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DORIT S. HOCHBAUM* AND XU RAOf

Abstract. The purpose of this write-up is to correct an error in a lower bound used in [1], and to show that the corrections
required do not affect the results. Another part of this write-up is a simplification and streamlining of the Fully Polynomial
Time Approximation Scheme result in the paper.

1. Correcting an error. We recently found an error in the proof of Theorem 6 in [1]. This part of
the write-up specifies the modifications required to address this error. The error is that the lower bound
kt1

of the optimal value V* was written incorrectly as =3 St s = WD where it should have been

%1 S s = %D. This error affects Algorithm 3, which is an e-approximation algorithm. In order to

correct it we change the scaling factor in Step 1 of Algorithm 3 from €2D to gTD. The running time of
Algorithm 3 with this adjusted scaling factor is still O( ) for constant k. Hence, the results of the paper
do not change. As an aside, we note that this running time is in fact fixed-parameter tractable for the
parameter k.
We now list the changes in lemmas and formulas in Section 4.2 of [1] needed as a result of the modification

of the scaling factor:

1. The right hand side of the e-relaxed cascading constraints in (e-relaxed RSP) should be changed

from ¢D + €kD to {D + €D for £ =1, ..., k.
2. In Lemma 6, the bound should be changed from Vi (x) + ¢kD to Vi(x) + €D.
3. In Theorem 2, the inequalities should be changed from
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4. The value of d(€), which appears in Theorem 3, Corollary 1, Theorem 5 and Theorem 6, should be
changed from §(e) = w -1 to 6(e) = w e
Finally, with the updated value §(¢) and Lemma 6, in the proof of Theorem 6 the inequality V(x) <
V4 % + €k D should be changed to V(%) < V* + % + eD. Observe that the new () is 1/k times the
original value, and the new second additional term €D is 1/k times the original one, ekD. Hence, using the
corrected lower bound of V*, which is also 1/k times the one that was used, we get the same bound for the
ratio V(x)/V*. Therefore, Theorem 6 holds with the correction and the modified scaling factor.

2. A simplification for proving the approximation bound. We present here a streamlined version
of Theorem 2, resulting in simplified inequalities and formulas in several lemmas and theorems.
We provide next the new version of Theorem 2 and its proof.

THEOREM 2.1. For any assignment of large items x* feasible for (scaled-modified-k-RSP; ), the values
of the objective function with original and scaled sizes, g(x*) and g’ (x%) respectively, satisfy,

D 2D
2 g — D < gxh) < S

< = g (x") + ek®D.

Proof. Let T = EQkD denote the scaling factor. Recall that s; = [ % |, so T's; < s; < T'(s; + 1).

So for any integer time j,

nr, ny,

Qj(xL) = Z szx{“] <T- Z(s; + l)x{“j =T. <Q;—(XL) + be)
i=1 i=1 i=1
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The second term in the parentheses, Y ", x{“j, must be less tan or equal to the number of large items, which

is bounded by ’e‘ Therefore we derive the following inequality

(2.1) Q") <T- (Q;(XL) + f) =T -Qj(x")+eD forj=1,..k

Using s; > T's; for any i, we get
(2.2) stsz Zsl ol =T-Qi(x") forj=1,..k

Recall that the adjusted remainder of time 7 is R.(x") = miny>, Ry = ming>, (ED — Z§:1 Qj(xL)>,

and that the scaled adjusted remainder of time 7 is R.(x") = ming>, (éD’ - Z§=1 Q;(XL)). We derive
from inequality (2.1) that for any time 7,

¢
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j=1
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(2.3) =T. Ri(xL) — €kD.

And we derive from inequality (2.2) that for any time 7,

(2.4) R, (x“) =min [ ¢D — ZQJ <m1n (D —-T- ZQ =T R (xY)

>
j=1 j=1

Using the inequalities (2.1) and (2.4), we prove the upper bound on g(x") as follows:
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The lower bound on g(x") follows from inequalities (2.2) and (2.3):

j=1 T=1
k k

>N (h—j+ )T Q")+ (T R.(x") — ekD)
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k k
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=T -g(x")—ek’D
This completes the proof of the statement of the theorem. 0

Using these new inequalities, the value of d(¢), which appears in Theorem 3, Corollary 1, Theorem 5 and
Theorem 6, should be changed to 6(¢) = 2ek?D accordingly. Additionally, we derive in Theorem 6 an upper

bound of the ratio V(x)/V* as 1 + (5%—6) + eD) /V*. With the new expression of d(€), we can show that:

(‘?+GD)/V*<<%+1>6D~(,H2UD<4G

Therefore, the ratio V(x)/V* is at most 1+ 4e =1 + €’ for ¢ = 4e.
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