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A Graph-Theoretic Approach for Spatial Filtering
and Its Impact on Mixed-Type Spatial Pattern

Recognition in Wafer Bin Maps
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Abstract—Statistical quality control in semiconductor man-
ufacturing hinges on effective diagnostics of wafer bin maps,
wherein a key challenge is to detect how defective chips tend to
spatially cluster on a wafer—a problem known as spatial pat-
tern recognition. Recently, there has been a growing interest in
mixed-type spatial pattern recognition—when multiple defect pat-
terns, of different shapes, co-exist on the same wafer. Mixed-type
spatial pattern recognition entails two central tasks: (1) spatial
filtering, to distinguish systematic patterns from random noises;
and (2) spatial clustering, to group filtered patterns into dis-
tinct defect types. Observing that spatial filtering is instrumental
to high-quality mixed-type pattern recognition, we propose to
use a graph-theoretic method, called adjacency-clustering, which
leverages spatial dependence among adjacent defective chips to
effectively filter the raw wafer maps. Tested on real-world data
and compared against a state-of-the-art approach, our proposed
method achieves at least 46% gain in terms of internal cluster val-
idation quality (i.e., validation without external class labels), and
about 5% gain in terms of Normalized Mutual Information—an
external cluster validation metric based on external class labels.
Interestingly, the margin of improvement appears to be a func-
tion of the pattern complexity, with larger gains achieved for
more complex-shaped patterns.

Index Terms—Clustering, Graph theory, Pattern recognition,
Spatial data science, Unsupervised learning, Wafer bin maps.

I. INTRODUCTION

INTEGRATED circuits (IC), colloquially known as chips,
are essential to most, if not all, electronic devices. The cen-

tral step in IC manufacturing is wafer fabrication, in which a
batch of chips are fabricated on round-shaped silicon wafers
through a series of complex electrochemical processes includ-
ing slicing silicon-rich ingots into round-shaped thin wafers,
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Fig. 1. Examples of wafer bin maps. Panels (a-b) are single-type patterns,
i.e., one defect pattern per wafer, while Panel (c) shows a mixed-type defect
pattern. Random patterns due to inherent process variation are represented by
the scattered red squares on the wafer maps, which overlap with systematic
patterns (e.g., center, zone, donut) that are attributed to assignable root causes.

wafer oxidation and material deposition, photolithography, ion
implantation, and etching [1]. Once fabricated, all wafers
undergo an operational quality performance test, known as
wafer probing, in which chips are labeled as functional or
defective by passing an input signal and collecting the cor-
responding output. This step results in a two-dimensional
graphical representation called a wafer bin map—a gridded
representation of a wafer in which each grid point represents
the spatial location of a chip and is assigned a binary value
(e.g., 0 or 1) denoting a functional or a defective chip, respec-
tively. Figure 1 shows examples of three different wafer bin
maps resulting from wafer probing tests, where defective chips
are denoted by red squares.

A careful analysis of wafer bin maps is pivotal to quality
control efforts in the semiconductor manufacturing industry.
By investigating the spatial defect patterns on the fabricated
wafers, i.e., how the defective chips tend to spatially cluster,
one can infer instrumental insights about the root causes of
defect occurrence, and subsequently suggest corrective actions
to mitigate future failures. This problem, often referred to in
the literature as spatial pattern recognition (SPR), is the focus
of this paper. SPR is of extreme importance to pinpoint possi-
ble root causes of failures in wafer fabrication. In fact, several
spatial defect patterns in wafer bin maps can be directly traced
to common root causes of failure. For instance, a circular-
shaped, center-located defect pattern, as shown in Figure 1(a),
often corresponds to chemical stains or mechanical equip-
ment faults [2], [3], while a zone-shaped, edge-located defect
pattern, as shown in Figure 1(b), can be traced to uneven pol-
ishing or edge-die effects [4]. A center-located, donut-shaped
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defect pattern, as shown in Figure 1(c), is routinely observed in
wafer data due to possible tooling problems [5]. These spatial
patterns like center, zone, or donut, wherein defective chips
“cluster” to form distinct shapes are referred to as systematic
patterns since they correspond to an assignable root cause. In
contrast, randomly scattered defective chips in Figure 1(a)-(c)
are called random patterns, or noises, since they are merely
artifacts of random process variation.

In the SPR literature, defect patterns in wafer bin maps
can either be single-type or mixed-type. The former refers
to wafer maps that host only one defect pattern, while the
latter refers to wafer maps in which two or more defect pat-
terns co-exist. Figure 1(a-b) show examples of single-type
defect patterns, whereas Figure 1(c) depicts a mixed-type
defect pattern. With the ever-growing increase in scale and
sophistication of the wafer fabrication process, mixed-type pat-
terns are increasingly observed in production data. Barring
few recent efforts [3], [6]–[10], the problem of mixed-type
SPR has received less attention relative to its single-type
counterpart.

A typical SPR analysis of a wafer bin map, be it host-
ing single- or mixed-type patterns, involves two pillar tasks:
(1) Spatial filtering, i.e., to de-noise raw wafer data by sep-
arating systematic from random patterns; and (2) Spatial
clustering, i.e., to group the filtered patterns into one or
more sub-clusters pertaining to different types of defect pat-
terns (e.g., center, donut). The overwhelming majority of
the literature has been devoted to improving the effective-
ness of the second task, namely spatial clustering, among
which those that are based on model- or density-based
clustering [2], [11]–[14], kernel-based clustering [15], [16],
similarity-based metrics such as correlograms, nearest-
neighbor measures, or Voronoi-based partitioning [17]–[19],
feature extraction-based approaches such as those uti-
lizing Hugh transforms, single value decomposition, or
mask-based features [20]–[23], decision trees and manifold
learning [24], [25], regression-based consensus networks and
ensemble learning [24], [26], [27], and neural networks, espe-
cially those based on adaptive resonance theory [28]–[33], or
on deep learning-based architectures [34]–[42].

On the other hand, methods for the first task, namely spatial
filtering, are mostly dominated by ad hoc heuristics intended
to pre-process or denoise the raw wafer data, with an implicit
assumption that the deficiencies of a poorly designed filtering
step will be ultimately corrected in the second task (spa-
tial clustering). While this assumption may be acceptable for
single-type SPR, we claim that spatial filtering is of extreme
importance to mixed-type SPR. Motivated by a similar obser-
vation, an algorithm called connected path filtering (CPF) has
been recently proposed to filter mixed-type wafer bin maps [3].
The authors proposed to pair CPF with a spatial clustering
model that acts on the filtered data to produce the final SPR
results. CPF is a heuristic algorithm that searches all possible
connected paths of defective chips on a wafer and only keeps
those paths that are longer than a pre-set threshold, M.

While valuable on its own, our analysis of multiple wafer
maps, as we will elaborate in the sequel, has revealed two
main limitations of the CPF approach. First, CPF does not

Fig. 2. Analysis of a wafer map with overlapped partial ring and donut
defects. (a): raw wafer bin map, (b): CPF with M = 5, and (c): Better filtering
results produced by our proposed method.

directly leverage local spatial neighborhood information, but
instead, it disregards all defective chips that do not belong
to a connected path which is longer than a globally pre-set
value, M. In other words, if a chip is labeled as “functional,”
while all of its neighbors are not, CPF does not make use of
the local neighborhood information to possibly re-assign the
label of this chip. A direct consequence of this limitation is
that the filtered results may end up having irregular shapes
(few functional chips surrounded by large groups of defec-
tive chips, or vice-versa), which may severely compromise
the quality of the downstream clustering task. To demonstrate
this first limitation, let us take a look at Figure 2, where Panel
(a) shows a raw wafer bin map with a mixed-type pattern com-
prising partial ring and donut defects. The results from CPF
(Panel b) clearly show an irregular shape due to either func-
tional chips for which the values should have been updated to
defective based on their local neighborhood, or alternatively,
defective chips which should have been re-labeled as func-
tional. This irregularity in the shapes misleads the downstream
spatial clustering (performed using a mixture model—to be
reviewed later) to mistakenly identify some defective chips
as independent sub-clusters. The results in Panel (c) appear
to be more visually appealing with a clear visual distinction
between the two overlapping defect types, making the down-
stream clustering method (performed using the same mixture
model) relatively straightforward. The result in Panel (c) is in
fact, produced by our proposed filtering approach, for which
the details are unraveled in Section II.

The second limitation of the CPF approach is its choice
of M. Our findings, to be presented in Section III, suggest
that there does not appear to be a default value for M that
works universally well for all wafers and combinations of
defect types, making the choice of M wafer-specific. As out-
lined by the authors in [3], this choice is made via interaction
with domain experts. This limitation may severely hamper the
applicability of CPF in practice. Given the large production
volumes typical of wafer production lines, the need for domain
experts to constantly weigh in and update the value of M can
be extraordinarily inefficient and thus impractical.

Motivated by the need to address those two limitations, we
propose an innovative approach for mixed-typed SPR in wafer
bin maps. Our major finding is that a graph-theoretic approach
which leverages the local spatial dependence structure can con-
siderably improve the spatial filtering step, and ultimately,
the overall SPR quality. Specifically, we propose to use
the adjacency-clustering (AC) method, which was originally
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introduced by [43] for yield prediction. Although technically
similar, the main function of AC in our work is different from
that in [43]: we focus on extracting systematic defect pat-
terns (i.e., diagnostic analysis), rather than yield prediction
(i.e., prognostic analysis). This distinction drives a fundamen-
tal departure in what constitutes a cluster: In [43], they define
a cluster as a group of chips with homogeneous yield level,
while our approach defines a cluster based on its chips’ mem-
bership in either the set of systematic or random defect pattern
clusters. AC is closely tied to Markov Random Field (MRF)
models which have been successfully applied in image seg-
mentation and restoration [44], [45], spatial clustering [46],
and wafer thickness variation analysis [47].

We couple the proposed spatial filtering method with a
mixture model for spatial clustering. Based on the numerical
experiments with real-world data, we show that our approach
outperforms the state-of-the-art method in [3] by at least 46%
in terms of internal cluster validation quality (i.e., validation
without external information about class labels), and about 5%
in terms of Normalized Mutual Information—an external clus-
ter validation metric which makes use of externally provided
class labels. The mixture model used for spatial clustering is
the same as that used by [3] so that the improvements in the
final clustering quality are solely attributed to our proposed
filtering method. Interestingly, the margin of improvement
appears to be a function of the defect pattern complexity, with
larger gains achieved for more complex-shaped patterns.

In summary, our main contribution is to propose a graph-
theoretic spatial filtering method which effectively distin-
guishes the random noises that are prevalent in wafer bin maps
from systematic patterns, which are often attributed to well-
studied root causes. There is an overwhelming evidence in the
distant and recent literature that a poorly designed filtering
method can have substantial detrimental impacts on the SPR
performance in wafer bin maps, even with the emergence of
powerful deep learning-based approaches [6], [36], [38], [40].
Unlike existing filtering and pre-processing methods, our
approach fully leverages the spatial dependence information
(via its graph-theoretic structure), and is not vulnerable to
arbitrary parameter selections (e.g., filter size or length thresh-
olds) which can be wafer-specific, thus requiring continuous
intervention of domain experts. Furthermore, our method is
shown to have a desirable combinatorial structure which can be
solved in polynomial time by a minimum-cut algorithm. When
coupled with a spatial clustering approach (in this paper, a
mixture model), substantial improvements in SPR performance
are detected, owing to the abovementioned advantages. In
principle, we could replace this mixture model by any cluster-
ing or classification approach, thus emphasizing the generality
and substantial benefit brought about by our proposed spatial
filtering method.

We conclude this Section by describing the organization of
this paper. In Section II, we elucidate the building blocks of
our proposed approach, which comprises the details of the AC
approach to filter the wafer maps, coupled with an advanced
mixture model to further group the AC-filtered results into
one or more sub-clusters corresponding to different system-
atic defect patterns. Section III presents our case study which

details the analysis of twelve real-world wafer bin maps
exhibiting complex multi-type defect patterns. Section IV
concludes this paper and highlights future research directions.

II. OUR APPROACH

We represent a wafer map with n chips by (d1, d2, . . . , dn),
where di ∈ N is the number of defects on chip i. The locations
of chips can be modeled as a graph G = (V, E) where nodes
denote chips and the edges define the neighborhood relation-
ship, i.e., we have an edge [i, j] ∈ E when chip i and chip j
are adjacent to each other on the wafer map. According to the
neighborhood system, each chip can have at most four neigh-
bors (rook-move neighborhood) or eight neighbors (king-move
neighborhood).

Our SPR framework consists of two stages: a spatial filtering
stage, and a spatial clustering stage, both of which are cluster-
ing tasks, yet they serve different purposes. In the first stage,
namely spatial filtering, AC partitions the wafer map into two
clusters, such that one of them only includes those chips that
form systematic defect patterns. As a result, we are able to sep-
arate the systematic patterns (those caused by assignable root
causes) from the random patterns (artifacts of random pro-
cess variation). In the second stage, the AC-filtered results are
further partitioned into one or more sub-clusters using a mix-
ture model called the infinite warped mixture model (iWMM).
Each sub-cluster corresponds to a type of systematic defect
pattern, e.g., a center or zone, as shown in Figure 1.

A. Adjacency-Clustering for Spatial Filtering

We sketch here the AC model from [43] and present how
it can be adapted into the mixed-type SPR problem. The AC
model aims to partition the set of chips into clusters such that
chips belonging to the same cluster behave similarly and tend
to be adjacent to each other. This AC concept is motivated
by the spatial dependence among adjacent chips, which aligns
well with the concept of the systematic defect patterns on a
wafer map where defective chips tend to spatially cluster. In
the case of binary defect data (i.e., di ∈ {0, 1}), the AC model
will find two clusters: the first cluster corresponds to the set
of systematic defect patterns, while the other corresponds to
random defect patterns.

The clustering decisions are cluster labels xi for i ∈ V . Chips
with the same label form a single cluster. The objective func-
tion of AC includes a deviation cost function and a separation
cost function. The deviation cost function measures how xi

deviates from the observed value di, while the separation cost
function captures the difference in assigned labels of adjacent
chips. Let fi(xi, di) denote the deviation cost functions asso-
ciated with node i ∈ V and gij(xi − xj) denote the separation
cost functions for edge [i, j] ∈ E. AC can be formulated as the
following integer program:

min
∑

i∈V

fi(xi, di) +
∑

[i,j]∈E

gij
(
xi − xj

)
(AC)

s.t. xi ∈ X ∀ i ∈ V, (1)

where X is the set of allowable labels of each chip. In our
application, we have X = {0, 1}.
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The clustering results depend on the trade-off between the
two cost functions. When the separation function values are
relatively larger than the deviation function values, the result-
ing clusters will be more contiguous (the spatial smoothing
effect is more significant). If the separation costs are too
large, the whole wafer map would be forced to have the same
label so the separation cost is minimized. On the other hand,
when the separation costs are small, the assigned labels will
be close to the original observational values and the spatial
filtering effect is less notable in the clustering result. The
AC model has a statistics foundation from Markov random
fields (MRF) wherein solving for xi is finding the maximum
a posterior (MAP) estimate of the degradation model with an
MRF prior [45]. Different forms of separation and deviation
functions reflect different distributional assumptions of MRF.

The neighborhood system also plays an important role in
the AC results. When the rook-move neighborhood structure
is assumed, the clustering only looks for defect patterns that
grow horizontally or vertically. By contrast, with the king-
move structure, the clustering will identify defect patterns that
exhibit more complex shapes such as ring and donut patterns.
Therefore, the king-move structure can work better for compli-
cated clustering tasks, as those prevalent in mixed-type defect
detection (See Figure 2(c) for an example).

When both di and xi are binary (X = {0, 1}), as in our SPR
application, then the AC model reduces to the problem called
minimum s-excess [48]:

min
∑

i∈V

wixi +
∑

[i,j]∈E

uijzij, (AC-BIN)

s.t. zij ≥ xi − xj ∀ [i, j] ∈ E, (2)

zij ≥ xj − xi ∀ [i, j] ∈ E, (3)

xi ∈ {0, 1} ∀ i ∈ V, zij ∈ {0, 1} ∀ [i, j] ∈ E. (4)

where zij = |xi − xj| ∈ {0, 1} indicates the difference in the
label values of chip i and j, while wi is the deviation cost of
chip i, and uij is the separation cost associated with the pair
of chips. More specifically, wi = fi(1, 0) > 0 for chips with
di = 0 and wi = −fi(0, 1) < 0 for chips with di = 1: (1) when
di = 0, we will incur a penalty of fi(1, 0) for labeling xi = 1
and zero penalty otherwise, so the associated deviation cost is
fi(1, 0) · xi and wi = fi(1, 0); (2) when di = 1, we will incur
a penalty of fi(0, 1) when assigning xi = 0 and zero penalty
otherwise, hence the associated deviation cost is fi(0, 1) · (1 −
xi); After dropping the constant, we get wi = −fi(0, 1). And
uij = gij(1) > 0 for all pairs (the separation cost is 0 if zij = 0).
The reduction to the minimum s-excess is attainable for any
deviation and separation functions.

The minimum s-excess problem can be solved in polynomial
time with a minimum-cut algorithm applied to an appropriately
defined graph [48].

Proposition 1: The adjacency-clustering model with binary
label values (AC-BIN) can be solved in polynomial time.

Proof: First, we can verify that the constraint matrix of
(AC-BIN) is totally unimodular and therefore, (AC-BIN)
can be solved in polynomial time. Second, the constraints
also correspond to the dual of the minimum cost network
flow problem. Then finding the solution to (AC-BIN) is

equivalent to finding the minimum cut on a graph adapted
from G [48].

The algorithm constructs a graph Gst = (V ∪ {s, t}, Ast) as
follows: First we add to G a source node s and a sink node t,
and each edge [i, j] is replaced by two arcs (i, j) and (j, i) with
the same capacity of uij. For each node i ∈ V with a positive
wi, we add an arc of capacity wi from the node to the sink. For
each node j ∈ V with a negative weight wj, we add an arc of
capacity −wj from the source. Then the defective cluster (the
set of chips with xi = 1) is the source set of a minimum cut
in Gst. The computational results indicate that this algorithm
can solve instances with thousands of chips within seconds,
which facilitates its real-time adoption in practice.

If di and xi take more than two values, the AC model can
still be solved in polynomial time for convex deviation and
separation functions. Specifically, for “bilinear” separation cost
functions (i.e., g(xi−xj) = uij·(xi−xj) if xi ≥ xj and uji·(xj−xi)

otherwise) and any convex deviation function, [48] devised an
algorithm that solves the problem in the running time of a
single minimum cut (and the running time of finding the min-
ima of the convex deviation functions). This time complexity
was also shown by [48] to be the best that can be achieved.
When the separation cost function is not “bilinear” but con-
vex, the Lagrangian relaxation technique can be applied for
the polynomial time algorithm [49].

After solving AC with binary label values, each chip is
assigned a new label. The chips with a label value of one
form a cluster that contains systematic defect patterns, while
the chips with a label value of zero are filtered out. In other
words, the original defects recorded on the zero-label chips are
treated as random defect patterns of nonassignable causes, to
be marked off by the spatial filtering stage and thus no longer
deemed defects in the subsequent spatial clustering stage. The
spatial filtering result depends on the relative magnitude of the
separation costs and deviation costs (the relative differences
between wi and uij in AC-BIN). As we show in Section III,
our numerical analysis suggests that there is a set of parameter
values that yields consistently high quality SPR results.

B. Infinite Warping Mixture Model for Spatial Clutering

Given the AC-filtered results, we apply iWMM [50] to
group the resulting systematic patterns into sub-clusters per-
taining to distinct types of defect patterns. Before we elaborate
on the details of iWMM, we first briefly discuss the moti-
vation of using it in our setting. iWMM was first proposed
by [50] and then adopted by [3] to spatially cluster the wafer
maps that are filtered via CPF. In our approach, we keep the
iWMM as our spatial clustering method, because iWMM is
a highly potent multi-class clustering method and lends itself
well to the SPR problem (more about this in the following).
Additionally, by using the same spatial clustering method as
that used by [3], we ensure that the improvements in SPR
quality are mainly attributed to our proposed filtering method.

The benefit of using iWMM in spatial clustering of wafer
defect patterns is two-fold. First, in iWMM, the number of
sub-clusters corresponding to the number of defect types on a
wafer is estimated rather than specified a priori—a common
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Fig. 3. Our SPR consists of spatial filtering via the AC method (Stage 1) and iWMM for spatial clustering (Stage 2). iWMM assumes the non-Gaussian-shaped
sub-clusters in the observed space (2a) are obtained by warping Gaussian-like sub-clusters in the latent space (2b).

shortfall of most clustering methods. Second, and more impor-
tantly, defects in wafer maps tend to have non-Gaussian shaped
patterns (such as donut and ring). This invalidates the assump-
tions of many classical model-based clustering approaches that
assume the clusters themselves follow a certain parametric dis-
tribution (most commonly a Gaussian). The iWMM method
relaxes this assumption by making the parametric distribution
assumption on the clusters in a latent space, which are related
to the original complex-shaped clusters through a non-linear
transformation called a warping function. Through this warp-
ing, complex non-Gaussian-like shapes in the observed space
can be represented by simple Gaussian-like shapes in the latent
space. Clustering is then performed in the latent space using
a model-based clustering technique (e.g., Gaussian mixture).
Figure 3 shows an example of how iWMM works within our
framework.

We briefly describe the key details of the iWMM method
in our problem setting and interested readers can refer to
the Appendix for more details. As evident in Figure 3, two
building blocks constitute the essence of iWMM: (1) a warp-
ing function to match the observed spatial locations of the
AC-filtered results with a set of latent spatial coordinates in
the latent space, and (2) a model-based clustering method
which determines the clustering assignments in the latent
space. The authors in [50] propose to use a Gaussian process
latent variable model (GPLVM) [51] as a warping func-
tion, and an infinite Gaussian mixture model (iGMM) as a
model-based clustering method. We briefly review both in the
sequel.

Using the notation from Section II, we denote by S =
[s1, . . . , sn]T the set of spatial locations of the defective chips
in the AC-filtered results, i.e., for which xi = 1, where
n = ∑

i xi, and si ∈ R
2. The set S in the observed space

corresponds to a set of latent coordinates in the latent space
denoted by Z = [z1, . . . , zn]T , where zi ∈ R

2. The ulti-
mate goal of iWMM is to find a vector of assignments
in the latent space, denoted as A = [a1, . . . , an]T , where
ai ∈ Z

+ denotes the membership of the ith chip to a particular
sub-cluster.

GPLVM is used to map (or warp) the transformed spa-
tial locations Z, which are assumed to follow a Gaussian
distribution, into the observable space where S can have a non-
Gaussian distribution. For GPLVM, the conditional probability

of S given Z is expressed as in Eq. (5) [51].

p(S|Z,�) = (2π)−n|�|−1 exp

(
−1

2
tr
(

ST�−1S
))

, (5)

where tr(·) is the trace function, | · | is the determinant oper-
ation, and � is an n × n covariance matrix whose ith and jth
entry holds the covariance between a pair of observations zi

and zj. To determine the entries of �, a stationary parametric
covariance function C(·) is selected, which depends on the lag
between a pair of inputs through a set of hyperparameters �.
A popular choice for C(·) is the so-called squared exponential
covariance [52], which is employed in this work.

Once the warping function is established, iGMM is used
for spatial clustering in the latent space by assuming that the
kth mixture component (or sub-cluster) in the latent space fol-
lows a Gaussian distribution with a mean and precision matrix,
denoted by μk and Vk, respectively. Each mixture component
is associated with a mixture weight, φk. The mathematical
expression for iGMM is presented in Eq. (6).

p
(
z|φk,μk,VVVk

) =
∞∑

k=1

φkN
(

z|μk, V−1
k

)
(6)

A detailed procedure to fit the iWMM to a set of observed
spatial locations S is proposed in [50], where the latent coor-
dinates Z, assignments A, as well as remaining parameters
are inferred through a Markov Chain Monte Carlo (MCMC)-
based procedure. The implementation codes for iWMM have
been made publicly available [53] and we use them for our
numerical analysis in Section III.

III. APPLICATION TO REAL-WORLD WAFER MAP DATA

In this section, we evaluate the performance of our proposed
SPR approach on real-world wafer bin maps. We then derive
key insights about its performance relative to a state-of-the-art
approach using widely recognized clustering quality metrics.

A. Data Description

We extract twelve wafer maps from a public dataset that
is widely cited in the semiconductor manufacturing commu-
nity [54], [55]. While the original dataset contains a large
number of wafer maps, we select twelve wafers so as to
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Fig. 4. Twelve wafer maps with mixed-type defect patterns. (a), (f), (g), and
(l): wafer maps with center and partial ring defects. (b) and (j): wafer maps
with center and zone defects. (c), (d), and (e): wafer maps with two zone
defects, (h) and (i): wafer maps with donut and partial ring defects, (k): a
wafer map with two disconnected scratch defects.

(1) reflect different mixed-type defect patterns of various com-
plexity, and (2) to resemble as close as possible to the six
wafer maps analyzed by [3] (which we do not have access
to) in order to provide a fair comparison of our proposed
approach relative to the state-of-art approach in the literature.
Figure 4 displays the twelve chosen wafer maps, where the red
and green squares depict the defective and functional chips,
respectively.

B. Results and Discussion

Hereinafter, we denote our proposed approach as
AC-iWMM where adjacency-clustering for spatial filter-
ing is coupled with the infinite warping mixture model
for spatial clustering. The benchmark in comparison is the
state-of-the-art filtering approach in [3], which is denoted
hereinafter as CPF-iWMM where the connected path filtering
(CPF) algorithm for spatial filtering is followed by iWMM
for spatial clustering. Therefore, the fundamental difference
between our approach and the benchmark lies in the spatial
filtering stage, for which the impact on the quality of SPR is
shown to be instrumental.

We test the AC model with a king-move neighborhood
system, and standardize fi(0, 1) = fi(1, 0) = 1 (i.e., |wi| = 1)
for all i ∈ V , and set uij = u for all [i, j] ∈ E. The value
of u thus controls the spatial filtering level. In theory, we can
choose the value of u through a cross validation procedure
as described by [43]. As discussed in Section II-A, having a
too large or too small value of u is not ideal for the spatial
filtering. We observe that for almost all defect patterns, the
choice of u = 0.5 achieves a sensible trade-off between the
deviation and separation costs, and consistently yields superior
performance in filtering various defect pattern combinations.
This is in contrast to CPF for which there does not appear
to be a value for its main parameter M that works univer-
sally well for different defect types (findings to be discussed
in the sequel). We implement the CPF algorithm following the
description of the method by [3], while for iWMM, we adapt

Fig. 5. Results from a subset of wafers, starting from the raw maps (first
column), to AC filtering using u = 0.5, and then to iWMM clustering, in both
the original and latent spaces (third and fourth columns, respectively).

Fig. 6. Visual comparison of CPF-iWMM (b) and AC-iWMM (c) on a wafer
with donut and partial ring defects. Unlike AC, CPF fails to separate the two
sets of defects, causing iWMM to mistakenly flag a separate sub-cluster.

the codes available in [53]. Figure 5 shows the results of the
AC-iWMM approach for a subset of the wafers, starting from
the raw map, to AC-filtered results, to the clustering results in
both the original and latent spaces. The visual results for all
wafers are shown in Figure 10 in the Appendix.

1) Visual Comparisons: Before we present the quantitative
results, we first draw some insights based on visual compar-
isons between our approach and the benchmark, CPF-iWMM.
Figures 6 and 7 show the results of both approaches on two
wafer maps. The first wafer map, illustrated in Figure 6, hosts
donut and partial ring defect patterns. By virtue of AC filtering,
iWMM is able to distinguish the two types of defects into two
separate sub-clusters that are spatially distinct. This is achieved
by correctly smoothing out the random noises between the
two patterns with the use of local neighborhood information.
In contrast, CPF mistakenly identifies some chips located in
proximity to both sub-clusters as a separate sub-cluster, as
it overlooks local neighborhood information. We note that
iWMM was run at the same parameter settings for AC-iWMM
and CFP-iWMM so the difference between the two sets of
results is solely attributed to the spatial filtering approach.

Another illustrative example is shown in Figure 7, in which
the wafer map exhibits two zone defects. Again, CPF fails to
separate the two sets of defective chips, causing iWMM to
mistakenly flag a new separate sub-cluster. This is in contrast
to AC-iWMM which yields a clear distinction between the two
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Fig. 7. Visual comparison of CPF-iWMM (b) and AC-iWMM (c) on a wafer
with two zone defects. In contrast to AC, CPF fails to separate the two sets
of defective chips, causing iWMM to mistakenly flag a separate sub-cluster.

sub-clusters. We note that this problem cannot be alleviated
by simply tuning the value of M because the set of chips that
are mistakenly flagged by CPF-iWMM are connected to one
of the true sub-clusters, and hence, CPF will always treat it
as one connected path. AC-iWMM does not keep this set of
chips after AC filtering because the neighborhood information
is utilized to smooth them out, reducing potential mishaps in
the subsequent iWMM clustering stage.

2) Quantitative Comparisons: The clustering results
obtained by both approaches are then evaluated using two
sets of performance metrics that are known in the SPR
literature as internal and external indices [56]. Assuming
Â = [â1, . . . , ân]T and A = [a1, . . . , an]T are the sets of
predicted and true cluster assignments, respectively, internal
indices assess SPR quality when the underlying ground truth
is not available, that is, without access to the set A. External
indices, on the other hand, make use of A to validate the
estimated SPR results.

Let us denote by G the center of all coordinates in S.
Similarly, Gk denotes the center of the coordinates in Sk =
{sk

i }i:âi=k, i.e., the coordinates of the observations assigned to
the kth sub-cluster (for which âi = k). Two widely recognized
internal indices are the Calinski-Harabasz (CH) index and the
Generalized Dunn index. The Calinski-Harabasz (CH) index
calculates a weighted ratio of between-cluster and within-
cluster dispersion and is defined in Eq. (7) [57]. By definition,
a higher value for the CH index indicates a better performance.

CH
(

S, S1, . . . , SK̂
)

= n − K̂

K̂ − 1

∑K̂
k=1 nk

∥∥Gk − G
∥∥2

∑K̂
k=1

∑
i:âi=k

∥∥sk
i − Gk

∥∥2
,

(7)

where ‖ · ‖ is the Euclidean norm, and K̂ is the predicted
number of sub-clusters.

The Generalized Dunn Index (GDI) defines a similar ratio,
as expressed in Eq. (8) [58]. A higher value for GDI indicates
a better performance.

GDI
(

S1, . . . , SK̂
)

=
mink 	=k′ 1

nk+nk′

(∑
i:âi=k

∥∥sk
i − Gk

∥∥ +∑
j:âj=k′

∥∥∥sk′
j − Gk′∥∥∥

)

maxkmaxi 	=j:âi=âj=k

∥∥∥sk
i − sk

j

∥∥∥
.

(8)

In addition to these internal indices, we test the performance
of our approach on a set of widely recognized external indices.
The motivation is that, in practice, domain experts can pro-
vide the ground truth for a set of testing wafer data which
can be used to assess the performance of the competing SPR
approaches. Since our dataset does not have the “ground truth,”
or in other words the set A, we reconstruct the ground truth
by applying a pattern reconstruction technique which iter-
ates over every pixel of the raw map and updates its value
using a weighted sum of its surrounding pixels to gener-
ate an output image [59]. For our application, we used a
3 × 3 neighborhood system with 4

9 weight. We also observed
that this weight selection had minimal impacts on the final
results.

Three prevalent external indices are the Rand index
(RI), adjusted Rand index (ARI), and normalized mutual
information (NMI). The first two metrics are based on count-
ing pairs of observations on which the predicted clustering
results agree or disagree with the true clustering assignment.
Specifically, let us assume that K and K̂ are the true and
predicted number of sub-clusters, respectively, and that nij

denote the number of observations that are common in the
ith sub-cluster of A and the jth sub-cluster of Â. Now, let
us define γ as the number of pairs pertaining to the same
sub-cluster in A and to the same sub-cluster in Â, while β,
on the other hand, denotes the number of pairs pertaining
to different sub-clusters in A and different sub-clusters in Â.
With the above notations, RI, first introduced in [60], can be
defined as:

RI
(

A, Â
)

= γ + β
(2

n

) ∈ [0, 1], (9)

where in case of perfect clustering, RI = 1, and in general,
the higher its value, the better.

The second metric is the adjusted Rand index, or in short
ARI, and is computed as follows:

ARI
(

A, Â
)

=
(2

n

)
(γ + ζ ) − [

(γ + β)(γ + τ) + (τ + ζ )(β + ζ )
]

(2
n

)2 − [
(γ + β)(γ + τ) + (τ + ζ )(β + ζ )

] ,

(10)

where τ denotes the number of pairs pertaining to the same
sub-cluster in A and to different sub-clusters in Â, while, ζ

denotes the number of pairs pertaining to different sub-clusters
in A and to the same sub-cluster in Â. Similar to RI, a higher
value of ARI indicates better performance.

The third external metric is NMI [61], which is an
information-theoretic metric that measures the amount of
information that A and Â share, and is expressed as in Eq. (12).
NMI ranges between 0 and 1, with higher values indicating
better performance.

NMI
(

A, Â
)

=
I
(

A, Â
)

H
(

A, Â
) ∈ [0, 1], (11)
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TABLE I
INTERNAL INDICES (CH AND GDI) FOR ALL 12 WAFERS. BOLD-FACED

VALUES INDICATE BEST PERFORMANCE. * DENOTES u = 0.40

such that

I
(

A, Â
)

=
K∑

i=1

K̂∑

j=1

nij

n
log

⎛

⎝ nij/n(∑K̂
j=1 nij

)(∑K
i=1 nij

)
/n2

⎞

⎠

H
(

A, Â
)

= −
K∑

i=1

K̂∑

j=1

nij

n
log

⎛

⎝ nij/n(∑K
i=1 nij

)
/n

⎞

⎠. (12)

Tables I and II summarize the comparison results, in terms
of internal and external metrics, respectively. We have included
results of the CPF approach at two different values of the
threshold, namely M = 5 and M = 10. With a lack of a
systematic way to select M, those two values are selected
as representatives of a low and high value, respectively. All
internal and external metrics are computed using the sta-
tistical programming software R. Specifically, values of RI
and ARI are computed by using functionalities in the library
fossil [62], while NMI is computed by calling the library
NMI. All internal indices are computed by using functionalities
in the library clusterCrit [63].

As shown in Tables I and II, we find that, in all wafers and
across all metrics, AC-iWMM either outperforms or comes as
a close second relative to CPF-iWMM with M = 5 or M = 10.
We also note that the performance of the CPF approach is, in
many cases, sensitive to the choice of M. As a case in point,
varying M from 5 to 10 in wafer #6 changes an internal met-
ric like CH by as much as 158%, and an external metric like
NMI by up to 3%. More importantly, there is not a choice
of M that consistently outperforms the other. For instance, we
note that a choice of M = 5 for wafer #3 outperforms that
of M = 10. In contrast, a choice of M = 10 for wafer #6
renders consistently better results than M = 5 across all met-
rics. This suggests that the choice of M may be wafer-specific
and requires expert judgment (as acknowledged in [3]). As
opposed to CPF, the choice of u = 0.5 for AC is shown to
provide consistently satisfactory performance across all defect
combinations, except for the scratch patterns, where a value of
u = 0.4 worked best. Note that, in principle, CPF is expected
to perform considerably well in scratch patterns, since by
design, scratch patterns are line defects, which, if longer than
a carefully selected threshold (for this wafer, M = 10), can

be naturally characterized by CPF. Nevertheless, our approach
is still able to effectively distinguish the scratch defects as
shown in the visual results in Figure 10 (wafer #11). We also
note how changing M from 10 to 5 for this wafer results in a
substantial deterioration in performance for CPF, as shown in
Tables I and II.

Table III presents the percentage improvements of
AC-iWMM relative to CPF-iWMM at M = 5, 10, for all met-
rics. On average (last row of Table III), AC-iWMM achieves
an average improvement of up to 201% over CPF-iWMM
in terms of internal metrics, and up to 6% in terms of
external metrics. The difference in scale between the improve-
ments in internal and external indices is attributed to how
these metrics are defined in the first place; As described ear-
lier, internal metrics are used to assess the clustering quality
sans externally provided information about the underlying
cluster labels. While external validation metrics are perhaps
more interpretable than their internal counterparts, the lat-
ter can be extremely useful in practice, since it may be
cumbersome for experts to constantly weigh in and provide
external information about class labels for all tested wafers.
In other words, internal validation provides an automated
check point to evaluate the method’s performance in real-
time. To confirm the considerable improvement brought by
AC-iWMM, we perform the Wilcoxon signed ranked test,
which is a nonparametric statistical test of hypothesis, with
its null hypothesis suggesting that the difference between a
pair of samples follows a symmetric zero-centered distribu-
tion. The resulting p-values are shown in Table IV, wherein
improvements are shown to be statistically significant for all
metrics at a significance level of 0.01, except for improve-
ments in GDI which are significant at a 0.1 significance
level.

Another interesting observation is the magnitude of
improvement realized by AC-iWMM over CPF-iWMM as a
function of the defect pattern complexity. Specifically, we
note that improvements from AC-iWMM are more pronounced
for more complex-shaped defect patterns, and are diminish-
ing as the defect patterns become relatively simpler. For
instance, substantial improvements (maximal for some met-
rics) in Tables I and II come from wafer map #9, hosting
donut and partial ring defect patterns. The results for that
wafer is shown in Figure 8. Understandably, donut and partial
ring defect patterns are, by design, intricate shapes, mak-
ing the distinction between random and systematic defects a
much harder task. This is where the AC approach, through
exploiting the local spatial information, can play an instrumen-
tal role in improving the quality of the spatial filtering step,
and eventually, the downstream clustering and pattern recog-
nition. On the other hand, CPF does not make use of local
neighborhood information, which causes the downstream clus-
tering to misidentify several defective chips as an independent
sub-cluster.

In contrast, wafer map #4 has a relatively simple mixed-type
defect pattern, in which the two zone defects are round shaped
and far from each other. Furthermore, the random defects
outside the two zones are relatively sparse, which makes
the filtering task straightforward. Therefore, both methods
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TABLE II
EXTERNAL INDICES (RI, ARI, AND NMI) FOR ALL 12 WAFERS. BOLD-FACED VALUES INDICATE BEST PERFORMANCE. * DENOTES u = 0.40

TABLE III
IMPROVEMENT (IN PERCENTAGE) OF AC-IWMM OVER CPF-IWMM WITH M = 5, 10, FOR ALL METRICS (INTERNAL AND EXTERNAL) ACROSS THE 12

WAFERS. GRAY-COLOURED CELLS DENOTE INSTANCES WHERE PERCENTAGE IMPROVEMENT WAS NEGATIVE

TABLE IV
WILCOXON SIGNED RANK TEST RESULTS. EACH ENTRY SHOWS THE RESULTING p-VALUE FOR THE CORRESPONDING METRIC

Fig. 8. Visual comparison of AC-iWMM and CPF-iWMM on wafer map
#9 with donut and partial ring defects. We note that CPF fails to separate
the two sets of defective chips, causing iWMM to mistakenly flag a separate
sub-cluster. Here, AC-iWMM achieves substantial improvements over CPF-
iWMM owing to its ability to better filter complex-shaped defect patterns.

were able to produce satisfactory performance, with almost
negligible visual differences, as shown in Figure 9.

The observations from Figures 8 (for wafer map #9) and 9
(for wafer map #4) validate our conjecture that the difference

Fig. 9. Visual comparison of AC-iWMM and CPF-iWMM on wafer #4
with two zone defects. We note that both approaches render similar results,
visually, and quantitatively. The marginal difference is due to the simplicity
of the defect patterns—two zone defects with sparse random noises in the
background, which are effectively filtered by both methods.

in performance of AC-iWMM relative to CPF-iWMM hinges
on the complexity of the underlying defect patterns. A closer
look at the results in Table III suggests the same observa-
tion for wafer maps #6 (visual result shown in Figure 10

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 07,2021 at 22:26:53 UTC from IEEE Xplore.  Restrictions apply. 



AZIZ EZZAT et al.: GRAPH-THEORETIC APPROACH FOR SPATIAL FILTERING AND ITS IMPACT 203

Fig. 10. Results from all 12 wafers, starting from wafer id (first column), raw
wafer maps (second column), to AC filtering results (third column), and then
to iWMM clustering as applied to the AC-filtered data, in both the original
and latent spaces (fourth and fifth columns, respectively). * denotes u = 0.4.

in the Appendix) and #8 (visual result shown in Figure 6),
which have complex-shaped patterns, and hence, the bene-
fit from AC-iWMM appears to be more pronounced. As the
wafer fabrication process grows in scale and sophistication,
owing to technology upgrades, or an increase in the number

of processing steps or the density of chips per wafer, wafers
are expected to exhibit more intricate and mixed-type defect
patterns. Thus, we anticipate that our proposed approach will
generate even more profound impacts.

IV. CONCLUSION

In this paper we have proposed a spatial pattern recognition
framework (AC-iWMM) for detecting mixed-type defect pat-
terns in wafer bin map data—a problem of vital importance to
ensuring quality control in the semiconductor manufacturing
industry. This framework integrates the adjacency-clustering
(AC) model for spatial filtering with an advanced mixture
model (iWMM) for spatial clustering. AC has a desirable com-
binatorial structure and can be solved in polynomial time by
a minimum-cut algorithm. By utilizing the local neighbor-
hood information, AC is able to effectively distinguish the
systematic patterns from random noises. As a result, iWMM,
which subsequently acts on the AC-filtered data, can prop-
erly cluster the systematic patterns into different types. We
validate the superior performance of AC-iWMM on twelve
real-world wafer bin maps exhibiting different mixed-type
defect patterns. Based on both visual and quantitative com-
parisons, AC-iWMM outperforms the state-of-the-art method
in the literature, especially for complex-shaped, mixed-type
patterns.

The framework proposed herein can be extended in various
directions. One interesting idea is to incorporate additional fea-
tures to aid with mixed-type SPR such as the number of defects
per bin on the premise that defects due to the same assignable
cause may exhibit similar defect severity levels. Incorporating
this information will drive a departure from using binary wafer
maps, which, by consequence, will require a new definition of
what constitutes a cluster in our setting.

APPENDIX A
ADDITIONAL DETAILS ABOUT IWMM

Here we provide additional details about iWMM, which
was initially proposed by [50]. iWMM comprises two build-
ing blocks: (1) a warping function to match the observed
spatial locations of the AC-filtered results, denoted by S =
[s1, . . . , sn]T , with a set of latent spatial coordinates in a latent
space, denoted by Z = [z1, . . . , zn]T , and (2) a clustering
method which determines the clustering assignments in the
latent space, denoted by A = [a1, . . . , an]T . While in theory,
zi can have a different dimensionality than si, it suffices in our
setting to assume that both si, zi ∈ R

2.
As a warping function, a Gaussian process latent variable

model (GPLVM) [51] with squared exponential covariance,
is used, and can be expressed as in Eq. (5). Then, the infi-
nite Gaussian mixture model (iGMM) is used for spatial
clustering, and is expressed as in Eq. (6). For iGMM, a
Gaussian-Wishart prior is placed on its parameters μk and Vk,
such that:

p
(
μk, Vk

) = N
(
μk|m, (pVk)

−1
)
W

(
Vk|R−1, r

)
, (13)

where W(·) is the Wishart distribution. The parameters m, p
are the mean and relative precision of μk, respectively, while
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R−1 and r are the scale matrix for Vk, and its degree
of freedom, respectively. One can then derive the probabil-
ity distribution of Z given the clustering assignments A by
integrating out μk and Vk, as in Eq. (14).

p(Z|A, R, m, r, p) =
∞∏

k=1

π−nk
p|R|r/2

pk|Rk|rk/2
×

2∏

j=1

�
(

rk+1−j
2

)

�
(

r+1−j
2

) ,

(14)

where nk is the number of chips assigned to the kth sub-cluster,
while pk, rk, and Sk are the posterior Gaussian-Wishart param-
eters of the kth component (or sub-cluster), such that pk = p+
nk, rk = r+nk, and Sk = S+∑

i:ai=k zizT
i +pmmT −pkmkmT

k ,

with mk = pm+∑
i:ai=k zi

p+nk
.

A Dirichlet process prior with concentration parameter α is
used for infinite mixture modeling in the latent space. Then,
the probability distribution of A can be written as:

p(A|α) = αk ∏K
k=1(nk − 1)!

α(α + 1) · · · (α + n − 1)
, (15)

Collecting the above pieces, the joint distribution of S, Z,
and A conditional on all parameters, can be written as:

p(S, Z, A|�, R, m, r, p, α) = p(S|Z,�)p(Z|A, R, m, r, p)

× p(A|α), (16)

which is merely the product of the terms determined by
Eqs. (5), (14), and (15).

The authors in [50] provide a detailed procedure to fit
the iWMM to a set of observed spatial locations S, where
the latent coordinates Z, assignments A, as well as remain-
ing parameters are inferred through a Markov Chain Monte
Carlo (MCMC)-based procedure. The procedure consists of
two steps, which are repeatedly performed until convergence.
The first step entails a Gibbs sampling scheme of the latent
assignment of the ith chip, denoted by ai, from the following
probability distribution:

p
(
ai = k|Z, A−i, R, m, r, p, α

)

∝

⎧
⎪⎨

⎪⎩

n−i
k p

(
zi|Z−i

k , R, m, r, p
)

assign to an existing

sub-cluster
αp(zi|R, m, r, p) form a new sub-cluster,

(17)

where Z−i
k is the set of latent coordinates of the kth sub-cluster,

excluding the ith chip. Similarly, A−i is the set of assignments,
excluding that of the ith chip, and n−i

k is the number of chips
assigned to the kth sub-cluster, excluding the ith chip. The
probability distributions in the right hand-side of Eq. (17) can
be analytically derived in closed-form as detailed in [50]. The
second step entails sampling the latent coordinates Z from the
probability distribution p(Z|A, S,�, R, m, r, p) using hybrid
Monte Carlo. Combined, the two steps yield an estimate of
the posterior distribution of the latent coordinates Z and the
latent assignments A.

APPENDIX B
CLUSTERING RESULTS FOR ALL WAFERS

In Figure 10, we show the visual clustering results for all
twelve wafers depicted in Figure 4.

APPENDIX C
NOMENCLATURE

α Concentration parameter for the Dirichlet process
β The number of pairs pertaining to different sub-

clusters in A and Â
γ The number of pairs pertaining to identical sub-

clusters in A and Â
Â The vector of predicted assignments of defective

chips
âi The predicted assignment of the ith defective chip
A The vector of true assignments of defective chips
A−i The set of assignments, excluding the ith chip
G The center of all coordinates in S
Gk The center of all coordinates in Sk

m The mean parameter for μk
R−1 The scale matrix for Vk

S The set of observed coordinates of the defective
chips

Sk The chip coordinates of the kth sub-cluster
si The observed coordinates of the ith defective chip
sk

i The ith chip’s coordinates of the kth sub-cluster
Vk The precision matrix of the kth mixture component
Z The set of latent coordinates of the defective chips
zi The latent coordinates of the ith defective chip
Z−i

k The set of latent coordinates of the kth sub-cluster,
excluding the ith chip

W(·) The Wishart distribution
φk The weight of the kth mixture component
μk The mean of the kth mixture component
� The n×n covariance matrix whose ith and jth entry

is the covariance between latent coordinates zi and
zj

� Hyperparameters of the covariance function C(·)
τ The number of pairs pertaining to identical sub-

clusters in A and different sub-clusters in Â
ζ The number of pairs pertaining to different sub-

clusters in A and identical sub-clusters in Â
C(·) A stationary parametric covariance function
di The number of defects on the ith chip
E The set of edges (pairs of adjacent chips)
fi(·) Deviation cost function in the AC formulation
G The graph representation of a wafer
gij(·) Separation cost function in the AC formulation
M The pre-set threshold for the CPF method
n The number of defective chips
nk The number of chips assigned to the kth sub-cluster
n−i

k The number of chips assigned to the kth sub-cluster,
excluding the ith chip

p The relative precision parameter for μk
r The number of degrees of freedom for Vk

uij Separation cost of the ith and jth chips (for [i, j]
∈ E)
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V The set of nodes (chip indices)
wi Deviation cost of the ith chip
xi Cluster membership for the ith chip
zij Difference in cluster labels of the ith and jth chips
ai The true assignment of the ith defective chip.
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