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Abstract. The replenishment storage problem (RSP) is to minimize the storage capacity
requirement for a deterministic demand, multi-item inventory system, where each item
has a given reorder size and cycle length. We consider the discrete RSP, where reorders can
only take place at an integer time unit within the cycle. Discrete RSP was shown to be NP-
hard for constant joint cycle length (the least common multiple of the length of all indi-
vidual cycles). We show here that discrete RSP is weakly NP-hard for constant joint cycle
length and prove that it is strongly NP-hard for nonconstant joint cycle length. For constant
joint cycle-length discrete RSP, we further present a pseudopolynomial time algorithm that
solves the problem optimally and the first known fully polynomial time approximation
scheme (FPTAS) for the single-cycle RSP. The scheme is utilizing a new integer pro-
gramming formulation of the problem that is introduced here. For the strongly NP-hard
RSP with nonconstant joint cycle length, we provide a polynomial time approximation
scheme (PTAS), which for any fixed ε, provides a linear time ε approximate solution. The
continuous RSP, where reorders can take place at any time within a cycle, seems (with our
results) to be easier than the respective discrete problem.We narrow the previously known
complexity gap between the continuous and discrete versions of RSP for the multi-cycle
RSP (with either constant or nonconstant cycle length) and the single-cycle RSP with
constant cycle length and widen the gap for single-cycle RSP with nonconstant cycle
length. For the multi-cycle case and constant joint cycle length, the complexity status of
continuous RSP is open, whereas it is proved here that the discrete RSP is weakly NP-hard.
Under our conjecture that the continuous RSP is easier than the discrete one, this implies
that continuous RSP on multi-cycle and constant joint cycle length (currently of unknown
complexity status) is at most weakly NP-hard.

Funding: This work was supported by the Division of Civil, Mechanical andManufacturing Innovation
[Grant CMMI 1760102].
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1. Introduction
The replenishment storage problem (RSP) arises in
planning a periodic replenishment schedule of mul-
tiple items so as to minimize the storage capacity
required. RSP is amulti-item inventory system,where
each item has deterministic demand, a given reor-
der size, and its own cycle length determined by its
economic order quantity. We study here the discrete
RSP, where reorders can only take place at an integer
time unit within the cycle. The problem is to de-
termine the timing of the first replenishment of each
item within its cycle so that the maximum inventory
level of all items over time is minimized. For the
continuous RSP, reorders (replenishment timing) can
take place at any time within the cycle of each item.

RSP has been studied extensively for both the dis-
crete and continuous versions. We clarify here the
complexity status of the discrete RSP and delineate
the complexity gaps between the discrete and con-
tinuous versions of the problem.
Geometrically, RSP can be viewed as a problem of

shifting periodic triangle functions and then, packing
them on top of each other so as to minimize the peak
value required. To illustrate that, Figure 1(a) is the
triangles function for the inventory level of item 1, for
which the order quantity is four units and the cycle
length is four periods. These correspond to the height
and the width of each triangle, respectively. The re-
plenishment timing of item 1 is at time 0. A second
item, item 2, is shown in Figure 1(b). It has order

1

http://pubsonline.informs.org/journal/opre/
mailto:hochbaum@ieor.berkeley.edu
http://orcid.org/0000-0002-2498-0512
http://orcid.org/0000-0002-2498-0512
mailto:xrao@berkeley.edu
http://orcid.org/0000-0003-0260-891X
http://orcid.org/0000-0003-0260-891X
https://doi.org/10.1287/opre.2018.1839


quantity of two units and cycle length of two, and its
replenishment timing is one. With this selection of
the replenishment timings, the sum of the inventory
levels of the two items is maximized at time 0 with a
peak storage level of five, which is illustrated in
Figure 1(c). This peak storage level is also the smallest
possible for this discrete RSP problem. We note that
the peak storage level always coincides with the re-
order timing of one of the items.

An instance of discrete RSP consists of n items. Each
item i is associated with an integer individual cycle
length ki and an integer reorder size si. Here, si is
expressed in terms of the storage amount required
for the reorder quantity. The joint cycle length of the
n items is the least common multiple (lcm) of the
lengths ki, i � 1, . . . , n. We denote k � lcm(k1, . . . , kn).
By the cyclical nature of the problem, the total in-
ventory levels repeat periodically every k units of
time for any reorder schedule. If all items have the
same cycle time, k, the problem is said to be single-
cycle; otherwise, it is said to be multi-cycle.

The single-cycle discrete RSP was shown by Hall
(1998) to be NP-hard, even for constant k. Because
single-cycle RSP is a special case of multi-cycle RSP,
it implies that multi-cycle RSP is NP-hard, even for
constant joint cycle length k. Here, we prove that, for
nonconstant k, both single-cycle and multi-cycle
discrete RSPs are strongly NP-hard. This matches the
strong NP-hardness of the continuous RSP for the
multi-cycle RSP with nonconstant k (Gallego et al.
1992). Before our results here, it was conceivable that
the discrete RSP for multi-cycle and nonconstant
k could be easier than the continuous problem if it

was shown to be weakly NP-hard. With the strong
NP-hardness result here, both discrete and continu-
ous problems are of equal complexity for this case.
For constant k, we provide here, for the first time,

a pseudopolynomial time algorithm that solves dis-
crete RSP optimally, proving that both single-cycle
RSP and multi-cycle RSP for constant k are weakly
NP-hard. Weakly NP-hard problems can have a fully
polynomial time approximation scheme (FPTAS).
Indeed, we devise for the single-cycle RSP an FPTAS.
That approximation scheme utilizes a newly intro-
duced integer programming formulation of RSP. This
new formulation is of independent interest, and it
is shown to be tighter that the known integer pro-
gram that has been used for RSP to date. For the
strongly NP-hard single-cycle RSP with nonconstant
k, we devise a polynomial time approximation scheme
(PTAS), which is the best approximation possible for
strongly NP-hard problems. Furthermore, for a fixed
parameter ε, that PTAS delivers an ε-approximate
solution in linear time.
Our results narrow the complexity gap between

the continuous and discrete versions of RSP for the
multi-cycle RSP (with either constant or nonconstant
cycle length) and the single-cycle RSP with con-
stant cycle length. The single-cycle continuous RSP is
polynomial time solvable (Homer 1966). Hence, our
results widen the gap for single-cycle RSP with non-
constant cycle length. For the multi-cycle case and
constant joint cycle length, the complexity status of
continuous RSP is open, whereas it is proved here
that the discrete RSP is weakly NP-hard. A tabular

Figure 1. A Geometric View of RSP

Table 1. Summary of Complexity Results for RSP with Nonconstant Joint Cycle Length

Continuous Discrete Here (discrete)

Two items Closed form solutiona Closed form solutionb —
Single-cycle Closed form solutionc (1 + 2/k)-approximationd Strongly NP-hard and PTAS
Multi-cycle Strongly NP-harde NP-hardd Strongly NP-hard

aHartley and Thomas (1982).
bMurthy et al. (2003).
cHomer (1966), Page and Paul (1976), and Zoller (1977).
dHall (1998).
eGallego et al. (1992).
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summary of the complexity results here is provided
in Tables 1 and 2.

Throughout, we will refer to the discrete RSP as
RSP unless there is a risk of ambiguity.

1.1. Literature Review
Single-cycle RSP was shown to be NP-hard for k � 2
(Hall 1998), which implies that both single-cycle RSP
and multi-cycle RSP are at least weakly NP-hard.
Such proof, however, does not exclude the possibility
that the problems are strongly NP-hard, and therefore,
the complexity status of these two RSPs as strongly NP-
hard versus weakly NP-hard has been unresolved until
now. Hall (1998) also provided an approximation
algorithm for single-cycle RSP, with an approximation
factor of 1 + 2

k

( )
. Another algorithm provided by Hall

(1998) delivered a two approximation, which is ob-
served here to be satisfied by any feasible solution.
The (1 + 2

k)-approximation algorithm is of particular
interest, because it is a part of the PTAS that we derive
for the single-cycle RSP with nonconstant k. That algo-
rithm links the continuous and discrete problems by
rounding (down) the fractional values of the closed
form solution to the respective continuous problem.
A complete description of this (1 + 2

k)-approximation
algorithm is given in Section 5.

Formulti-cycle RSPwith only two items,Murthy et al.
(2003) provided an optimal closed form replenishment
solution, meaning that it is solved in constant time.

Studies of multi-cycle RSP with more than two items
have been focused on the development of heuristics.
These include genetic algorithms (Moon et al. 2008, Yao
and Chu 2008), a smoothing procedure utilizing a
Boltzmann function (Yao et al. 2008), local search
procedures (Croot and Huang 2013), a simulated
annealing algorithm (Boctor 2010), hybrid heuristics
(Boctor 2010, Russell and Urban 2016), and an evo-
lutionary algorithm (Boctor and Bolduc 2015). None
of these heuristics were shown to deliver a guaranteed
approximation bound.

The continuous single-cycle RSP was first explic-
itly studied by Homer (1966), who derived an opti-
mal closed form solution. Later, Page and Paul (1976)
and Zoller (1977) independently rediscovered the

result of Homer (1966). Hartley and Thomas (1982)
considered the continuous time multi-cycle RSP with
only two items and devised an optimal closed form
solution. For multiitem multi-cycle continuous RSP, the
problem was proved to be strongly NP complete for
nonconstant cycle lengths (Gallego et al. 1992). Anily
(1991) and Hariga and Jackson (1995) obtained lower
bounds on the minimum peak storage required and
proposed heuristics for multi-cycle continuous RSP.
Teo et al. (1998) addressed multi-cycle continuous
RSPwhen, for all pairs of individual cycle lengths (ki, kj),
the larger value is an integer multiple of the smaller
value. For the problem with this integer ratio cycles’
lengths assumption, they devised a heuristic, which is
a 15

8 -approximation algorithm.
Continuous RSP was used as a subproblem for

the problem of identifying optimal cycle lengths and
replenishment schedule for multiitems so as to mini-
mize the order and inventory holding costs without
exceeding a given storage capacity. In this latter prob-
lem, each item is associated with a unit holding cost
and an order cost. Under the assumption of identical
cycles, an optimal closed form solution was derived
from the closed form solution to the replenishment
schedule for single-cycle continuous RSP (Homer 1966,
Page and Paul 1976, Zoller 1977). For thisproblemwith
nonidentical cycles and only two items, a similar ap-
proach resulted in a closed form solution generated from
the continuous RSP closed form solution (Hartley and
Thomas 1982, Thomas and Hartley 1983). And for
multi-item instances with non-identical cycles Anily
(1991), Gallego et al. (1996), and Hariga and Jackson
(1996) developed some heuristics based on the heu-
ristics of multi-item multi-cycle continuous-RSP.
Summaries of the relevant known results for con-

tinuous and discrete RSPs are given in Table 1 for
nonconstant k and Table 2 for constant k. These tables
also include our contributions here.

1.2. Summary of Contributions
Our main contributions here are the following.

1. Resolving the complexity status of discrete RSP.
We prove that, for nonconstant joint cycle length k,

Table 2. Summary of Algorithms and Complexity Results for RSP with Constant Joint
Cycle Length

Continuous Discrete Here (discrete)

Single-cycle: complexity Polynomiala NP-hardb Weakly NP-hard
Single-cycle: algorithm Closed form

solutiona
(1 + 2/k)-
approximationb

Pseudopoly optimization
algorithm and FPTAS

Multi-cycle: complexity Open NP-hardb Weakly NP-hard
Multi-cycle: algorithm — — Pseudopoly optimization

algorithm

aHomer (1966), Page and Paul (1976), and Zoller (1977).
bHall (1998).
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the discrete RSP is strongly NP-hard regardless of
whether it is single-cycle or multi-cycle. In contrast,
for constant joint cycle length k, we show that the
problem is weakly NP-hard and provide a pseudo-
polynomial time optimization algorithm with com-
plexity that is a polynomial function of the sum of
the order sizes si and exponential in the joint cycle
length k. These results show that, for nonconstant k,
both the continuous and the discrete problems are
strongly NP-hard, and that closes the gap between
these twoRSP problems. This provides extra evidence
to support the conjecture that the discrete RSP prob-
lem can only be harder than the continuous problem.
For constant k, the continuous problem is polynomial
for the single-cycle case andof unknowncomplexity for
the multi-cycle case. From our results, the problem is
weakly NP-hard for both single-cycle and multi-cycle
cases, which if our conjecture is true, implies that the
continuous RSP for the multi-cycle case cannot be
strongly NP-hard.

2. Devising the first known FPTAS for the weakly
NP-hard single-cycle RSP with constant k.

3. Devising the first known PTAS for the strongly
NP-hard, single-cycle RSP with nonconstant k.

4. Identifying a new integer programming for-
mulation for RSP. This formulation enables the der-
ivation of the FPTAS for the single-cycle RSP. We
believe that this formulation is of independent in-
terest, and it has potential applications beyond the
context of RSP problems.

Summary of our results for RSP compared with the
best previously known results are given in Tables 1
and 2: Table 1 for RSP with nonconstant k and Table 2
for RSP with constant k.

1.3. Paper Overview
The next section (Section 2) introduces notation, a
review of the known integer programming formu-
lation of RSP, and the derivation of our new integer
programming formulation. In Section 3, we prove the
strong NP-hardness of RSP for the nonconstant value
of k (joint cycle length) and the weak NP-hardness of
RSP for the constant value of k. These proofs apply to
the complexity of both single-cycle RSP and multi-
cycle RSP. The weak NP-hardness of RSP for constant
k (joint cycle length) is proved here via a pseudopo-
lynomial time dynamic programming algorithm that
solves the problem optimally. This establishes that
both single-cycle RSP and multi-cycle RSP with
constant k are weakly NP-hard. In Section 4, we de-
scribe the new FPTAS for the single-cycle RSP for
constant k. Section 5 includes the new PTAS for the
single-cycle RSPwith nonconstant k. That section also
provides a description of the (1 + 2

k)-approximation
algorithm for the single-cycle RSP of Hall (1998). We
conclude with several remarks in Section 6.

2. Preliminaries and Integer
Programming Formulations

Given an instance of discrete RSP, the demand rates
and inventory levels are given in terms of the re-
spective reorder size: for item i, the demand per unit of
time is si

ki
, and its inventory levels at each replenish-

ment cycle of ki time units starting at time T, (T+0,
T+1, . . . ,T+ ki−1), are (si, ki−1ki

si, ki−2ki
si, . . . , 1ki si). The in-

ventory level of item i on time �, given that it is
reordered on time j, is denoted by Vij�. Thus,

Vij� � si · 1 − (� − j) mod ki
ki

( )
.

Recall that, because k � lcm(k1, . . . , kn), the inven-
tory levels are periodic within a cycle of k time units
(repeat every k time units). It is, therefore, sufficient to
determine the peak storage requirement by examining
a time interval of length k. In this interval, we only
need to look at discrete time values from one to
k, because that peak storage always coincides with
the reorder timing of an item. Note that inventory
level at time 0 is the same as inventory level at time k.
The decision variables in the integer programming

formulations are the assignments of time periods
within the k-unit timeframe to the orders of all items. This
assignment of timing is given as an n × k binary
matrix x, where

xij � 1 if item i is ordered at time j,
0 otherwise.

{
Definition 1. A n× k binary matrix x is said to be a
valid assignment for a given instance if and only if each
item i is replenished exactly once every ki time units.
That is,∑ki

j�1
xij � 1 i � 1, . . . ,n, and

xij � xi,( j−ki) i � 1, . . . ,n, j � ki + 1, . . . , k.

The following listed notations denote demand
rates, inventory levels, the total sum of reorder sizes
at an integer time, and the optimal peak storage.
di � si

ki
: demand rate of item i for i � 1, . . . ,n.

D � ∑n
i�1 di � ∑n

i�1
si
ki
: total demand (aggregate stock

depletion) per unit of time.

Vij� � si · 1 − (�−j) mod ki
ki

( )
: the inventory level of item

i at time � given that the reorder time is j.
V�(x) � ∑n

i�1
∑ki

j�1 Vij�xij: the inventory level at time �
for � � 1, . . . , k.
V(x) � max�∈{1,. .,k} V�(x): the maximum inventory

level (peak storage) of a cycle.
Qj(x) � ∑n

i�1 sixij: the total sum of reorder sizes at
time j for j � 1, . . . , k.
V∗ � minx valid V(x): the optimal peak inventory level.
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Let the following quantity, which is a constant, be de-
notedbyC:C � ∑n

i�1 1
2(1 + 1

ki
)ksi + (1+k)k

2 D. Thisquantity is
used in deriving the new formulation and the FPTAS.

It is observed next that the peak inventory level
for any valid assignment x is within twice the opti-
mum. Hence, any replenishment schedule is a two-
approximate solution.

Lemma 1. Any valid assignment x is a 2-approximate
solution.

Proof. At time � for � � 1, . . . , k, the inventory level
of all items is V�(x) � ∑n

i�1
∑ki

j�1 Vij�xij. Because

Vij� � si · 1 − (� − j) mod ki
ki

( )
≤ si,

V�(x) ≤
∑n
i�1

∑ki
j�1

sixij �
∑n
i�1

si
∑ki
j�1

xij

( )
� ∑n

i�1
si.

Hence, the storage capacity needed is less than or
equal to

∑n
i�1 si.

However, the average inventory level of item i per
time unit is 1

2(1 + 1
ki
)si for any i. Therefore, the aggre-

gated average inventory level of all items per time unit
is 1

k
∑k

��1 V�(x) � ∑n
i�1 1

2(1 + 1
ki
)si >∑n

i�1 1
2 si. The peak in-

ventory level is at least as much as this aggregated
average inventory level; thus, V∗ ≥ 1

2
∑n

i�1 si.
Consequently, V(x) ≤ ∑n

i�1 si ≤ 2V∗, which means
that x is a 2-approximate solution. □

The standard integer programming formulation
is as follows. A straightforward formulation of RSP
was used in previous studies, including Murthy et al.
(2003), Boctor (2010), and Russell and Urban (2016).
Let the binary variables yij be

yij �
1 if item i is ordered at time j,

for i � 1, . . . , n, j � 1, . . . , ki
0 otherwise.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Note that variables yij coincide with variables xij
within the first ki time periods.

Let Vij� be parameters defined as above, Vij� �
si 1 − (�−j) mod ki

ki

( )
. The standard integer programming

formulation (RSP0) is as follows:

(RSP0) min V

subject to
∑n
i�1

∑ki
j�1

Vij�yij ≤ V � � 1, . . . , k

∑ki
j�1

yij � 1 i � 1, . . . , n

yij binary for i � 1, . . . ,n, j � 1, . . , ki.

2.1. A New Integer Programming Formulation
We observe that formulation (RSP0) has multiple so-
lutions of the same value. Specifically, for any valid
assignment that attains the peak storage on day �,
there are k − 1 other valid assignments of the same
objective value that attain the maximum storage on
any day other than �. For example, to attain the peak
storage on day � + 1, we shift the reorder by one day
forward. Our new formulation requires that any
feasible assignment attains its peak storage at time
k (or equivalently, at time 0). This is proved to be
possible with “shift” permutations in Lemma 2. An-
other aspect of the new formulation is that, instead of
dealingwith inventory levels directly as in (RSP0), the
new formulation uses, as the main variables, the total
reorder size at time j, Qj(x) � ∑n

i�1 sixij for j � 1, . . . , k.
Lemmas 3 and 4 establish the relationship between
inventory levels and reorder sizes.

Lemma 2. For any valid assignment x, there is a shift
permutation of 1, . . . , k denoted by π(1), . . . , π(k) such that
the valid assignment x′ with x′ij � xiπ( j) attains peak in-
ventory level at time k, and this new peak inventory level
equals the peak inventory level of assignment x. That is,
Vk(x′) � V(x′) � V(x).
Proof. Suppose that the peak storage for assignment x
is attained at time h, Vh(x) � V(x).
For the following shift permutation,

π( j) � ( j + h), if j + h ≤ k

( j + h) − k, if j + h> k,

{
the assignment x′ with x′ij � xiπ( j) is a new valid as-
signment, which is h time units shifted back in time
comparedwith x. In other words, the inventory levels
induced by the new assignment x′ form a shift per-
mutation of the original sequence of inventory levels,
Vj(x′) � Vπ( j)(x). Therefore, the peak inventory levels
of the two assignments are the same, and Vk(x′) �
Vπ(k)(x) � Vh(x) � V(x). □

With Lemma 2, we can restrict valid assignments
to those attaining peak inventory level at time k
without changing the optimal solution of RSP. Hence,
RSP can also be formulated as minimizing the inventory
level at time k such that the schedule is a valid assignment
that attains peak inventory level at time k, which can be
written as V�(x) ≤ Vk(x) for � � 1, . . . , k.
Next, we show in Lemma 3 that, for any valid as-

signment x, the inventory level of time � can be
determined based only on Qj(x), the total amount
ordered at time j, the inventory level at time k, Vk(x),
and D, the total sum of demand rates of all items:

Lemma 3. For any valid assignment x,

V�(x) � Vk(x) − �D +∑�
j�1

Qj(x), � � 1, . ., k. (1)
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Proof. For each unit of time, item i’s inventory is reduced
by its demand rate di, and the total inventory level is
reduced by D � ∑n

i�1 di. Because Qj(x) � ∑n
i�1 sixij is the

reorder size at time j, the inventory level at time j is
Vj(x) � V( j−1) mod k(x) −D +Qj(x). Note that inventory
level at time 0 is the same as inventory level at time k by
the cyclical nature of RSP. For any integer time �, we
apply this equation recursively with j � �, � − 1, . . . , 1 to
derive that V�(x) � Vk(x) − �D+ ∑�

j�1 Qj(x). □

Lemma 2 shows that we can formulate the RSP as
minimizing the inventory level at time k such that the
schedule is a valid assignment. A consequence of this
lemma is that inequalities V�(x) ≤ Vk(x) for � � 1, . . . , k
can be rewritten using Equation (1) in Lemma 3 as

Vk(x) ≥ Vk(x) − �D +∑�
j�1

Qj(x) for � � 1, . . . , k

or equivalently,∑�
j�1

Qj(x) ≤ �D for � � 1, . ., k. (2)

We refer to this set of inequalities (2) as the cascading
constraints. These constraints enforce the peak stor-
age at time k.

Next, we address the objective function. Let z(x) be
the following function of a valid assignment x:

z(x) � ∑k
j�1

(k − j + 1)Qj(x) �
∑k
j�1

(k − j + 1)∑n
i�1

sixij.

In the next lemma, we prove that minimizing the in-
ventory level of time k, Vk(x), is equivalent to maxi-
mizing z(x). This is proved by showing that the sum of
kVk(x) and z(x) is a constant: the constant C defined
earlier.

Lemma 4. kVk(x) + z(x) � ∑n
i�1 1

2(1 + 1
ki
)ksi + (1+k)k

2 D.

Proof. For item i, the sum of storage space that it takes
up during its ki time units of reorder cycle is

∑ki
j�1 ·

ki+1−j
ki

si � 1
2(1 + 1

ki
)kisi. There are k

ki
reorder cycles for item i

during the timeframe of length k so that item i takes a
total of 1

2(1 + 1
ki
)ksi units of storage space. The sum of all

items’ inventory levels over the k integer times is hence∑k
��1 V�(x) � ∑n

i�1 1
2(1 + 1

ki
)ksi. Using Equation (1) in the

statement of Lemma 3,
∑k

��1 V�(x) can be rewritten as

∑k
��1

V�(x) �
∑k
��1

Vk(x) − �D +∑�
j�1

Qj(x)
( )

� kVk(x) − (1 + k)k
2

D +∑k
j�1

(k − j + 1)Qj(x)

� kVk(x) − (1 + k)k
2

D + z(x).

It follows that

kVk(x) + z(x) �∑k
��1

V�(x) + (1 + k)k
2

D

�∑n
i�1

1
2(1 +

1
ki
)ksi + (1 + k)k

2
D,

and the right-hand side is a constant for every problem
instance. □

FromLemma 4, it follows thatminimizingV(x) can be
replaced by maximizing z(x). This with the cascading
constraints leads to the new integer programming formu-
lation (RSP1). For presentation simplicity, we useQj(x) �∑n

i�1 sixij:

(RSP1) max z(x) � ∑k
j�1

(k − j+ 1)Qj(x)

subject to
∑�
j�1

Qj(x) ≤ �D � � 1, . ., k

∑ki
j�1

xij � 1 i � 1, . . . ,n

xij � xi,( j−ki) i � 1, . . . ,n, j � ki + 1, . . . , k

xij binary for i � 1, . . . ,n, j � 1, . ., ki.

2.1.1. A Graphical Visualization of (RSP1). To provide
the intuition behind the cascading constraints and ob-
jective function z(x) of (RSP1), we present a graphical
illustration in Figure 2. In the example illustrated, we
let the cycle length be k � 4. In Figure 2(a), there are k �
4 columns with heights �D for time � � 1, . . . , k, which
represent the right-hand sides of the cascading constraints.
In Figure 2(b), there is a rectangle with heightQ1(x)

that extends from day 1 to day k. A second rectangle
with height Q2(x) is stacked on the first rectangle,
extending from day 2 to day k. The third rectangle of
heightQ3(x) extends from day 3 to day k, and the fourth
and last rectangle of height Q4(x) extends only over
time period (day) k � 4. With this construction, the
sum of heights of all rectangles within the column
corresponding to time � is exactly the left-hand side
of the �th cascading constraint,

∑�
j�1 Qj(x).

The area of the first rectangle is kQ1(x), the second is
(k − 1)Q2(x), and in general, the jth rectangle covers

Figure 2. A Graphical Visualization of (RSP1)
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an area of (k + 1 − j)Qj(x). Therefore, the sum of areas
of all rectangles is z(x) � ∑k

j�1(k − j + 1)Qj(x), which is
the objective function of (RSP1).

Therefore, geometrically, (RSP1) seeks to find the
valid assignment x that maximizes the area of the
rectangles representing Qj(x) subject to the constraints
that the total height of the rectangles in column � does
not exceed the column height �D.

We call the area not covered in each column the
remainder. The remainders are the spaces between
the column heights in Figure 2 and the packed rect-
angles of area z(x). Obviously, minimizing those is
identical to maximizing z(x), because the total area
of the remainders plus the area covered by the rect-
angles z(x) is a constant,

∑k
��1 �D � k+1k

D . It is impor-
tant to observe that the area of the remainders is
not fully available for additional items. That is be-
cause if an item j is added to the reorder in day p( j), its
size sj will diminish the remainder not only on day
p( j) but also, on days p( j) + 1, . . . , k. Instead, the critical
forms of remainders are the adjusted remainders de-
fined in Section 4.1, which are added to the objective
function z(x) for the derivation of the FPTAS.

2.1.2. Comparing the New and Standard Formulations
(RSP0) and (RSP1). As noted before, (RSP1) removes
multiple optima that differ in the ordering present in
(RSP0) and always selects an optimal solution with
peak storage attained at time k. In that sense, any
solution to (RSP1) and its Linear Programming (LP)
relaxation is contained in the set of feasible solutions
to (RSP0) or its LP relaxation. Yet, there are other
features on which the two problems differ. The
new presentation of the problem as a maximization
problem opens up the option, when there are multiple
solutions to (RSP1), of selecting the solution that
minimizes the “adjusted remainders,” a concept
described in Section 4.1 that is crucial in the derivation
of the FPTAS and the PTAS. A key result shown in
Section 4.1 is that the optimal solution to the new integer
programming formulationwhen the sum of the adjusted
remainders is added to the objective is “close” to the
optimal solution.

Another difference between the two formulations is
the form of the constraints’ matrix coefficients. The
coefficients of binary variables in the constraints of
(RSP0) vary for each i, j, �, because the coefficient Vij�

follows the triangular line. By contrast, in the cascading
constraints of (RSP1), the coefficients of binary variable
xij can only be zero or si for each i, j, because they rep-
resent the packing of rectangles. For single-cycle RSP,
the coefficients of xij in (RSP1) are all 0 in the first j − 1
cascading constraint and all si for the remaining ones.
We believe that, as a result, the LP relaxation of (RSP0)

is likely to have more fractional variables in an op-
timal solution than the LP relaxation of (RSP1).

3. The Complexity of RSP for Constant
and Nonconstant Joint Cycle Length

RSP has been known to be NP-hard for both the single-
cycle and multi-cycle versions and for either constant or
nonconstant joint cycle length k (Hall 1998). We show
in this section that, for constant k, both the single-cycle
RSP and the multi-cycle RSP are actually weakly NP-
hard. We derive for both problems a pseudopolynomial
time algorithm that solves these problems optimally.
For nonconstant k, we show here that both the single-
cycle RSP and the multi-cycle RSP are strongly NP-hard
(and hence, there cannot be a pseudopolynomial time
algorithm for nonconstant k unless NP = P). We first
prove the strong NP-hardness for nonconstant k.

3.1. Nonconstant Joint Cycle RSP Is
Strongly NP-Hard

The single-cycle RSP is a special case of multi-cycle RSP.
It is, therefore, sufficient to prove that the nonconstant
joint cycle-length single-cycle RSP is strongly NP-hard
because that would imply that multi-cycle RSP is also
strongly NP-hard for k nonconstant. The reduction is
from the three-partition problem, a well-known strongly
NP-hard problem (Gary and Johnson 1979).
The three-partition problem is as follows. Given

integers a1, a2, . . . , a3m and integer b such that 1
4 b<

ai < 1
2b for each i and

∑3m
i�1 ai � mb, can {1, 2, . . . , 3m} be

partitioned into m disjoint sets A1,A2, . . . ,Am such
that, for 1 ≤ j ≤ m,

∑
i∈Aj ai � b?

Theorem 1. The single-cycle RSP with nonconstant joint
cycle length is strongly NP-hard.

Proof. Given an instance of three partition, we define
an instance of single-cycle RSP with n � 3m, k � m, and
si � ai for 1 ≤ i ≤ 3m. The decision problem for RSP
is stated as follows. Is there a valid assignment x
with peak inventory level that is less than or equal to
V � 1+m

2m
∑3m

i�1 ai?
We observe that the sum of inventory levels at inte-

ger times over a cycle equals
∑3m

i�1(1 + m−1
m + . . . + 1

m)ai �∑3m
i�1 m+1

2 ai � mV. Having
∑k

��1 V�(x) � mV, the peak
inventory level max� V�(x) ≤ V is equivalent to V�(x) �
V for all �. This means that the inventory levels at all
integer time units are the same. From Lemma 3, it fol-
lows that V1(x) � V2(x) � . . . � Vm(x) if and only if
Q1(x) � Q2(x) � . . . � Qm(x) � D, where D � ∑3m

i�1
ai
m � b.

Let Aj � {i|xij � 1}, j � 1, . . . ,m; then,Qj(x) � ∑n
i�1 aixij �∑

i∈Aj ai. Therefore, the decision problem correspond-
ing to single-cycle RSP has a yes answer if and only if
there is a partition Aj, j � 1, . . . ,m such that

∑
i∈Aj ai � b

for 1 ≤ j ≤ m. □
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3.2. Constant Joint Cycle-Length RSP Is Weakly
NP-Hard

Weprove theweakNP-hardness of RSPwith constant
k by devising a dynamic programming algorithm
solving RSP optimally in pseudopolynomial time.
The complexity of this dynamic programming algo-
rithm depends on the value of the order sizes (rather
than the length/logarithm of these sizes) and is ex-
ponential in k. Such complexity is considered pseudo-
polynomial for constant k. Becausebothsingle-cycleRSP
and multi-cycle RSP with constant k are NP-hard (Hall
1998), the existence of such an algorithm implies that
RSP for constant k is weakly NP-hard for both single-
cycle and multi-cycle.

The dynamic programming algorithm presented in
this paper is associatedwith the integer programming
formulation (RSP1). It is also possible todevise adynamic
programming algorithm of the same complexity based
on the standard formulation (RSP0). We comment, how-
ever, that, to generate the FPTAS presented later, it is
essential to use the dynamic programming procedure
that is based on (RSP1).

For h, an integer such that 0 ≤ h ≤ n, let xh denote the
assignment of reorders for the first h items. Let the
function fh(q1, q2, . . . , qk) be the maximum of z(xh), with
the cumulative reorder sizes at time � being restricted
to less than or equal to q� for � � 1, . . . , k. Here, (q1, . . . ,
qk) is an integer array with q� ∈ [0, �D]. Formally,

fh(q1, q2, . . . , qk)

� max
∑k
j�1

(k − j + 1)Qj(xh)

subject to
∑�
j�1

Qj(xh) ≤ q� � � 1, . ., k

∑ki
j�1

xij � 1 i � 1, . . . , h

xij � xi( j−ki) i � 1, . . . , h,

j � ki + 1, . . . , k
xij binary for i � 1, . . . , h, j � 1, . ., ki,

where Qj(xh) � ∑h
i�1 sixij. We set fh(q1, q2, . . . , qk) � −∞

if the above integer programming problem is in-
feasible. The optimal solution being sought is fn(D,
2D, . . . , kD).

The values of the function fh(q1, q2, . . . , qk) are eval-
uated for every 0 ≤ h ≤ n and any integer array
(q1, . . . , qk), where qj ∈ [0, jD] with a dynamic pro-
gramming recursion. The boundary conditions are
f0(q1, q2, . . . , qk) � 0 for any (q1, q2, . . . , qk). The recur-
sive derivation of fh(q1, q2, . . . , qk) from fh−1(·) is required
to determine the timing to replenish item h within the
first kh time units so as to maximize the objective∑k

j�1(k − j + 1)Qj(xh).

To see how the recursion works, we split the ob-
jective function into the terms involving item h and
the terms involving items 1, . . . , h − 1:

∑k
j�1

(k − j + 1)Qj(xh) �
∑k
j�1

(k − j + 1)shxhj

+∑k
j�1

(k − j + 1)Qj(x(h−1)). (3)

If time τ, for 1 ≤ τ ≤ kh, is selected to be the first re-
order timing of item h, the following reorder timings
of item h are τ + kh, τ + 2kh, . . . , τ + ( kkh − 1)kh. The first
part of (3) is then

∑k
j�1

(k − j + 1)shxhj �
∑k/kh−1
t�0

(k + 1 − τ − tkh)sh

� k + kh
2

+ 1 − τ

( )
k
kh

sh.

Let q′�(τ) � q� −∑�
j�1 shxhj � q� − 	�−τ+khkh


sh; the second
term in (3),

∑k
j�1(k − j + 1)Qj(x(h−1)), has a maximum of

fh−1(q′1(τ), . . . ,q′k(τ)) if q′�(τ) ≥ 0 for all � and minus in-
finity otherwise.
The recursive equation using the notation q′�(τ) �

q� − 	�−τ+khkh

sh is

fh(q1, q2, . . . , qk)

�
max

τ�1,...,kh
{( k+kh2 + 1 − τ

) k
kh
sh

+ fh−1(q′1(τ), . . . , q′k(τ))},if q′�(τ)≥0 for all �
−∞ otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
All function values are evaluated recursively for

h � 1, . . . ,n and all integer values of (q1, . . . , qk), where
each qj ∈ [0, jD] and qj integer. Each function evalu-
ation is associated with a choice of τ(h), which is
the timing of the replenishment of item h within the
kh cycle. The optimal objective value is then fn(D,
2D, . . . , kD).
To recover the optimal valid assignment, we record

the choices of the replenishment timings within the k
cycle for each function value evaluation.
Because there areO(n)possible values of h andO(�D)

possible values of q� for each 1 ≤ � ≤ k, the total num-
ber of function evaluations is O(n · 1D · 2D · . . . · kD) �
O(n · k!Dk). Each evaluation for item h enumerates
the O(kh) choices of τ, and for each choice τ, it takes
O(k) to compute q′1(τ), . . . , q′k(τ). Therefore, the run
time of this dynamic programming procedure is
O(k2 · k!Dk· n), which is O(nDk) for constant k. This
complexity is pseudopolynomial, and hence, RSP is
weaklyNP-hard for constant k. ThisweakNP-hardness
applies for both single-cycle RSP and multi-cycle RSP
problems.
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4. A Fully Polynomial Time Approximation
Scheme for Single-Cycle RSP
with Constant k

An approximation scheme is a family of (1 + ε′)-
approximation algorithms for every ε′ > 0. For any
given ε′ > 0, we let ε � ε′

3+ε′ > 0, and therefore, O(1ε) �
O(3+ε′ε′ ) � O( 1ε′). The (1 + ε′)-approximation algorithm
for RSP works by first assigning reorder timings of
“large” items, where large items are those with re-
order size greater than εD. This large assignment is
determined by solving a variant of (RSP1) that in-
volves adjusted remainders. All items that are not
large, which are considered “small,” are assigned in a
greedy fashion to any “adjusted” cascading constraint
that still has a positive slack. It is shown that such a
solution is within a factor of 1 + ε′ of the optimal so-
lution. The run time of this approximation algorithm
is polynomial in n and 1

ε. Because O(1ε) �O( 1ε′), this run
time is also polynomial in 1

ε′, and hence, this family of
algorithms is a fully polynomial approximation scheme.

Because we address here the single-cycle RSP, we
use a formulation referred to as (k-RSP1), which is
the integer programming (RSP1) for a single-cycle of
length k RSP:

(k-RSP1) max z(x) � ∑k
j�1

(k − j + 1)Qj(x)

subject to
∑�
j�1

Qj(x) ≤ �D � � 1, . ., k

∑k
j�1

xij � 1 i � 1, . . . ,n

xij binary for i � 1, . . . ,n, j�1, . ., k.

We next define the classification of the n items as
large or small. For a given value of ε> 0, let the set of
large items be IL � {i|si > εD} and the set of small items
be IS � {i|si ≤ εD}. Let nL � |IL| denote the number of
large items and nS � |IS| denote the number of small
items. It is observed that, because kD�∑n

i�1 si ≥∑
i∈IL si>

nL ·εD, the number of large items nL is bounded by k
ε.

Let an n × k binary matrix xL determine the as-
signment of large items as

xLij � 1 if i ∈ IL, and item i is ordered on time j
0 otherwise.

{
Similarly, an n × k binary matrix xS is the assignment
of small items, where

xSij � 1 if i ∈ IS, and item i is ordered on time j
0 otherwise.

{
Definition 2. An assignment of large (small) items xL

(xS) is a valid large (small) assignment for a given
single-cycle RSP instance if and only if any large

(small) item i is replenished exactly once in a joint
cycle. That is,∑k

j�1
xLij � 1 i ∈ IL

∑k
j�1

xSij � 1 i ∈ IS

( )
.

By Definitions 1 (of valid assignment) and 2, it is
clear that the sum of any valid large assignment xL and
any valid small assignment xS, x � xL + xS, is a valid
assignment of all items.

Definition 3. For any assignment x and I ⊆ {1, . . . ,n},
the n × k binary matrix PI(x) is said to be the projection
of the x onto I, where

PI(x)ij � xij if i ∈ I
0 if i /∈ I.

{
It follows that, for a valid assignment x, its pro-

jection on the large (small) item set xL � PIL(x) (xS �
PIS(x)) is a valid large (small) assignment, and further-
more, z(x) � z(xL) + z(xS); Qj(x) � Qj(xL) +Qj(xS).
The FPTAS devised here for single-cycle RSP con-

sists of two stages. In the first stage, we determine an
assignment of the large items, x̂L, and in the second
stage, we assign the small items, x̂S. For a given ε′ > 0
and ε � ε′

3+ε′, we show that the valid assignment x̂ �
x̂L + x̂S is a (1 + ε′)-approximate solution.

4.1. The Assignment of Large Items
The procedure for assigning the large items ad-
dresses a modified (k-RSP1) in which the objective
function is changed by adding terms dependent on a
form of slacks in the cascading constraints, the ad-
justed remainders. We call this problem (modified
k-RSP1). The modified problem is then scaled in that the
order sizes are scaled by ε2D. The resulting scaled
problem (scaled modified k-RSP1) is then shown to be
solvable using the dynamic programming procedure
of Section 3.2 and generating an assignment of large
items that has objective function value close to the
optimal value of (k-RSP1).

4.1.1. The Adjusted Remainders. The cascading con-
straints are equivalent to

∑�
j�1 Qj(xS) ≤ �D −∑�

j�1 Qj(xL)
for � � 1, . ., k. Hence, the remaining “space” for small
items in the first � integer times is no more than
R�(xL) � �D −∑�

j�1 Qj(xL). We refer to R�(xL) as the re-
mainder of time �. The cascading constraints are then
equivalently written as∑�

j�1
Qj(xS) ≤ R�(xL) for � � 1, . ., k. (4)

For any integer �1, �2 such that 1 ≤ �1 < �2 ≤ k, the
constraint of time �2 in the form of (4) implies∑�1

j�1
Qj(xS) ≤ R�2(xL) −

∑�2
j��1+1

Qj(xS) ≤ R�2(xL).
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Hence, these constraints (4) are equivalent to
∑�

j�1 ·
Qj(xS) ≤ minj≥� Rj(xL) for � � 1, . . . , k. We refer to the
right-hand sides of these inequalities, R̄�(xL) � minj≥� ·
Rj(xL), as the adjusted remainders. Obviously, the
adjusted remainder for any inequality � can only be
smaller than the respective remainder, R̄�(xL) ≤ R�(xL).

To illustrate the concepts of remainders and ad-
justed remainders, we provide an instance of a
single-cycle RSP with five items for k � 4 (see Table 3).
In this instance, D � 10, and we take ε � 0.5. Then,
three items are determined as large, and two are
determined as small.

Consider the assignment of large items: item 1 to
time 1, item 2 to time 2, and item 3 to time 4. Figure 3
visualizes the four cascading constraints for this as-
signment of large items: the columns heights indicate
the right-hand side of the four cascading constraints,
and rectangleswith patterns in each column represent
the large items that are replenished before and on the
indexed time. Therefore, the remainders are repre-
sented by the white space in each column. Figure 4
shows the corresponding remainders and adjusted
remainders.

4.1.2. The Modified Objective of (Modified k-RSP1). We
modified the objective function z(x) by adding the
adjusted remainders. Specifically, let the objective
function g(xL) be defined for any valid assignment of
large items xL:

g(xL) � z(xL) +∑k
��1

R̄�(xL)

� ∑k
j�1

(k − j + 1)Qj(xL) +
∑k
��1

R̄�(xL).

An important property of function g(·) is that, for
x feasible for (k-RSP1) and xL, its projection to the
large items set, g(xL), is an upper bound of z(x) as
proved next.

Lemma 5. For any feasible solution x of (k-RSP1) and
xL � PIL(x), g(xL) ≥ z(x).
Proof. To show g(xL) � z(xL) +∑k

��1 R̄�(xL) ≥ z(x), it
suffices to prove that, for xS � PIS(x), z(xS) � z(x) −
z(xL) ≤ ∑k

��1 R̄�(xL).
By the definition of adjusted remainders, any x

feasible for (k-RSP1) satisfies
∑�

j�1 Qj(xS) ≤ R̄�(xL) for
� � 1, . . . , k. Therefore, z(xS) � ∑k

j�1(k − j + 1)Qj(xS) �∑k
j�1

∑k
��j Qj(xS) � ∑k

��1
∑�

j�1 Qj(xS) ≤ ∑k
��1 R̄�(xL). □

4.1.3. The Scaling of (Modified k RSP1) (Scaled Modi-
fied k RSP1). The data are scaled by the factor 1

ε2D
as follows. Let s′i � 	 si

ε2D
 be the scaled sizes of items
i � 1, . . . ,n andD′ � D

ε2D � 1
ε2 be the scaled demand. Let

Q′
j (xL), R̄′

�(xL), and g′(xL) denote the “scaled” replen-
ishment sizes at time j, the adjusted remainder at
time �, and the objective function for the scaled
sizes s′i :

Q′
j (xL) �

∑
i∈IL

s′i x
L
ij, j � 1, . ., k;

R′
�(xL) � �D′ −∑�

j�1
Q′

j (xL), � � 1, . ., k;

R̄′
�(xL) � min

j≥� R′
j (xL), � � 1, . ., k;

g′(xL) � ∑k
j�1

(k − j + 1)Q′
j (xL) +

∑
k
��1 R̄

′
�(xL).

Let the large items be reindexed from 1 to nL.
The scaled problem that is solved to determine the
assignment of the large items is (scaled modified
k RSP1) formulated as follows:

(scaled modified k RSP1) max g′(xL)
subject to

∑�
j�1

Q′
j (xL) ≤ �D′

� � 1, . ., k∑k
j�1

xLij � 1

i � 1, . . . ,nL
xLij binary for
i � 1, . . . ,nL,
j � 1, . ., k.

The optimal solution for (scaledmodified k RSP1) is
found by applying the dynamic programming pro-
cedure in Section 3.2 with scaled sizes.

Figure 3. An Assignment of Large Items for the Example
in Table 3

Table 3. A Problem Instance of Single-Cycle RSP with k � 4

i 1 2 3 4 5

si 8 6 18 3 5
Large/small Large Large Large Small Small
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Algorithm 1. (LARGE ASSIGNMENT (D′, s′1, . . . , s′nL ))
Initialize: f0(q1, q2, . . . , qk)← 0 for any (q1, q2, . . . , qk)
with qj ∈ [0, jD′] and qj integer.
for h � 1, . . . ,nL, do

for j � 1, . . . , k and for each qj ∈ {0, 1, . . . jD′}, do
fh(q1, q2, . . . , qk) ←

max
τ�1,...,k

{ k + 1 − τ( )s′h
+ fh−1(q′1(τ), . . . , q′k(τ))}, if q′�(τ) ≥ 0 for all �

−∞ otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
where q′�(τ) � q� − � − τ + kh

kh

⌊ ⌋
sh.

end for
end for
Output x̂L, the solution attaining the valuemax(q1,...,qk) ·
fnL (q1, . . . , qk) +

∑k
��1 r̄j, where r̄� � minj≥�( jD′ − qj).

The complexity of algorithm LARGE ASSIGNMENT, with
the scaled sizes, is O(k2 · k! ·D′k · nL) � O( n

ε2k
).

Next, we define the (ε-relaxed RSP) and then
prove that any feasible solution for (scaled modified
k RSP1), including x̂L, is feasible for (ε-relaxed RSP).

4.2. The ε-Relaxed RSP
The (ε-relaxed RSP) formulation allows the cascading
constraints to be violated by up to εkD as follows:

(ε-relaxed RSP) max z(x) � ∑k
j�1

(k − j + 1)Qj(x)

subject to
∑�
j�1

Qj(x) ≤ �D + εkD

� � 1, . ., k∑k
j�1

xij � 1 i � 1, . . . ,n

xij binary for i � 1, . . . ,n,
j � 1, . ., k.

We refer to the constraints
∑�

j�1 Qj(x) ≤ �D + εkD as
the ε-relaxed cascading constraints. We next show that
the effect of the ε-relaxed cascading constraints on the
optimal solution is at most εkD.

Lemma 6. The peak inventory level of any feasible solution
x to (ε-relaxed RSP) is at most Vk(x) + εkD.

Proof. Any feasible solution x for (ε-relaxed RSP) is
a valid assignment, and therefore, Lemma 3 applies.
That is, V�(x) � Vk(x) + ∑�

j�1 Qj(x) − �D
( )

for all �. The
ε-relaxed cascading constraints state that

∑�
j�1 Qj(x)

−�D ≤ εkD for all �. Therefore, when x is a feasible
solution of (ε-relaxed RSP), V�(x) ≤ Vk(x) +εkD for
all �, and hence, V(x) � max� V�(x) ≤ Vk(x) + εkD. □

The next lemma proves that any feasible solution
for (scaled modified k RSP1), including x̂L, is feasible
for (ε-relaxed RSP).

Lemma 7. Any valid assignment of large items xL that is
feasible for (scaled modified k RSP1) satisfies

∑�
j�1 ·

Qj(xL) ≤ �D + εkD for � � 1, . ., k.

Proof. Bydefinition, s′i � 	 si
ε2D
. Therefore, si < ε2D(s′i + 1),

and thus,∑�
j�1

Qj(xL) �
∑�
j�1

∑nL
i�1

sixLij ≤
∑�
j�1

∑nL
i�1

ε2D(s′i + 1)xLij

� ε2D
∑�
j�1

∑nL
i�1

s′ix
L
ij +

∑�
j�1

∑nL
i�1

xLij

( )
. (5)

Because xL is feasible for (scaled large packing) and
D′ � 1

ε2, ∑�
j�1

∑nL
i�1

s′ix
L
ij �

∑�
j�1

Q′
j (xL) ≤ �D′ � �

ε2
. (6)

Because the reorder size for any large item is greater
than εD and the sum of reorder sizes of large items is
bounded by the total reorder sizes kD, we can infer
that the number of large items is bounded by nL < k

ε.
From feasibility of xL for (scaled large packing), we also
know that

∑k
j�1 xLij � 1 for any large item i. Hence, for

� � 1, . . . , k,∑�
j�1

∑nL
i�1

xLij ≤
∑k
j�1

∑nL
i�1

xLij �
∑nL
i�1

∑k
j�1

xLij

( )
� nL <

k
ε
. (7)

Hence, from inequalities (5), (6), and (7),∑�
j�1

Qj(xL) ≤ ε2D
�

ε2
+ k
ε

( )
� �D + εkD. □

Figure 4. The Remainders and the Adjusted Remainders Corresponding to Figure 3
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Using the relationship between reorder sizes si
and the scaled sizes s′i , we show that, for any
feasible solution of (scaled large packing), xL, the ob-
jective with original sizes g(xL) is closely approxi-
mated by the objective with scaled sizes g′(xL) �∑k

j�1(k − j + 1) · Q′
j (xL) +∑k

��1 R̄′
�(xL) corrected for the

scaling factor ε2D.

4.2.1. The Approximation Property of the Solution to
(Scaled Modified k RSP1).

Theorem 2. For any assignment of large items xL feasible
for (scaled modified k RSP1), the values of the objective
function with original and scaled sizes g(xL) and g′(xL),
respectively, satisfy

ε2Dg′(xL)− k2(k + 1)D
2

· ε

1− ε
≤ g(xL) ≤ ε2Dg′(xL)

+ k(k + 1)(k + 2)D
6

· ε

1− ε
.

Proof. Recall that s′i � 	 si
ε2D
, and therefore, ε2Ds′i ≤

si < ε2D(s′i + 1).
The reorder size si of any large item i satisfies si > εD.

Therefore, s′i > 	 εDε2D
 � 	1ε
 ≥ 1
ε − 1, and for any � � 1, . ., k,∑�

j�1 Q′
j (xL) � ∑�

j�1
∑nL

i�1 s′i xLij >
∑�

j�1
∑nL

i�1(1ε − 1)xLij . How-
ever, the feasibility of xL for (scaled large packing)
implies that

∑�
j�1 Q′

j (xL) ≤ �D′ � �
ε2 for any �. Together,

we have that
∑�

j�1
∑nL

i�1(1ε − 1)xLij < �
ε2 for any �. Dividing

both sides of this inequality by (1ε − 1) results in∑�
j�1

∑nL
i�1

xLij <
�

ε(1 − ε) for � � 1, . . . , k. (8)

Because si < ε2D(s′i + 1) for any large item i, we have,
for any integer time j,

Qj(xL) �
∑nL
i�1

sixLij

< ε2D
∑nL
i�1

(s′i + 1)xLij

� ε2D
∑nL
i�1

s′i x
L
ij +

∑nL
i�1

xLij

( )

� ε2D Q′
j (xL) +

∑nL
i�1

xLij

( )
. (9)

The second term in the parentheses,
∑nL

i�1 xLij , is less
than or equal to the left-hand side of inequality (8) for
any � ≥ j. Therefore, we derive the inequality∑nL

i�1
xLij <

j
ε(1 − ε) for j � 1, . . . , k. (10)

Using inequality (10) in inequality (9), we get

Qj(xL)< ε2D Q′
j (xL) +

j
ε(1 − ε)

( )
� ε2DQ′

j (xL) + jD · ε

1 − ε
for j � 1, . . . , k. (11)

As si ≥ ε2Ds′i for any i,

Qj(xL) �
∑nL
i�1

sixLij ≥ ε2D
∑nL
i�1

s′i x
L
ij � ε2DQ′

j (xL)
for j � 1, . . . , k. (12)

Recall that adjusted remainder of time τ is R̄τ(xL) �
min�≥τR� �min�≥τ �D−∑�

j�1Qj(xL)
( )

and that the scaled
adjusted remainder of time τ is R̄′

τ(xL) �min�≥τ
(
�D′−∑�

j�1Q′
j (xL)

)
. We derive from inequality (11) that, for

any time τ,

R̄τ(xL) � min
�≥τ �D −∑�

j�1
Qj(xL)

( )

≥ min
�≥τ

�D −∑�
j�1

ε2DQ′
j (xL) + jD · ε

1 − ε

( )[ ]

� min
�≥τ �D − ε2D

∑�
j�1

Q′
j (xL) −

�(� + 1)
2

·D · ε

1 − ε

[ ]

≥ min
�≥τ �D − ε2D

∑�
j�1

Q′
j (xL)

[ ]

−max
�≥τ

�(� + 1)
2

·D · ε

1 − ε

[ ]
� min

�≥τ ε2D �D′ −∑�
j�1

Q′
j (xL)

( )[ ]

− k(k + 1)
2

·D · ε

1 − ε

� ε2DR̄′
τ(xL) −

k(k + 1)
2

·D · ε

1 − ε
.

(13)

Additionally, we derive from inequality (12) that, for
any time τ,

R̄τ(xL) � min
�≥τ

�D −∑�
j�1

Qj(xL)
( )

≤ min
�≥τ �D − ε2D

∑�
j�1

Q′
j (xL)

( )

� min
�≥τ ε2D �D′ −∑�

j�1
Q′

j (xL)
( )[ ]

� ε2DR̄′
τ(xL). (14)
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Using the inequalities (11) and (14), we prove the
upper bound on g(xL) as follows:

g(xL) � ∑k
j�1

(k − j + 1)Qj(xL) +
∑k
τ�1

R̄τ(xL)

<
∑k
j�1

(k − j + 1) ε2DQ′
j (xL) + jD · ε

1 − ε

( )
+∑k

τ�1
ε2DR̄′

τ(xL)

� ∑k
j�1

(k − j + 1)ε2DQ′
j (xL) +

∑k
τ�1

ε2DR̄′
τ(xL)

[ ]

+∑k
j�1

(k − j + 1)jD · ε

1 − ε

� ε2Dg′(xL) + (k + 1) ·∑k
j�1

j −∑k
j�1

j2
[ ]

D · ε

1 − ε

� ε2Dg′(xL) + k(k + 1)2
2

− k(k + 1)(2k + 1)
6

[ ]
D

· ε

1 − ε

� ε2Dg′(xL) + k(k + 1)(k + 2)D
6

· ε

1 − ε
.

The lower bound on g(xL) follows from inequalities
(12) and (13):

g(xL) � ∑k
j�1

(k − j + 1)Qj(xL) +
∑k
τ�1

R̄τ(xL)

≥ ∑k
j�1

(k − j + 1)ε2DQ′
j (xL)

+∑k
τ�1

ε2DR̄′
τ(xL) −

k(k + 1)
2

·D · ε

1 − ε

( )
� ∑k

j�1
(k − j + 1)ε2DQ′

j (xL) +
∑k
τ�1

ε2DR̄′
τ(xL)

[ ]

−∑k
τ�1

k(k + 1)
2

·D · ε

1 − ε

� ε2Dg′(xL) − k2(k + 1)D
2

· ε

1 − ε
.

This completes the proof of the statement of the
theorem. □

Theorem 2 leads to the following lower bound on
g(x̂L) for x̂L being an optimal solution of (scaled mod-
ified k RSP1).

Theorem 3. For any feasible solution x of (k-RSP1) and xL �
PIL(x), g(x̂L) ≥ g(xL) − δ(ε), where δ(ε) � k(k+1)(2k+1)D

3 · ε
1−ε.

Proof. By Theorem 2, we have the lower bound of
g(x̂L):

g(x̂L) ≥ ε2Dg′(x̂L) − k2(k + 1)D
2

· ε

1 − ε
.

Because for any feasible solution of (k-RSP1), the
projection to the large items set, xL, is also feasible for
(scaled modified k-RSP1), we use the upper bound of
g(xL) from Theorem 2 to get

ε2Dg′(xL) ≥ g(xL) − k(k + 1)(k + 2)D
6

· ε

1 − ε
.

Because x̂L is optimal for (scaled modified k-RSP1), it
follows that g′(x̂L) ≥ g′(xL). Combining the three in-
equalities, we get

g(x̂L) ≥ ε2Dg′(x̂L) − k2(k + 1)D
2

· ε

1 − ε

≥ ε2Dg′(xL) − k2(k + 1)D
2

· ε

1 − ε

≥ g(xL) − k(k + 1)(k + 2)D
6

· ε

1 − ε
− k2(k + 1)D

2

· ε

1 − ε

� g(xL) − k(k + 1)(2k + 1)D
3

· ε

1 − ε
� g(xL) − δ(ε). □

For any feasible solution x of (k-RSP1) and xL �
PIL(x), Lemma 5 states that g(xL) ≥ z(x). Hence, a cor-
ollary of Theorem 3 and Lemma 5 is as follows.

Corollary 1. For any feasible solution x of (k-RSP1), g(x̂L) ≥
z(x) − δ(ε), where δ(ε) � k(k+1)(2k+1)D

3 · ε
1−ε.

Consequently, the algorithm LARGE ASSIGNMENT yields
an output x̂L such that g(x̂L) is at least as large as the
optimal objective of (k-RSP1) minus δ(ε).
4.3. The Assignment of Small Items
Given the assignment of large items x̂L and the cor-
responding adjusted remainders R̄�(xL), we derive a
valid assignment of the small items so that the joint
large and small items assignment is a feasible solution
to (ε-relaxed RSP).
As stated in Section 4.1, the cascading constraints

are equivalent to

∑�1
j�1

Qj(xS) ≤ R̄�(xL) for � � 1, . . . , k. (15)

The following greedy procedure assigns any yet un-
assigned small item to the lowest integer index time
with positive adjusted remainder. For simplicity, the
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small items are reindexed 1 to nS in the procedure’s
description provided below.

Algorithm2 (SMALL ASSIGNMENT (R̄1(x̂L), . . . , R̄k(x̂L), s1, . . . ,
snS ))

R̃�(0) ← R̄�(x̂L) � � 1, . . . , k.
for i � 1, . . . ,nS, do

j(i) ← min{�|R̃�(i − 1)> 0}.
Assign item i to time j(i).
R̃�(i) ← R̃�(i − 1) � � 1, . . . , j(i) − 1.
R̃�(i) ← R̃�(i − 1) − si � � j(i), . . . , k.

end for

Let x̂S denote the output assignment of the small
items of SMALL ASSIGNMENT.

Lemma 8. Algorithm SMALL ASSIGNMENT is correct, and its
complexity is linear, O(nS).
Proof. To prove correctness, one needs to prove that
the algorithm terminates only after all small items were
assigned, meaning that there is always a positive ad-
justed remainder available for each small item.

The notation used in SMALL ASSIGNMENT, R̃�(h), is the
slack of cascading constraint (15) at time � after iter-
ation h. That is, R̃�(h) � R̄�(x̂L) −∑�

j�1
∑h

i�1 six̂Sij. Also,
R̃�(nS) � R̄�(x̂L) −∑�

j�1
∑nS

i�1 six̂Sij � R̄�(x̂L) −∑�
j�1 Q(x̂S).

By the definition of remainders and adjusted re-
mainders, it follows that the initial slack corresponding
to day k is R̃k(0) � R̄k(x̂L) �Rk(x̂L) � kD−∑

i∈IL si �∑
i∈IS si.

In each iteration of SMALL ASSIGNMENT, the slack corre-
sponding to day k is reduced by the reorder size of
the small item assigned at that iteration. Therefore, the
slack of day k is positive until all small items have
been assigned. That is, SMALL ASSIGNMENT guarantees an
assignment of all of the small items.

The complexity of SMALL ASSIGNMENT is linear, because
there are nS iterations, each of which runs in O(1) steps
when k is a constant as assumed here. □

As an illustrative example, consider the adjusted
remainders in Figure 4 and the small items in Table 3.
SMALL ASSIGNMENT assigns item 4 to time 1 and item 5
to time 2. Figure 5 visualizes this assignment exam-
ple of small items. Columns heights correspond to the

values of the adjusted remainders. The rectangles with
patterns in each column are the small items that are
replenished on or before the indexed time. The com-
bined assignment of all items is shown by Figure 6. In
Figure 6(a), the column heights are truncated by the
same amount as the difference between remainder and ad-
justed remainders. Figure 6(b) combines the assignment
of large items and small items in the truncated columns.
The update of the slacks R̃�(h) in the algorithm is

such that the following properties hold.

Property 1. The slacks before the assigning timing j(h) are
unaffected.

Property 2. The slacks of time j(h) + 1, . . . , k are reduced by
the same amount as the slack of assigning timing j(h).
We note that Property 1 is not satisfied by the (RSP0)

formulation and that Property 2 does not hold for
multi-cycle RSP.
From the two properties, it follows that the positive

slacks at each iteration are nondecreasing in the inte-
ger indices of time from one to k.

Lemma 9. For any 1≤ h≤ nS, 0< R̃j(h)(h−1) ≤ R̃j(h)+1 ·
(h−1) ≤ . . .≤ R̃k(h−1).
Proof. We prove this by induction on the iteration
index.
Base: Because the adjusted remainders are defined

as R̄�(x̂L) �minj≥�R�(x̂L), we have R̄1(x̂L) ≤ R̄2(x̂L) ≤ . . .≤
R̄k(x̂L). Additionally, as R̃�(0) � R̄�(x̂L) for all �, we also
have R̃1(0) ≤ R̃2(0) ≤ . . .≤ R̃k(0). The algorithm SMALL

ASSIGNMENT assigns j(1) to be the smallest integer
index such that R̃j(1)(0)>0. Therefore, 0< R̃j(1)(0) ≤
R̃j(1)+1(0) ≤ . . .≤ R̃k(0), and the statement is true for
h� 1.
Inductive step: Assume that the statement holds

for h, 1 ≤ h ≤ nS − 1; now, we prove for h + 1. Because
j(h + 1) ≥ j(h), the assumption implies that R̃j(h+1) ·
(h−1) ≤ R̃j(h+1)+1(h−1) ≤ . . .≤ R̃k(h−1). Because R̃�(h) �
R̃�(h−1) − sh for all �≥ j(h), R̃j(h+1)(h) ≤ R̃j(h+1)+1(h) ≤ . . .≤
R̃k(h). Moreover, by the algorithm SMALL ASSIGN-

MENT, we have R̃j(h+1)(h) > 0. Therefore, 0< R̃j(h+1)(h) ≤
R̃j(h+1)+1(h) ≤ . . .≤ R̃k(h). □

Figure 5. (a) Adjusted Remainders and (b) Assignment of Small Items for the Example in Table 3 by SMALL ASSIGNMENT
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Next, we show that the joint assignment of large
items with the output assignment of small items x̂S

yields a feasible solution for (ε-relaxed RSP).

Lemma 10. The assignment x̂ � x̂L + x̂S is feasible for
(ε-relaxed RSP).

Proof. It is easy to see that x̂ is valid. It remains to show
that x̂ satisfies the ε-relaxed cascading constraints.

By Lemma 7, we know that
∑�

j�1 Qj(xL) ≤ �D + εkD,

and therefore, R�(x̂L) � �D − ∑�
j�1 Qj(xL) ≥ −εkD for

any �. Thus, R̄�(x̂L) � minj≥� Rj(x̂L) ≥ −εkD for any �.
By Lemma 9, only the positive slacks could be re-

duced at each iteration. Additionally, because the re-
order sizes of small items are less than or equal to εD,
the reduction is at most εD. Thus, R̃�(h) ≥ −εkD for
any � and h, meaning that

∑�
j�1Q(x̂S) � R̄�(x̂L) − R̃�(nS) ≤

R̄�(x̂L)+εkD.
By definition of R̄�(x̂L), for any �, R̄�(x̂L) ≤ R�(x̂L) �

�D −∑�
j�1 Q(x̂L), and therefore,

∑�
j�1 Q(x̂S) +∑�

j�1 Q(x̂L) ≤
�D + εkD. □

Lemma 11. R̃�(nS) ≤ 0 for � � 1, . . . , k.

Proof. By contradiction, suppose that, at the conclu-
sion of the algorithm SMALL ASSIGNMENT, there exists an
index � so that R̃�(nS)> 0. This implies that j(h) ≤ � for
any h, meaning that all small items are assigned to the
first � integer times. In that case,

∑�
j�1 Q(x̂S) � ∑

h∈IS sh.
Therefore, R̃�(nS) � R̄�(x̂L) −∑�

j�1Q(x̂S) � R̄�(x̂L) −∑
h∈IS ·

sh ≤ R̄k(x̂L) −∑nS
i�1 si � kD−∑

h∈IL sh
( )−∑

h∈IS sh � 0, con-
tradicting the assumption. □

Theorem 4. Given the assignment of large items x̂L that is
optimal for (scaled modified k RSP1), SMALL ASSIGNMENT

will generate an output x̂S such that z(x̂S) ≥ ∑k
��1 R̄�(x̂L).

Proof. From Lemma 11,
∑�

j�1 Q(x̂S) � R̄�(x̂L) − R̃�(nS) ≥
R̄�(x̂L). Therefore,

z(x̂S) � ∑k
j�1

(k − j + 1)Q(x̂S) � ∑k
��1

∑�
j�1

Q(x̂S) ≥ ∑k
��1

R̄�(x̂L). □

Theorem 4 together with Corollary 1 implies the
following theorem.

Theorem 5. Let x̂ � x̂L + x̂S, where x̂L and x̂S are the
outputs of algorithms LARGE ASSIGNMENT and SMALL AS-

SIGNMENT, respectively. Then, for any x that is feasible for
(k-RSP1), z(x̂) ≥ z(x) − δ(ε).
Proof. By Theorem 4, z(x̂S) ≥ ∑k

��1 R̄�(x̂L), and there-
fore, z(x̂) � z(x̂L) + z(x̂S) ≥ z(x̂L) + ∑k

��1 R̄�(x̂L) � g(x̂L).
Additionally, by Corollary 1, g(x̂L) ≥ z(x) − δ(ε) for any
x that is feasible of (k-RSP1). Therefore, z(x̂) ≥ g(x̂L) ≥
z(x) − δ(ε) for any x that is feasible of (k-RSP1). □

Therefore, assignment x̂ described in Theorem 5
attains an objective value z(x̂) that is at least as much
as the optimal objective of (k-RSP1) minus δ(ε).

4.4. The (1 + ε′)-Approximation Algorithm
Combining the theorems of the previous sections, the
algorithms LARGE ASSIGNMENT and SMALL ASSIGNMENT

deliver an FPTAS for single-cycle RSP: that is, a
(1 + ε′)-approximation algorithm for any ε′ > 0. The
(1 + ε′)-approximation algorithm consists of follow-
ing steps.

Algorithm 3. ((1 + ε′)-APPROXIMATION)
Step 1. (Initialize) Let ε � ε′

3+ε′; D � 1
n
∑n

i�1 si;
(Partition the items into large and small) Let
IL � {i : si > εD} and IS � {i : si ≤ εD};
(Scaling) Let s′i � 	 si

ε2D
 for i ∈ IL, and let D′ � 1
ε2;

Figure 6. Assignment of All Items in Table 3
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Step 2. Call LARGE ASSIGNMENT (D′, s′i for i ∈ IL) to get x̂L;
Compute R�(xL) � �D −∑�

j�1 Qj(xL) for � � 1, . . . , k;
Compute R̄�(x̂L) � minj≥� Rj(xL) for � � 1, . . . , k;

Step 3. Apply SMALL ASSIGNMENT (R̄1(x̂L), . . . , R̄k(x̂L), si
for i ∈ IS) to get x̂S;

Step 4. Output x̂(ε) � x̂L + x̂S.

Theorem 6. The (1 + ε′)-APPROXIMATION algorithm is a
(1 + ε′)-approximation algorithm for single-cycle RSP.

Proof. Let x∗ be an optimal solution of (k-RSP1) and V∗
be the corresponding peak inventory level.

As stated in Theorem 5, z(x̂) ≥ z(x)−δ(ε) for any x that
is feasible of (k-RSP1), including x∗. From Lemma 4, the
inventory levels at time k for x̂ and x∗ are Vk(x̂) � C

k − z(x̂)
k

and Vk(x∗) � C
k − z(x∗)

k , respectively. Therefore,

Vk(x̂) � C
k
− z(x̂)

k
≤ C

k
− z(x∗)

k
+ δ(ε)

k
� Vk(x∗) + δ(ε)

k
.

From Lemma 6, it follows that the peak inventory
level for x̂ satisfies V(x̂) ≤ Vk(x̂) + εkD. Because x∗ is a
solution of (k-RSP1), the peak inventory level for x∗ is
V∗ � Vk(x∗). Hence,

V(x̂) ≤ Vk(x̂) + εkD ≤ V∗ + δ(ε)
k

+ εkD.

That is, for the optimum peak storage of (k-RSP1),
V∗, and the output of our (1 + ε′)-APPROXIMATION, x̂, the

ratio V(x̂)/V∗ is at most 1 + δ(ε)
k + εkD

( )
/V∗. Because

V∗ ≥ k+1
2
∑n

i�1 si � k(k+1)
2 D, it follows that

δ(ε)
k

+ εkD
( )

/V∗ ≤ 2
k(k + 1)D · (k + 1)(2k + 1)D

3

(
· ε

1 − ε
+ εkD

)
.

Substituting the second term in the parentheses by
εkD< kD · ε

1−ε and canceling D, we get

δ(ε)
k

+ εkD
( )

/V∗ ≤ 2
k(k + 1) ·

(k + 1)(2k + 1)
3

(
· ε

1 − ε
+ k · ε

1 − ε

)
� 2(2k2 + 6k + 1)

3k(k + 1) · ε

1 − ε
.

It is easy to show that 2(2k2+6k+1)
3k(k+1) < 3 when k ≥ 2:

3 · 3k(k + 1) − 2(2k2 + 6k + 1) � 5k2 − 3k − 2
� k · (5k − 3) − 2 ≥ 2 · 7 − 2 � 12> 0

⇒3 · 3k(k + 1)> 2(2k2 + 6k + 1)
⇒3>

2(2k2 + 6k + 1)
3k(k + 1) .

Therefore, the ratio V(x̂)/V∗ is at most 1 + 3ε
1−ε � 1 + ε′

as ε � ε′
3+ε′. Hence, x̂ is a (1 + ε′)-approximate solution

to RSP. □

The complexity of this (1 + ε′)-APPROXIMATION pro-
cedure is dominated by the complexity of LARGE ASSIGN-

MENT, which is O( n
ε2k
) for constant k. (SMALL ASSIGNMENT

takes linear time in n.) Note that 1
ε � 3+ε′

ε′ � O( 1ε′).
Therefore, the complexity of RSP (1 + ε′)-approximation
algorithm is O( n

ε′2k), which is polynomial in n and
1
ε′ for constant k. Additionally, a family of (1 + ε′)-
approximation algorithms with complexity that is
polynomial in n and 1

ε′ is called a fully polynomial time
approximation scheme.

5. A Polynomial Time Approximation
Scheme for Single-Cycle RSP with
Nonconstant k

In this section, we combine the (1 + 2
k)-approximation

algorithm by Hall (1998) with the FPTAS that we just
presented to get a PTAS for single-cycle RSP with
nonconstant k. Because this problem is strongly NP-
hard, a PTAS is the best approximation possible.
The (1 + 2

k)-approximation algorithm of Hall (1998)
has a complexity of O(n). Recall that the continuous
single-cycle RSP has closed form solutions (Homer
1966, Page and Paul 1976, Zoller 1977). The algorithm
of Hall (1998) rounds down the reorder timings of the
optimal solution for the continuous problem. As the
value of k increases, the resolution of the discrete
problem becomes more and more refined, and the
rounded solution becomes very close to the contin-
uous solution and close to the optimum. (This is be-
cause the continuous optimal solution is a lower
bound on the value of the discrete optimum.) For the
sake of completeness, we include the pseudocode of
the algorithm below.

Algorithm 4. ((1 + 2
k)-APPROXIMATION (Hall 1998))

for i � 1, . . . , n, do

j(i) ←
⌊
k ·

∑i
h�1 sh∑n
h�0 sh

⌋
.

Assign item i to time j(i).
end for

Although this (1 + 2
k)-approximation algorithm per-

forms better as k increases, our FPTAS works well for
small values of k, where the continuous solution is not
close to the discrete solution and the approximation
algorithm of Hall (1998) does not work well.
We take advantage of the complexity of Hall’s al-

gorithm and the approximation factor of our FPTAS
into a PTAS, which works as follows. Ehen k> 2

ε,
we run the algorithm of Hall (1998), which is a
(1 + ε)-approximation algorithm. When k ≤ 2

ε, we run
the FPTAS in this paper, and the running time is

Hochbaum and Rao: The Replenishment Schedule to Minimize Peak Storage Problem
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O(k2 · k! · n
ε2k
) � O((2ε)! · n

ε2k+2) when k is nonconstant. The

overall running time O((2ε)! · n
ε2k+2) is linear in n for fixed

ε, and therefore, it is a polynomial time approximation
scheme.

6. Concluding Remarks
In this paper, we resolve the complexity of discrete
RSP, the problem of minimizing the peak storage
requirement with given reorder sizes and individual
cycle lengths. Although it was known that discrete
RSP is NP-hard even when the joint cycle length is
constant (Hall 1998), we prove here that the problem
is strongly NP-hard for nonconstant joint cycle length
and that the problem is weakly NP-hard for constant
joint cycle length.

For constant joint cycle-length discrete RSP, we
further present a pseudopolynomial time algorithm
that solves the problem optimally and the first known
FPTAS for the case when individual cycles are iden-
tical (single-cycle). For nonconstant joint cycle-length
discrete RSP, we devise here the first known PTAS for
the single-cycle that runs in linear time for fixed ε. The
question ofwhether there exists an FPTAS and a PTAS
for the respective cases of the multi-cycle RSP re-
mains open.
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