ik. For each group, with a particular maximal s-
intervals containing ik, we compute for the node status
change interval, like in Subsection 3.2.1, and apply
the corresponding solution to λ-ranges in that group.

Table 1: Different types of the maximal s-intervals [ikl , ikr]
containing ik in the minimum cut of Gk−1, considered in
the k-th iteration of PoS. For each type of [ikl , ikr], we list
all possible coefficients of λ in the objective function (3).

Types of [ikl , ikr]:
ik ̸= 1,n and . . .

Coef.
of λ

cases

ikl ∈ (1, ik), ikr ∈ (ik,n) 0, 2, 4 3
ikl ∈ (1, ik), ikr = n 0, 1, 2, 3 4
ikl = 1, ikr ∈ (ik,n) 0, 1, 2, 3 4
ikl = 1, ikr = n 0, 1, 2 3
ikl = ik, ikr = n 0, 2 2
ikl = 1, ikr = ik 0, 2 2
ikl = ik, ikr ∈ (ik,n) 0, 1 2
ikl ∈ (1, ik), ikr = ik 0, 1 2
ikl = ik, ikr = ik 0, 2 2
Types of [ikl , ikr]:
ik ∈ {1,n} and . . .

Coef.
of λ

cases

ikl , ikr ∈ {1,n} 0, 1 2
ikl = ik = 1, ikr ∈ (1,n) 0, 1, 2 3
ikl ∈ (1,n), ikr = ik = n 0, 1, 2 3

For example, suppose the λ-ranges depicted by
rounded rectangular boxes in Figure 6(b) are λ-ranges
in Λk−1 that have the same maximal s-interval con-
taining ik, and their node status change interval solu-
tion, in the form similar to (7), is shown in Figure
6(a). τ1,τ2 and τ3 are threshold values that divide
[0,∞) into 4 segments, each corresponds to a partic-
ular node status change interval solution. Here, we
show the case with 4 solutions, separated by 3 thresh-
olds, which is the maximum number possible (see Ta-
ble 1). This is a different case from (7) where we have
3 solutions.

Then, we intersect these λ-ranges, which have the
same maximal s-interval containing ik (Figure 6(b)),
with the ranges of λ from the node status change in-
terval solution (Figure 6(a)). The result is shown in
Figure 6(c) where some λ-ranges are split into mul-
tiple λ-ranges by threshold values of λ that belong
to the ranges. Each of these resulting λ-ranges takes
the node status change interval solution from the seg-
ments of λ-values (Figure 6(a)) that it belongs to, as
written in the rectangular boxes in Figure 6(c). For
each of these λ-ranges, say a λ-range Λ, with the
node status change interval solution [ikl , ikr](Λ), its
minimum cut in Gk is (Sk(Λ),Tk(Λ)) where Tk(Λ) is
Tk−1(Λ)∪ [ikl , ikr](Λ).

After we perform this step on all groups of λ-
ranges that share the same maximal s-intervals con-
taining ik in Gk−1, we obtain a set of λ-ranges span-
ning [0,∞), which together form the set Λk.

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

114

Figure 6: At iteration k, we group λ-ranges that have the same maximal s-interval containing ik in the minimum cut of Gk−1
together. Let λ-ranges in (b) be an example of such group of λ-ranges for a specific maximal s-interval containing ik. The
node status change interval solution can be computed accordingly for this s-interval. An example of such solution is illustrated
in (a). This solution (a) is then applied onto λ-ranges in (b), resulting in a set of λ-ranges in (c), with their node status change
intervals solutions written in their respective rectangular boxes.

3.3 Outputs of the PoS Algorithm

The Path of Solutions algorithm divides the range of
nonnegative λ values, [0,∞), into a set of smaller
ranges, which are then subsequently divided into
smaller ranges in each iteration.

At the end of PoS, we obtain the set of λ-ranges,
Λn. We show in Section 5 that the number of λ-
ranges in Λn is at most n3. For an interval Λ in
Λn, we have an associated sequence of graph cuts
{(Sk(Λ),Tk(Λ))}n

k=0. We then obtain the solution
x∗(λ) for λ ∈ Λ based on the HL-algorithm by set-
ting x∗i (λ) to aik , the k-th smallest breakpoint, for the
index k such that i ∈ Sk−1(Λ) and i ∈ Tk(Λ).

PoS solves ℓ1-PFL in O(n2q logn). We show this
in Section 5 as well.

4 PATH OF SOLUTIONS
ALGORITHM FOR CONVEX
PIECEWISE LINEAR FIDELITY
FUNCTIONS

Here, we address the path of solutions for a general
fused lasso problem with convex piecewise linear fi-
delity function, or PFL (1):

(PFL) min
x1,...,xn

n

∑
i=1

f pl
i (xi)+λ

n−1

∑
i=1

|xi − xi+1| (1)

The extension from ℓ1-PFL to PFL can be done in
a similar way as the extension of the HL-algorithm
on GIMR from the case of ℓ1-fidelity function to
convex piecewise linear fidelity functions, given by
Hochbaum and Lu (2017). We give a brief descrip-
tion here:

Let the number of breakpoints of f pl
i (xi) be qi,

and they are denoted by ai,1,ai,2, . . . ,ai,qi . The to-
tal number of breakpoints is ∑

n
i=1 qi, denoted by q.

We sort the q breakpoints in the ascending order with

the indices (i1, j1),(i2, j2), . . .(iq, jq) such that ai1, j1 <
ai2, j2 < .. . < aiq, jq .

The PoS algorithm applied on PFL involves
the computation of the minimum cuts of graphs
G0, . . . ,Gq, for different λ-ranges, which is done in
a similar manner as when PoS is applied on ℓ1-PFL
in Section 3. The difference here comes from the
update of Gk−1 to Gk, which is described in Section
2. The differences between the two graphs are the
weights of the source and sink adjacent arcs of node
ik. In Gk, ws,ik = max(−(f pl

i)′(aik),0) and wik,t =

max((f pl
i)′(aik),0). The maximal s-interval of inter-

est when finding the node status change interval in it-
eration k is the maximal s-interval containing ik, sim-
ilar to when we solve ℓ1-PFL.

5 BOUND OF THE NUMBER OF
SOLUTIONS AND TIME
COMPLEXITY

We first provide the following lemma and theorem
that lead to a conclusion that the number of different
solutions to PFL across all nonnegative λ is equal to
the number of λ-ranges in Λn.

Lemma 5.1. The set of λ-ranges obtained from the
iteration k of PoS, Λk, has the following property:
for two different nonnegative values of λ, λa and λb,
they belong to the same λ-range in Λk if and only if
Tj(λa) = Tj(λb) for all j = 0,1, ...,k.

Proof. Suppose Tj(λa) ̸= Tj(λb) for some j ∈
{0,1, ...,k}. Let h be the smallest index such that
Th(λa) ̸= Th(λb). We know that h ≥ 1 since T0(λa) =
T0(λb) = {}. It follows that Tj(λa) = Tj(λb) for all
j ≤ h − 1. Hence, λa and λb are in the same λ-
range in Λh−1. Since Th(λa) ̸= Th(λb) and Th−1(λa)=
Th−1(λb), the node status change interval going from
Gh−1 to Gh for λa, which is Th(λa)\Th−1(λa), and

Path of Solutions for Fused Lasso Problems

115

that for λb, which is Th(λb)\Th−1(λb), must be dif-
ferent. After the partition of their common λ-range in
Λh−1, they must be in separate λ-ranges in Λh. Since
any two λ-ranges never merge, they must also be in
different λ-intervals in Λk. Hence, we have proven
that if λa and λb are in the same λ-range in Λk then
Tj(λa) = Tj(λb) for all j = 0,1, ...,k.

For the opposite direction of the proof, suppose
λa and λb are not in the same λ-range in Λk. Let
h be the largest index such that λa and λb are in
the same λ-range in Λh (there exists such h because
λa and λb are in the same range of [0,∞) ∈ Λ0).
From the proof of the first direction, it follows that
Th(λa) = Th(λb). Since λa and λb are not in the
same λ-range in Λh+1, it implies that their node
status change intervals, denoted by [ik1, ik2](λa) and
[ik1, ik2](λb) are different. Hence, Th+1(λa), which is
equal to Th(λa)∪ [ik1, ik2](λa), and Th+1(λb), which is
equal to Th(λb)∪ [ik1, ik2](λb), must be different.

Theorem 5.2. The solutions of PFL (1) for two dif-
ferent values of λ, x∗(λa) and x∗(λb), are equal if
and only if λa and λb are in the same λ-range in Λn.

Proof. It follows from Lemma 5.1 that λa and λb are
in the same λ-range in Λn if and only if Tj(λa) =
Tj(λb) for all j = 0,1, ...,n.

The threshold theorem implies that, if Tj(λa) =
Tj(λb) for j = 0, . . . ,n then x∗(λa) = x∗(λb).

If Tj(λa) ̸= Tj(λb) for some j ∈ {0, . . . ,n}, then
there is a node i such that i ∈ Tj(λa) but i /∈ Tj(λb) (or
i /∈ Tj(λa) but i ∈ Tj(λb)). Suppose i ∈ Tj(λa) but i /∈
Tj(λb). It follows that x∗i (λa) ≤ a j < x∗i (λb). Hence,
x∗(λa) ̸= x∗(λb).

The bounds of the number of solutions to ℓ1-PFL
and PFL across all λ ≥ 0 are given in Theorem 5.3
and 5.4.

Theorem 5.3. The number of different optimal so-
lutions of ℓ1-PFL (4) across all λ values is at most
n3+3n2+2n+2

2 , which is smaller than n3 when n ≥ 4.

Proof. Theorem 5.2 implies that the number of solu-
tions is equal to the number of λ-ranges in Λn.

The iteration k of the algorithm involves dividing
λ-ranges in Λk−1 into groups based on the maximal s-
interval containing ik in Gk−1 and then solving for the
node status change interval solution for each maximal
s-interval containing ik.

The node status change interval solution for each
maximal s-interval containing ik may consist of mul-
tiple solutions, similar to how (7) consists of multiple
cases. If there are p cases of the node status change
interval solution, there will be p− 1 λ-threshold val-
ues that cut into the set of λ-ranges that have the same

maximal s-interval containing ik. In Figure 6, for ex-
ample, p = 4. In (7), p = 3. Each threshold con-
tributes to an increase of at most one additional λ-
ranges. In Figure 6(c), there is an increase of 3 λ-
ranges from Figure 6(b) after we use the λ-threshold
values to split the λ-ranges in Figure 6(b).

Our summary in Table 1 shows that the number of
cases of the node status change interval solution for
any type of the maximal s-interval is at most 4. This
implies that for a set of λ-ranges in Λk−1 that have
the same maximal s-interval containing ik, there will
be at most 3 threshold values of λ that cut through
them and the increase in the number of λ-ranges in
Λk due to this maximal s-interval can be at most 3.

Since the number of s-intervals that contain ik, or
the number of [ikl , ikr] such that 1≤ ikl ≤ ik ≤ ikr ≤ n is
ik(n− ik +1), the increase in the number of λ-ranges
from Λk−1 to Λk is at most 3ik(n− ik +1).

Λ0 = {[0,∞)} has only one λ-range. After n iter-
ations, in Λn, the number of λ-ranges is at most 1+
∑

n
ik=1 3ik(n− ik +1) = 1+ n(n+1)(n+2)

2 = n3+3n2+2n+2
2 .

For n ≥ 4, this bound is smaller than n3.

Theorem 5.4. The number of different optimal solu-
tions of PFL (1), with q breakpoints, across all non-
negative λ is at most 1+ 3q(n+1)2

4 , which is smaller
than n2q for n ≥ 7.

Proof. The proof is similar to that of Theorem 5.3. In
each graph update, or each iteration, say iteration k of
the algorithm, the increase in the number of λ-ranges
in Λk from Λk−1 can be at most 3. When solving
PFL with q breakpoints, the number of iterations is q,
as we update the graph from G0 to G1, and so forth,
until Gq.

Suppose the k-th smallest breakpoint comes from
the i-th fidelity function, f pl

i . At iteration k, we do the
computation on the maximal s-interval that contains
node i. The increase in the number of λ-ranges in this
iteration is then at most 3i(n− i+1).

There are qi iterations where we consider the max-
imal s-interval that contains the node i. Hence, this in-
crease of at most 3i(n− i+1) happens qi times. This
implies that the bound of the number of λ-ranges in
Λq is 1+∑

n
i=1 3qii(n− i+1).

When n is an odd number, maxi=1,...,n i(n − i +

1) = (n+1)2

4 . For an even number n, maxi=1,...,n i(n−
i+1)= n2+2n

4 < (n+1)2

4 . Hence, the bound of the num-

ber of λ-ranges in Λq is at most 1+∑
n
i=1 3qi

(n+1)2

4 =

1+ 3q(n+1)2

4 , which is at most n2q for n ≥ 7.

Theorem 5.5. PFL (1) is solved by PoS in

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

116

Table 2: The number of solutions found by our path of solutions algorithm and Gurobi as well as the computation times, taken
from one of the 10 experiments. For Gurobi, we vary the resolution of the list of values of λ that we provide to the solver.

Gurobi PoSResolution (∆) 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005
Solutions 24 36 53 77 93 101 104 108 114
Time (s) 0.45 0.82 1.63 4.10 8.19 16.43 40.72 83.55 0.42

Table 3: Average percentage of solutions found by Gurobi compared to those found by our path of solutions algorithm as well
as the average relative computation time of Gurobi compared to the path of solutions algorithm, across 10 runs.

Gurobi PoSResolution (∆) 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005
Avg % solutions found 23% 34% 48% 69% 81% 88% 95% 97% 100%
Avg runtime compared to PoS 1.22 2.40 4.78 11.92 23.72 47.47 119.21 237.05 1

Figure 7: Percentages of different solutions of ℓ1-PFL
found by Gurobi with varying resolutions, averaged across
10 experiments. Error bars of 1 standard deviation are dis-
played atop the bar plots. PoS can find all solutions across
all λ, indicated by the dashed line at the 100% level.

O(n2q logn) time where q is the number of break-
points of n convex piecewise linear fidelity functions.

Proof. Suppose the k-th smallest breakpoint comes
from the i-th fidelity function, f pl

i . At iteration k of
the algorithm, we compute for the node status change
interval for each group of λ-ranges in Λk−1 that have
the same maximal s-interval containing i. There are
i(n− i+1) such maximal s-intervals. This is also the
number of the node status change interval computa-
tion at iteration k since we do one computation for
one maximal s-interval.

With the same reasoning as in the proof of Theo-
rem 5.4, the number of the computation for node sta-
tus change interval across q iterations is ∑

n
i=1 qi i(n−

i+1), which is bounded by n2q
3 as shown earlier.

Hochbaum and Lu (2017) provided a method that
performs a computation of the node status change in-

terval in O(logn). By relying on the same method
and the data structures used in that work, the total
time complexity due to the node status change interval
computation throughout the algorithm is O(n2q logn).

Other steps such as the sorting of the breakpoints
as well as the updates in the data structures are domi-
nated by the node status change interval computation
time. Therefore, the time complexity of PoS in solv-
ing PFL for all λ ≥ 0 is O(n2q logn).

6 EXPERIMENTS

To demonstrate the performance of PoS in finding dif-
ferent solutions for all λ≥ 0, we compare it to Gurobi,
a state-of-the-art linear programming solver (Gurobi
Optimization, LLC, 2023). We implemented PoS in
Python and run both PoS and Gurobi on the same lap-
top with Apple M2 CPU, 16GB RAM.

We evaluate both PoS and Gurobi on ℓ1-PFL (4)
where the number of samples, n, is 100, the weights
w1, . . . ,wn and the breakpoints a1, . . . ,an are sampled
from a uniform distribution between 0 and 1.

PoS generates the solutions for all λ. However,
Gurobi solves the problem only for a specific value of
λ, which needs to be specified, one at a time. We pro-
vide a list of values of λ to Gurobi: [0,∆,2∆, . . . ,U].
∆ is the resolution for the grid search on the values of
λ, and U is the upper bound of λ. We take the value
of U from the result of PoS. We vary the resolution ∆

and report the result for all resolutions that we tested.
We run the experiment 10 times. In each run, the

weights and breakpoints are resampled. We measure
the computation time of PoS and Gurobi as well as
the number of different solutions that they found. The
results for one particular run, as an example, are re-
ported in Table 2. In this table, we report the number
of different solutions found by both algorithms and
their runtimes. The reported number of solutions for

Path of Solutions for Fused Lasso Problems

117

PoS is the true number of different solutions since it
finds all solutions for all nonnegative λ.

As shown in Table 2, Gurobi, with a low resolu-
tion (large ∆), fails to find some solutions that cor-
respond to λ not included in the list. With ∆ = 0.1,
both PoS and Gurobi have about the same compu-
tation time. However, Gurobi found only 24 differ-
ent solutions while PoS was able to produce all 114
different solutions. As ∆ decreases, the list of λ for
Gurobi becomes finer. Gurobi is able to find more
different solutions, but it also takes longer time. At
the resolution of 0.0005, Gurobi found 108 solutions,
which is close to the total number of different solu-
tions. However, it takes Gurobi more than 80 seconds
while PoS can achieve a better result in 0.42 seconds.

In Table 3 and Figure 7, we report the percent-
ages of solutions found by Gurobi compared to PoS,
averaged across 10 runs. A reported number of 100%
implies that we find all possible solutions. We also re-
port the average relative runtime of Gurobi compared
to PoS, where the reported number of a for Gurobi
implies the runtime that is a times of that of PoS.

When we set the resolution for Gurobi at 0.1,
Gurobi and PoS take approximately the same amount
of time. However, with this resolution, Gurobi only
found about 23% of all possible solutions while PoS
can find all of them. At the finest resolution included
in the experiment, which is 0.0005, Gurobi can find
97% of all solutions. However, it takes more than 200
times longer than PoS.

7 CONCLUSIONS

We provide in this work an efficient minimum cut-
based algorithm called Path of Solutions, or PoS, that
generates the solutions of the convex piecewise linear
fused lasso problem (1) for all values of the tradeoff
parameter, λ. PoS is a more efficient alternative to
the traditional method of parameter tuning, in which
a single parameter value is evaluated one at a time. In
traditional parameter tuning, we might unknowingly
overlook some important values or test two redundant
values that lead to the same result. These challenges
are overcome by PoS.

In addition to the algorithm design, we provide
both the time complexity of the algorithm and the
bound of the number of different solutions across all
nonnegative λ in terms of the number of variables and
the number of breakpoints in the fidelity functions.

We demonstrate the efficiency of PoS via a set of
experiments in comparison with Gurobi, a state-of-
the-art solver for mathematical programming. PoS
is capable of generating all solutions for all λ while

Gurobi found only a small fraction in the same
amount of time. To find all solutions, Gurobi requires
more than a factor of 200 of the time that PoS needs.

Regarding future directions of this work, we are
interested in extending our algorithm to solve other
variants of the fused lasso problems as well as con-
ducting more experiments on synthetic and real data.

ACKNOWLEDGEMENTS

This research was supported in part by AI Institute
NSF Award 2112533.

REFERENCES

Eilers, P. H. and De Menezes, R. X. (2005). Quan-
tile smoothing of array cgh data. Bioinformatics,
21(7):1146–1153.

Gallo, G., Grigoriadis, M. D., and Tarjan, R. E. (1989). A
fast parametric maximum flow algorithm and applica-
tions. SIAM Journal on Computing, 18(1):30–55.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Ref-
erence Manual.

Hochbaum, D. S. (2001). An efficient algorithm for image
segmentation, markov random fields and related prob-
lems. Journal of the ACM (JACM), 48(4):686–701.

Hochbaum, D. S. (2008). The pseudoflow algorithm: A new
algorithm for the maximum-flow problem. Operations
research, 56(4):992–1009.

Hochbaum, D. S. and Lu, C. (2017). A faster algorithm
solving a generalization of isotonic median regression
and a class of fused lasso problems. SIAM Journal on
Optimization, 27(4):2563–2596.

Hoefling, H. (2010). A path algorithm for the fused lasso
signal approximator. Journal of Computational and
Graphical Statistics, 19(4):984–1006.

Storath, M., Weinmann, A., and Unser, M. (2016). Ex-
act algorithms for lˆ1-tv regularization of real-valued
or circle-valued signals. SIAM Journal on Scientific
Computing, 38(1):A614–A630.

Tibshirani, R. J. (2011). The solution path of the generalized
lasso. Stanford University.

Wang, L., Gordon, M. D., and Zhu, J. (2006). Regularized
least absolute deviations regression and an efficient al-
gorithm for parameter tuning. In Sixth International
Conference on Data Mining (ICDM’06), pages 690–
700. IEEE.

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

118

