SIAM J. COMPUT. © 1988 Society for Industrial and Applied Mathematics
Vol. 17, No. 3, June 1988 008

A POLYNOMIAL APPROXIMATION SCHEME FOR
SCHEDULING ON UNIFORM PROCESSORS:
USING THE DUAL APPROXIMATION APPROACH*

DORIT S. HOCHBAUMY AND DAVID B. SHMOYS#

Abstract. We present a polynomial approximation scheme for the minimum makespan problem on
uniform parallel processors. More specifically, the problem is to find a schedule for a set of independent
jobs on a collection of machines of different speeds so that the last job to finish is completed as quickly as
possible. We give a family of polynomial-time algorithms {A,} such that A, delivers a solution that is within
a relative error ¢ of the optimum. This is a dramatic improvement over previously known algorithms; the
best performance guarantee previously proved for a polynomial-time algorithm ensured a relative error no
more than 40 percent. The technique employed is the dual approximation approach, where infeasible but
superoptimal solutions for a related (dual) problem are converted to the desired feasible but possibly
suboptimal solution.

Key words. scheduling, approximation algorithms

1. Introduction. We will consider a fundamental problem of scheduling theory.
Suppose that we have a set of jobs J with independent processing times p,, - -, p,
that are to be executed on m nonidentical machines; these machines run at different
speeds s,, * * *, 5,,. More precisely, if job j is executed on machine i it takes p;/s; time
units to be completed. The objective is to assign the jobs to machines so as to minimize
the total execution time required to run the jobs assigned to the most heavily loaded
machine. In other words, it is the minimum time needed to complete the processing
of all of the jobs. In the classification scheme of [GLLR] this problem is denoted
Q/J/Cnax, the minimum makespan problem on uniform parallel machines. In this paper,
we will present a family of algorithms for this problem where these algorithms are, in
a sense to be indicated below, the best possible algorithms for this problem.

As is true for most scheduling problems, this problem is likely to be intractable
since it is NP-complete, and therefore the existence of a polynomial-time algorithm
for it would imply that P = NP. As a result, the algorithm designer must be willing to
settle for a solution somewhat worse than the optimal schedule. One natural approach
is to consider approximation algorithms for the problem which deliver a schedule with
makespan that is guaranteed to be within a specified relative error of the optimum
schedule length. This approach was first considered by Graham [G], who showed that
if all of the machines have the same speed, then the simple “on-line”” procedure of
scheduling any job when a machine becomes idle always delivers a schedule that
finishes within at most 1+(1—1/m) times the optimal schedule length. We shall call
such a polynomial-time procedure a (1—1/m)-approximation algorithm. Work on this
special case of identical machines culminated in the recent work of Hochbaum and
Shmoys [HS], that showed that for any fixed £ >0 there exists an e-approximation
algorithm. This was a dramatic difference from previously known work on the more
general problem with different processing speeds. Although much work had been done

* Received by the editors October 20, 1986; accepted for publication May 13, 1987.

T School of Business Administration, University of California, Berkeley, California 94720. The work
of this author was supported in part by the National Science Foundation under grant ECS-85-01988.

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
The work of this author was supported in part by the National Science Foundation under grants ECS-85-01988
and MCS-81-20790, by a Presidential Young Investigator Award, and by Air Force contract AFOSR-86-0078.

539

540 D. S. HOCHBAUM AND D. B. SHMOYS

on this harder problem (e.g., [CS], [GIS], [HoS]) the best algorithm published to date
delivers a solution that could be up to 40 percent more than the optimum [FL].

In this paper, we present a family of polynomial-time algorithms {A,}, such that
the algorithm A, is an e-approximation algorithm for the more general problem. Such
a family of algorithms is traditionally called a polynomial approximation scheme. Notice
that the algorithm A, is polynomial in the size of the input, but not in the value of
1/ €. If the family of algorithms has the property that A, is polynomial in 1/¢ and the
size of the instance, then the family is known as a fully polynomial approximation
scheme. Since this problem is strongly NP-complete, our results are, however, the best
possible in the sense that if there were a fully polynomial approximation scheme for
this problem, then P = NP [GJ].

Due to the exponential dependence on 1/¢ in the running time of our algorithm,
it is not particularly practical for small values of &. However, the result shows that
there do exist polynomial-time algorithms that produce solutions with far superior
guarantees to the previously known algorithms, and thus one might hope for practical
algorithms with better guarantees than are known today. Note that the discussion
above implies that there are limits to the amount of improvement that is possible; still
one might hope for an O(n log n) or O(n?) algorithm that is guaranteed to have relative
error no more than, for example, 5 percent. In addition to this existential sort of
practical implication, we also believe that the framework around which our algorithm
is built can lead to efficient algorithms with extremely good guarantees. As an example
of this, we give an extremely efficient but exceedingly naive algorithm which is an
adaptation of our framework, and is guaranteed to deliver a solution that is within 50
percent of the optimum. In addition, the analysis of this algorithm is similarly trans-
parent.

2. A framework for approximation algorithms for scheduling problems. In this
section we will describe the basic structure of our polynomial approximation scheme
for the minimum makespan problem with uniform processors. Consider for the moment
the related question of deciding whether there exists a schedule for a given instance
of this problem where all of the jobs are completed by time T. If we think of the units
of the processing times p; as steps, and the units of the speeds as steps per unit of
time, then machine i can process Ts; steps before the deadline T. The decision problem
can then be viewed as a bin-packing problem with variable bin sizes. Furthermore, notice
that the notation for this problem can be simplified by rescaling both the processing
requirements and the speeds by a factor of 1/T: in this bin-packing variant the aim
is to decide whether a set of jobs (which we will interchangeably call pieces) of sizes
P1,* ', P, can be packed into a set of bins of sizes s,,: - -, sp.

Suppose that we had an efficient procedure for solving the bin-packing problem
with variable bin sizes. Then it is possible to solve the minimum makespan problem
with uniform machines by a simple binary search procedure. For the midpoint T of
the current range of possible optimum makespan values, we run the decision procedure;
if a schedule is found then the upper bound is updated to the midpoint, otherwise the
lower bound is updated. To initialize the binary search we need to obtain easy upper
and lower bounds on the length of the optimum schedule. One such upper bound is
U =%, p//max;s; (schedule all jobs on the fastest machine) and one such lower bound
is L=}, p;/(m- max;s;) (even if all machines are as fast as the fastest, there must be
enough total processing capacity for the machines to process the total processing
requirement). Notice that these bounds have a ratio bounded by m. Thus after log m +1
iterations of a binary search procedure the difference between the upper bound and
lower bound on the optimum makespan value is at most 2’ times the optimum value.

A POLYNOMIAL APPROXIMATION SCHEME 541

Unfortunately, this bin-packing problem is also NP-complete, so it seems unlikely
that we will find an efficient procedure to solve it. Instead we will argue that solving
a relaxed version of the bin-packing problem will be sufficient for our purposes. We
first introduce some useful terminology. For each collection of jobs J with processing
times {p;, - -, p.}, and set of bin sizes S={s,, - -, s,.}, a truly feasible packing is a
partition of the job set into m parts, B;, i=1,---, m where the total processing
requirement of jobs in B; is at most s; for i =1, - - -, m. Similarly, we define an e-relaxed
feasible packing to be a similar partition, but one that need only satisfy the weaker (or
relaxed) condition that the total processing requirement of jobs in B; be at most (1 + €)s;.

An e-relaxed decision procedure is a procedure which, given a collection J of jobs
with processing times {p,, - -, p.}, and a set of bin sizes S={s,, - -, 5.}, outputs
one of two outcomes:

(1) An e-relaxed feasible packing; or

(2) Some certificate that no truly feasible packing exists.

Consider now the binary search procedure described above with an e-relaxed
decision procedure in place of the algorithm assumed to solve the bin-packing problem
with variable sizes. Notice that when an update of the lower bound is done, the new
value must still be a valid lower bound on the optimum makespan length, since the
e-relaxed decision procedure fails to produce a packing only when no truly feasible
packing exists. Similarly, if the upper bound is updated to ¢, then a schedule has been
obtained of length at most (1+¢)t. From these observations it is not hard to obtain
the following result.

THEOREM 1. An e-approximation algorithm for the minimum makespan problem
with uniform parallel machines can be obtained by executing the binary search procedure
using an ¢/2-relaxed decision initialized with upper and lower bounds, U and L, respec-
tively, for log m+log (3/¢) iterations.

For the complete details of the proof of this, plus a more general setting in which
the same basic ideas are applicable, the reader is referred to [HS]. It is also useful to
note that by continuing for more iterations (but only polynomially many) it is possible
to convert an e-relaxed decision procedure into an e-approximation algorithm (as
opposed to the result given above which uses an &/2-relaxed decision procedure).
From Theorem 1, we get the following immediate corollary.

CoroLLARY 1. Iffor all fixed € > 0 there exists a polynomial-time e-relaxed decision
procedure for the bin-packing problem with variable bin sizes, then there is a polynomial
approximation scheme for the minimum makespan problem with uniform parallel machines.

3. An g-relaxed decision procedure for bin packing with variable bin sizes. In this
section we will show how to construct an e-relaxed decision procedure for the bin-
packing problem with variable bin sizes for any £ > 0. For the remainder of the paper
we will assume that the pieces (or jobs) have sizes p,, - - -, p,, and the bins have sizes
Si," ", 8y, Where s, = s, =+ =s,,.

For convenience we shall assume that 1/¢ is a positive integer. The description
of the algorithm and the proof of its correctness will proceed in a few phases. We first
construct a certain layered directed graph with two nodes designated “‘initial” and
“success.” We prove that if there is a truly feasible packing, then there is a directed
path from “initial” to ‘“‘success.” Furthermore, the existence of such a path provides
a means of efficiently constructing an e-relaxed feasible packing. Hence, the procedure
consisting of constructing the graph, identifying if there is a path from “initial” to
“success,” and then deriving the respective packing is indeed an e-relaxed decision
procedure.

542 D. S. HOCHBAUM AND D. B. SHMOYS

An intuitive outline of the algorithm relies on the analogy to the special case of
bin packing m bins of equal size (=1). Such an algorithm is given in [HS], but its
presentation, however, does not lend itself to the required generalization. Here we
modify the description of the algorithm to clarify the analogous procedure in the
variable-size bins case. For the equal-size case, all pieces lie in the interval (0, 1], and
the attempt is to e-relaxed pack them in at most m bins. The first pieces to be packed
are of size greater than ¢; these large pieces will be denoted by J,,... ={j|p,> €}. The
phase of the algorithm where these pieces are packed is called large-pack. Since these
pieces are large, fewer than 1/¢ of them can fit in one bin. These large pieces are
further partitioned according to their size in subintervals of length &> each. All piece
sizes in such subintervals are all rounded down to the lower end of the subinterval,
which is the nearest multiple of £° no more than the original piece size. After this
rounding, the number of large piece sizes is at most w = (1—¢)/&”. Thus, the packing
of large pieces in a bin can be uniquely described by an array of the distribution of
piece sizes that go into that bin. It is an array with one entry for each subinterval, and
an integer value between 0 and 1/¢ in each entry. Such an array, or a configuration,
specifies how many pieces of each subinterval go into each bin. A configuration
(%1, +,x,) is called feasible if each x; =0 and the total sum of the rounded sizes of
pieces in the configuration is at most 1, the size of the bin.

The distribution of the remaining large pieces to be packed, the state vector, is
described by a similar array, except that each entry may contain a nonnegative integer
no more than n. Therefore, the total number of possible state vectors is at most n”. A
state vector (n,, n,,* * *, n,) is reachable from a state vector (n}, n5, - - -, nl,) if there
is a feasible configuration (x,, - - -, x,,) such that n,=n{—x; fori=1,- - -, w. The first
step of the procedure is to construct a layered directed graph where the nodes
correspond to state vectors in the following way. Let V,, - -+, V,, be the nodes in the
Oth through mth layers, respectively. For i=1,---, m—1, V; contains a vertex (i, n)
for each possible state vector n. V|, contains only one vertex, the ““initial” node, and
is labeled with the state vector corresponding to the initial distribution of rounded
piece sizes. Similarly V,, contains only the “success” node, which is labeled with the
zero state vector (corresponding to the case that all pieces are packed). From each
node (i, n), there is an arc directed towards the node (i+1, n’) if and only if the state
vector n’ is reachable from the state vector n. Given any truly feasible packing of the
original instance, it is easy to see that the induced packing on the (rounded) large
pieces implies that there is a path from the initial node to the success node. We next
show that from any path from initial to success we can compute an e-relaxed feasible
packing of the large unrounded pieces. The path clearly specifies a packing of the
rounded large pieces. If we now restore the large pieces to their original sizes (arbitrarily
selecting them from the appropriate subintervals), this “inflating” process may either
result in a packing that is truly feasible, or the pieces may exceed the capacity (=1)
of some bins. However, the rounding was done in such a way so that it is easy to
bound the amount by which the inflated pieces will exceed the bin capacity. To round
each piece it was necessary to subtract at most £> from its actual size, and there are
no more than 1/ ¢ pieces per bin. Thus, the total difference between actual and rounded
piece sizes in a bin is at most ¢, and so the total actual piece size cannot exceed 1+ &.
In summary, the procedure large-pack constructs the layered graph, finds a path from
initial to success, which then yields an e-relaxed feasible packing of the large pieces.

We now must show how to extend this e-relaxed feasible packing to include the
small pieces, in a way that will always succeed if there is a truly feasible packing of
the original instance. The existence of a truly feasible packing induces a truly feasible

A POLYNOMIAL APPROXIMATION SCHEME 543

packing of the large pieces, with sufficient total slack in the bins in order to accommodate
all the small pieces. Moreover, the total slack in a truly feasible packing of the large
pieces, V'=m—Y%,_, p;, canbe no more than the total slack remaining in bins packed
under capacity in an e-relaxed feasible packing of the large pieces, the relaxed slack,
Vve'=Y" max{0,1 —X,ec, i} where C; is the set of pieces assigned by large-pack to
bin i. Now let Jinan=J —Jiarge- Since V'=Y,_, p; and V= V', it follows that
| A— et Pi- 1f this inequality is not satisfied then there can be no truly feasible
packing; otherwise we will be able to small-pack the remaining (small) pieces. This is
done by assigning one piece at a time to any bin with positive slack (that is, filled with
less than its unit capacity), even if this slack is less than the size of the piece. This
procedure guarantees that:

(1) So long as there is positive slack, small pieces can be packed,

(2) By packing a small piece of size p;, the total remaining slack is reduced by
at most p;; and

(3) Bins that become packed over capacity in the small-pack phase are packed
with at most 1+ ¢ times their true capacity (since the capacity is exceeded only by
adding a small piece (i.e., <¢), to a bin that was previously truly feasibly packed).

Therefore, if there is a truly feasible packing, the large-pack and small-pack
procedures will find an e-relaxed feasible packing. The complexity of the algorithm
is dominated by the large-pack procedure, where we construct the layered graph. The
graph has at most 2+(m+1)n"*" nodes and each node has at most (1/¢)"*" arcs
originating at it. The construction of each arc amounts to checking the feasibility of
the corresponding packing of a bin. This is done with at most 1/¢ additions and one
comparison. The complexity of the e-relaxed procedure is hence O((m/e)(n/e)" 52),
which is a polynomial for any fixed positive e.

In the generalization of the equal-size bin e-relaxed procedure to the variable-size
case we come across a major obstacle. The size of the subintervals in which the pieces
are partitioned depends on the size of the bins in which the pieces are to be packed.
Moreover, the definition of large and small pieces depends on the size of the bin in
which the pieces are to be packed. Let the largest bin size s, be normalized to 1. The
piece sizes are hence in the interval (0, 1]. We round down piece sizes as follows; for
a piece in the interval (¢**', €] we round its size down to the nearest multiple of
£"*2, Formally, define

pi=1Lpj/e""?]-€“"*, where k=max{q=0|p,=e}.

Consider now a bin of size s; in the interval (¢**', £*]. In the previous case, the large
pieces for this bin were those with sizes in the interval (es;, s;] since s;=1 for all i
This interval can intersect both of the intervals (¢“*% £**'] and (¢**', ¢*] and as a
result, we will slightly modify the notion of large in generalizing the algorithm to the
case of variable-size bins. The pieces in the interval (¢**', £*] are large for this bin
whereas the pieces in the interval (¢**?, ¢**'] are called medium pieces. The pieces
of size less than or equal to £“*? are small for this bin. Notice that the definition of
large, medium, and small pieces did not depend on the precise size of the bin, but
only on the interval of the form (&'*", £'] that contained the bin size; for convenience
we will often refer to this as interval I As before, it will always be true that a small
piece for a bin is no more than ¢ times the bin size. The strategy will be to execute
the packing of the bins 1,2, - -+, m in two phases:

(1) Large- and medium-piece packing (I&m-pack),

(2) Small-piece packing (small-pack).

544 D. S. HOCHBAUM AND D. B. SHMOYS

Note that a piece can be large, medium, or small depending on the size of the bin in
which it is packed. It will also be useful to classify bin sizes for a given inerval of
piece sizes. For pieces in interval k, (¢**', £*], a bin is large if it is in interval k, huge
if it is in interval k —1, and enormous if it is in interval k —2.

We construct a directed, layered graph where each node is labeled with a state
vector describing the remaining pieces to be packed as large or medium pieces. Since
each bin may generate different classes of large or medium pieces, a straightforward
representation of such an array leads to roughly n" such possible state vectors. Instead,
the graph will be grouped into stages, where a stage will specify the I&m-pack of bins
in one interval (¢**!, £*]. Each layer within a stage corresponds to packing a bin in
the corresponding interval. Both the bins within the stage and the stages are arranged
in order of decreasing bin size. At the end of the I&m-pack of the bins of the stage
corresponding to interval k, we will provide for the packing of the remaining unpacked
pieces in interval k; these pieces will be packed as small pieces. (Note that these pieces
must therefore be packed in bins that are enormous for them.)

The treatment of the bins and pieces in this conglomerate way will make it possible
to reduce the amount of information encoded in the state vector. The state vector
associated with each node is of the form (L; M; V,, V,, V), where L and M are vectors
each describing a distribution of pieces in the subintervals of (¢**', ¢*]and (¢**, £**'],
respectively. The subinterval division is of length £“*> and £** respectively, so each
of these vectors is of length w=(1—¢)/e> and the value of each entry is at most n.
For simplicity of notation, let I,,- - -, 1, and I,, - - -, I,, denote the values of the lower
endpoints of the subintervals of (¢**!, ¢¥] and (¢** £**'], respectively. (See Fig. 1.)

. Large Huge Enormous
Subinterval \—:\—\ bins bins bins
sizes 6 &5 4 o
| 1 | | |] Logarithmic
| | I |] | scale
0 &’ e €’ £ 1
Small Medium Large

pieces pieces pieces

o
4+
Fo

o, ——

F1G. 1. The x represents the size of a bin to be packed in interval 2. The identity of pieces and other bins
is relative to this interval.

As was mentioned above, after the I&m-pack of the bins in interval k, we must
allow for the packing of the pieces in interval k that will be packed as small pieces.
These pieces must be packed in enormous bins (those from interval k —2) and so we
need to know that there is sufficient unused capacity in the enormous bins to at least
contain the total size of these unpacked pieces. This is the function of the value V; in
the state vector; it records the slack, or unused capacity in the partial packing of the
enormous bins with large and medium pieces. For stages corresponding to intervals
greater than k, we will also need to know the unused capacity in the huge and large
bins, and this is the function of V, and V, respectively. However, there is a crucial
point in that each node is labeled with a possible value for V,, V,, and V, so we must
be able to represent the possible values in some compact way. Consider the sizes of
the pieces that will be packed as small pieces into this as-yet-unused capacity. For V,,
pieces in interval k are small, and thus all pieces to be packed into this unused capacity
have rounded sizes that are multiples of £**%; as a result, it will be sufficient to represent
V, as an integer multiple of ¢**2. Similarly, V, and V will be represented as integer

A POLYNOMIAL APPROXIMATION SCHEME 545
multiples of £“** and £***, respectively. Furthermore, we will argue below (in Lemma
1) that for the purposes of the algorithm, it will be sufficient to have one node for all
multiples greater than n/e” for any of these three parameters. As a result, the number
of possible state vectors in each layer is bounded from above by n* - (n/£2)*.

Suppose that there are m, > 0 bins with size in (¢**", £*]. The stage corresponding
to this interval will actually have m, +1 layers of nodes. In each of these layers, there
is one node for every possible state vector (n;,---,n,; Ay, - +,A,; Vi, Vo, V). A
node in the (/+1)st layer of the stage labeled (n,,- - -, n,; A, -, fA,; V;, V5, V) is
reachable from a node in the Ith layer of the stage (n}, - - -, n,; A}, -+, A, Vi, Vo, V'),
if:

(1) Thereis a configuration (x,,- - -, x,,; X;, * * -, X,,) Where x; and X; are nonnega-
tive integers for i=1,- - -, w such that n;,=n;—x; and i, = A}~ X;;

(2) The configuration is feasible; that is, the total sum of rounded piece sizes,
P x,~l,~+Z:V=1 %.I; may not exceed s, the size of the Ith bin in that stage; and

(3) V=V'+[slack,/e""*], where slack,=s— (Y|, x+ ¥, %I,).

We define here the concept of the usable slack in bin [as

usable slack, = [slack,/e""*]- "™

Note that in the first layer of the first stage we keep only the node with the state vector
corresponding to the distribution of pieces in (g, 1] and (&°, €] with V,=V,=V =0,

Intuitively, a node z is reachable from an initial state vector for the stage if there
is an l&m-pack of the first / bins in that group using feasible configurations, leaving
a remaining piece distribution as in node z, and accumulating in all / bins a total of
V- &£** in usable slack. (See Fig. 2.)

my Layers
< B s
[] (] [] [] .—?.-——'—"
[]) (] [] [) @ - @
Initial b\
state Packing Packing Final Initial
vectors 1st bin mthbin state state
of layer of layer vectors vectors
of next bin
interval

FIG. 2. One stage of the layered graph (for interval k).

Note that the number of feasible configurations is at most (1/&2)*’, since no
more than 1/¢” large or medium pieces can fit in a bin. This number is polynomial
for any fixed positive value of ¢ (or actually just a large constant).

The state vectors in the final layer of one stage have to be updated to the proper
form of initial state vectors for the subsequent interval of higher index that contains
a bin. Suppose that the next such interval is g intervals away; that is, it is the interval
(e¥r9*! g**4]. Let I{” denote the value of the lower end of the ith subinterval of
(e, &*" " and let n{”, t = 2, be the number of pieces contained in that subinterval.
(For t=0, 1, n\” will be used to denote the large and medium pieces remaining after
the I&m-pack for interval k.) We will set g = o to indicate that there are no more bins.

546 D. S. HOCHBAUM AND D. B. SHMOYS

funCtion update (q’ (n(IO)a Y n(u())); n(ll)’ nw ’ V19 V2a V))
begin
VD= Ve _f: ONO)

i=1
if V{" <0 then return (“failure”)
if g=2 then
begin
V= VIO4 Vye eh T 3 O
i=1
if V{¥ <0 then return (“failure”)

end
if g=3 then
begin
VA = V) 4 v gkt il i (01
t=2i=1
if V{9 <0 then return (“failure”)
end
1
if g<co then V,:= V{? ———5
&

case (q) of
1: Vi=Vi+V,, V,=V
2: Vi=Vi+V, V,=0
[3,-+-,00) Vi=V;; V=0
0: V=0, V,:=0;, Vi=0
endcase
return ((n$?, -+ -, n'@; 09 ... pl9*Y VvV, 0))
end

The procedure update may result in “failure,” in which case there is no arc
originating at the node examined. Otherwise, the output of the function gives the state
vector of the node into which the arc will be directed. It is important to notice that in
implementing the procedure we will not scan each subinterval on the line, only those
with n{” > 0. This is readily done, since the pieces are sorted. Also note that in the
updating layer there is at most one arc originating at each node.

Following the updating process of the last interval in which bins are found, we
add one more arc level to the final node, “success.” A node will have an arc from it
to “success” if and only if its state vector is the zero vector (0,0,---,0; 0,---,0;
Vi, V,, V). It is somewhat simpler to avoid altogether the update layer at the end of
the last interval and have arcs going directly to “success” based on the outcome of
“update” only if the update procedure results in the zero state vector.

LEMmMA 1. The graph constructed has at most O(2m-n* 3.1/ €% nodes.

Proof. Each of the first and last layers contains exactly one node. All other layers
of nodes correspond either to the beginning or the end of a bin interval, or to packing
a bin within an interval. For each interval that contains at least one bin, the number
of layers is equal to one more than the number of bins in the interval. Since there are
m bins the total number of layers is no more than 2m.

Each layer may contain all possible state vectors. The first 2w =2/¢” entries
describe the distribution of large and medium pieces remaining in the interval. Every
subintezr/v?l may contain re{0,1,- - -, n} pieces, so the number of such distributions
is O(n“'*").

A POLYNOMIAL APPROXIMATION SCHEME 547

Finally, V,, V,, V express the unused capacities that may be used to pack small
pieces. Consider first V,; since each small piece for these bins is of size at most &,
and there are no more than n small pieces, any volume beyond ne* is irrelevant. The
value V, is actually given as the scalar multiple of £*?, so multiples beyond n- "/ "% =
n/e> may be equivalently represented. Identical calculations show that for V, and V
as well, it is sufficient to consider only n/e” possible values, where the largest value
represents all remaining positive volumes. The total number of state vectors is hence
O0(2m-n¥%(n/e??), as claimed.

LEMMA 2. The number of arcs originating at each node is O((1/&>)**").

Proof. Each arc corresponds to a feasible configuration (x,, - -+, X,,; Xy, * *, X,).
The number of large pieces from a subinterval x; that can goinabinisin{0,1,- - -, 1/¢},
whereas the number of medium pieces X; can vary from 0 up to 1/ &> The total number
of feasible configurations is therefore bounded by (1/e+1)"¢’(1/£>+1)"¢ which is
o((1/&%).

COROLLARY 2. The total number of arcs in the graph is O(2m(n/e%)¥/*7*%).

Once the graph is available, the existence of a path from initial to success can be
verified in time linear in the number of arcs. This computation also yields a specific
path. We now prove that if there is a truly feasible packing then such a path indeed
exists, and if such a path exists, then we can construct a (2¢+ &7)-relaxed feasible
packing. These two claims are sufficient to yield a (2& + £°)-relaxed decision procedure.

LEmMMA 3. If there is a truly feasible packing, then there is a path in the multilayered
graph from “‘initial” to “‘success.”

Proof. Given a truly feasible packing, it is possible to label every piece in the kth
interval ("', ¢¥]1 as LY, M™®_ or S'®, depending on the size of the bin in which it
is packed:

je L™ if piece j is packed as large—in a bin in interval k;

y€ M® if piece j is packed as medium—in a bin in interval k—1;

je 8™ if piece j is packed as small—in a bin in one of the intervals

0,1,---,k-2.
In addition, let P** denote all of the pieces in interval k.

Each node in the first layer of a stage is labeled with a state vector that specifies
pieces as well as unused capacities. We will show by induction that certain induced
partial packings of the truly feasible packing yield paths in the layered graph. The
lemma will follow as a corollary to this stronger inductive assertion, which we will
give below. Given a truly feasible packing, consider the partial packing induced by
the pieces, M U (U%Z3 P”). This leaves a certain amount of slack »!® and v$* in
the bins in the intervals 0 through k—2 (enormous bins) and in interval k—1 (huge
bins), respectively.

We claim that there is a path from initial to some node in the first layer of stage
k (so that interval k must contain bins) such that the state vector of that node has
Viz o\, V,= 08 and has the piece distribution of (LU S, p**D),

The claim is certainly true for k=0, where there is a trivial path from the initial
node to itself, and the initial node does have the appropriate state vector. (Note that
M must be the empty set.)

Inductively, we can then assume that at the beginning of stage k (which contains
bins) we have a path to a state vector labeled with the as-yet-unpacked pieces from
interval k, all of the pieces from interval k+1, and appropriate upper bounds on the
slacks. Focus now on the packing of the bins in interval k. For each bin we have a
truly feasible packing of the large and medium pieces, and this specifies a feasible

548 D. S. HOCHBAUM AND D. B. SHMOYS

configuration. This configuration corresponds to an arc in the graph. Now we consider
the change in the value of V between the tail and head of this arc. This change is the
usable slack (properly represented), which is at least the true slack—for two reasons.
First, we effectively round the size of the bin to the next largest multiple of ¢, and
second we use the rounded (down) sizes of the pieces to compute the usable slack.
Thus at each layer within the stage, the value of V in the state vector is at least as
large as the actual slack in the truly feasible packing. The reader can verify with little
difficulty that following the arcs specified by the feasible configurations generated by
the given packing must lead to a node in the final layer of the stage that is labeled
with a state vector with piece distribution corresponding to (S*; L**VU $**V) and
where the total usable slack value V is at least the true slack.

It remains only to show that the update arcs are also present as needed. Consider
the case where interval k+1 also contains bins. In this case, we need only show that
the volume represented by V, is at least },;_qw p;, since then there is an update arc,
and it leads to a node that satisfies the induction hypothesis. However, this inequality
is easy to verify, since v{’ZY,_sw p; and we know that V, = v{*’ (by induction) and
p; = p; (by definition). The remaining cases for the size of the next bin (corresponding
to g =2, g[3,©) and q =) follow by similar calculations.

LEMMA 4. If there is a path in the graph from initial to success, then there is a
(2& + £%)-relaxed feasible packing.

Proof. There are two types of arcs in the graph, I&m-pack arcs that correspond
to a feasible configuration, and the update arcs. The relaxed packing is done by tracing
the path from initial to success as follows. Each bin has an arc along the path that
specifies the I&m-pack of pieces in the bin. We pack bins in order of decreasing size
(as they are encountered on the path) according to the feasible configuration specified
by the arc (arbitrarily choosing pieces from each subinterval). It will be convenient to
view the piece as having its rounded size, and later we will consider the effect of
inflating it to its true size. In the updating phase at the end of the stage for interval k,
we pack the remaining pieces from interval k as small pieces. An unpacked piece j
with size in (¢**", £*] is packed in any enormous bin [(in intervals 1, - - -, k—2), with
positive usable slack;. Recall that for a bin interval k its usable slack is computed as
if the volume of the bin were rounded to the next highest multiple of £“**. We then
update usable slack,:= max {usable slack,— p;, 0}. This small-pack phase is always
successfully completed since there is an update arc if and only if there is sufficient
total slack to accommodate all pieces to be packed as small pieces, and the total usable
slack is at least as large. Therefore, we are also able to construct a packing from the path.

Consider the (rounded) pieces packed into bin i where the size of bin i is s;,
which is in interval k. Focus on the small piece j that, when added to the bin, exhausts
the usable slack; suppose that piece j is in interval k+2. (It certainly cannot be in an
interval of smaller index, since it must be small for bin i) In this case, all pieces in
the bin have rounded sizes that are multiples of £“**, and in fact, before piece j was
added, the rounded piece sizes did not exceed s;. Hence, the bin contains at most
s;+&"? in terms of rounded sizes. If piece j comes from an interval greater than k+2,
then the bin clearly contains total rounded size no more than s; + £***+ £**> which is
less than s;+ £"*? (since £ =1/2). Therefore, if B; is the set of pieces packed in bin i,

Y pEsite T =s+esi=(1+¢)s.

J€B,
Furthermore, for any piece j, p;=(1+¢)p;, since if pje ("', e*], pj=p+e" "=
p;+ €p;. Combining these inequalities, we see that bin j is packed with (unrounded)

A POLYNOMIAL APPROXIMATION SCHEME 549

pieces of total size at most (1+ &)(1+ £)s;. This is therefore a (2¢ + £°)-relaxed feasible
packing.

Thus, the procedure all-pack consisting of building the layered graph, finding a
path from initial to success, and then (if possible) converting the path to a packing as
described above, is a (2& + £7)-relaxed decision procedure. By observing that 2¢ + £ =
3& when & =3, we see that the following theorem is a corollary of the previous discussion.

THEOREM 2. For € =3, the procedure all-pack delivers an e-relaxed packing in
O(m-n""*"*3) steps. Each step consists of one arc evaluation—at most (2/€%)—1
additions and one comparison, or for the update—at most n additions and 3 comparisons.

4. A 3-relaxed decision procedure for bin packing with variable sizes. In this section
we consider a special case of the problem considered in the previous section: we fix
e =3 In other words, we wish to construct a procedure which, given an instance
I =(J, S), either concludes that no truly feasible packing exists, or else finds a 3-relaxed
feasible packing. Unlike the algorithm of the previous section, this algorithm is
extremely simple and efficient. Once again, we assume that the binsizes are s, = s, - - =
S

Consider the following recursive procedure:

procedure pack (J, S, m)

begin
if Zje.l pj §Zie$ Si then
begin
sml {J |pj = Sm/2}
Jnew =J - Jsml

Jﬁt= {]E Jnew'pjé Sm}
if J; # empty then
begin
choose j such that pi= Em}x D;
€Jh

pack f in bin m (+)
Jnew: new {J}
end
Snew =S —{m}
if J,.., # empty then call pack (Jyew, Snew, M —1)
while there exists unpacked piece jeJ
find bin i packed with =s; add piece j to bin i (%)
end
else
output ‘“‘no truly feasible packing”
end

LEMMA 5. If an instance I =(J, S) has a truly feasible packing then the instance
Liew = (Joew, Snew) created by procedure pack (J, S, m) has a truly feasible packing.

Proof. If (J, S) has a truly feasible packing, then certainly so does (J —J, S).
Consider any such truly feas1ble packing. Since all of the pxeces in J —J,,, are greater
than s,,/2 only one piece] can be contained in bm m. If j # j then form a new packing
by interchanging these pieces. By the choice of j, P; = pj, so the bin that contained j
before the interchange remains truly feasibly packed after the swap. Thus, by consider-
ing bins 1 to m — 1, we see that there is a truly feasible packing for the instance I,,.,,.

LEMMA 6. If the procedure pack (J, S, m) outputs “no truly feasible packing” then
there is no truly feasible packing.

550 D. S. HOCHBAUM AND D. B. SHMOYS

Proof. Suppose for a contradiction that there were a truly feasible packing. Then,
by Lemma 5, for each recursive call of pack there is a truly feasible packing of the
specified instance. However, for the failure message to be printed, the last of these
instances must have ¥, p;>%., s;. This is clearly a contradiction, since no instance that
has greater total piece size than total bin size can have a truly feasible packing.

LEMMA 7. If the procedure pack(J, S, m) does not output “no truly feasible packing”
then it successfully packs all pieces in a 3-relaxed feasible packing.

Proof. In considering the procedure pack, there is only one statement in which it
could conceivably fail, and this is the statement indicated by (*). Why should it always
be possible to find a bin that is packed within its true capacity? If this were not possible,
then all bins are packed beyond their true capacity, and then surely },; p;>}; s;. But
this is precisely the situation we have excluded in this case of the if statement.

To show that the packing produced is 3-relaxed feasible is also quite simple.
Consider the two steps in the procedure in which pieces are packed. In the statement
indicated by (+), we ensure that the piece fits within the true bin capacity. In statement
(%), we always add to some bin i a piece of size =s,,/2=s;/2, and since bin i previously
contained =s;, afterwards it contains no more than (3/2)s;.

We now discuss an efficient implementation of the procedure pack(J, S, m). We
shall assume that the piece and bin sizes are given in sorted order. Note that the
recursive procedure packs ‘“‘large” pieces in bins of decreasing bin size, and then packs
“small” pieces in bins of increasing size. It will be convenient to maintain two pointers
to the sorted list of piece sizes: one to the largest piece no larger than the current bin
size, and one to the smallest piece at least half the current bin size. By the monotonicity
property just mentioned, only O(n) time is required to maintain these pointers,
amortized over the running time of the procedure. Furthermore, given these pointers
it is easy to see that the procedure can be implemented in linear time, since no piece
need be “touched” more than a constant number of times. By combining these ideas
with Lemmas 6 and 7, we get the following result.

THEOREM 3. The procedure pack(J, S, m) is a 3-relaxed decision procedure for the
bin-packing problem with variable bin sizes. Furthermore, given the bin and piece sizes in
sorted order, the algorithm runs in linear time.

5. Conclusions. In considering the framework employed in the polynomial
approximation scheme, it is important to note that this framework is not particular to
this scheduling problem. As was discussed in [HS], the key notion in the success of
this approach is a dual approximation algorithm. For the ordinary bin-packing problem,
for example, an e-dual approximation algorithm delivers a solution where the number
of bins used is at most the optimum number, but is possibly infeasible. This infeasibility
is bounded: each bin can contain no more than (1+ ¢) times the original bin capacity.

The e-relaxed decision procedure is essentially the same notion, except for the
fact that there is no optimization involved. This can be fixed by considering the
following generalized problem: given a set of pieces {p,, - - -, p,} and a profile of bin
sizes s, '+, S, find the minimum number of copies of this profile needed to pack all
of the pieces. It is quite simple to see how to convert the e-relaxed decision procedure
into an e-dual approximation algorithm by using binary search.

We believe that this “dual approach” to approximation will continue to yield
strong results in constructing approximation algorithms for problems for which good
(traditional) approximation algorithms have been, heretofore, elusive. The work
presented here certainly adds further confirming evidence.

[Cs]
[FL]
[GI]
[GIS]
[G]
[HS]
[HoS]

[LL]

A POLYNOMIAL APPROXIMATION SCHEME 551

REFERENCES

Y. CHO AND S. SAHNI, Bounds for list schedules on uniform processors, this Journal, 9 (1980), pp.
91-103.

D. K. FRIESEN AND M. A. LANGSTON, Bounds for multifit scheduling on uniform processors, this
Journal, 12 (1983), pp. 60-70.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman, San Francisco, 1979.

T. GONZALEZ, O. H. IBARRA, AND S. SAHNI, Bounds for LPT schedules on uniform processors,
this Journal, 6 (1977), pp. 155-166.

R. L. GRAHAM, Bounds for certain multiprocessing anomalies, Bell System Tech. J., 45 (1966), pp.
1563-1581.
D. S. HocHBAUM AND D. B. SHMOYS, Using dual approximation algorithms for scheduling
problems: practical and theoretical results, J. Assoc. Comput. Mach., 34 (1987), pp. 144-162.
R. HOROWITZ AND S. SAHNI, Exact and approximate algorithms for scheduling non-identical
processors, J. Assoc. Comput. Mach., 23 (1976), pp. 317-327.

J. W.S. Liu AND C. L. Liu, Bounds on scheduling algorithms for heterogeneous computing systems,
in Information Processing 74, J. L. Rosenfeld, ed., North-Holland, Amsterdam, 1974, pp.
349-353.

[GLLR] R.J. GRAHAM, E. L. LAWLER, J. K. LENSTRA, AND A. H. G. RINNOOY KAN, Optimization

and approximation in deterministic sequencing and scheduling: a survey, Ann. Discrete Math., 5
(1979), pp. 287-326.

