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Databases are a significant source of information in organizations and play a major role in managerial decision-making.
This study considers how to process commercial data on customer purchasing timing to provide insights on the rate of
new product adoption by the company’s consumers. Specifically, we show how to use the separation-deviation model
(SD-model) to rate customers according to their proclivity for adopting products for a given line of high-tech products.
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1. Introduction
Databases are a significant source of information in
organizations and play a major role in managerial deci-
sion making. From commercial data, organizations derive
information about their customers and use it to hone their
competitive strategies.

The rating of customers with respect to the promptness
to adopt new products is a compelling exercise, because
it allows companies to define appropriate actions for the
launch of a new product into the marketplace. Innova-
tors, customers that adopt technology promptly, are often
the main target of a firm’s marketing efforts of new prod-
ucts. Because the innovators tend to influence the remain-
ing potential adopters, that is, the majority, firms tend to
allocate more marketing efforts and resources toward the
innovators than toward the majority (Mahajan and Muller
1998). Therefore, knowing the customers’ adoption prompt-
ness allows companies to focus their marketing to innova-
tors effectively. In addition, customer rating is the first step
to be able to perform studies that link individual character-
istics (such as age, gender, usage rate, and loyalty) to the
adoption promptness.

Rating the customers’ adoption promptness is partic-
ularly important in high tech markets, where products
generally have short—and indeed shrinking—life cycles

(Talluri et al. 1998). For example, whereas memory semi-
conductor chips had a life of mature product lasting approx-
imately five years in the early 90s, this had shrunk to one
year in the early 2000s, (see, e.g., Figure 1 for product life
cycles in the semiconductor industry).

The motivation of this paper is to solve the customer
rating problem: Given data on a set of customers, a set of
products on a given product line, and the purchase times of
each customer-product pair, the customer rating problem is
to rate each customer according to his/her adoption prompt-
ness. The proposed methodology is illustrated for commer-
cial data from Sun Microsystems by rating the adoption
promptness of some of their customers.

Our focus is on the customer rating problem where the
information available is incomplete; that is, there are cus-
tomers who do not purchase every product. This incomplete
information scenario is a feature of the Sun database and
it is typical for other companies, as well, that not all cus-
tomers buy every product.

The customer rating problem is addressed here with
Hochbaum’s separation-deviation model (Hochbaum 2004),
which has previously been used in contexts such as group
decision making (Hochbaum and Levin 2006) and country-
credit risk rating (Hochbaum and Moreno-Centeno 2008).
This optimization model aims to minimize the sum of the
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penalties on deviating from priors and from pairwise com-
parisons. In the customer rating context, the priors are
the customers’ product purchase timings, and the pairwise
comparisons are derived from the relative difference in tim-
ing of customers’ product purchases. The model is effi-
ciently solvable, resulting in a scalar value for each cus-
tomer representing their overall score of adoption prompt-
ness. Note that the adoption behavior of customers usu-
ally differs over different lines of products. Therefore, an
important assumption of the model is the homogeneity of
the studied products. That is, the model assumes that the
products belong to the same product line, and thus the
customers have similar adoption behavior on the studied
products. (Even under this assumption, different products
are likely to indicate different timings and pairwise com-
parisons.) Under this assumption, it is appropriate to give
a single rating for each customer; this rating indicates the
promptness to adopt a new product on this particular prod-
uct line.

Two of the main contributions of this paper are
(1) applying Hochbaum’s separation-deviation model to
the customer rating problem and (2) reinterpreting the
separation-deviation model as a unidimensional scaling
technique, thus presenting the model as an alternative to
well-known dimension-reduction methodologies (in the spe-
cial case where the data needs to be represented/summarized
in only one dimension), including unidimensional scal-
ing, principal component analysis, factor analysis, and
averaging.

This paper is organized as follows. Section 2 reviews
how the customer rating problem has been previously
addressed in the literature and reviews several scaling and
dimension-reduction methodologies that can be applied
to solve the customer rating problem. Section 3 reviews
the separation-deviation model (hereafter referred to as
SD-model) and indicates how the SD-model differs from
other techniques. Section 4 compares, in simulated scenar-
ios, the performance of the SD-model to that of unidimen-
sional scaling. Specifically, §4 compares the performance
of the two methods in simulated scenarios where the correct
adoption promptness of the customers is known in advance.
Section 5 presents a study on commercial data from Sun
Microsystems and reports the generated insights obtained
by using our approach. Finally §6 gives some final remarks
about the SD-model and its usefulness for other types of
applications.

2. Literature Review
In general, the input to data-mining techniques consists of
a collection of records that characterize customer purchase
behavior, as well as other relevant customer characteris-
tics such as age, gender, usage rate, loyalty status, etc. At
an abstract level, many data-mining techniques attempt to
explain customer behavior in terms of a meaningful subset
of customer characteristics by identifying a function that
maps a vector of customer attributes to a scalar value.

There are two main classes of data-mining techniques:
those for supervised learning and those for unsupervised
learning. The main objective of supervised learning tech-
niques is to try to identify how to use independent vari-
ables (i.e., observable customer characteristics) to be able
to predict an unobservable customer characteristic. These
techniques require as input a customer database with pre-
classified customers. Some classical customer segmenta-
tion techniques that fall under this category are auto-
matic interaction detector (AID) and its extensions (e.g.,
CHAID), linear regression and its generalizations (e.g.,
canonical analysis), discriminant analysis, conjoint analy-
sis and its extensions (e.g., componential segmentation and
POSSE—product optimization and selected segment evalu-
ation), logistic regression, neural networks, etc. For the Sun
Microsystems study we have no a priori labeling of the cus-
tomers, i.e., we do not have a “training set.” Therefore, the
focus of this paper is on the unsupervised-learning problem
of rating customers according to their adoption promptness.

In unsupervised-learning techniques, there is no preclas-
sified set of customers. Thus, the unsupervised-learning
techniques aim to determine the customer ratings from
the unlabeled data. Unsupervised-learning techniques can
be classified as cluster-analysis or dimension-reduction
techniques.

Cluster-analysis techniques solve the following problem:
Given a data set containing information about n objects,
cluster these objects into groups, such that objects
belonging to the same cluster are similar in some sense.
Cluster-analysis methods such as K-means, hierarchical
clustering, and Gaussian mixture models find a partition of
the objects, so that the objects on each subset (cluster) share
a common trait. We mention a clustering approach, based
on maximum-cut clustering, for the customer segmentation
problem (Rusmevichientong et al. 2004). Maximum-cut is
an NP-hard problem, so the approach in Rusmevichientong
et al. (2004) is to approximate maximum-cut with semidef-
inite programming. The output is not a full customer rating,
but rather a classification of the customers only in early
versus late adopters. We cannot compare directly cluster-
ing techniques to the scaling methodology proposed in this
paper because the outputs are different. In particular, clus-
tering techniques output a partition of the customers into
clusters, whereas our methodology assigns a rating to each
customer. Therefore we decided to compare our methodol-
ogy with dimension-reduction techniques, whose output is
straightforwardly comparable to that of our methodology.

Dimension-reduction techniques (DRTs) solve the fol-
lowing problem: Given an n× k matrix, R, find the n× k′

matrix with k′ < k that best captures the content in the
original matrix, according to a certain criterion. In the cus-
tomer segmentation problem, R is the matrix containing the
purchase times of k products by n customers, and the out-
put is an n× 1 vector that captures the relative “purchase
ordering” of the customers. Some of the most widely used
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DRTs are principal component analysis (PCA), factor anal-
ysis (FA), multidimensional scaling (MDS), and averaging.
We give (below) a brief description of each technique. For
an in-depth discussion of PCA, FA, and MDS, we refer
the reader to Jollife (1986), Rummel (1970), and Torgerson
(1952), respectively.

In essence, PCA seeks to reduce the dimension of
the data by finding a few orthogonal linear combinations
(the principal components) of the original variables with
the largest variance. The first principal component is the
linear combination with the largest variance; in this sense,
it is the one-dimensional vector that best captures the infor-
mation contained in the original data.

Factor analysis assumes that the measured variables
depend on some unknown, and often unmeasurable, com-
mon factors. The goal of FA is to uncover such relations.
Typical examples include variables defined as various test
scores of individuals, because such scores are thought to be
related to a common “intelligence” factor. Here the mea-
sured variables are the purchase times of a customer, and
the unmeasurable factor of interest is the customer’s pro-
clivity for early adoption.

Given n items in a k-dimensional space and an n × n
matrix of distances among the items, MDS produces a
k′-dimensional, k′ < k, representation of the items such that
the pairwise distances among the n points in the new space
are similar to the distances in the original data.

The customer rating problem can also be addressed by
the (naive) DRT of the averaging method. Given a set of
purchase times for customer i of product k, rki , the rat-
ing obtained by the averaging method is given by x

avg
i =

4
∑

k∈Ri
rki 5/4�Ri�5, where Ri is the set of products purchased

by the ith customer.
For most DRTs, including PCA and FA, missing data

pose serious problems (see Kosobud 1963, Afifi and
Elashoff 1966, for example). In the customer rating prob-
lem, assuming full data is equivalent to assuming that all
customers purchased every product. As discussed in §1,
this does not hold in general, and in particular it does not
hold for Sun’s data. These DRTs, PCA, and FA require that
the missing values are estimated and artificially imputed.
(In statistics, imputation is the substitution of some value
for a missing data point or a missing component of a data
point.) In contrast, modern versions of MDS (thoroughly
reviewed below) are designed specifically to handle missing
data without the need of imputation. Although modern ver-
sions of PCA and FA versions do, in some sense, work on
imputed values as well, they require that the imputed values
are consistent with an underlying stochastic model for the
data. In the problem herein considered, there is not enough
data to fit an underlying stochastic model. Thus, to be able
to use PCA and FA to solve our problem, we imputed the
missing values using a simple nearest-neighbor missing-
data-recovery method. Although this imputation method
has been shown to be appropriate in the treatment of miss-
ing data (Huang and Zhu 2002, Hruschka et al. 2003), this

was not the case in our study. Specifically, when using PCA
and FA on the imputed data to solve our problem, their per-
formances were dominated by those of the SD-model and
MDS. (We note that there might be other imputation meth-
ods that could potentially lead to better results.) Therefore,
we will only present (in §4) the comparison of the perfor-
mances of SD-model to MDS. Because the performance
of the average method was also dominated by that of the
SD-model and MDS, we decided also not to include such
a performance comparison.

2.1. Review of Multidimensional Scaling

Multidimensional scaling (MDS) is a set of related
techniques used for representing the similarities and
dissimilarities among pairs of objects as distances between
points on a low-dimensional space. MDS models aim to
approximate given nonnegative dissimilarities, �ij , among
pairs of objects, i, j , by distances between points in
an m-dimensional MDS configuration X. Here X, the
configuration, is an n × m matrix with the coordinates of
the n objects in <m. Most MDS techniques assume that
the dissimilarity matrix 6�ij 7 is symmetric; we review two
important exceptions below. The most common function to
measure the fit between the given dissimilarities, �ij , and
distances, dij4X5, is STRESS, defined by

STRESS4X5≡

n
∑

i=1

n
∑

j=1

wij4�ij −dij4X5521 (1)

where wij is a given nonnegative weight reflecting the
importance or precision of the dissimilarity �ij . Note that
wij can be set to 0 if �ij is unknown. dij4X5 is a vector
norm, defined as

dij4X5=

[ m
∑

s=1

�xis − xjs�
q

]1/q

with given parameter q ¾ 1. Usually, dij4X5 is the L2 norm
4q = 25 or the L1 norm (q = 1).

Finding a global minimum of (1) is a hard optimization
problem because STRESS is a nonlinear nonconvex func-
tion with respect to X, and thus optimization algorithms
can converge to local minima (see, for example, de Leeuw
1977, Groenen et al. 1999, Alexander et al. 2005).

In a useful MDS technique, the three-way MDS, for each
pair of objects we are given K dissimilarity measures from
different “replications” (e.g., repeated measures, different
experimental conditions, multiple raters, etc.). This tech-
nique is referred to as three-way MDS because the input
is a three-dimensional matrix �k

ij , as opposed to the two-
dimensional matrix in “classic” MDS. The objective func-
tion of three-way MDS is defined as (de Leeuw 1977),

3WAY-STRESS4X5≡

K
∑

k=1

n
∑

i=1

n
∑

j=1

wk
ij4�

k
ij −dij4X5520 (2)
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Unidimensional scaling (UDS) is the important one-
dimensional case of MDS where the configuration X is an
n × 1 matrix. Therefore, UDS seeks to approximate the
given dissimilarities by distances between points in a one-
dimensional space. Unidimensional scaling has been used
successfully in several contexts (see, for example, Fisher
1922, Robinson 1951, Ge et al. 2005). Unidimensional scal-
ing has been studied mainly as a model for object sequenc-
ing and seriation (Hubert et al. 2001, Brusco and Stahl
2005b), thus its relevance to the problem concerning this
paper. Unidimensional scaling is a hard optimization prob-
lem, and combinatorial techniques (e.g., branch and bound
and dynamic programming) are only able to optimally solve
instances of up to 30 objects; see, for example, Lau et al.
(1998), Brusco (2002), Hubert et al. (2002), Brusco and
Stahl (2005c).

In our particular application, rating customers according
to their adoption promptness, the input data is a matrix R
with rki giving the adoption time (relative to product launch)
of customer i for product k. This matrix is, in general,
incomplete and has many missing elements. The objective
is to assign each customer i to a scale x such that xi most
accurately recovers the across-customer ordering of product
adoption times within any product. To solve our problem,
we can set up the following three-way UDS problem:

min
x

K
∑

k=1

n
∑

i=1

n
∑

j=1

wk
ij4�r

k
i − rkj � − �xi − xj �5

20 (3)

Here the interpretation is that product k gives a pairwise
dissimilarity, �rki − rkj �, among a pair of customers i and
j the purchased product k. Then, the objective is that cus-
tomers with low (high) dissimilarities have similar (dissim-
ilar) adoption promptness and should be placed “close (far)
to each other” in the desired scale x.

We note a couple of drawbacks of formulating our
customer rating problem as the three-way UDS prob-
lem (3), and later introduce our scaling methodology
which, addresses these drawbacks.

1. As mentioned earlier, finding the optimal solution
to (3) is a hard optimization problem because the objective
is nonconvex (Groenen et al. 1999); current optimization
techniques are only able to optimally solve instances of at
most 30 objects.

2. By calculating the dissimilarities as �rki − rkj �, prob-
lem (3) ignores the so-called directionality of dominance,
that is, the sign of 4rki − rkj 5. In particular, problem (3)
does not capture the information regarding which customer
adopted product k earlier. Note that this information is very
relevant in the customer rating problem.

A closely related observation is that, given an optimal
solution, x∗, to (3), −x∗ is also an optimal solution to (3).
Thus, by solving (3), we get a rating of the customers, but
we do not know whether a higher rating means a greater
adoption promptness or vice versa.

Although the vast majority of the papers in the UDS lit-
erature assume that the given dissimilarities are nonnegative

and symmetric, there are two papers (Hubert et al. 2001
and Brusco and Stahl 2005a) that consider the case where
the dissimilarities are given in a complete skew-symmetric
matrix (i.e., �ij = −�ji).

Because these approaches consider only one matrix 6�ij 7
and this matrix is complete, these are not applicable to
the customer rating problem. Indeed, the approach pre-
sented in this paper is a nice generalization of one of these
approaches. We briefly discuss the approaches presented in
Hubert et al. (2001) and Brusco and Stahl (2005a) and refer
to the original papers for further details.

Hubert et al. (2001) observe that a skew-symmetric
matrix contains two distinct types of information between
any pair of objects: degree of dissimilarity, ��ij �, and
directionality of dominance, sign4�ij5. They consider two
approaches to sequencing the objects. The first approach
consists of finding the object ordering � such that the
matrix 6��4i5�4j57 has the maximum sum of above-diagonal
entries. Hubert et al. note that this problem is exactly the
minimum feedback arc set problem, which is NP-hard. The
second approach proposed in Hubert et al. (2001) is to solve
the following problem,

min
x

n
∑

i=1

n
∑

j=1

4�ij − 4xi − xj55
21 (4)

where the dissimilarity matrix 6�ij 7 is assumed to be skew
symmetric and has no missing entries. Hubert et al. give an
analytic solution to problem (4); Hochbaum and Moreno-
Centeno (2008) give a generalization of this result to the
case of multiple dissimilarity matrices (but still no missing
entries).

Brusco and Stahl (2005a) also differentiate between the
degree of dissimilarity, ��ij �, and directionality of dom-
inance, sign4�ij5. They propose a bicriteria optimization
problem that balances between these two types of infor-
mation. Although interesting, this approach is not practi-
cal because the proposed solution technique is only able
to determine the nondominated solutions for matrices up
to size 20 × 20 (and can take as input only one skew-
symmetric matrix).

3. The Separation-Deviation Model

3.1. Review of the Separation-Deviation Model

The SD-model was proposed by Hochbaum (2004, 2006).
The inputs for the separation-deviation model are a set of
objects 811 0 0 0 1 n9, for each object a set of prior ratings
rki for k = 1 0 0 0K, and a set of pairwise comparisons �k

ij

for k = 1 0 0 0K for each pair of objects. These pairwise
comparisons are skew-symmetric, that is �k

ij = −�k
ji. The

SD-model aims to assign each object a rating xi, such that
xi is as close as possible to the given prior ratings and the
difference in the ratings of each pair of objects is as close
as possible to the given pairwise comparisons.
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Let the variable xi be the rating of the ith object, and
the variable zij be the difference xi and xj . The convex
optimization formulation of the SD-model is

min
x1 z

K
∑

k=1

n
∑

i=1

n
∑

j=1

wk
ijf

k
ij 4zij − �k

ij5+

K
∑

k=1

n
∑

i=1

vki g
k
i 4xi − rki 5 (5a)

s.t. zij = xi − xj 4i = 11 0 0 0 1 n3 j = i+ 11 0 0 0 1 n50 (5b)

The penalty function f k
ij 4 5 for disagreeing from the kth

pairwise comparison between the ith and jth objects is a
convex function of zij − �k

ij . The total sum of these penal-
ties,

∑

k

∑

i

∑

j f
k
ij 4zij −�k

ij5 is called the separation penalty.
As in MDS, wk

ij are given nonnegative weights reflecting
the importance or precision of �k

ij and are set to 0 if �k
ij is

unknown.
The penalty function gki 45 for disagreeing from the kth

prior rating on the ith object is a convex function of xi −rki .
The total sum of these penalties

∑

k

∑

i v
k
i g

k
i 4xi − rki 5 is

called the deviation penalty. The vki are given nonnegative
weights reflecting the importance or precision of the pur-
chase time rki and are set to 0 if the ith customer did not
buy the kth product.

It was proved in Hochbaum and Levin (2006) that prob-
lem (5) is a special case of the convex dual of the minimum
cost network flow (CDMCNF) problem. As such it is solv-
able by the efficient polynomial-time algorithm devised in
Ahuja et al. (2003).

3.2. Comparison Between UDS and the SD-Model

A simplified version of the SD-model is to solve prob-
lem (6). In this subsection, we present this simplified ver-
sion to allow for a quick comparison with MDS/UDS.

min
x

K
∑

k=1

n
∑

i=1

n
∑

j=1

wk
ijf

k
ij 4�

k
ij − 4xi − xj551 (6)

where, for the customer rating problem, �k
ij ≡ rki − rkj , and

thus, for each product k, 6�k
ij 7 is a (possibly incomplete)

skew-symmetric matrix. wk
ij is a nonnegative weight reflect-

ing the importance or precision of the dissimilarity �k
ij (wk

ij

is set to 0 if �k
ij is unknown). Also, each f k

ij 4 · 5 is a given
of convex function.

In MDS terminology, problem (6) is a three-way unidi-
mensional scaling problem where the K dissimilarity matri-
ces are skew symmetric. In contrast to all of the MDS
literature, where f k

ij 4 · 5 are either the quadratic function
or the absolute value function, in the separation-deviation
model these functions can differ from each other and may
be any convex function. In contrast to problem (3)—the
direct application of UDS to the customer rating problem—
problem (6) is solvable in polynomial time and does not
ignore the directionality of the dominance. In contrast to
the approaches in Hubert et al. (2001) and Brusco and Stahl
(2005a) for skew-symmetric matrices, problem (6) accepts
multiple and incomplete dissimilarity matrices and is solv-
able in polynomial time.

3.3. Customer Rating via the
Separation-Deviation Model

Consider a population of customers, identified by the
index i, who may elect to purchase products (on a given
product line) indexed by k ∈ 811 0 0 0 1K9 over a period com-
prising a number of periods (months). Let rki be the first
month (if any) in which customer i purchased product k.
Each of the n customers is associated with a K-dimensional
vector ri = 4r1

i 1 0 0 0 1 r
K
i 5, recording the first month in which

he or she bought the different products. In the event that
the customer did not purchase a product, the correspond-
ing entry in the vector is regarded as “missing.” The model
appropriately (and seamlessly to the user) deals with this
missing information.

As shown in Figure 1, the life cycles of products tend
to shrink over time. This is particularly the case in the
high-tech industry. When the products compared span a
few years, one might want to mitigate the extra weight that
earlier products have due to their availability for purchase
over a larger period of time. This is done by calibrating
the values of rki ; that is, the input to the SD-model should
be given in terms of the relative time position within the
span of the k product’s life cycle, instead of the absolute
values in term of months. Indeed, throughout this paper
we assume that the life cycles of the K products are of
equal length. This is without loss of generality, because
if the products have different life cycle lengths these are
calibrated to equal value (say 60117) by dividing the month
of purchase by the cycle length, in months, of the respective
product.

One of the important features of the separation-deviation
model is that the model takes as input a collection of pair-
wise comparisons between the objects (customers) to be
classified. That is, a single customer-pair can have sev-
eral, possibly conflicting, pairwise comparisons. In this
particular application, the SD-model uses the purchase
times to create pairwise comparisons among the different
customers.

Figure 1. Shrinking product life cycles in the semicon-
ductor industry over time.
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0201009998979695949392
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Example 1. Consider the input given in the following
table:

rki a b c

A 8 — 1
B — 2 6
C 9 1 5

The first row of the table says that customer A bought prod-
ucts a and c eight months and one month after each was
launched; customer A did not buy product b. In addition
to considering the information given in the above table,
the model explicitly generates five pairwise comparisons
that represent the difference in the adoption promptness
between each pair of customers. For instance, the model
will explicitly use the fact that customer A bought prod-
uct a one month before customer C.

The main motivations for considering pairwise compar-
isons are the following:

1. We are interested in differentiating between customers
that buy earlier and customers that buy later; this is a ques-
tion about the relative purchase times between customers.
In this respect it is important to emphasize that we are not
concerned with the problem of predicting the time when a
certain customer will buy a given product (the “absolute”
purchase times of each customer).

2. Although the specific months of purchase for different
products might have a high variation, the relative difference
in the purchase times between two given customers might
have less variation. So, for example, say that Alice buys
two products in months 1 and 100, respectively, and Bob
buys the same products in months 3 and 110, respectively.
Just looking at Alice’s purchases, it would be unclear to
determine if she is an early adopter or a late adopter; how-
ever, when considering that she always bought the products
earlier than Bob, we can be certain that she adopts new
products faster than Bob.

In the application described in this paper, pairwise
comparisons between customers are derived from the
observed first purchase times described above. Specifi-
cally, let rki and rkj be the observed first purchase times
of customers i and j , respectively, both of whom bought
product k. Then the pairwise comparison between the two
customers is defined as �k

ij = rki − rkj ; note that comparisons
are skew symmetric, because �k

ij = −�k
ji. Ultimately, the

output of the SD-model is a set of values, or ratings, asso-
ciated with each object so that the difference between each
pair deviates as little as possible from the input pairwise
comparisons.

In this study, we use for the penalty functions f k
ij 4 5 and

gki 4 5 the absolute value functions (problem (7) below) and
the quadratic convex penalty functions (problem (8) below).
We set wk

ij equal to 1 if both customers i and j bought
product k, and set wk

ij equal to 0 otherwise. Similarly, we

set vki equal to 1 if customers i bought product k, and set
vki equal to 0 otherwise.

min
x1 z

M ·

K
∑

k=1

n
∑

i=1

n
∑

j=1

wk
ij �zij − �k

ij � +

K
∑

k=1

n
∑

i=1

vki �xi − rki � (7a)

s.t. zij = xi − xj 4i = 11 0 0 0 1 n3 j = i+ 11 0 0 0 1 n50 (7b)

min
x1 z

M ·

K
∑

k=1

n
∑

i=1

n
∑

j=1

wk
ij4zij − �k

ij5
2
+

K
∑

k=1

n
∑

i=1

vki 4xi − rki 5
2 (8a)

s.t. zij = xi − xj 4i = 11 0 0 0 1 n3 j = i+ 11 0 0 0 1 n50 (8b)

In problems (7) and (8) the parameter M is chosen so
that the separation penalty is lexicographically more impor-
tant than the deviation penalty. By lexicographically more
important, we mean that the separation penalty is the domi-
nant term in the optimization problem so that the deviation
penalty is only used to choose among the feasible solu-
tions with minimum separation penalty. We set the sepa-
ration penalty to be lexicographically more important than
the deviation penalty because it better represents our objec-
tive to determine the relative purchase-time ordering of the
customers (as opposed to predicting the absolute purchase
times of the customers).

A property of the separation deviation model demon-
strated in Hochbaum and Moreno-Centeno (2008) shows
that when 8rki 9 has no missing entries (in the customer rat-
ing context this means that all products are purchased by
all customers), using the absolute value penalty function
guarantees that the output rating will agree with the rating
implied by the majority of the raters (here the raters are the
products). We denote the optimal solution to problems (7)
and (8) as x�SD� and xSD2

, respectively.

Example 2. The following table provides the optimal solu-
tions of problems (7) and (8) for the data in Example 1.
The column xavg gives the row average of the inputs.

Inputs Outputs
a b c x�SD� xSD2

xavg

A 8 — 1 1 2.9 4.5
B — 2 6 6 5.6 4.0
C 9 1 5 5 5.0 5.0

As the above table shows, both x�SD� and xSD2
preserve the

order of the customers implied by all the products pur-
chased. On the other hand, taking the row average does not
preserve such order; indeed, it contradicts the ordering of
customers 4B1C5 according to product b, and the ordering
of the customers 4A1B5 and 4B1C5 according to product c.

Below we make some relevant observations regarding the
SD-model.

• The SD-model is an approach for unsupervised learn-
ing, and as such it does not require a training set.
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• A particular advantage of the SD-model is that in addi-
tion to working well in situations with complete informa-
tion (see Hochbaum and Moreno-Centeno 2008), it works
well (without any need for data preprocessing) in situations
where we have incomplete information. This is particularly
prominent in the application studied here, where the infor-
mation matrix is sparse. Indeed, in the Sun Microsystems
database, only 165 of 1,916 customers bought all the prod-
ucts considered in this study, and 1,132 customers only
bought one product.

• The SD-model can take subjective, or less than
entirely reliable, judgments as input and calibrate those
inputs with appropriate confidence levels.

• The SD-model is solvable in polynomial time for any
convex penalty functions f k

ij 4 5 and gki 4 5.
• The segmentation achieved by the SD-model is the

“best” according to a defined metric.
• The SD-model makes obvious the discrepancies that

exist between the inputs. Outliers are made explicit and
may be used to improve insights into customer behavior. In
particular, by identifying the highest penalty terms one can
detect outliers in both the pairwise comparisons and in the
prior ratings.

• The SD-model does not rely on specified distributions
for different classes, and there is no requirement of any
specific sample size.

4. Performance Assessment on
Simulated Scenarios

This section assesses the performance of the SD-model
under several different simulated scenarios and compares
its performance to that of three-way UDS (problem (3)).

We denote as xUDS the customer rating obtained using
three-way UDS, that is, the solution to problem (3). Recall
that obtaining the optimal solution to problem (3) is only
possible (with current optimization techniques) for n¶ 30
(Hubert et al. 2001). Although specialized heuristics to
solve UDS are available (Hubert et al. 2002 survey these
heuristics), none of them apply to the three-way UDS or to
the weighted UDS (that is, all of the heuristics assume that
the data is complete and wij = 1 for i1 j = 11 0 0 0 1 n). There-
fore to find a heuristic solution to problem (3), we used
Matlab’s heuristic to solve the weighted MDS problem.
Strictly speaking, Matlab’s heuristic was designed to min-
imize problem (1) (that is, it only accepts one dissimilar-
ity matrix). However, as shown in de Leeuw (1977), when
using the quadratic function as penalty function, minimiz-
ing (2) can be reduced to the problem of minimizing (1).

Each scenario represents a different customer purchase-
timing behavior and consists of 600 customers each buying
up to four products. We associate a different purchase-time
distribution with each customer-product pair. By letting the
purchase-time distributions depend on both the customer
and the product, we are able to simulate scenarios where
the products have different life cycles and characteristics.

In these scenarios, the customers’ purchase times may have
different expected values and/or variances depending on the
product under consideration.

We simulated the purchase time of each product by
each customer using the gamma distribution, which is com-
monly used to simulate “customer arrival times.” Let c and
p represent the index of the customer and product, respec-
tively. We used seven different expected purchase times
8c1 c+ 2p1 c + 5p1 c + 50p1 cp110cp150cp9, and 11 dif-
ferent variances 81015015c110c150c15p110p150p15c +

5p110c+10p150c+50p9. Overall, we simulated 77 differ-
ence scenarios, one for each possible mean-variance com-
bination. For example, in the scenario having cp mean and
5p + 5c variance, the purchase time of the jth product by
the ith customer had an expected value of ij and a variance
of 5i + 5j . Note that in all of these scenarios, customers
with lower indices adopt new products earlier. That is, given
two customers i, j such that i < j , then, for any given prod-
uct, customer i has an earlier expected purchase time than
customer j . Thus, for every one of the 77 scenarios, the
customers are ordered with respect to their adoption prompt-
ness. In particular, the true ranking, xT

i , of the ith customer
is equal to i. Note that the simulated customers behave sim-
ilarly across products in that lower-index customers adopt
(in expected value) earlier than higher-index customers for
any given product; this is consistent with the assumption
that all the products belong to the same product line.

To measure how successful the SD-model is in recov-
ering the true ranking vector, xT, of the customers, we
used Kendall’s Tau rank-correlation coefficient. This coef-
ficient provides a measure of the degree of correspondence
between two vectors. In particular, it assesses how well the
order (i.e., rank) of the elements of the vectors is preserved.
In Appendix A we provide a description of Kendall’s Tau
rank-correlation coefficient. We note that, as an alternative
to three-way UDS (problem (3) and the SD model (prob-
lems (7) and (8)), we could instead find the customer rating
vector that maximizes Kendall’s Tau rank-correlation coef-
ficient. We decided not to do so because (1) finding such
a vector is NP-hard (Bartholdi et al. 1989) and (2) this
objective would ignore the degree of dissimilarity between
the adoption times of the customers. On the other hand,
we believe that Kendall’s Tau rank-correlation coefficient
is appropriate to measure how well the customer ratings
recovered xT

i . (Notice that xT
i gives the true ordering of

the customers and does not give a degree of dissimilarity
between the customers.)

Recall that this paper focuses on the case where the data
available is incomplete; that is, there are customers who did
not purchase every product. To generate incomplete data,
we first simulated the complete data; that is, we simulated
the purchase times of every customer-product pair and then
deleted some of the purchase times at random. In Sun’s
data 59%, 23%, 9%, and 9% of the customers bought one,
two, three, and four products, respectively. We mimicked
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Table 1. Average Tau correlation coefficients between xT and x�SD�.

� 10 50 5c 10c 50c 5p 10p 50p 5c + 5p 10c + 10p 50c + 50p

c 009913 009784 008884 008434 006934 009902 009857 009662 008873 008433 006903
c + 2p 009911 009783 008872 008445 006947 009903 009855 009666 008879 008450 006903
c + 5p 009912 009785 008886 008455 006900 009905 009856 009666 008851 008444 006906
c + 50p 009913 009784 008877 008448 006847 009904 009856 009665 008863 008430 006830
cp 008427 008386 008271 008198 007745 008395 008416 008428 008270 008161 007766
10cp 008431 008449 008432 008419 008403 008439 008424 008441 008438 008426 008391
50cp 008426 008443 008433 008437 008452 008437 008433 008438 008451 008462 008423

this data by deleting the entries with this empirical distribu-
tion. In particular, each customer had a probability of 0.59,
0.23, 0.09, and 0.09 of buying one, two, three, and four
products. For each customer the purchased products were
chosen uniformly at random.

To summarize, the performance assessment of the SD-
model on each of the 77 scenarios was executed as follows:

Step 1: Repeat 30 times:
Step 1.1: Simulate the purchase-time data of four

products by 600 customers.
Step 1.2: Delete some of the purchase times at ran-

dom to obtain incomplete information.
Step 1.3: Solve for x�SD�, xSD2

, and xUDS.
Step 1.4: Compute the Tau correlation coefficient

between xT (the true customer ranking) and each of x�SD�,
xSD2

, and xUDS.
Step 2: Calculate the average and standard deviation of

the 30 Tau correlation coefficients (with xT) computed for
each of x�SD�, xSD2

, and xUDS.
Tables 1–3 give, for each of the 77 scenarios, the average

Tau correlation coefficient between xT and x�SD�, xSD2
, and

xUDS, respectively.
To compare the performances of these methods,

Tables 4–6 provide the average differences between the

Table 2. Average Tau correlation coefficients between xT and xSD2
.

� 10 50 5c 10c 50c 5p 10p 50p 5c + 5p 10c + 10p 50c + 50p

c 009915 009788 008903 008464 006958 009902 009858 009660 008891 008453 006928
c + 2p 009913 009787 008891 008468 006971 009902 009856 009666 008897 008474 006936
c + 5p 009914 009788 008904 008478 006925 009905 009856 009666 008873 008467 006932
c + 50p 009915 009789 008902 008474 006892 009904 009857 009665 008882 008452 006871
cp 008356 008322 008241 008169 007745 008333 008351 008365 008238 008140 007758
10cp 008349 008380 008357 008350 008339 008360 008348 008371 008368 008360 008331
50cp 008348 008373 008351 008366 008385 008362 008365 008368 008372 008383 008347

Table 3. Average Tau correlation coefficients between xT and xUDS.

� 10 50 5c 10c 50c 5p 10p 50p 5c + 5p 10c + 10p 50c+50p

c 009787 009781 009766 009767 007198 007618 007613 009708 009712 009710 009704
c + 2p 007602 007697 007662 008871 008868 008879 008867 007610 007691 007645 008442
c + 5p 008450 008450 008458 007583 007677 007662 006893 006917 006769 006842 007287
c + 50p 007659 007678 009770 009782 009764 009756 007644 007664 007688 009764 009742
cp 009739 009740 007624 007676 007668 009603 009599 009617 009612 007665 007681
10cp 007674 008862 008874 008843 008854 007578 007150 007650 008443 008456 008436
50cp 008433 007188 007171 007195 006856 006887 006886 006816 007305 007628 007651

correlation coefficients achieved by the different meth-
ods. For example, each entry in Table 4 is the difference
between the corresponding entries of Tables 1 and 3. In
Tables 4–6, the numbers given in bold are those that are
at least three standard deviations above (or below) zero.
Therefore the scenarios with bold entry are those where
one method significantly outperforms the other; whereas, in
the rest of the scenarios, the performance of both methods
is essentially the same.

The results in Tables 4 and 5 provide evidence that the
SD-model, irrespective of the penalty functions used, per-
forms better than UDS on most of the 77 scenarios. In
particular, the SD-model outperforms UDS in 46 out of the
77 scenarios; and in 36 of these 46 scenarios, the SD-model
significantly outperforms UDS.

We now compare the performance of the SD-model
using different penalty functions. For this purpose, Table 6
reports the average difference between the correlation coef-
ficients (with respect to xT) for x�SD� and xSD2

. We note that
using the absolute-value penalty functions is only slightly
better than using the quadratic-value penalty functions.

The simulation results indicate that the SD-model deter-
mines with high accuracy the true ranking of the customers
with respect to their adoption promptness.
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Table 4. Average difference between the correlation coefficients obtained by x�SD� and xUDS.

� 10 50 5c 10c 50c 5p 10p 50p 5c + 5p 10c + 10p 50c + 50p

c 000126 000003 −000882 −001333 −000265 002283 002244 −000046 −000840 −001277 −002801
c + 2p 002310 002087 001210 −000427 −001921 001024 000988 002056 001188 000805 −001539
c + 5p 001462 001335 000427 000872 −000778 002243 002962 002748 002082 001603 −000381
c + 50p 002254 002106 −000893 −001333 −002918 000148 002212 002000 001175 −001334 −002912
cp −001312 −001354 000647 000522 000076 −001207 −001183 −001189 −001343 000496 000085
10cp 000756 −000413 −000442 −000424 −000451 000861 001274 000792 −000005 −000030 −000045
50cp −000007 001255 001262 001241 001596 001549 001547 001622 001145 000834 000773

Note. Positive numbers indicate that x�SD� has higher average correlation with xT than xUDS.

Table 5. Average difference between the correlation coefficients obtained by xSD2
and xUDS.

� 10 50 5c 10c 50c 5p 10p 50p 5c + 5p 10c + 10p 50c + 50p

c 000128 000007 −000863 −001303 −000241 002283 002244 −000048 −000822 −001257 −002776
c + 2p 002311 002090 001230 −000403 −001896 001024 000988 002056 001205 000829 −001506
c + 5p 001464 001338 000445 000894 −000752 002243 002963 002749 002103 001626 −000356
c + 50p 002256 002110 −000869 −001307 −002872 000148 002213 002000 001195 −001312 −002871
cp −001383 −001417 000617 000493 000077 −001270 −001248 −001251 −001375 000475 000077
10cp 000675 −000483 −000517 −000494 −000516 000782 001199 000721 −000075 −000096 −000104
50cp −000085 001185 001179 001171 001529 001475 001479 001551 001067 000754 000696

Note. Positive numbers indicate that xSD2 has higher average correlation with xT than xUDS.

Table 6. Average difference between the correlation coefficients obtained by x�SD� and xSD2
.

� 10 50 5c 10c 50c 5p 10p 50p 5c + 5p 10c + 10p 50c + 50p

c −000002 −000004 −000019 −000030 −000024 000000 −000001 000002 −000018 −000020 −000025
c + 2p −000001 −000004 −000020 −000023 −000024 000000 000000 000000 −000017 −000024 −000033
c + 5p −000002 −000003 −000018 −000022 −000026 000000 −000001 000000 −000021 −000023 −000026
c + 50p −000002 −000004 −000024 −000026 −000045 000000 000000 000000 −000020 −000023 −000041
cp 000071 000064 000030 000029 000000 000063 000065 000062 000032 000021 000008
10cp 000081 000069 000075 000069 000064 000079 000075 000070 000070 000066 000059
50cp 000078 000070 000082 000071 000067 000074 000068 000071 000079 000079 000077

Note. Positive numbers indicate that x�SD� has higher average correlation with xT than xSD2 .

5. Rating Sun’s Customers According to
Their Adoption Promptness

5.1. Sun’s Data

The empirical analysis presented below is based on a (dis-
guised) data set comprising customer purchase information
provided by Sun Microsystems, Inc. The data set encom-
passes four products and some 1,916 customers. It records
the number of months (measured from the month of the
earliest product launch) that elapsed before each customer
bought each product. This section shows that Sun’s prod-
ucts are not independent in several ways (for instance, all
four products are servers in the same family), and we pro-
pose how to cope with this situation.

As shown in Figure 2, most of the customers did not buy
all four products, and in fact about half of the customers
only bought one of the products. Such sparse data would
pose a challenge for many of the existing data-mining and
market segmentation techniques described in §2, and in
general, some form of preprocessing would be required to

fill in the missing data. The separation deviation model,
however, handles missing data quite routinely, without pre-
processing.

As may be deduced from Figure 3, products 3 and 4
were launched together at the beginning of the observation

Figure 2. Number of customers that bought each prod-
uct or set of products.
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Figure 3. Number of customers that bought each prod-
uct per month.
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period, with the launches of products 1 and 2 following,
respectively, 10 and 12 months later—in fact, products 3
and 4 represent the first generation of a product line of
which products 1 and 2 were the second generation, with
updated and advanced features. The figure also exhibits the
strong degree of correlation between product sales; peaks
and valleys in the sales of all products tend to occur at the
same time (this sales behavior is almost certainly due to the
effect of salesforce and customer incentives that the com-
pany applied simultaneously to all products in this market).
Moreover, as shown in Figure 4, most of the customers that
bought products 1 and 2 did not buy either product 3 or 4.

Figure 4. Customers that bought product 1 or 2 after
buying products 3 and/or 4.

Product 3
Product 4
Products 3 and 4
Neither prod. 3 nor 4

(a) Product 1

(a) Product 2

Therefore, it is reasonable to suppose that purchasers of the
earlier products (products 3 and 4) exhibit greater procliv-
ity for early adoption than purchasers of products 1 and 2
alone.

In general, the purchase times should be measured from
the release date of each product. Because products 1 and 2
are the second generation of products 3 and 4, we find that
the purchase times of products 3 and 4 are more signifi-
cant in determining the adoption promptness. To consider
this, we decided to measure all purchase times with respect
to the release time of products 3 and 4. That is, we still
consider the purchase times of products 1 and 2, but mea-
sure these times with respect to the launch time of prod-
ucts 3 and 4—as opposed to measuring these times from
the launch time of the respective product.

As discussed in the previous paragraph, we believe
that the purchase times of products 3 and 4 (the products
with the longer life cycles) are more significant in deter-
mining the customers’ adoption promptness. Consequently,
we do not calibrate the data rki by the length of the life
cycle (as described in §3.3), and instead use as input for
the SD-model the raw purchase times.

5.2. Results and Their Interpretation

In this section we demonstrate the use of the SD-model to
rate Sun’s customers with respect to their adoption prompt-
ness. In particular, we show that the results obtained using
the SD-model agree with an intuitive interpretation of Sun’s
business.

Using as input Sun’s data, we solved for x�SD�, which was
the best performer in §4. Next, to facilitate the interpre-
tation of the obtained results, we generated four customer
classes from x�SD�. Specifically, we classified Sun’s cus-
tomers into the classes defined by Rogers’ model of inno-
vation diffusion (see Appendix B). That is, we segmented
the customers into four classes (Vanguard, composed of
innovators and early adopters; Early Majority; Early Minor-
ity; and Laggard) as follows: (1) We sorted the customers
according to their rating as given by x�SD�. (2) We selected
threshold values determining the boundaries between con-
secutive segments, so that the segments have the sizes given
by Rogers’s model.

Figures 5 and 6 provide an analysis of the customer
segmentation in terms of customer industry and location,
respectively. The bars in the figures relate the percentage
of each characteristic according to customers of a particu-
lar class. Thus, in Figure 5, just under 60% of resellers are
in the Vanguard, and 10% are Early Majority; whereas in
Figure 6, approximately 50% of U.S. customers are in the
Vanguard, and about 40% are Laggards. Broadly speaking,
the results illustrated in the figures are in accord with an
intuitive understanding of Sun’s business. In Figure 5, for
example, resellers and computer manufacturers must pass
the product on to end users and thus are likely to be first in
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Figure 5. Customer classification by industry.
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line to purchase a new model. By contrast, telecommuni-
cations utilities (“telecoms”) have high fixed-capital invest-
ments and very exacting quality standards, and it is quite
reasonable to see this category skewed toward the Laggard
class. Figure 6 seems well grounded in the geography of
Sun’s markets: Because it is a U.S.-based company, one
would expect a preponderance of Sun’s U.S. customers to
be Vanguard and Early Majority, with adoptions occurring
fairly early on in the developed markets of western Europe,
Australia, Japan and Canada. Less-developed markets, such
as Latin America and eastern Europe, where Sun’s sales
and distribution infrastructure is less well established, adopt
later. Overall, it appears that the classification obtained

Figure 6. Customer classification by location.
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using x�SD� does indeed characterize Sun’s customers in a
convincing fashion.

6. Conclusions
The proposed approach of using the (previously devel-
oped) Hochbaum’s separation-deviation model (SD-model)
is novel in data mining in general and customer rating in
particular. It is shown here to generate valuable information
on the characteristics of the customer base of an organiza-
tion, and as such it is useful in managing the launch and
the life cycle of a new product.

This study utilizes the SD-model to rate Sun’s customers
according to their adoption promptness. Using the ratings
obtained, we were able to classify Sun’s customers accord-
ing to their adoption promptness and showed that the results
provide an intuitive interpretation of Sun’s business.

We further interpret the SD-model as a dimension reduc-
tion technique (specifically, to the case where multidimen-
sional data needs to be represented/summarized in only one
dimension), and we showed that the SD-model is a valuable
alternative to traditional unidimensional scaling techniques.
Specifically, the SD-model is shown to be better than tra-
ditional methods in terms of its scalability and its ability
to deal with missing data. We thus establish that the SD-
model outperforms unidimensional scaling in determining
the customers’ adoption promptness.

Appendix A. Kendall’s Tau
Rank-Correlation Coefficient
Given two rating vectors 8ai9

n
i=1 and 8bi9

n
i=1, the number of

concordant pairs is C =
∑n

i=1

∑n
j=i+1 Cij1 where

Cij =































1 if (ai<aj and bi<bj ) or (ai>aj and bi>bj )

or (ai =ai and bi =bi),

1/2 if (ai =aj and bi 6=bj ) or (ai 6=aj and bi =bj ),

0 otherwise.

Kendall’s Tau rank-correlation coefficient is then � =

44C/4n4n− 1555− 1, and has the following properties:
1. If the two ratings imply the same ranking, then � = 1.
2. If the ranking implied by one rating is the reverse of

the other, then � = −1.
3. For all other cases, � lies between 1 and −1, and

increasing values imply increasing “monotonic” agreement
between the rankings implied by the ratings.

4. If the rankings implied by the ratings are completely
independent, then � = 0 (on average).

Appendix B. Overview of the
Customer Adoption Process
According to Rogers’ now-classic model of innovation dif-
fusion (Rogers 1962), customers may be classified, based
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Figure B.1. Adoption process.
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on the timing of their first purchase of a new product,
as Innovators, who are the first to purchase the product
and use it. This group of people is typically well edu-
cated, adventurous, and open to new experiences. Product
purchases by those outside of this group are influenced
to various degrees by the reactions of innovators. Later
purchasers are essentially imitators; they buy new prod-
ucts because the innovators had positive reactions to them
and they wish to replicate the innovators experience. Early
Adopters begin purchasing as the innovators communicate
positive responses toward a product. This group is made
up of people who are inclined to try new ideas but tend
to be cautious. Early Majority adopters are more likely to
accept a new product than the average person; rarely acting
as leaders, the early majority essentially imitates the behav-
ior of the first adopters. Late Majority customers decide
to buy only because many other customers have already
tried the new product. Finally, Laggard Adopters are reluc-
tant to adopt new products. Those in this group buy a new
product only once this product has established a substantial
track record. As seen in Figure B.1, Innovators represent
only 1.5% of all customers. Thus, in §5.2 we conflate the
classes Innovators and Early Adopters under the title Van-
guard. Customers in the Vanguard class play a major role
in the adoption of the innovation, because their acceptance
or rejection will affect all the other groups. The method
proposed in this paper aims to identify more effectively this
group of customers and, therefore, increase the probabil-
ity of success of a target action. Furthermore, the proposed
technique identifies the other groups of customers: Early
Majority, Late Majority, and Laggard. In this sense, it is a
valuable instrument for the design of marketing strategies.
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