
Discrete Applied Mathematics 28 (1990) 45-57

North-Holland

45

MINIMIZING THE NUMBER OF TARDY JOB UNITS UNDER
RELEASE TIME CONSTRAINTS

Dorit S. HOCHBAUM*

School of Business Administration and IEOR Department, University of California, Berkeley,
CA 94720, USA

Ron SHAMIR**

School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University,
Tel Aviv, Israel

Received 27 October 1989

We study two single-machine scheduling problems: Minimizing the weighted and unweighted

number of tardy units, when release times are present. Fast strongly polynomial algorithms are

given for both problems: For problems with n jobs, we give algorithms which require O(n log n)

and O(n2) steps, for the unweighted and weighted problems respectively. Our results also imply

an extension of the family of very efficiently solvable transportation problems, as well as these

which are greedily solvable using the “Monge sequence” idea.

1. Introduction

This paper studies two problems which arise in scheduling theory: The first is

minimizing the number of tardy time units on a single machine, subject to release

times. The second is the weighted version of the same problem. Preemption is allow-

ed, and it is assumed that the total length of the jobs, N, is much greater than the

number of jobs, n. In that situation, previously known algorithms, which consider

each unit as a different job, become only pseudopolynomial and hence may be pro-

hibitively inefficient. We provide ad-hoc algorithms which are strongly polynomial

for both problems. Specifically, the unweighted problem is shown to be solvable in

O(n logn) steps, and the weighted problem in 0(n2) steps. The algorithm for the

unweighted problem is also shown to be best possible in a common computational

model. Our algorithms employ ideas from transportation and matching theory, as

well as the UNION-FIND data structure for efficient set manipulation.

Our interest in the problems studied here is threefold:

- We identify new “high multiplicity” type problems which are solvable in

strongly polynomial time.

* Supported in part by the Office of Naval Research under grant NOO014-88-K-0377 and by the Na-

tional Science Foundation under grant EC.%85-01988.

** Supported in part by Allon Fellowship.

0166-218X/90/$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland)

46 D.S. Hochbaum, R. Shamir

- We extend the notion of greedily solvable transportation problems beyond the

limits of previous studies, to include certain transportation problems in which some

edges are forbidden.

- We identify new specially-structured transportation problems, which can be

solved very fast by ad-hoc techniques.

In the remainder of this introduction, we shall elaborate on the issues mentioned

above.

Assume that N unit-time jobs are to be scheduled on a single machine subject to

release time constraints, so as to minimize the (weighted) number of tardy units.

This problem is solvable by setting up an assignment problem whereby each job can

be assigned to any allowable time unit with the appropriate weight, and the solution

requires 0(N3) steps. Assume now that there are only n << N distinct types of unit-

time jobs, where all units of the same type have identical parameters. This is the high

multiplicity version of the above problem. The number of units of each type is called

its multiplicity. Obviously the above solution as an assignment problem is ap-

plicable, again requiring 0(N3) steps. However, the input now can be represented

in length O(n) numbers, hence that algorithm is not polynomial! Can we still solve

the probem in a number of steps which will be polynomial in n and independent of

N?
Questions of the high multiplicity (HM) type have been raised for many com-

binatorial optimization problems related to graph theory and scheduling (see [5] and

the references thereof). In this paper we first address HM scheduling problems

which involve release times, and show that strongly polynomial algorithms are ob-

tainable for them too.

Note that the HM problems discussed here have another equivalent interpreta-

tion: According to the above definitions, there are n types of jobs, with pi unit-

time jobs from type i. The same problem can be represented as a problem with n

jobs, were job i has length pi, preemption is allowed (i.e., units of the same job do

not have to appear contiguously in the schedule), and the cost criterion counts the

number of tardy units. We shall use this formulation here. For more on the relations

of the two interpretations and on applications of the HM problems, see [5].

As we shall show later, the problems posed here can be reformulated as transpor-

tation problems. This immediately allows the use of a strongly polynomial

algorithm for the problem, e.g. [lo] or [8]. The algorithms which we shall present

here are at least an order of magnitude faster than the best strongly polynomial

algorithms for the transportation problem. In that, the family of very efficiently

solvable transportation problems is extended.

Our solution methods for the unweighted problem is based on the notion of

greedily solvable transportation problems. A transportation problem is said to be

greedily solvable by a permutation S of the decision variables if maximizing each

of the decision variables in turn, according to the order prescibed by S, gives an op-

timum solution for every supply and demand vectors. Hoffman [6] gave a necessary

Minimizing the number of tardy job units 41

and sufficient condition for a permutation S to provide an optimal solution. Such

a permutation is called a Monge sequence. [l] gave an efficient polynomial

algorithm which detects and constructs a Monge sequence if such exists. However,

both studies assume that all entries in the transportation cost matrix are finite. In

other words, there are no “forbidden edges” between supply and demand points,

along which no shipping is possible. Hoffman [6] posed the question whether the

idea of a Monge sequence (and perhaps the algorithm for constructing it) can be ex-

tended to problems with forbidden edges. For the unweighted scheduling problem

studied here, we show that a Monge sequence does exist in a corresponding

transportation problem, even though there are forbidden edges. Hence this extends

the family of greedily solvable transportation problems, and is a first step towards

answering Hoffman’s question.’

2. The unweighted problem

In the scheduling problem of minimizing the number of tardy units, there are n

jobs. Job j has release time rj, due date dj, and length Pi. All the numbers are

assumed to be nonnegative integers. A schedule is an assignment of all the job units

to distinct nonnegative integer time units. I.e., for j= 1, . . . , n, job j is assigned to

exactly pj time units. (Note that the units of a job need not be contiguous in a

schedule.) If a unit is assigned to time unit [k, k + l), then we shall say it is assigned

to time (or integer) k. We say that time t is admissible for job j if rj’ f. A feasibfe
schedule is a schedule in which all units are assigned to admissible times, i.e., for

j=l , . . . , n, no unit of job j is assigned to time k< rj. The cost of the schedule is the

total number of units of jobs which are tardy, i.e., assigned to times greater than

or equal to their respective due dates. The goal is finding a feasible schedule of

minimum cost.

The same problem without release times has been observed to be solvable in

O(n log n) steps by an algorithm which is a slight variation of the “earliest due

date” rule [5].

Because of the release times constraints, it may happen that the machine will have

idle periods in the schedules. That is, all job units may not appear contiguously in

any optimal (or feasible) schedule. Moreover, the termination time of the optimal

schedule is not immediately available. We shall first show that one can limit the

search for an optimal solution to schedules which saturate a certain set of time inter-

vals and idle the rest. These intervals can be determined by the following simple pro-

cedure: Schedule the jobs in increasing order of release times, contiguously from the

first available and admissible time unit. The resulting filled intervals are the required

ones. The procedure is described formally below:

’ See concluding remark.

48 D.S. Hochbaum, R. Shamir

Procedure INTERVALS

Reorder jobs so that rl crz5 ... or,.

Set Tr +rl +PI; 6 + PI, T)

For i=2,...,n do:

If 7;_,<r; then set Rj_t + [7;_r,ri); 7;+ri+pi; e:- [r;, 7J

else set Ri_,+O; T+- i’-, tpi; F;+ [T-l, 7;)
repeat

set R, + [T,, 03).

The nonempty R- and F-intervals form a partition of [rr, 00). We now show that

in the search for an optimal schedule, one can ignore the R-intervals:

Lemma 2.1. There exists an optimal schedule in which all the F-intervals are
saturated (and thus all the R-intervals are idle).

Proof. Let S be an optimal schedule. We shall show how to modify it so that it will

satisfy the requirements of the lemma, without increasing its cost: Let [t, t + 1) be

the first time unit in U Fk which is idle in the schedule S. Then there exists a unit

of some job j such that rj’ t, which is scheduled to time t’> t. (This follows from

the construction of the F-intervals.) That unit can be rescheduled earlier at time t,

without destroying feasibility, and without increasing the cost of the schedule. By

repeating this step we eventually obtain a schedule which saturates all the F-
intervals. 0

So, we can always preprocess the problem and find the F-intervals and the ter-

mination time. Once those are known, we can contract the R-intervals and obtain

an equivalent problem for which there exists an optimal schedule with no idle time

and with known termination time. Henceforth, we shall assume without loss of

generality that the problem is already given in that form. The preprocessing requires

linear time if the release times are sorted (they need to be sorted also for the op-

timization algorithms below).

Let N be the earliest completion time of a feasible schedule (as determined, for

example, by the above procedure). We assume without loss of generality that the

earliest time is zero, and that the latest due date is smaller than N. The set of integers

s”={r, ,..., r,,dl ,..., d,,N) includes all the time points at which the status of any

job changes (from nontardy to tardy, or from inadmissible to admissible). After

sorting s and omitting identical numbers, one gets the order: 0 = u0 < ur < u2 < ... <

u, = N. This forms a partition of the interval [0, N) into subintervals Z, = [ui_ r, Ui),

i=l , . . . , m. We shall call these the intervals of the problem. Within each of these

intervals, the status of all the jobs does not change.

Using these intervals, we can reformulate the problem as a transportation prob-

lem as follows: Let Xii be the number of units of job j processed in interval i.

Minimizing the number of tardy job units 49

Denote by Cji the contribution to the cost by a unit of job j scheduled in interval

i. Namely:

Cji =
(

0, if rj<uiSdj,

1, if Ui>dj.

Let I; = Ui - Ui_ 1. The formulation is:

minimize z, xji Cji 9

subject to iqi =pj, j=l,..., n,

&X,i=liy i=l,..., m,

Xji?O and integer, j= 1, n, i= 1, m.

(In the second set of constraints, equality is guaranteed by the preprocessing and

idle intervals contraction, as discussed following Lemma 2.1.)

The fastest strongly polynomial transportation algorithm can be used to solve this

problem in 0(n3 log n + n2 log2 n) operations [S]. (Orlin’s algorithm applies to the

more general minimum cost flow problem, but is also the fastest strongly poly-

nomial algorithm for transportation problems.) The algorithm described below

solves the same problem in O(n log n) operations.

The algorithm works by assigning groups of units from each job to these inter-

vals, in a prescribed order. The algorithm handles the jobs in decreasing order of

release times. It schedules all the units of the current job to intervals and then pro-

ceeds to the next job. For each job, the units are assigned to intervals in decreasing

order of intervals from the due date backwards, and when no nontardy time slots

are available from time N backwards. The algorithm is greedy in the sense that for

each job and in each interval, it always assigns maximum number of units to the

current interval. The algorithm outputs an n x m matrix S, where Sji is the number

of units of job j to be scheduled in interval i (i.e., Sj; =Xji in the transportation for-

mulation). The schedule produced by the algorithm is completely determined by the

matrix of values (Sji). This follows since within each interval [Ui, Ui+ r) no release

time or due date appears. Hence the cost does not depend on the internal ordering

of the units of the various jobs within each of the intervals.

Algorithm A

Reorder jobs so that r, rr2r e.. zr,.
Sort the integers {rl, . . . ,r,,d,, . . . , d,, N}. Let the sorted order (with

identical numbers omitted) be 0 = u0 < ur < u2 < 0.. < U, = N.

For i= 1, m, set li = Uj - Ui_ 1

For j= 1,n do:
Find k satisfying dj = uk, and q satisfying rj = uq.
For i=k,k-l,k-2 ,..., q+l,m,m-l,..., k+l do:

50 D.S. Hochbaum, R. Shamir

A + min{li,pj}
Sji~A;litli-A;pj~pj-A

repeat

repeat.

Table 1 gives the scanning order of the algorithm in an example with four jobs.

The order of the release times and due dates is: r4<r3 <r2<d3 <rl = d,<d,< d,.
(Note that the numerical values are not necessary in order to determine the scanning

order.) Example 2 (see Table 2) gives the optimal solution of that problem for

specific lengths of jobs and intervals lengths. Here p = (p1,p2,&,p4) = (6,1,7,7),

r=(12,7,4,0) and d=(17,15,10, 12).

Let us now prove the validity of the algorithm. The proof will follow the lines

of [5] for the weighted problem without release times, with appropriate extensions.

Theorem 2.2. Algorithm A provides an optimal solution.

Proof. Assume there exists a schedule (qi) with cost strictly lower than that of the

algorithmic solution S. Algorithm A determines a unique scanning order of the pairs

of job and interval (_j, i). Compare the two schedules according to that order, and

let (a, /I) be the first pair on which the two solutions differ. Then S,, > YaF, since

Algorithm A assigns the maximum possible number of units to each variable in turn.

Since CF! 1 Saj = EYE 1 Y,; =pa, there must be a pair (a, y) which is scanned later in

the scanning order, for which Y,,>O. By a similar argument, since by Lemma 2.1

the column totals in the two schedules must also be equal, there must be a pair (S, /I)

for which Y8D > 0 and (S,p) is also scanned after (a,/3).

Now, make the following augmentation in the Y solution:

Table 1. Example 1: Scanning order of Algorithm A. Numbers inside the table indicate the place of that

(job, interval) pair in the scanning order.

Interval 1

Interval endpoints MO

Interval endpoints r4

2

UI

r3

3

u2

r2

4 5 6 1

u3 u4 us u6

d3 r,=d4 d2 dl

job 1 2 1 3

job 2 6 5 4 8 I

job 3 10 9 14 13 12 11

job 4 18 17 16 15 21 20 19

Minimizing the number of tardy job units 51

Table 2. Example 2: Solution generated by Algorithm A. Ordering of

release times and due dates is the same as in Example 1. Number in loca-

tion (j,i) is the number of units of job scheduled to interval i.

Interval 1 2 3 4 5 6 7

Length 4 3 3 2 3 2 4

Job no. Length

1 6 3 2 1

2 1 1

3 -I 3 3 1

4 I 4 1 2

The subtractions are possible since Yav > 0 and YdP > 0. The last addition is possible

by the ordering of the jobs according to decreasing release dates: It guarantees that

in interval y, job 6 is admissible (that is, uy_ 1 L r, 5: ra), and so Ysy may attain a

positive value without destroying the feasibility of the schedule.

The change in the solution cost due to the augmentation is then

C,, - C,, + C,, - C&3.

Case 1: y</?. In that case C,, = Cay, since the scanning order requires scanning

intervals of equal costs in decreasing order. Hence C,, I C,, , so the cost may only
decrease.

Case 2: y>fi. In that case C ap = 0, C,, = 1. Also Cd, - Cab 5 1, so again the cost
may only decrease.

By repeating the above procedure, either we get a solution of lower value, or we

eventually obtain a solution with the same cost as Y which has a cost identical to

that of S, and in both cases we get a contradiction. 0

Note that unlike the results in [5], the above results cannot be directly obtained

from Hoffman’s theory on Monge sequences [7]. This is because the costs Cji are

not defined for all i,j: If interval i precedes the release time of job j, no units of

the job can be assigned to that interval. There are some intervals for which certain

jobs cannot be assigned (in other words, Cji = 03 for rj 2 ui). Hoffman’s theorem

on the existence of a Monge sequence requires that all costs be finite. The same re-

quirement is necessary for the algorithm described in [l] for detecting such a se-

quence. However, the above algorithm does provide a “Monge sequence” of all

finite (nonforbidden) (ij). This is possible only because of the specific ordering of

the release dates, which guarantees that augmentation is indeed possible.

Let us now turn to the complexity of the algorithm. Ordering the release times

and due dates (steps 1 and 2) requires O(n log n) operations. A table which contains

the number of each release time and due date in the order u is constructible in O(n),

and it facilitates finding k and q is step 3 in constant time. So in step 3, for each

pair of job and interval, the work required is at most a constant. Hence this step

requires a total of O(n2) operations in a straightforward implementation. We will

52 D.S. Hochbaum, R. Shamir

show how to implement step 3 in a linear number of operations. Observe first that

whenever a value of some Sji is increased, either all the units of a job have been

scheduled or an interval has been saturated (or both). Hence at most n + m - 1 =

O(n) values of Sj;‘S will be positive in the solution. We would like to avoid the

necessity to scan all those pairs (j, i) for which Sji = 0. We shall use the UNION-

FIND algorithm [lo] for this purpose.

Recall that the UNION-FIND algorithm handles elements which are partitioned

into sets. The algorithm supports two operations: FIND(i), finding the set to which

element i belongs, and UNION(Si, S,, Ss), replacing the disjoint sets Si and S2 by

the set S3 = St U &. In our case, elements will correspond to intervals, and each set
will correspond to a (contiguous) set of intervals. The first of these intervals is non-

saturated, where all the ones that follow, if there are any, are saturated and hence

no longer available. In addition, each set will have a label. The label of a set will

be the number of the first (i.e., smallest numbered) interval in that set, which is the

only one available in that set. The partition into sets will maintain the following in-

variant property: For all the intervals in each set, the label of that set gives the

largest numbered free (i.e., nonsaturated) interval which is not later than each of

the intervals. We shall assume that operation FIND(i) retrieves the label of the set

to which interval i belongs. So performing the operation FIND(i) immediately gives

the number t of the first free interval prior to i (including i), thereby avoiding the

need to scan the nonfree intervals i, i - 1, i - 2, . . . , t + 1. (If interval 1 is saturated,

then FIND(l) gives FIND(m), the rightmost interval.) When interval t has been

saturated and becomes nonfree, if u is the set which includes interval t - 1, the

operation UNION(t, u, u) form the union of the set which includes t with the set

which includes t - 1, and gives to the new set the label of the latter, The revised

algorithm is presented formally below.

1

2

3

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Algorithm A (revised)

Reorder jobs so that rl 2 rz’22 ... L r,.
Sort {rl, . . . ,r,,d,, d,,N} to get O=u,<u,< -1. <u,=N.

For i=l,...,m, set lieU,-_i_l

For i=l , . . . , m do: Form a set labeled i which contains {i}.

For j= 1,n do:

Find k satisfying 4 = uk, and q satisfying rj = uq.

t + FIND(k). If t < q then t +- FIND(m)

while Pj > 0 do:

d t min{I,,pj}

S~~~A;I~~l~-A;p~~~~-A
if 1, = 0 then u + FIND(t - 1);

if u < q then u + FIND(m); UNION(t, u, u)

t+-u
repeat

repeat.

Minimizing the number of tardy job units 53

Table 3. Example 3: Partition into sets by the revised algorithm. For each

state and interval i, the number in the table is FIND(i).

Interval 1 2 3 456 7

Initial state 1 2 3 456 7

State after scheduling job 1 1 2 3 4 7

State after scheduling job 2 1 2 3 4 I

State after scheduling job 3 1 4 7

Example 3 (see Table 3) demonstrates the evolvement of the set partition during

the performance of the revised algorithm, for the problem described in Example 2.

The algorithm performs at most m - 1 UNION operations and 2n + 2m FIND

operations. The union operation is performed on sets of adjacent intervals. As such

the union tree is a path and the UNION-FIND algorithm performs all these steps

in O(n) operations [4]. So, step 4 of the algorithm is implementable in O(n) steps,

and we conclude:

Theorem 2.3. Algorithm A can be implemented in O(n log n) operations.

Note that the preliminary work of sorting the r and d vectors is done only once,

and is independent of the job lengths. If one has to solve the same problem several

times with different job lengths, the work per each subsequent solution after the

first one will be O(n) only.

Note also that if the unweighted problem could be solved faster than in O(n log n)
steps, that solution could be used to sort n numbers in the same time complexity:

Given n numbers al, . . . , a,,, form a scheduling problem of minimizing the number

oftardyunitswithnjobswherepj=1,rj=naianddj=(n+l)aifori=1,...,n.The

optimal solution to that problem has value zero, and the order of the jobs in an op-

timal solution (ignoring empty subintervals) corresponds to a sorting of the numbers

ai, a,. Hence O(n log n) is also a lower bound for the complexity of our prob-

lem, at least under the computational model of comparisons.

3. The weighted problem

We now address the scheduling problem of minimizing the weighted number of

tardy units in the presence of release times. Let us first fix notation: The input data

includes n jobs, where job j has release time rj, length Pj, due date dj and weight

Wj. All numbers are nonnegative integers. A feasible schedule in defined as in Sec-

tion 2. The cost of each tardy unit of job j will now be Wj (instead of 1 in Sec-

tion 2), and we look for a feasible schedule of minimum total cost.

The weighted problem without release times has been shown to be solvable in

O(n log n) time by an ad-hoc algorithm [S], which may be interpreted as construc-

54 D.S. Hochbaum, R. Shamir

ting a Monge sequence [6] for a corresponding transportation problem. As we shall

see, the same technique is not applicable here.

This problem can also be recast as a transportation problem. The formulation is

identical to the one in Section 2, only this time the costs are weighted:

Cji = (1 0, rj<UiIdj,

wj, d,<Ui.

Using the fastest strongly polynomial transportation algorithm [8], a solution can

again be obtained in O(n3 log n + n2 log2 n) steps. We shall give an O(n2) algorithm

for this problem. The faster algorithm of the previous section is not applicable here,

because of the weights. First let us observe a special case in which Algorithm A does

solve the weighted problem:

Proposition 3.1. If for all i, j, Wi 2 Wj whenever ri 2 r,, Algorithm A provides an

optimal solution in O(n log n) operations.

Proof. The same reasoning as in the proof of Theorem 2.2 follows, with the more

general cost matrix. The order of weights guarantees that the same augmentation

in the Y solution will still result in an equal or lower cost. More precisely, if in

Case 2 of that proof Cap = 0 and C,, = w,, then Csr - CJP 5 wd . Since wg I w,, the

result follows. 0

The algorithm for the general problem uses Algorithm A as a subroutine. It pro-

ceeds in phases, as follows: The jobs are assumed to be numbered in decreasing

order of weights. After phase k, the number of nontardy units in an optimal solu-

tion has already been determined for each of the first k jobs. Let these numbers be

7T1,?rk. In phase k+ 1, job k+ 1 is introduced and Algorithm A is used to solve

the unweighted problem on jobs 1,2, k+ 1, where job k+ 1 has pk+i units and

job i has nci units for i = 1, . . . , k. The solution to that unweighted subproblem deter-

mines zk+ ,, the maximum number of nontardy units of job k-t 1 (given that the

numbers of nontardy units for each of the previous k jobs are fixed) and the algo-

rithm proceeds to the next phase.

1

2

3

Algorithm B

Reorder jobs so that w, 1 w2z ... L w,.

Set nl +- min{p,, dl - rl}, cost = w, (pl - it,)
For k=2,...,n do:

Use Algorithm A to solve the unweighted subproblem on jobs

1 , . . . , k with lengths zi, . . . , nk_l,pk. Let t be the number of tar-

dy units in the solution.

Set IIj’Pj-1, COSt+COSt + tXWj

repeat.

Minimizing the number of tardy job units 55

In order to prove the validity of the algorithm, we shall reformulate the problem

as a matching problem: Let G = (I’, W, E) be a bipartite graph, where V and W
denote the two parts of its vertex set and E is the edge set. Denote by V’C Va proper

subset of V, and denote its complement V- v/’ by Vi. G’= (V’, W,E’) is the sub-

graph induced by the vertices I/‘U W, i.e. by removing V, from I/ In our case the

graph G describes the problem in phase k + 1: the vertices in V correspond to all the

units of jobs 1, . . . , k+ 1, and the vertices in W correspond to all the time units

O,l, N- 1. A vertex of job unit j is connected by an edge to the vertex of time

unit t if at that time unit, job j is admissible and nontardy (i.e., rj <t < dj). V, cor-

responds to all the units of job k+ 1. Hence G’ is the graph which describes the

problem in phase k. A maximum matching in G corresponds to a schedule in which

the number of nontardy job units is maximized, or, equivalently, a schedule which

minimizes the number of tardy units. We would like to show that a maximum

matching M’ on G’ can be extended to a maximum matching on G, without exposing

any vertex of V’ which was matched in M’.

Lemma 3.2. Using the above notation, if M’ is a maximum matching on G’, then
there exists a maximum matching A4 on G such that for every v E V’, if v is matched
in M’, then it is also matched in M.

Proof. Let A4 be any maximum matching on G. We shall show how to modify it

such that it will satisfy the theorem. Let ii?? be the symmetric difference of the two

matchings A4 and M’. Each connected component of the subgraph induced by ti

is either (1) an isolated vertex or (2) an even elementary cycle whose edges are alter-

nately in M and M’, or (3) an elementary alternating path whose endpoints are

distinct and are both unmatched in one of the two matchings (see, e.g. [2, p. 1231).

Vertices of V’ which were matched in M’ and appear in type (1) or (2) components

are also matched in A4 as required. The only ones which may be unmatched in M

are endpoints of type (3) components, an alternating path. Denote such a path by

(uO, e19 uI, e2, u2 , . . . , ej, v]), and assume that v. E V’ is unmatched in M. The path

length, j, is even or else we get a contradiction to the maximality of M. Hence by

setting

we get a matching with the same cardinality as the original M, which matches all

the vertices in that path which are in V’ and were matched in M’. (Note that uj was

not matched in M’.)

By repeating the above process we eventually obtain the required maximum

matching M, which matches all the vertices in V’ that were matched in M’. 0

We can now prove the validity of the theorem:

Theorem 3.3. Algorithm B provides an optimal solution to the weighted problem.

56 D.S. Hochbaum, R. Shamir

Proof. The proof is by induction on the number k of phases: Denote by Pk the

weighted subproblem with jobs 1, . . . , k only. For k= 1, step 2 of the algorithm

clearly gives an optimal solution to P,. Assume that after phase k of the algorithm,

the numbers of nontardy units from jobs 1, . . . , k in an optimal solution to Pk are

TIN, . . . , nk respectively. Algorithm A is used in phase k+ 1 and a maximum match-

ing is found. By Lemma 3.2 there exists such maximum matching in which rrt, . . . , nk
units of jobs 1, . . . , k are still matched. Since the weight of job k+ 1 is the smallest

among jobs 1, . . . , k+ 1, this gives an optimal solution to the weighted scheduling

problem Pk+l. q

Let us now turn to the complexity of the algorithm: Steps 1 and 2 of the algorithm

require O(n log n). Step 3 requires solutions of 12 - 1 unweighted problems of the

type analyzed in Section 2. Since the release times and due dates of all these n - 1

subproblems are all subsets of the same single set {rt, r,,dl, . . . ,d,}, that set

needs to be ordered only once, and the remaining work per each solution is O(n),

by the proof of Theorem 2.2. Hence the total work in step 3 is O(n*), which is also

the overall complexity. Hence we conclude:

Theorem 3.4. Algorithm B solves the weighted problem in O(n*) operations.

In order to find a schedule (Sji) during the execution of the algorithm, note that

whenever a number of units of job j are determined to be tardy, this implies that

the interval [rj,dj) has been completely filled. Hence the schedule in it has been

completely found by Algorithm A.

Remark added in the revision. After the completion of this work, the theory of

Monge sequences has been extended to transportation problems with forbidden arcs

[3,9]. For the unweighted case discussed in Section 2, the scanning order of the

variables in our solution indeed turns out to be a Monge sequence in that extended

sense. For the weighted case of Section 3, one can easily demonstrate that for some

problems no single optimal scanning order exists. This follows since a necessary con-

dition for the existence of such a scanning order in a problem with forbidden arcs

is violated. Hence it is impossible to find a faster algorithm for the weighted prob-

lem along the lines of our solution to the unweighted one.

Acknowledgement

We would like to thank Amos Fiat for bringing to our attention reference [4].

References

[l] N. Alon, S. Cosares, D. Hochbaum and R. Shamir, An algorithm for the detection and construc-

tion of Monge sequences, Linear Algebra Appl. 114/l 15 (1989) 669-680.

Minimizing the number of tardy job units 57

[2] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

[3] B.L. Dietrich, Monge sequences, antimatroids, and the transportation problem with forbidden arcs,

Rept., IBM T.J. Watson Research Center (1989).

[4] H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J.

Comput. System Sci. 30 (1985) 209-221.

[5] D.S. Hochbaum and R. Shamir, Strongly polynomial algorithms for the high multiplicity schedul-

ing problem, Rept. TR-100/88, Computer Science Institute, Tel Aviv University, Tel Aviv (1988);

also: Oper. Res., to appear.

[6] A. Hoffman, On simple transportation problems, in: V. Klee, ed., Convexity, Proceedings of Sym-

posia in Pure Mathematics 7 (Amer. Math. Sot., Providence, RI, 1963) 317-327.

[7] A. Hoffman, Private communication.

[8] J.B. Orlin, A faster strongly polynomial miminum cost flow algorithm, in: Proceedings 20th ACM

Symposium of the Theory of Computing (1988) 377-387.

[9] R. Shamir, A fast algorithm for constructing Monge sequences in transportation problems with for-

bidden arcs, Rept. 136/89, Institute of Computer Science, Tel Aviv University, Tel Aviv (1989);

also: Discrete Math., to appear.

[IO] E. Tardos, A strongly polynomial minimum cost circulation algorithm, Combinatorics 5 (1985)

247-255.

