

A New and Fast Approach to Very Large Scale Integrated Sequential Circuit Test
Generation
Author(s): J. B. Adams and D. S. Hochbaum
Source: Operations Research, Vol. 45, No. 6 (Nov. - Dec., 1997), pp. 842-856
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/172069
Accessed: 04-11-2017 22:47 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Operations
Research

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 A NEW AND FAST APPROACH TO VERY LARGE SCALE INTEGRATED
 SEQUENTIAL CIRCUIT TEST GENERATION

 J. B. ADAMS and D. S. HOCHBAUM

 The University of California, Berkeley, California

 (Received January 1995; revisions received July 1995; accepted September 1995)

 We present a new approach to automatic test pattern generation for very large scale integrated sequential circuit testing. This

 approach is more efficient than past test generation methods, since it exploits knowledge of potential circuit defects. Our method

 motivates a new combinatorial optimization problem, the Tour Covering Problem. We develop heuristics to solve this optimization

 problem, then apply these heuristics as new test generation procedures. An empirical study comparing our heuristics to existing
 methods demonstrates the superiority of our approach, since our approach decreases the number of input vectors required for the

 test, translating into a reduction in the time and money required for testing sequential circuits.

 Very large scale integrated sequential circuit testing is

 necessary to ensure the reliability of circuits. Since

 circuits contain from thousands to millions of parts and

 connections, testing of sequential circuits is currently a

 time-consuming and expensive process, which needs to be

 made more efficient. Even small reductions in time in-

 vested for testing lead to savings in the manufacturing

 process.

 At the termination of a typical manufacturing process

 thousands of chips that contain the physical representation

 of a circuit need to be tested for functional and logical

 correctness. For each unit produced the testing should de-

 termine if the chip is faulty or not.

 Very large scale integrated sequential circuit testing thus

 attempts to pinpoint problems with a circuit, determining

 whether faults are present. However, this task becomes

 difficult when the circuit cannot be examined internally. If

 the circuit is viewed as a black box to which we can apply

 input and then observe output, but never see the internal

 workings, then determining exactly whether the circuit is

 faulty is challenging.

 One way of testing a circuit (or the corresponding chip)

 is to try out all possible inputs and compare the resulting

 outputs to the outputs of a fault-free circuit. This process

 is very time consuming, and yet it works only for combina-

 tional circuits, those that have no feedback mechanism

 (see Figure 1(a)). In a sequential circuit there is a feedback

 mechanism which implies that it is not sufficient to try all

 possible inputs, but also all possible values of the memory

 elements have to be tried in conjunction with the inputs.

 Consequently, the testing of sequential circuits is far more

 complex than the process of testing combinational circuits,

 which is in itself a difficult problem.

 In an attempt to reduce the complexity of sequential

 circuit testing, internal testing methods have been devised

 to "open up" the black box. Techniques such as Scan Path,

 or Level Sensitive Scan Design, which employ shift register

 latches to control and observe all internal states (Williams

 and Parker 1983) can be used. Since these methods are

 costly, time-consuming, and potentially damaging to the

 circuit, they are avoided unless absolutely necessary.

 Our goal here is to propose a more efficient method for

 testing circuits that does not monitor the internal state at

 every step, yet still exploits knowledge of the circuit inte-

 rior in order to come up with a faster test. Thus, our

 approach is useful for testing circuits for which the physi-

 cal design is known. The information about the circuit is

 represented as a list of potential defects and the corre-

 sponding resulting performance errors.

 In the evaluation of testing methods, the amount of time

 required to create the test vectors is of secondary impor-

 tance since the creation of the test vectors is done once for

 each circuit design. The efficiency is measured in terms of

 the number of generated test vectors, as this number is

 proportional to the amount of time required to test a given

 circuit chip. The manufactured circuits are tested with the

 same set of test vectors repeatedly (and commonly thou-

 sands or even millions of times), and therefore the number

 of test vectors is of prime importance.

 Testing of circuits can be viewed as comprising two main

 tasks. One is the generation of inputs that can lead to

 external manifestation of existence of faults; the other is

 the compression, or compaction, of this set of vectors.

 These two tasks are usually viewed as one, and the attempt

 is to generate a compacted list of test vectors. Our ap-

 proach allows for the separation of these tasks. It can work

 with any test generation procedure and produce a faster

 test than would have been produced by the test generation

 alone.

 The approach we use is proved faster than commonly

 used approaches on the set of benchmark circuits ISCAS-

 89. These circuits are considered the standard benchmark

 Subject classifications: Industry, computer electronic: semiconductor manufacturing. Manufacturing performance/productivity: improved quality control by effective
 testing. Programming integer heuristic: heuristic approach for the tour cover problem.

 Area of review: MANUFACTURING, OPERATIONS AND SCIIEDULING.

 Operations Research 0030-364X/97/4506-0842 $05.00
 Vol. 45, No. 6, November-December 1997 842 ? 1997 INFORMS

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 ADAMS AND HOCHBAUM / 843

 Inputs Outputs

 Inputs Outputs

 Memory
 Elements

 (a) (b)
 Combinatorial Circuit Sequential Circuit

 Figure 1. Schematic view of combinatorial circuit versus
 that of sequential circuit.

 for algorithms on sequential circuits. Real circuits are sub-

 stantially larger than the benchmark circuits, yet the meth-

 ods used are the same as for the small ones, typically

 combined with a heuristic decomposition of the large cir-

 cuit to a collection of smaller ones. The method we pro-

 pose can similarly be used in conjunction with such

 decomposition and is likely to be faster on the very large

 real circuits as well.

 The testing method we develop is based on modelling

 the testing problem as a tour covering problem. In this

 problem the input is a directed graph and a set of ele-

 ments. Each arc has an associated subset of elements it

 covers. The problem is to find the shortest length tour that

 traverses arcs which jointly cover all the elements. As we

 point out, this model has some deficiency and does not

 represent fully all aspects of the testing problem. We cor-

 rect for those deficiencies in the heuristic procedures de-

 vised for solving the problem in the testing context.

 PRELIMINARIES

 Figure l(b) presents a schematic description of a sequen-

 tial circuit. This type of circuit has a feedback mechanism.

 Logic values in the next-state lines are stored in memory

 units and then fed back into the circuit as the present-state

 values in the next timeframe. These memory units are also

 referred to as latches or flip-flops (denoted by FF in Fig-

 ure 2). Figure 2 presents one time frame of a sequential

 circuit. The values carried by the latches along with those

 assigned to the primary inputs determine uniquely the out-

 puts and the next state of the circuit.

 The gates of the circuit in Figure 2 represent the well-

 known Boolean functions, AND, OR, and NOT. For two

 (or more, if the gates are concatenated) 0 - 1 inputs the

 AND function outputs 1 if and only if all inputs are 1. The

 OR function outputs 1 if and only if at least one input is 1.

 The NOT function has a single input, and it reverses 1 to 0

 and 0 to 1.

 The model best suited for describing the behavior of a

 VLSI sequential circuit is the finite state machine, a five-

 tuple, M = (S, CT, C, v, w) (Grimaldi 1989). S is the set of
 the states of the machine, 0- is the input alphabet, e is the

 output alphabet, v is the next-state function, v:S x 3- -> S,

 and w is the output function, w:S x 5T -> C. Logic values

 in the circuit's present-state lines correspond to the ma-

 chine's current state, input applied to the circuit is identi-

 cal to the machine's input.

 The finite state machine associated with a circuit defines

 its State Transition Graph (STG) which conveniently and

 concisely encodes information about all possible states,

 their allowable inputs, and reachable next-states (Mano

 1991 and Ghosh et al. 1991). Nodes in the graph corre-

 spond to logic states in the circuit, while arcs represent

 transitions between states. Thus, each node has outgoing

 arcs representing transitions resulting when allowable in-

 put is applied to that state. Arcs are labeled with this

 input, as well as the output produced when this input is

 applied. Movement from one state to another in the State

 Transition Graph simultaneously relates to transitions of

 the finite state machine and to the functioning of the cir-

 cuit. We will refer occasionally to states as nodes and to

 transitions as arcs.

 Each input vector applied to a circuit at a given state

 produces an output and a transition to a different state.

 While the output is externally visible, the resulting state is

 invisible. This invisibility of the state plays an essential role

 in all testing methods for sequential circuits.

 For further clarification we digress at this point to ex-

 plain the notion of don't cares. Suppose the inputs include

 ql, . . ., qn as the primary inputs, and qn+1, . . . , qm as the
 memory latches values (the state). Suppose q1, q2 are in-

 puts to an OR gate and q1 = 1. Then no matter whether q2

 is 0 or 1, the outgoing line from the gate will carry the value

 1. In this case we say that q2 assumes a "don't care"

 value, which is denoted by X. Similarly if qn+l, qn?3 are
 inputs to an AND gate and qn+3 = 0, then the output line
 from the gate is always 0 and qn+l = X. By the same

 Output

 4 a AND gate

 1 Q OR gate

 A NOT gate

 r -, X;Next State

 Input

 FgPresent State

 Figure 2. Sequential circuit.

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 844 / ADAMS AND HOCHBAUM

 reset state
 0/1

 00 10

 0/0:

 C\D,E,F

 */1:A

 l/l~A ,B\

 "" e01)

 1/1:A,B

 Figure 3. State transition graph (STG).

 token, many of the state values can be don't-care values.

 Consequently each state can be viewed as one of an equiv-

 alence class of states that have the same pattern of transi-

 tions given the same inputs (or the same equivalence class

 of inputs). This view of each state as a set and each input

 vector as a set, exploiting the existence of don't cares, is

 significant in reducing the complexity of dealing with large

 circuits. We will refer to each state and input vector as a

 singleton, whereas actually each may represent a set of

 states or input vectors.

 While we do not make explicit use of the notion of don't

 cares, this is an important aspect of the subroutines we use

 for test vector generation per faults and for fault

 simulation.

 The State Transition Graph contains one or more reset

 states, states whose logic values are equal to values in the

 circuit's present state when it is first switched on. An STG

 has more than one reset state if its equivalence class in-

 cludes more than the state itself, or alternatively, if some

 of the present state bits are "don't cares" (Mano 1991).

 Any state in the STG can be reached from reset. Other-

 wise, if a state cannot be reached it is not a valid state and

 is not included in the STG. Further, the circuit can be

 switched off and then on again no matter what values are

 in the present state lines. Thus reset is reachable from any

 state, making the STG a strongly connected digraph. It

 should be noted, however, that a cost-possibly greater

 than that of making one finite state machine transition-is

 associated with restarting the machine to reach the reset

 state (Pixdey et al. 1992).
 Figure 3 depicts the STG associated with the circuit of

 Figure 2. Outgoing arcs in Figure 3 are labeled with possi-

 ble input and the corresponding output, as well as the

 index letters of defects whose presence alters output along

 these arcs. For instance, if arc (j, k) is labeled with i/o: 11,
 12, . , IL, then a transition from state j to state k occurs

 when the machine is fed input i. Output o is produced, and

 the transition tests if faults 11, 12, .., IL are present.
 Dashed arcs leading out of every state to reset represent

 making a transition to the reset state by switching the

 machine off then on again.

 Faults in the circuit can affect its behavior, either by

 altering the output produced in a state or by affecting

 transitions out of the state, sending the circuit to the incor-

 rect next-state. With the single stuck-at model, the fault

 model we work with, a fault is present when a circuit wire's

 logic value is corrupted so that it is fixed either at value

 zero or one. It is further assumed that only one such fault

 is ever present at a time in a circuit (Williams and Parker

 1983). This standard assumption may lead to invalid tests

 as is manifested in the veering off phenomenon that we

 address in detail in Section 4.

 An excitation vector for a fault is an assignment of values

 to the circuit's present state lines and primary inputs,

 which produces faulty output or causes an incorrect next-

 state transition when the fault is present. An excitation

 state is the present state part of the excitation vector. A

 sequence of input vectors that takes the machine from the

 reset state to an excitation state, while the defect present is

 known as a justification sequence, and the process of send-
 ing the machine to the excitation state is referred to as

 justifying the state (Ghosh et al. 1991). A test sequence for
 a fault is a sequence of input vectors, which when applied

 to the faulty circuit, produces output values different from

 those the fault-free machine produces. If a fault alters

 output produced at an excitation state, the justification

 sequence concatenated with the input part of the excita-

 tion vector form a test for the fault. However if a fault

 alters the excitation state's next-state but not its output,

 the justification sequence alone does not form a test for

 that fault, since the effects of the defect cannot be ob-

 served at the excitation state. Additional input vectors

 must be applied, until the effects of the fault are propa-

 gated to the output lines. Such a sequence of input vectors
 applied at the excitation state which propagate the effects

 of the fault to the output are termed a differentiating se-
 quence (Ghosh et al. 1991). Concatenated to the justifica-

 tion sequence and input part of the excitation vector, these
 form a test.

 We refer to the sequence beginning with the excitation
 state and ending with the state ending the differentiating

 sequence as ED-path. The sequence beginning at reset

 followed by the justification sequence and the ED-path we
 call JED-path. In order to clarify why the ED-path may

 consist of more than one arc (transition) consider the ex-
 ample in Figure 4. That example depicts a JED-path,
 which is a test for fault f, as followed in a fault-free circuit

 versus the same path followed in the presence of fault f.
 At the point where the excitation state is reached the be-

 haviour of the circuit differs in the faulty circuit from that

 in the fault free circuit. Figure 4 shows the two paths
 that are followed in both circuits. The faulty one follows

 the dotted transitions while producing outputs Oj that are

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 ADAMS AND HOCHBAUM / 845

 justification

 E excitation
 i/ol N . / _ / X~~ 11/01

 N

 i2/02 i2/02

 ,. L \ 5differentiation
 sequence

 iq/Oq li,L iq/Oq

 D~~~~

 Figure 4. The JED path followed in both correct and
 faulty circuits.

 identical to the outputs produces in the fault-free circuit

 until the differentiating transition leading to D. On this

 final arc of the path the output of the fault-free circuit is

 Oq whereas the output of the faulty circuit is Oq* So al-

 though the fault is present, it is not manifested prior to

 reaching state D.

 The task set by the testing problem is to traverse the

 state graph with a minimum number of input vectors so

 that for each potential defect one of its excitation states is

 visited, and immediately thereafter its corresponding dif-

 ferentiating sequence is applied. For the circuit of Figure

 2, one possible test checking for defects A through F starts

 at reset, or state 00, and consists of the input vector se-

 quence 1-0.

 There is more than one dimension to determine the

 quality of a test procedure. It ought to be fast and require

 on the average a small number of input vectors per fault
 checked. Another factor determining the quality of testing

 is that a large fraction of faults (ideally all) are detected. It

 has been observed empirically that any crude approach to

 testing will be able to test a small fraction of the faults very

 quickly (with small number of test vectors). As more and

 more faults are checked, the number of input vectors
 needed to detect the next fault tends to go up. Our goal is

 therefore to devise a test procedure that is both fast and

 detects a large proportion of the set of faults compared to

 other test procedures.

 LITERATURE REVIEW

 Different approaches have been taken for conducting

 VLSI sequential circuit test generation without prying into

 the internal workings of the circuit, and thus by justifying

 states and checking output. One of the most popular meth-

 ods, due to its simplicity, is the random approach. The

 random approach is to generate sequences of input vectors

 composed of zeros and ones at random. These input vec-

 tors are applied to faulty circuits while the output is ob-

 served. If this output differs from that which a fault-free

 circuit would produce, as determined from the STG, the

 vector forms a test for the defect in the circuit. Random

 tests do manage to check for some defects. However, they

 are not efficient, at least not after a small fraction of faults

 have been detected. (Our observation is that this fraction

 is about 20 percent.) It is possible, using information about

 the circuit structure, to design smarter tests which check

 for more faults using less input vectors.

 Ghosh et al. (1991) present such a test procedure. Their

 method finds several paths, each starting at the reset state

 and traveling through the STG, checking for a fault. The

 approach justifies and differentiates states one at a time,

 starting at the same initial reset state before each justifica-

 tion sequence. Because of this strategy of looking for input

 vectors that check for faults one at a time, we refer to their

 method as the single-fault approach. The idea of repeatedly

 resetting the circuit (or the machine) to this initial state

 before looking for a sequence for each defect proves

 wasteful, however. In addition to adding distance to the

 test vector, resetting every time adds cost to the testing

 process since the machine must be switched off then on

 again to get back to the initial state. As we show later, it is

 frequently beneficial to not to restart and look for an en-

 tirely new test sequence for each fault. Instead, simply

 adding a few input vectors to an existing sequence could

 take the machine a few states further and check additional

 faults. Such an approach would be less costly and time-

 consuming than generating a new test sequence for each

 defect, not using information from previous defects.

 Ghosh et al. have demonstrated, however (and our empir-

 ical studies have confirmed), that their approach is sub-

 stantially more effective than the random approach.

 Furedi and Kurshan (1987) proposed a theoretical

 method that views test generation as a requirement to

 traverse every arc in the graph. As such, they solve the

 Chinese Postman Problem, or the problem of finding a

 minimum length tour that traverses every arc in the graph,

 defined on the STG graph. (We present a formal definition

 of the Chinese Postman Problem in Section 2.) We refer

 to such an approach as a Chinese Postman approach. This

 strategy has several shortcomings. By requiring that every

 arc in the STG is traversed, this approach traverses more

 than one edge for each defect and also traverses edges that

 do not differentiate any defect at all. The method is also

 prone to error due to the phenomenon of veering off. This
 happens when one gets the right output, but it is produced

 at the wrong state. More explicitly, the test procedure is
 based on the logic description of the fault-free circuit and

 depends on the machine being in the correct state at every

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 846 / ADAMS AND HOCHBAUM

 step. Since faults may cause incorrect next-state transi-

 tions, the machine may not always move into a planned

 state, but to a different state, due to a faulty transition.

 Then it has veered off and it may not be possible to justify

 all excitation states at once. Although the circuit may ap-

 pear, deceptively, to produce the correct output vector,

 this happens only because it has veered off, and the output

 at this new state just happens to coincide with the correct

 output at the planned state.

 Another shortcoming of the method of Furedi and Kur-

 shan (1987) is that it requires the entire STG to be gener-

 ated in advance. Even for small size circuits, with only

 10-15 memory latches, this is impossible. For these rea-

 sons this approach is not implementable as is. The concept,

 however, is useful and we incorporate it in our approach.

 Aho et al. (1988) employ an improvement on the Chi-

 nese Postman approach. They seek to cover only edges

 that cover defects, i.e., those that correspond to differenti-

 ating vectors. The problem of covering a subset of edges

 with a single tour of minimum length is called the Rural

 Postman Problem, and we call this approach to testing the

 Rural Postman approach. The application of this problem

 discussed in Aho et al. comes up in a related but different

 context. They generate tests for checking the conformance

 of a protocol implementation to its specification, a prob-

 lem closely related to sequential circuit testing. Their

 problem, however, requires that all of a certain subset of

 transitions of a Finite State Machine be checked, while our

 problem must check only selected transitions, since a fault

 can have more than one ED-path. For the testing problem,

 their approach has the shortcoming of traversing a differ-

 entiating sequence for a fault even after that fault may

 have already been identified. Again, this approach is not

 practically implementable for the same reasons as the pre-

 vious one-the veering off and the explicit generation of

 the STG.

 There are also more general test generation methods,

 appropriate when a list of potential defects and differenti-

 ating vectors is not available. Such is the case when testing

 implementation of logical design, or testing protocols. Lee

 and Yannakakis (1992) present such a testing method tak-
 ing as input two machines, A and B, the specification ma-

 chine, and the implementation machine, respectively. They

 construct an input sequence that distinguishes the two ma-

 chines. This sequence is of length O(pn4 log n), where n is

 the number of states in the STG and p is the number of

 input lines. That is, if machine B contains some defect,

 their test will find it in time proportional to more than a

 fourth-degree polynomial of the size of the state space.

 Because Lee and Yannakakis's method works with ma-

 chines about which little is known, their method is not

 constraining and thus has wide-ranging applications. It
 does, however, require the traversal of all edges in the

 graph (at least once), as it does not assume the availability

 of information about the circuit and its potential defects. It
 is therefore prohibitively slow and inappropriate for check-

 ing physical circuits.

 Among these existing methods only the random and

 single-fault methods are practical for circuits of moderate

 size. We will therefore compare our approach to these two

 methods.

 OVERVIEW

 Our approach seeks to traverse at least one differentiating

 sequence for each defect, so that the number of input

 vectors applied (and hence the number of edges traversed)

 is as small as possible. To achieve this end we examine

 combinatorial aspects of the test generation problem.

 We begin by presenting in the next section the relevance

 of the set covering problem to the testing problem. A

 discussion on the similar features of the VLSI sequential

 circuit testing to the crew scheduling problem implies that

 similar empirical approaches may be used for solving both

 problems. In the following section we introduce a new

 combinatorial optimization problem, the Tour Covering

 problem, in which aspects of the Rural Postman are com-

 bined with set covering aspects of the testing problem.

 Three heuristics for Tour Covering are introduced in the

 third section, including a greedy heuristic that generates

 test sequences online. Section 4, Implementation for Se-

 quential Circuit Testing, relates this optimization problem

 back to sequential circuit testing, compensating for the

 veering off phenomenon. Section 5 presents results from

 an empirical study that applies three new testing heuristics

 to benchmark circuits. Data from these three methods are

 compared with data from the single-fault approach and the

 random approach. Finally, the last section presents conclu-

 sions from the study and plans for future research.

 1. THE SET COVERING APPROACH

 The set covering problem can be viewed as a simplified

 version of the testing problem. Consider the path created

 in the STG graph by traversing from the reset state the

 justification sequence/excitation state/differentiating sequence

 for a given fault. Recall that such path is termed JED-path to

 distinguish it from a path starting with the excitation state/
 differentiating sequence, which we call an ED-path. A path

 usually detects a collection of faults. For a path 9ij (of either
 type) we denote the collection of faults detected by the

 path as F(P1) C F, where F is the set of all faults. We will
 consider the cost of a path to be the number of vectors in

 the path, or in other words, the length of the path 1TPjl. A
 path can therefore be viewed as a set that covers a subset

 of the faults. With this view in mind we can formulate the

 problem as a set covering problem using the notation

 = f1 if fault i E F(9j),
 a j 0 otherwise,

 and the variable xj is set to 1 if path 9i?j is selected for the
 testing and 0 otherwise.

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 ADAMS AND HOCHBAUM / 847

 The set covering problem is then formulated as

 m

 min E 19Pj |xj
 j=1

 (SC)

 m

 s. t. Ea aijxj 1 , i E F, xi E to, II, j 19l, m.
 j=1

 Consider now the case when the paths are JED-paths,

 and hence their length is calculated from reset. In that

 case the optimal solution to (SC) is an upper bound on the
 length of the test sequence. This is because it is possible to

 concatenate another ED path to detect more faults, but

 this formulation does not allow for that. In that sense, this

 formulation emulates an optimization version of the

 single-fault method. After detecting some faults and reach-

 ing a differentiating state, it returns to reset.

 The case of using ED-paths is more intricate. The (SC)

 formulation then ignores the additional cost required to get

 from the end of one path (the differentiating state) to the

 beginning of another (the excitation state). In that sense

 the optimal solution provides a lower bound. On the other

 hand, various ED-paths may be overlapping, and hence

 their combined length is less than actually stated. For

 these reasons the value of (SC) when we consider ED-

 paths is neither a lower nor an upper bound.

 One way to remedy that is to check for all possible

 overlaps. This in itself may be too time consuming to be

 practical. However, one can heuristically just check for

 overlapping pairs and if any are found, add the union of

 the two paths to the set of candidate paths. Assuming

 that the number of overlaps is not substantial, this can be a

 good "approximate" lower bound.

 Checking, to a limited extent, for overlaps is useful also

 in the case we use JED-paths. There we can check for the

 overlap of ED-paths and add the shortest justification se-

 quence to the concatenation of the overlapping paths. This

 will result in an improved (i.e., lower in value) upper
 bound. The ultimate improvement would be to check for

 all possible successive routings of ED-paths and use their

 union as additional paths for the (SC) model. This, how-

 ever, is too time consuming to be practical.

 An additional aspect that is ignored in the set covering

 model is the veering off effect. In addition to these short-

 comings, the set covering is a well known NP-complete

 problem. As such, even this simplified version of the test-

 ing problem is intractable.

 The set covering instances that we consider have some

 specific features. The number of sets is typically extremely

 large, as there are many different paths that could poten-

 tially test the same defect. In fact, it is practically infeasible
 to enumerate all such potential paths. A set covering prob-

 lem with the same features comes up in the context of the

 crew scheduling problem for airlines. There, the sets are

 all the possible individual crew schedules, each specified in

 terms of the flight legs that it includes. The number of

 such schedules is typically exponential. In practical solu-

 tion methods developed for the crew scheduling problem,

 the set of potential schedules is generated as needed (the

 column generation technique), rather than being given

 with the initial input. Such an approach is most appropri-
 ate for our application as well, in which context it means

 that test vectors are not specified in advance.

 There exist some good recent methods for solving the
 crew scheduling problem. In particular, we believe that a

 column generation technique, such as the one developed

 for the crew scheduling problem by Anbil et al. (1991)

 could result in a small collection of test sequences that

 forms a comprehensive test for the testing problem. We do

 not pursue this direction here, but consider it very promis-

 ing for future research.

 2. THE TOUR COVERING PROBLEM

 The tour covering problem introduced in this section is a

 better model of the testing problem compared to the set

 covering. It is still a simplified model of the problem, as

 will be explained later. The tour covering problem com-

 bines the set covering aspects of the testing problem with
 the requirement that edges must be traversed along a con-

 tiguous path that starts at the reset state, or along a tour if
 the path also terminates at reset.

 A relevant problem here is the Chinese Postman Prob-

 lem (CPP), that was initially solved by Edmonds and John-

 son (1973). In CPP, we are given a directed graph (the
 undirected version is irrelevant for our discussion), with

 each arc having some weight, representing its length, asso-
 ciated with it. The goal is to create a tour that traverses all

 the arcs so that the total length of the tour is minimum.

 This problem is solvable in polynomial time by reducing it
 to a transportation problem, as discussed in the next
 section.

 A more closely related problem is the Rural Postman

 Problem (RPP). Here there is a specified subset of the arcs

 in the graph that need to be traversed in a tour. The other

 arcs may or may not be included in the tour. Although a
 minor variation of the CPP algorithm finds, in polynomial

 time, a collection of tours of minimum length traversing all
 edges in the subset at minimum length, the problem of
 creating a single tour of minimum length is NP-complete
 (Aho et al. 1988). (Indeed, it is easily seen that the Trav-
 eling Salesperson Problem is reducible to it by setting each
 subtour as a node in a graph.)

 As in RPP, in the testing application we need to traverse

 only a subset of the edges, namely those that detect faults.

 Moreover, we need to traverse only one of the set of many
 paths that can detect a certain fault. This is the problem

 we call the Tour Coverting problem, and it is defined for-
 mally as follows:

 Tour Covering Problem

 Instance: A directed graph, G = (N, A), a universal set F

 and subsets of F associated with each arc aj E A, F(a).

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 848 / ADAMS AND HIOCHBAUM

 Problem: Find a shortest length (not necessarily simple)

 cycle which starts at a prespecified node and travels

 through the graph, traversing a subset of the arcs A C A

 such that Ua jF(a) = F.

 The Tour Covering problem is related to set covering,

 since we seek to cover all of the n elements. Also it gener-

 alizes the Rural Postman Problem, which requires finding

 a shortest tour traversing a certain subset of the arcs.

 The Tour Covering problem when used in the context of

 testing has faults detected associated with arcs. In fact the

 detection of faults requires traversing a sequence of arcs in

 an ED-path-from excitation to differentiation. Another

 aspect that is not addressed in the Tour Covering formula-

 tion is the veering off effect. In an ideal testing procedure

 the length of the tours should be bounded to reduce the

 likelihood of veering off. In that sense a collection of a

 small number of tours, each beginning and ending at reset,

 is preferred to a single tour. This issue will be discussed in

 detail in the implementation section (Section 4). The addi-

 tional number of vectors required for the multitour covering

 still justifies the added certainty that veering off is avoided.

 3. HEURISTIC ALGORITHMS FOR THE TOUR

 COVERING PROBLEM

 3.1. The Chinese Postman Approach

 Suppose one applies a Rural Postman algorithm to solve

 the tour covering problem as follows. Consider each arc a

 that has a nonempty set F(a) associated with it to require

 traversing. The union of these arcs is then the subset of

 arcs that need to be traversed. In that case the solution

 tour covers all these arcs, although many may not need

 traversal as the set they cover has already been covered by

 other arcs. To avoid that, we generate in our heuristic one

 subtour at a time, and then update the remaining set of ele-
 ments to be covered on the remaining arcs in the graph.

 When the CPP algorithm is applied to the Rural Post-

 man Problem, the result is in general a collection of sub-

 tours of total minimum weight among all possible such

 collections that cover all edges in the specified subset. Al-
 though such a result is inappropriate as a solution to the

 Rural Postman Problem, it is better suited for the pur-

 poses of the Tour Covering problem than a single tour. In

 our heuristic we will use the CPP algorithm and then select

 among all the subtours the one subtour that contributes

 -most to the covering, where the contribution is measured

 in terms of the number of new elements covered per unit

 weight of the subtour. At each iteration a subtour is se-

 lected in this way. Then the collection of elements to be

 covered is updated. Those covered by the selected subtour

 are removed from the collection. When terminating the

 heuristic returns the collection of selected subtours, which

 together cover all n elements.
 The heuristic calls for a routine CPP which generates a

 collection of tours covering the arcs in the subset at mini-

 mum total cost. That algorithm's description is given later

 in this section.

 CPP Heuristic for Tour Covering

 Input: G = (N, A); F, IFi(a) C F, Va C A. A = {c c
 A|F(a) * 0}. An initial state v0 E N.

 Step 0: (Initialization) i = 0, T = 0.

 Step 1: i <- i + 1.

 If F = 0 return(T) the set of subtours, STOP.

 else {

 Call CPP(G; A)

 51,I, SK arc the subtours returned by CPP(G; A).

 Step 2:

 For k = 1,.. . , K{

 Ck = UaELSsk F(a)

 len(Sk) <- length of subtour Sk

 }

 ICklllen(Sk) = maxk= ,..., KICklllen(Sk);

 If v0 0 Sk thenk <- (shortest path(v0, Sk), Sk, v0).

 T <- T U Sk, F - F\CWk.

 Va E A, F(a-) <-F(a-)\Ck. If F(a) = 0 thenA <-A\{ a}.

 Go to Step 1.

 End

 Each subtour generated covers at least one element, as

 otherwise it could have been omitted while reducing the

 cost of the solution, thus contradicting the optimality.
 Hence, after at most n iterations the algorithm terminates.

 For the testing problem we place in A all the arcs (tran-

 sitions) that belong to ED-paths generated for all faults. It
 is then possible that a subtour generated will not include

 the full ED-path and hence will not test for the faults that

 this ED-path detects for. For this reason the set of faults

 that is actually detected by a tour is not simply the union

 Ck on each subtour as in Step 1 of the algorithm. Instead,
 we "fault simulated" to identify the actual set of faults

 detected by each subtour. Details about fault simulation

 are given in Section 4. Note that it is also possible that

 more faults can be detected by a subtour compared to the

 union of sets of faults detected by each arc (or path) in
 the tour. These will be identified as well by fault simulation.

 For completeness, in the remainder of this section we

 present our implementation of the CPP algorithm follow-

 ing Lawler (1976) used to obtain the collection of sub-

 tours. Given a specified subset of arcs to be traversed, the
 algorithm first determines which additional arcs to include

 in the subtours. It then constructs the subtours on these
 edges.

 On the graph G = (N, A) let A C A be the specified
 subset of arcs to traverse. Let N0) be the set of nodes

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 ADAMS AND HOCHBAUM / 849

 adjacent to any arc in A. A theorem of Edmonds and

 Johnson (1973) states that a CPP tour, or an Eulerian

 tour, exists in a strongly connected directed graph the in-
 degree of each node must equal its outdegree. For each

 node v in No, define the indegree, di(v) (outdegree, do(v))
 of node v, with respect to arcs inA, as the number of arcs
 in A whose head (tail) meets that node, respectively. Also
 define the imbalance of node v with respect to A, e(v) by

 the difference between its indegree and its outdegree: e(v)
 = d1(v) - do(v). If this imbalance is zero, a node is called
 balanced.

 Consider Np,, and Nneg, the sets of nodes in No with
 positive and negative imbalances, respectively. An analo-

 gous version of the theorem of Edmonds and Johnson,

 appropriate for Rural Postman tours, states that a Rural

 Postman tour exists if and only if every node is balanced

 with respect to arcs in these tours. Thus, if some nodes

 are imbalanced with respect to A then the arcs in A

 alone are not sufficient to form a Rural Postman tour.

 We consider next the problem of which additional edges

 to include in the tour. We form a collection Apot of poten-
 tial additional arcs to be considered for the tour. Then a

 transportation problem is used to determine which arcs

 from this collection are actually included in the tour.

 Initially Apot is empty. Then we add to Apot the shortest

 path from vi to vj, for each pair (vi, vj) of imbalanced
 nodes with e(vi) > 0 and e(vj) < 0. Note imbalances with
 respect to Apot of all intermediate nodes on a path are

 zero, since a path adds exactly one incoming and one out-

 going arc to each. Thus including any of the paths in the
 tour would not disturb the imbalances of these nodes with

 respect to the tour. To determine which of the paths to

 include, we solve a transportation problem on the bipartite

 graph GB = (NpoS, Nneg; Ab) which has bipartition Npos,

 Nnegand arc set AB, consisting of arc (vi, vj) for each pair
 (i, j) such that e(v1) > 0 and e(vj) < 0. Arc (vi, vj) has cost
 equal to the length of the shortest path from vi to vj to in
 G. Node vi has supply equal to e(vi).

 Let ARP be the final set of arcs to include in the Rural
 Postman tour. This set consists of arcs in A as well as
 edges in shortest paths whose arcs have positive flow in the
 transportation problem's solution. The number of copies

 of arcs on the shortest path between node vi in N1 and
 node Vj in N2 that are contained in ARP is equal to the
 value of the flow on arc (vi, vj).

 Since nodes in N are balanced with respect to ARP, sub-
 tours covering arcs in ARP exist. They can be formed by

 starting at any node in NO which is the tail node of a arc
 and following the arcs along the path of that arc. Once an
 arc is included in the tour, one of its copies is removed

 from the set ARP. As long as all of the edges in a arc have
 a positive number of copies remaining in ARP, the arc is
 active. When the head node of the arc is reached, arcs
 along any active arc are followed, one copy of each is

 removed from ARP, and the process continues until a node

 is reached with no adjacent active arcs. At this point, a

 subtour is complete and is placed in the collection of

 subtours T. Any node in No which is the tail node of an
 active arc is selected, and the process continues, forming
 another subtour. Subtours are constructed until no active

 arcs remain.

 Formally, the CPP algorithm is given as follows. It calls

 a subroutine shortest_path which takes two states, vi and vj
 as input, then uses a breadth-first search to find the short-

 est path between these two states. It also calls transporta-

 tion, which solves a transportation problem on the given

 graph and returns X, an (Npos Nneg)-dimensional vector of
 flows, and eulerian tour, which finds and returns an Eule-

 rian tour on the given graph. The output is T the collection

 of subtours that traverse and cover all arcs in ARP.

 CPP Algorithm

 Input: G = (N,A) andA CA.

 Step 0: (Initialization)

 NO {vi E N I (Vi, vj) E A, For some vj E N}.

 e(v) - di(v) - do(v) Vv E No, _
 with di(v) and do(v) w.r.t. (N,A)

 NPOS = {v E No | e(v) > 0}

 Nneg = {v E NO I e(v) < 0}

 GRP = (N,A)-

 Step 1:

 For (vi E Npos)

 for (vj E Nneg) {

 P(vi, vj) <- shortest_path(v1, vj)

 l(vi, Vj) <-length(P(vi, vj))-

 Step 2:

 X <- transportation(GB), where GB = (N1, N2, AB), and

 AB = {(vi, vj) I vi E N1 and vj E N2}

 For (vi, vj) E AB, add x-i,vj copies of P(vi, vj) to GRP.

 Step 3:

 T <- eulerian_tour (GRP)

 return(T).

 End

 3.2. Nearest Neighbor Approach

 The second heuristic for solving the Tour Covering prob-
 lem is the Nearest Neighbor heuristic. The input is, as
 before, the set F of n elements to be covered and the
 subset of arcs A, each of which covers a nonempty subset
 of elements.

 The nearest neighbor heuristic creates a subtour by ap-
 pending to a given path starting at an initial node (initial

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 850 / ADAMS AND HOcIlBAUM

 state or reset) the nearest arc in A. Finding the nearest arc

 is determined by calculating the shortest path from the tail

 of the current path to the head of each arc in A. The

 shortest among those shortest paths is appended to the

 path along with the selected arc. The process is then re-

 peated after updating the set of elements remaining to be

 covered. If the path folds on itself, it has created a subtour.

 The process continues nevertheless until all elements of F

 are covered.

 In the algorithm description there is a function cov-

 ered_elements(B) = UaBF(a). For the testing problem
 this function is evaluated using fault simulation.

 Nearest Neighbor Heuristic for Tour Covering

 Input: G = (N, A); F, % C A) A C A; F(a) C F, Va E A.

 Initialization:

 current_state vo.

 While (F * 0) {

 P(a) = shortest_fpath(current_state, starting_state(a)).

 P(amin) = mina P(a)

 Tte"tp < (P(amn,,), an,iii), T '- (T, Ttcnmp)

 current_state <- end_state(anii,i)

 J -Cov < covered_elements(Ttcn,p)

 F <- FVCov

 Va C A, F(a) <-F(a)\Vi.<,. If F(a) = 0 then A * A\{a}.

 A <_A\Ttcnip

 Return (T)

 End

 When implementing the nearest neighbor for the testing
 problem, the arcs in A get replaced by the ED-paths with

 their starting state-the excitation state-and the end state

 where the fault has been differentiated. We use in this

 heuristic the terminology of states instead that of head and

 tail of arcs and paths.

 3.3. The Greedy Approach

 An approach to Tour Covering that is on-line has the ad-

 vantage that it is not necessary to enumerate all possible

 paths covering an element ahead of time. Instead, ele-

 ments can be considered one at a time, and a path to cover

 the element can be generated as needed. The Greedy
 Heuristic uses an on-line approach.

 This heuristic maintains a set F of elements to cover. In

 the ith iteration a subtour is formed as follows. The heu-

 ristic generates an arc (a ED-path) to cover the first re-

 maining element in F. It then appends the shortest path

 from the current state to the starting state of the generated

 arc and then that arc to the tour. At this point the heuristic

 checks which other elements are covered by the tour or

 some part of the tour. It removes these elements and the

 first element from F. Then it generates a path to cover

 the next element in the updated F, adds the shortest path
 between the last point in the tour and the first state in the

 generated path to the tour, then adds the generated path
 to the tour. It checks which additional elements are cov-

 ered by the new part added to the tour and removes these

 and the first one from F. The heuristic continues in this

 way, until Ni arcs (paths) have been generated and ap-
 pended to the tour created in the ith iteration. Then the

 shortest path from the last state in the tour to the specified

 initial state is added to the tour, completing it. The pur-

 pose of closing the tour is to return to the reset state and

 thus avoid the increasing likelihood of the veering-off ef-

 fect. Elements which this final path covers are removed
 from F, completing the ith iteration.

 Greedy Heuristic for Tour Covering

 Input: G = (N, A); v(E N, F, Ni i = 1, 2....

 Initialization: iter = 0;

 While (F * 0) {

 iter <- iter + 1

 current_state < V

 Titer = 0.

 Until ITitcri > Nitcr,

 For f E F find an arc a C A so that f E F(a).

 Ttcrnp shortest_ath(current_state, starting state(d))

 Ttcn,p <_(Ttcnmp' a)

 current_state <- end_state (a)

 Wcv - covered_elements(Ttcn,p)

 F < T\J<Cv

 Titcr - (Titer, Ttcmp)

 Return (T) = {TI, T2, ... , TN,,r

 End

 4. IMPLEMENTATION FOR SEQUENTIAL CIRCUIT
 TEST GENERATION

 For the generation of the test vectors for the given faults

 in the implementation, we used the program SIS, devel-

 oped and maintained by Logic Synthesis Group at Univer-
 sity of California, Berkeley. The fault simulation is also
 done using slightly modified SIS subroutines.

 Fault simulation is an essential part of the testing

 method. It is the process of comparing the transitions and

 outputs of a fault free circuit and a circuit that contains

 one or more faults by simulating the functioning of such

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 ADAMS AND HOCHBAUM / 851

 circuits. For a given sequence of vectors we compare the

 output generated of the fault-free circuit to the circuit

 containing one fault at a time. Any fault that produces
 different output from the one of the fault-free circuit is

 thus detected by this sequence of vectors.

 As input to our heuristics we supply the list of potential
 faults as the set of elements to cover and their JED-paths

 that detect them. For each JED- and ED-path delivered by
 SIS we apply fault simulation to identify the entire collec-

 tion of faults identified by that vector sequence. This col-

 lection typically includes many more faults than the one

 for which the sequence was generated.

 The initial state is set to the reset state of the circuit.

 Then the subtours produced by the heuristics are subtours

 in the STG that define sequences of input vectors to apply
 to the circuit in order to detect the faults.

 When implementing our heuristics, an important point
 at which testing differs from the Tour Covering model is

 the veering off phenomenon. If a fault that causes an incor-
 rect next-state transition is present in the circuit, the heu-

 ristics may not design valid tests. Consider for example a

 pair of faults {a, b} that are present so that in the pres-

 ence of a the ED-path devised for b veers off and still

 produces the correct output (while being at the wrong
 state). Similarly, the ED-path devised for a veers off in the

 presence of b and still produces the correct output. Conse-
 quently, with both these faults present our tests are not

 valid; the circuit appears to be free of these faults, but it is
 not. This error results from the generation of the JED-

 paths based on the assumption that only a single fault is
 present.

 To protect against veering off we apply fault simulation
 (Williams and Parker 1983) to a tour, while checking that
 in the presence on any potential fault there is no deviation

 from the correct state transition.

 The alternative to fault simulation to check for veering
 off is to check after every state transition that the tested
 (physical) circuit is in the correct state. Performing such a
 check is a costly process that reduces the speed and effi-
 ciency of the overall testing procedure. By comparison,
 the fault simulation is done in the procedure that de-

 vises the overall test, but does not affect the time required
 for the actual testing.

 The fault simulation tends to be more conservative in that
 it may determine that certain tests are invalid, but in prac-

 tice they are valid because the fault that causes the veering
 off is not present. As a result we may reject good se-
 quences or subtours that can perform a valid test for a
 large collection of circuits. Nevertheless, in our empirical

 experience we observed that the tours generated never
 veered, and hence no subtour was rejected due to veering
 off.

 For the Chinese Postman heuristic, all subtours pro-
 duced in each iteration are fault simulated, so that the
 number of faults actually detected by the subtour is known

 before the best subtour is selected based on this informa-
 tion. With the Nearest Neighbor heuristic, before each

 sequence is added to the tour the sequence is fault simu-

 lated to check that it detects the fault. Any other faults it

 detects are removed from the fault list at this time. The

 Greedy Heuristic fault simulates each tour after it is con-

 structed, also using Fault Simulation for the union of the

 faults covered to check that each fault which should be

 detected by the tour is indeed detected. Also, as with the

 Nearest Neighbor approach, any additional faults that

 the tour covers are removed from the fault list.

 In the greedy heuristic we can control the length of

 the tour generated. As mentioned before, the density of de-
 tected faults-which is the average number of faults detected

 per input vector-tends to be very high initially, and even
 a short sequence of input vectors can cover a significant
 number of faults. After a test is found for a collection of

 faults, these checked faults can be removed from consider-

 ation. Thus the number of additional faults detected by

 later sequences decreases as more faults are detected and

 removed from the set, and the density goes down. For this

 reason we set for the Greedy Heuristic that initially it

 constructs tours from a small number of sequences. The

 length of the tours in terms of the number of sequences it

 contains is increasing as more tours are generated and
 more faults are detected. We chose to form the ith tour

 using i2 sequences, thus setting Ni equal to i2 in the Greedy
 Heuristic. As a result the tours produced initially, when
 the risk of veering off in the presence of almost all faults is
 high, tend to be short; whereas later on, when the number
 of remaining faults is small, we can afford to use very long

 tours without substantial risk of veering off.

 In all our heuristics it is necessary to find shortest paths
 between states in the STG. Our code employs a breadth-
 first search to find these shortest paths, as edges in the
 STG are of unit length. For very large circuits our imple-
 mentation does not enumerate the entire STG, due to
 memory and CPU time constraints. In this case paths
 found by breadth-first search are not necessarily the short-
 est ones. For all the circuits used in the current study,

 which are of small size, complete graphs were generated.
 Another issue concerns the transportation problem used

 in the CPP Heuristic for Tour Covering. To solve this
 problem, we used a capacity scaling minimum cost flow
 algorithm described by Ahuja et al. (1992). Such an algo-
 rithm, employing capacity scaling, is appropriate for our

 needs since it can efficiently handle networks in which the

 nodes have small imbalances, compared to the number
 of nodes in the graph.

 Another implementation detail involves constructing
 subtours in the Chinese Postman heuristic. If any subtour

 included in the final test does not go through the reset
 state, it is necessary either to patch this tour to another
 subtour which does pass through reset, or to link this sub-

 tour directly to the reset state. After observing that paths
 connecting a subtour to reset typically had unit length, we
 simply linked each subtour directly to reset, when reset
 was not already included in the subtour.

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 852 / ADAMS AND HOCHBAUM

 5. EMPIRICAL RESULTS

 For the empirical study we first conducted runs using all

 three heuristics on the ISCAS-89 benchmark circuits

 (Brglez et al. 1989). The results from these runs are com-

 pared with runs on the same circuits using the single-fault

 and random approaches. Initial runs using the Chinese

 Postman and Nearest Neighbor heuristics were conducted

 when just one ED-path per fault was available. Additional

 runs considering more than one excitation state and differ-

 entiation sequence per fault were also done using these

 heuristics. Results from both are presented.

 Each table includes the number of input vectors each

 heuristic used and the number of faults it covered. The

 number of testable faults in the circuit, which is the num-

 ber of faults less the number of redundant faults, is also

 given, as well as the percentage of testable faults the heu-

 ristic detected. Also included is the ratio of faults covered

 per input vector. When the random approach required

 more than 5000 input vectors, the table records 5000+

 input vectors, and the ratio is omitted. Results from the

 Chinese Postman heuristic are labeled as CP, those from

 the single-fault approach as SF, those from the random

 approach as RN, those from the Greedy Heuristic as GR,

 and those from the Nearest Neighbor heuristic as NN.

 Runs for the Chinese Postman and Nearest Neighbor heu-

 ristics that considered one ED-path are labeled as sing;

 those considering more than one are labeled as mult. The

 results of these runs are presented in Table I.

 We also experimented with combining the heuristics in a
 multiple-stage approach to test generation. These results

 are presented in Table II. First we investigated using three

 stages-one for each new heuristic-and conducted two

 sets of runs, the first set using the Greedy Heuristic in the

 first phase, the Chinese Postman heuristic in Phase II, and

 the Nearest Neighbor heuristic in the last phase. The sec-

 ond set used the Nearest Neighbor approach first, then the

 Chinese Postman, with the Greedy Heuristic last. This or-

 dering was inferior in terms of the quality of the results to

 the ordering using the Greedy Heuristic first. We also ex-

 perimented using just the Greedy and Nearest Neighbor (a

 two-stage approach) and got some better tests using this

 approach. Results from these studies are presented in the
 next three tables. NN indicates the Nearest Neighbor heu-

 ristic and CP the Chinese Postman heuristic.

 We chose to use either the Greedy or Nearest Neighbor

 heuristic in the first phase since it is important that initial

 tours do not have a large number of input vectors, as just a

 small number detect a considerable percentage of the faults.

 The Greedy Heuristic is then appropriate for the first

 phase since it constructs short initial tours. With the Near-

 est Neighbor heuristic we can limit the length of a tour,

 cutting it off after a few sequences are added, thus keeping
 it short. The rest of the faults can then be tested in another

 tour, which starts at reset. We also observed that after

 most of the faults have already been detected, the Chinese

 Postman heuristic tends to generate only one subtour that

 detects all of the remaining faults a multiple number of

 times, and therefore at high cost. For this reason we chose

 not to use the Chinese Postman heuristic in the third

 phase.

 Two sets of runs were performed with each circuit. In

 the first set, tours were constructed in Phase I until at least

 30% of the faults were detected. (A new tour was con-

 structed in entirety in Phase I if less than 30% had been

 detected at that point.) In the second set of runs, tours

 were found in Phase I until at least 40% were detected.

 When the first phase used the Greedy Heuristic, the first

 iteration alone often detected more than 40% of the faults.

 Likewise, when Nearest Neighbor was run in the first

 phase, the first vector alone often detected more than 40%
 of the faults. In this case the two sets of runs show the

 same percentage of faults detected in the first phase. For

 both sets of runs, after the Chinese Postman Heuristic

 detected 30% of the faults in the second phase, test gener-

 ation switched to the third phase. In cases where this

 would result in both runs producing the same set of tours,

 the first run switched to the third phase after detecting less
 than 30%, in order that the two runs produced different

 sets of tours. The percentage of faults actually detected by

 the Chinese Postman heuristic varied from circuit to cir-

 cuit, depending on the subtours produced.

 Next we experimented with a two-stage approach to test

 generation, using just the Greedy and Nearest Neighbor

 heuristics. The first set of runs used the Greedy Heuristic

 in the first phase, while the second set considered the

 Nearest Neighbor heuristic first. The results for the first

 ordering is presented in Table III.

 In the column showing the number of input vectors used,

 asterisks appear next to an entry when the heuristic used the

 least number of input vectors among all heuristics for this

 circuit. Likewise, asterisks appear in the column showing

 the ratio of faults covered to number of input vectors when

 this ratio was greatest among all ratios for this circuit.

 The Three-stage Approach using the Greedy Heuristic

 in the first phase gave the best results for nine of the

 thirteen circuits, the Two-stage Approach for two circuits,

 including one tie with the Three-stage Approach, and each

 pure heuristic gave the best result for one circuit: the
 Greedy Heuristic for circuit s386; the Chinese Postman

 heuristic for circuit cse; and the multiple excitation state

 Nearest Neighbor heuristic for circuit s1238. In every case,

 the heuristic with the best performance in terms of the

 number of input vectors used also had the best ratio of

 faults covered per input vector for the circuit.

 The success of the Three-stage Heuristic indicates that it

 is worthwhile to combine heuristics in a multiple-stage ap-

 proach to test generation. Such a strategy takes advantage of

 the fact that many faults are easy to detect, covering them as

 inexpensively as possible at the start. In addition it avoids

 constructing long, costly tours at the end, when most of the
 faults have already been covered, yet still applies optimiza-

 tion techniques in the second phase, setting it apart from a

 pure Nearest Neighbor or Greedy Heuristic.

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 ADAMS AND HOCHBAUM / 853

 Table I

 Comparison of Various Approaches to Testing

 No. No. Testable Testing No. Input No. Faults % Faults Faults
 Circuit Gates Faults method Vec's Cov'd Cov'd Cov'd/Vec

 s27 10 30 CP mult 25 30 100.0 1.20
 CP sing 25 30 100.0 1.20
 SF 30 29 76.7 0.97
 RN 25 30 100.0 1.20
 GR 20 30 100.0 1.50

 NN mult 15* 29 96.7 1.93
 NN sing 18 30 100.0 1.67

 s208 96 175 CP mult 193 167 95.4 0.86
 CP sing 193 167 95.4 0.86
 SF 208 165 94.3 0.79
 RN 5000+ 136 77.7 -
 GR 205 168 96.0 0.82

 NN mult 205 163 93.1 0.80
 NN sing 189 167 95.4 0.88

 s298 119 273 CP mult 363 270 98.9 0.74
 CP sing 363 270 98.9 0.74
 SF 295 265 97.1 0.90
 RN 5000+ 259 94.9 -
 GR 280 270 98.9 0.96

 NN mult 306 263 96.3 0.86
 NN sing 329 267 97.8 0.81

 sse 130 298 CP mult 441 298 100.0 0.68
 CP sing 441 298 100.0 0.68
 SF 388 298 100.0 0.77
 RN 5000+ 233 78.2
 GR 219 298 100.0 1.36

 NN mult 228 298 100.0 1.31
 NN sing 244 298 100.0 1.22

 s386 159 314 CP mult 210 314 100.0 1.50
 CP sing 210 314 100.0 1.50
 SF 289 314 100.0 1.09
 RN 5000+ 254 80.9 -
 GR 175* 314 100.0 1.79*

 NN mult 228 314 100.0 1.38
 NN sing 207 298 94.9 1.44

 s344 161 319 CP mult 106 319 100.0 3.01
 CP sing 106 319 100.0 3.01
 SF 141 319 100.0 2.26
 RN 3100 319 100.0 0.10
 GR 101 318 99.7 3.15

 NN mult 110 318 99.7 2.89
 NN sing 115 318 99.7 2.76

 s349 161 325 CP mult 106 325 100.0 3.07
 CP sing 106 325 100.0 3.07
 SF 136 325 100.0 2.39
 RN 3100 319 98.2 0.10
 GR 101 324 99.7 3.21

 NN mult 165 319 98.2 1.93
 NN sing 110 325 100.0 2.95

 cse 192 517 CP mult 280* 517 100.0 1.85*
 CP sing 280* 517 100.0 1.85*
 SF 480 517 100.0 1.08
 RN 5000+ 352 68.1 -
 GR 308 517 100.0 1.68

 NN mult 349 517 100.0 1.48
 NN sing 335 516 99.8 1.54

 Continued

 Since both the multiple-stage runs and the pure

 heuristics that were successful considered more than one

 excitation state per fault, it seems worthwhile to invest the

 computer time to locate additional excitation states and

 differentiation sequences for faults before constructing test

 sequences. Note that the random approach used more

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 854 / ADAMS AND HOCHBAUM

 Table I

 Continued

 No. No. Testable Testing No. Input No. Faults % Faults Faults
 Circuit Gates Faults method Vec's Cov'd Cov'd Cov'd/Vec

 s1238 508 1287 CP mult 623 1275 99.1 2.05
 CP sing 623 1275 99.1 2.05
 SF 809 1273 98.9 1.57
 RN 5000+ 1207 93.8
 GR 546 1277 99.2 2.34

 NN mult 404* 1273 98.9 3.15*
 NN sing 557 1276 99.1 2.29

 s1196 529 1242 CP mult 570 1233 99.3 2.16
 CP sing 570 1233 99.3 2.16
 SF 775 1228 98.9 1.58
 RN 5000+ 1172 94.4
 GR 513 1233 99.3 2.40

 NN mult 393 1228 98.9 3.12
 NN sing 505 1234 99.4 2.44

 sand 555 1330 CP mult 490 1300 97.7 2.65
 CP sing 490 1300 97.7 2.65
 SF 904 1301 97.8 1.44
 RN 5000+ 1282 96.4
 GR 467 1301 97.8 2.78

 NN mult 502 1294 97.3 2.58
 NN sing 528 1294 97.3 2.45

 planet 606 1431 CP mult 2513 1431 100.0 0.57
 CP sing 2513 1431 100.0 0.57
 SF 1548 1431 100.0 0.92
 RN 5000+ 1428 99.8
 GR 628 1431 100.0 2.28

 NN mult 563 1426 99.6 2.53
 NN sing 626 1430 99.9 2.28

 scf 959 2333 CP mult 2262 2304 98.8 1.02
 CP sing 2262 2304 98.8 1.02
 SF 2564 2304 98.8 0.90
 RN 5000+ 677 29.0
 GR 2168 2303 98.7 1.06

 NN mult 2433 2307 98.9 0.95
 NN sing 2677 2294 98.3 0.86

 than 5000 input vectors for all but three of the circuits, and

 for all but the first, very small circuit, required more vec-

 tors than any other approach.

 We observed that many states function as an excitation

 state for more than one fault, or function both as an

 excitation state for one fault and as the end state of a

 differentiation sequence for another fault. Such overlapping

 makes it possible and even convenient to continue to append

 the test for the next fault to the end of the test for the current

 fault, indicating that constructing tours detecting more than

 one fault is a worthwhile approach. The results confirm this

 observation, as our heuristics indeed show a significant im-

 provement over the single-fault approach.

 Notice that our heuristics allow the flexibility of charging

 for different transitions different costs. In particular, it may

 be of interest to allocate an additional charge to the reset

 transition.

 6. CONCLUSIONS AND FUTURE WORK

 Wc have prcsented new approaches to test generation,

 improving upon past efforts. When applied to sequential

 circuits, our heuristics construct sequences of input vectors

 that efficiently check for the presence of circuit defects.

 Further, our methods are useful in that they exploit the

 knowledge of the physical plan of the circuit, and are thus

 more applicable to circuit manufacturing environments.

 In expanding the work we plan to incorporate a new

 procedure for generating test vectors for faults at the

 third phase. The purpose is to create full coverage of all

 faults. At the start of the third phase, after our heuris-

 tics have generated tests for most of the faults, it is

 often difficult to find short tests for the remaining faults.

 We may need to include additional features in our

 heuristics in order to test for this last batch of faults

 while still maintaining low average density of vectors

 per fault. One such procedure we consider is the tech-

 nique of Product Machine Traversals reported by Cho

 et al. (1991).

 We plan to investigate further the cutoff point for

 switching between the hcuristics. A prcliminary study has

 shown that the results could be further improved by choos-

 ing the percentage of faults covered by each heuristic

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 ADAMS AND HOCHBAUM / 855

 Table II

 Three Stage Approach

 Phase I: Greedy Phase II: CP Phase III: NN Summary

 % No. % No. % No. % No.
 faults input faults input faults input faults input Faults

 Circuit cov'd vec's cov'd vec's cov'd vec's cov'd vec's cov'd/vec

 s27 33.3 3 36.7 3 30.0 9 100.0 15* 2.00*
 s27 90.0 12 10.0 6 0.0 0 100.0 18 1.67
 s208 36.6 7 30.8 14 28.6 152 96.0 173* 0.97*
 s208 80.0 51 16.0 176 0.0 0 96.0 227 0.74
 s298 57.1 13 33.0 33 7.3 195 97.4 241* 1.10*
 s298 57.1 13 29.3 13 11.0 257 97.4 283 0.94
 sse 44.6 8 55.4 520 0.0 0 100.0 528 0.56
 sse 44.6 8 16.4 9 38.9 199 99.9 216* 1.38*
 s386 40.8 7 31.2 24 27.7 188 99.7 219 1.43
 s386 40.8 7 23.2 15 35.7 199 99.7 221 1.42
 s344 83.4 29 7.2 8 9.4 80 100.0 117 2.68
 s344 83.4 29 15.0 27 1.6 10 100.0 66* 4.76*
 s349 67.4 7 31.1 40 1.2 17 99.7 64* 5.06*
 s349 83.1 29 10.5 16 6.5 61 100.0 106 3.07
 cse 65.2 57 31.5 179 3.3 72 100.0 308 1.68
 cse 65.2 57 34.8 259 0.0 0 100.0 316 1.64
 s1238 41.4 35 30.2 48 27.5 375 99.1 458 2.78
 s1238 41.4 35 30.2 48 27.5 375 99.1 458 2.78
 s1196 78.7 210 1.6 2 18.8 217 99.1 429 2.89
 s1196 78.7 210 2.5 4 18.0 215 99.2 429 2.89
 sand 32.8 13 31.6 44 32.7 418 97.1 475 2.72
 sand 62.2 61 33.7 286 2.2 88 98.1 435* 3.00*
 planet 45.0 17 10.6 11 44.2 494 99.8 522* 2.74*
 planet 45.0 17 55.0 2506 0.0 0 100.0 2523 0.57
 scf 44.4 86 31.9 87 22.6 1974 98.9 2147* 1.07*
 scf 44.4 86 31.9 87 22.6 1974 98.9 2147* 1.07*

 Table III

 Two-stage Approach

 Phase I: Greedy Phase II: NN Summary

 % faults No. input % faults No. input % faults No. input Faults
 Circuit cov'd vec's cov'd vec's cov'd vec's cov'd/vec

 s27 90.0 12 10.0 3 100.0 15* 2.00*
 s208 80.0 51 16.0 128 96.0 179 0.94
 s298 57.1 13 39.6 297 96.7 310 0.85
 sse 57.7 27 42.3 196 100.0 223 1.34
 s386 57.6 31 42.0 200 99.6 231 1.35
 s344 67.4 7 32.3 115 99.7 122 2.61
 s349 67.4 7 32.0 109 99.4 116 2.78
 cse 65.2 57 34.8 275 100.0 332 1.56
 s1238 57.2 73 42.1 396 99.3 469 2.72
 sl 196 57.8 70 41.3 320 99.1 390* 3.16*
 sand 62.2 61 36.1 448 98.3 509 2.57
 planet 61.5 40 38.3 518 99.8 558 2.56
 scf 61.6 231 37.4 2063 99.0 2294 1.01

 properly. In order to have conclusive results, the experi-

 ments will be run on very large circuits.

 After researching these ideas, we plan to apply our

 method to real size circuits and investigate modifications

 that will be particularly applicable for such circuits.

 An approach proposed but not fully investigated is the

 set covering/crew scheduling model for testing. The flexi-

 bility of crew scheduling problems in handling paths in the

 network render this model particularly attractive and

 promising for future research.

 ACKNOWLEDGMENTS

 The authors wish to thank Alexander Saldanha for impor-

 tant discussions which led to the initial development of this

 project. We also express much gratitude to Sushil Verma

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

 856 / ADAMS AND HOCHBAUM

 for his significant contribution to this project, not only in

 software development but in getting the project off the

 ground and in experimenting with new heuristics. We

 would like to thank Logic Synthesis Group at UC Berkeley

 for providing us access to SIS. Questions about SIS and its

 origin should be sent to sis@ic.eecs.berkeley.edu.

 The first author was supported by ONR, National De-

 fense Science and Engineering Graduate fellowship. The sec-

 ond author was supported in part by ONR under grant

 N00014-91-J-1241 and by the Competitive Semiconductor

 Manufacturing project by the Sloan Foundation.

 REFERENCES

 AHo, A. V., A. T. DAHBURA, D. LEE, AND M. U. UYAR. 1982.

 An Optimization Technique for Protocol Conformance

 Test Generation Based on UIO Sequences and Rural

 Chinese Postman Tours. Proc. IFIP WG 6.1 Eighth Intl.
 Symp. on Protocol Specification, Testing, and Venification.

 Atlantic City, NJ, 75-86.

 AHUJA, R. K., T. L. MAGNANTI, AND J. B. ORLIN. 1992. Net-
 work Flows: Theory, Algorithms, and Applications.

 Prentice-Hall, Englewood Cliffs, NJ.

 ANBIL, R., C. BARNHART, AND E. L. JOHNSON. 1991. A Column

 Generation Technique for the Long-Haul Crew Assign-
 ment Problem. Manuscript.

 BRGLEZ, F., D. BRYAN, AND K. KOZMINSKI. 1989. Combina-

 tional Profiles of Sequential Benchmark Circuits. Pro-

 ceedings of the International Symposium on Circuits and

 Systems, Portland, Oregon.

 CHO, H., G. HACHTEL, AND F. SOMENZI. 1991. Fast Sequential
 ATPG Based on Implicit State Enumeration. International

 Test Conference.

 EDMONDS, J. AND E. L. JOHNSON. 1973. Matching Tours and

 the Chinese Postman. Math. Programming, 5, 88-114.

 FUREDI, Z. AND R. P. KURSHAN. 1987. Minimal Length Test

 Vectors for Multiple-Fault Detection with Electron

 Beam Scanning. Manuscript.

 GAREY, M. R. AND D. S. JOHNSON. Computers and Intractabil-

 ity: A Guide to the Theory of NP-Completeness. W. H.
 Freeman and Company, New York, NY.

 GHOSH, A., S. DEVADAS, AND A. R. NEWTON. 1991. Test Gen-

 eration and Verification for Highly Sequential Circuits.

 IEEE Trans. Computer-Aided Design of Integrated Circuits

 and Systems, 10,5 652-667.

 GRIMALDI, R. P. 1989. Discrete and Combinatorial Mathemat-

 ics: An Applied Introduction. Addison-Wesley, Reading,

 MA.

 Hu, T. C. 1982. Combinatorial Algorithms. Addison-Wesley
 Publishing Company, Reading, MA.

 LAWLER, E. 1976. Combinatorial Optimization Networks and

 Matroids. Saunders College Publishing, Fort Worth, TX,
 260-261.

 LEE, D. AND M. YANNAKAKIS. 1992. Testing Finite State Ma-

 chines: Fault Detection. Manuscript.

 MANo, M. M. 1991. Digital Design. Prentice-Hall, Englewood
 Cliffs, NJ.

 PAPADIMITRIOU, C. H. AND K. STEIGLITZ. 1982. Combinatorial

 Optimization and Complexity. Prentice-Hall, Inc., Engle-
 wood Cliffs, NJ.

 PIXLEY, C., S. JEONG, AND G. HACHTEL. 1992. Exact Calcula-

 tion of Synchronization Sequences Based on Binary Deci-

 sion Diagrams. 29th ACM/IEEE Design Automation

 Conference, 620-623.
 WILLIAMS, T. W. AND K. P. PARKER. 1983. Design for Testabil-

 ity-A Survey. Proc. IEEE, 71, 98-112.

This content downloaded from 128.32.10.164 on Sat, 04 Nov 2017 22:47:38 UTC
All use subject to http://about.jstor.org/terms

	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15

	Issue Table of Contents
	Operations Research, Vol. 45, No. 6 (Nov. - Dec., 1997), pp. 789-999
	Volume Information [pp. 990-999]
	Front Matter
	In This Issue
	OR Practice
	A Tire Production Scheduling System for Bridgestone/Firestone Off-The-Road [pp. 789-796]

	OR Chronicle
	Modeling in Performance-Enhancing Processes [pp. 797-804]

	Improved Fashion Buying with Bayesian Updates [pp. 805-819]
	Balancing Retailer Inventories [pp. 820-830]
	A Branch-And-Price Algorithm for the Generalized Assignment Problem [pp. 831-841]
	A New and Fast Approach to Very Large Scale Integrated Sequential Circuit Test Generation [pp. 842-856]
	Designing a Zoned Automated Guided Vehicle System with Multiple Vehicles and Multiple Load Capacity [pp. 857-873]
	Scheduling Semiconductor Burn-In Operations to Minimize Total Flowtime [pp. 874-885]
	A Differential Game Theoretic Model for Duopolistic Competition on Design Quality [pp. 886-893]
	Cyclic Scheduling in a Stochastic Environment [pp. 894-903]
	An Inventory Problem with Two Randomly Available Suppliers [pp. 904-918]
	Dynamic Scheduling Rules for a Multiproduct Make-To-Stock Queue [pp. 919-930]
	Optimality of (s, S) Policies in Inventory Models with Markovian Demand [pp. 931-939]
	98%-Effective Lot-Sizing for Assembly Inventory Systems with Backlogging [pp. 940-951]
	Cyclic Scheduling of Identical Parts in a Robotic Cell [pp. 952-965]
	Equilibrium Threshold Strategies: The Case of Queues with Priorities [pp. 966-973]
	Lot Sizing with Randomly Graded Yields [pp. 974-986]
	Back Matter [pp. 987-989]

