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The competition for baseball play-off spots—the fabled pennant race—is one of the most
closely watched American sports traditions. While play-off race statistics, such as games back
and magic number, are informative, they are overly conservative and do not account for the
remaining schedule of games. Using optimization techniques, one can model schedule effects
explicitly and determine precisely when a team has secured a play-off spot or has been elim-
inated from contention. The RIOT Baseball Play-off RacesWeb site developed at theUniversity
of California, Berkeley, provides automatic updates of new, optimization-based play-off race
statistics each day of the major league baseball season. In developing the site, we found that
we could determine the first-place elimination status of all teams in a division using a single
linear-programming formulation, since a minimum win threshold for teams finishing in first
place applies to all teams in a division. We identified a similar (but weaker) result for the
problem of play-off elimination with wildcard teams.
(Recreation and sports)

F ans of professional sports teams have an insatiable
desire for information about the performance of

their favorite teams. Fans of major league baseball
(MLB) in the United States are particularly concerned
about their teams’ prospects for reaching the postsea-
son play-offs: the fabled pennant race. Fans check
newspapers and Web sites daily for updates on team
progress (or lack thereof!).

As the end of the season nears, teams trailing the
current division leader may become mathematically
eliminated from first place; such teams have no chance
of finishing first in their division, even if they were to
win all of their remaining games. The Elias Sports Bu-
reau, the official statistician for MLB, determines

This paper was refereed.

whether a particular team is eliminated using a simple
criterion: if a team trails the first-place team in wins by
more games than it has remaining, it is eliminated.
That the San Francisco Giants had suffered this unde-
sirable fate was announced on September 10, 1996 in
the San Francisco Chronicle (Gay 1996); the Giants had
59 wins with 20 games left to play, while the first-place
San Diego Padres had already won 80 games. The Gi-
ants, however, had actually been eliminated two days
earlier: we had announced the news of their demise on
September 8 on our Web site (Table 1).

The optimization community has long known that
the Elias criterion is sufficient to eliminate teams from
first place but not necessary (Schwartz 1966). The prob-
lem is that the criterion ignores the schedule of re-
maining games. Continuing the Giants example, Los
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National League West

Clinch
Avoid
Elim

Team Wins Losses Games Back Games Left 1st Play 1st Play

Los Angeles 78 63 — 21 17 17 4 1
San Diego 78 65 1 19 17 17 4 0
Colorado 71 71 7.5 20 * * 11 7
San Francisco 59 81 18.5 22 * * Elim 19

Table 1: The RIOT Baseball Play-off Races Web site declared the San
Francisco Giants eliminated from first place on September 8, 1996, two
days before an announcement was made in the newspaper. Since San
Francisco has 22 games remaining and trails Los Angeles by only 18.5
games, it is not readily apparent from the traditional statistics that the
team is eliminated.

Angeles and San Diego were scheduled to play each
other seven more times after September 8. Since there
are no ties in baseball, one of these teams would win
at least four of these games and finish with a record of
82-80, or better. Thus, the Giants were eliminated at
this point, since they could finish with at most 81 wins.
By using simple optimization techniques, one can
model schedule effects explicitly to determine when
teams are truly mathematically eliminated.

First-place elimination is not the fans’ only interest.
In baseball, teams may also reach the play-offs by se-
curing a wild-card berth; the team that finishes with the
best record among second-place teams in the league is
assigned this berth. Thus, wild-card elimination is also
important to track. In addition, teams not yet elimi-
nated may be perilously close; a measure of closeness
to first-place or wild-card elimination would be useful.
Conversely, fans of teams that are performing well
would like to know if their teams have clinched first
place or a wild-card berth. A clinch is a guarantee; once
a team has clinched first place, for example, it could
lose all of its remaining games and still finish in first.

We developed a Web site to provide optimization-
based MLB play-off race statistics to the general public
so that fans can sort out the play-off picture with more
precise information. The Berkeley Baseball Play-off
Races site, a component of the Remote Interactive Op-
timization Testbed (RIOT), is up and running during
the baseball season (April through October) at �http:
//riot.ieor.berkeley.edu/�baseball�. The site provides
daily updates of elimination and clinch statistics.

Although baseball fans find the site informative and
entertaining, we also designed it to achieve an educa-
tional goal. Sports elimination problems are useful for
teaching basic ideas in optimization; they are covered
in textbooks by Schrage (1984) and Ahuja et al. (1993).
Robinson (1991) argues that many students relate to the
problem subject intuitively and find the results inter-
esting. We agree and furthermore suggest that the In-
ternet is an ideal place to present the problem and
broadcast results to attract the interest of both students
and those who might otherwise never be exposed to
optimization concepts. The RIOT site provides links to
other Web sites with an educational component, such
as the Network Enabled Optimization System (NEOS)
project sponsored by Argonne National Laboratory and
Northwestern University. The NEOS optimization
guide �http://www-fp.mcs.anl.gov/otc/guide/� con-
tains interactive case studies demonstrating the appli-
cation of OR models to general-interest problems, such
as portfolio optimization and the diet problem. RIOT
also links to Michael Trick’s OR page �http:
//mat.gsia.cmu.edu�, which serves as a portal for OR
on the web and contains an up-to-date and comprehen-
sive list of interactive, educational Web sites �http:
//mat.gsia.cmu.edu/program.html�.

Problem Description
Because many readers may not be aficionados of
America’s national pastime, we will begin by describ-
ing the current major league baseball play-off struc-
ture. MLB teams are partitioned into two leagues,
American and National. Each league is further subdi-
vided into three divisions. Each team in each league
plays a regular season schedule of 162 games to deter-
mine the teams that will advance to the play-off
rounds. Four teams from each of the two leagues make
the play-offs: the three teams that finish with the best
records in their respective divisions, and a fourth team
(the wild-card) that has the best record among all sec-
ond place teams in the league. Ties in the final stand-
ings for a play-off spot are settled by special one-game
playoffs. Each league then conducts a tournamentwith
its four invited play-off teams to determine its pennant
winner. Finally, the American and National League
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Team Wins Losses Games Back Games Left

New York 75 59 — 28
Baltimore 71 63 4 28
Boston 69 66 6.5 27
Toronto 63 72 12.5 27
Detroit 49 86 26.5 27

Table 2: Can the Detroit Tigers win the pennant? By examining these
standings, it appears that Detroit has a (remote) chance of catching New
York, since they have 26 fewer wins but 27 games remaining. In fact,
Detroit is mathematically eliminated from first; can you prove it using the
data in Table 3?

Team Wins Losses Games Back

Detroit 76 86 —
Boston 76 86 —
New York 76 86 —
Baltimore ? ? ?
Toronto ? ? ?

Table 4: First, suppose Detroit were to win each of its 27 remaining
games. Now, suppose New York were to win a single future game against
Boston but were to lose all of its other remaining games. In this case,
Boston would win at least seven future games (against New York). If Bos-
ton were to lose the rest of its remaining games, it would finish tied with
New York and Detroit with 76 wins. But what about Baltimore and Toronto?

Opponents Games Remaining

Baltimore vs. Boston 2
Baltimore vs. New York 3
Baltimore vs. Toronto 7
Boston vs. New York 8
Boston vs. Toronto 0
New York vs. Toronto 7

Table 3: Using the remaining schedule of games given here and the stand-
ings in Table 2, it is possible to show that Detroit cannot finish with as
many wins as New York under any scenario. Thus, Detroit has been elim-
inated from first place.

pennant winners play in the World Series for the MLB
championship.

Now consider a particular team, say the Boston Red
Sox, at some point during the regular season. Given
the current win-loss records of all teams and the re-
maining schedule of games, are the Red Sox eliminated
from finishing in a play-off position, and if not, how
close are they to elimination? If the Red Sox have not
been eliminated, have they clinched a play-off spot?
And if they have not, how close are they to clinching?

Elimination Questions
The official MLB method for determining first-place
elimination for a division is somewhat naive, and often
teams may be eliminated earlier than the official dec-
laration. In the Giants example presented earlier, prov-
ing elimination was simple by inspection, but it can be
much more difficult. As an example, consider the case
of the Detroit Tigers on August 30, 1996. If we examine
the standings in the American League East division
after the completion of play that night (Table 2), it ap-
pears that Detroit has a remote chance of catching the
first-place New York Yankees since they have 27
games remaining and trail New York by only 26 wins.
It is possible, however, to show that Detroit is in fact
mathematically eliminated from first place using some
simple information regarding the remaining schedule
of games between teams in the division. Using the re-
maining games information (Table 3), the inspired
reader should try the elimination proof as an exercise;
the following paragraphs detail the proof.

To prove that Detroit is eliminated, we can show that
it is impossible to construct a scenario in which Detroit

would win its division. If Detroit won all of its re-
maining games, it would finish with a record of 76
wins and 86 losses. If New York won just two more
games, it would finish with 77 wins and 85 losses and
therefore ahead of Detroit. Thus, we now analyze sce-
narios in which New York wins one or no remaining
games. First, suppose that New York fails to win an-
other game. Since Boston has eight games remaining
against New York, Boston would finish with at least
77 wins in this scenario (69 � 8), and it would finish
ahead of Detroit. Thus, for Detroit to have any chance
of finishing first, New York would have to win exactly
one of its eight games with Boston and lose all of its
other games. In addition, Boston would have to lose
all of the games it plays against teams other than New
York. This would create a three-way tie for first place
(Table 4).

Now consider Baltimore and Toronto. Baltimore has
two games remaining with Boston and three withNew
York and therefore would finish with at least 76 wins
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in our scenario. Thus, Detroit could finish in a first
place tie only if Baltimore were to lose all of its re-
maining games to teams other thanNewYork and Bos-
ton. Unfortunately for Detroit, Toronto has seven
games remaining with Baltimore and seven remaining
with New York. According to the above logic, Toronto
would have to win these 14 games in any scenario in
which Detroit finishes in first place. However, if To-
ronto were to win 14 additional games, it would finish
with a record of at worst 77 wins and 85 losses and
therefore ahead of Detroit. Therefore, Detroit is math-
ematically eliminated from first place.

Clearly, constructing such elimination proofs by
hand can be a tedious endeavor. Fortunately, optimi-
zation methods can help. Researchers have previously
addressed the problem of first-place elimination.
Schwartz (1966) showed that a maximum-flow calcu-
lation on a small network can determine precisely

Fans have an insatiable desire for
information about their favorite
teams.

when a team has been necessarily eliminated from first
place. Robinson (1991) showed that such an optimi-
zation approach would have eliminated teams an av-
erage of three days earlier than the wins-based crite-
rion during the 1987 season. Hoffman and Rivlin
(1970) extended Schwartz’s work, developing neces-
sary and sufficient conditions for eliminating a team
from kth place. McCormick (1987, 1999) in turn showed
that determining elimination from kth place is NP-
complete. Gusfield et al. (1987) showed that determin-
ing when a team is eliminated from first place can be
solved as a maximum-flow problem on a bipartite net-
work. Gusfield andMartel (1992) showed that themin-
imum number of games a given team must win to
avoid elimination from first place can be found by
solving a parametric maximum-flow problem. By ex-
tending a result of Gallo et al. (1989) and using a binary
search procedure, Gusfield and Martel proved a run-
ning time of O(n3 � n2log(nD)), where n is the number
of teams and D the number of games the team of
interest has left to play, for finding this number.
McCormick (1999) improved the time bound for solv-
ing this parametric maximum flow problem to O(n3).

Determining whether or not a team is eliminated
from first place is only half of the story, since elimi-
nated teams might still make the play-offs in the wild-
card berth. Little research has focused on play-off elim-
ination with wild-card teams, partially since prior to
the 1994 season only the division winners advanced to
the baseball play-offs. Robinson (1991) briefly dis-
cussed the complications introduced by wild-card
berths in the context of applying his baseball elimina-
tion model to the National Football League (NFL) but
did not provide a formulation.

For the Baseball Play-off Races Web site, we decided
that the most interesting elimination information for
fans would be statistics that provide a measure of how
close each team is to elimination, similar to those pro-
posed by Gusfield and Martel (1992). Therefore, we
define a team’s first-place elimination number to be the
minimum number of remaining games that the team
must win to have any chance of finishing in first place
in its division. As a team’s first-place elimination num-
ber approaches the number of games it has remaining,
elimination becomes imminent. In addition, we define
a team’s play-off elimination number to be the mini-
mum number of games the teammust win to have any
chance of earning a play-off spot, whether as a division
winner or as the wild-card team.

Clinch Questions
Fans of the teams performing well during the regular
season have a very different concern: they want to
know when their team has clinched first place or a
wild-card playoff spot. Currently, the media usemagic
numbers to determine first-place clinches. Assume that
the teams in a division are ranked in order of increas-
ing losses, and suppose the first-place team has l1
losses and g1 games remaining, and the second-place
team has l2 losses. The magic number, l, is given by g1
� (l2 � l1). Any combination of wins by the first-place
team and losses by the second-place team totaling l

guarantees the first-place team at least a tie for the top
spot in the division. When the first-place team’s magic
number drops to zero, the team has clinched first.

Unlike the case with elimination, the schedule of re-
maining games has little effect (mathematically) on a
team’s ability to clinch first place. However, although
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National League East

Games Percen- Games
Clinch

Avoid
Elim

Wins Losses Back tage Left 1st Play 1st Play

Atlanta 86 55 — 0.610 21 13 9 0 0
Montreal 78 63 8 0.553 21 21 17 8 0
Florida 69 74 18 0.483 19 * * 17 9
New York 62 80 24.5 0.437 20 * * Elim 16
Philadelphia 58 85 29 0.406 19 * * Elim Elim

Table 5: In this sample standings report from the Baseball Play-off Races
Web site, the first five columns contain traditional standings information:
wins, losses, games back, winning percentage, and games left to play.
The two “Clinch” columns provide each team’s current first-place and
play-off clinch numbers, while the two “Avoid Elim” columns provide the
elimination numbers. An asterisk for a clinch number indicates that a
clinch is not currently possible, even if the team were to win all of its
remaining games. If a team had already clinched first or a play-off spot,
it would be labeled “In.” While New York and Philadelphia are mathe-
matically eliminated from finishing first, New York has a remote chance
of securing a wild-card berth (by winning 16 of the remaining 20 games).
Also, if Montreal were to win its remaining 21 games, it would clinch at
least a tie for first place.

magic numbers give necessary and sufficient condi-
tions for clinching, they do not specify the minimum
number of future wins necessary for a team to clinch
first place independent of other teams’ performance,
and they are typically reported only for teams in first
place. To address these drawbacks, we define the first-
place clinch number for each team to be the minimum
number of games which, if won, guarantees that the
team finishes in at least a tie for first place. Similarly,
we define the play-off clinch number for each team to
be theminimumnumber of gameswhich, if won, guar-
antees that team a position in the play-offs, either as
the division winner or as the wild-card team.

The Baseball Play-off Races Web Site
The baseball Web site is a component of the Berkeley
RIOT Internet project, an on-line collection developed
and maintained by the Industrial Engineering and
Operations Research Department and the Haas School
of Business at the University of California, Berkeley.
The primary focus of the RIOT project has been to pro-
vide educational information about industrial engi-
neering and operations research and to promote
interest in the field via Web pages and easy-to-use,
interactive Java applets. Each RIOT component appli-
cation includes pages describing the details of the un-
derlying optimization models and algorithms used in
the problem solution; once visitors have played with
the application and discovered its utility, they can
learn about the methods used to produce the results.

To provide the most up-to-date information to fans,
we designed the Baseball Play-off Races Web site to be
updated each night during the baseball season. Cre-
ating the site required two primary development
activities. First, we generated a set of mathematical
models for calculating the new play-off statistics (Ap-
pendix). Second, we developed a software system that
employs the models to produce automated nightly up-
dates of the Web site. The system is scheduled to run
in the early morning hours, creating and posting an
updated HTML standings report (Table 5). The stand-
ings report is similar to those provided by newspaper
sports sections, with teams grouped by league and di-
vision and sorted by win-loss record. In addition to the
information traditionally reported, the report displays

each team’s two elimination numbers and two clinch
numbers.

The software system that generates the standings re-
ports operates as follows. Since the calculations require
the current win-loss records of each team and the re-
maining number of games between teams, the system
maintains a simple database that is updated using the
results of the previous day’s games. A free Internet
news service called Infobeat �www.infobeat.com� au-
tomatically sends the system an e-mail message each
night containing the final scores of all MLB games. The
first component of the system initiates the update pro-
cess by automatically reading and processing this
e-mail message, updating the team win-loss records
and games remaining in the database. Next, a program
uses the database to generate text files containing the
mathematical optimization models that allow calcula-
tion of the elimination and clinch numbers. The system
then solves the necessary models using the CPLEX op-
timization package �www.cplex.com� and processes
the results to determine each team’s current numbers.
Finally, a page-updating program uses the updated
numbers and generates new standings reports in the
HTML format required by WWW browser programs
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(for example, Netscape Communicator and Microsoft
Internet Explorer). The process usually runs seam-
lessly without human intervention. Occasionally, how-
ever, the e-mail message containing game results does
not arrive as expected, and we must initiate the update
process manually. We implemented the software sys-
tem on a Sun Microsystems SPARCstation 20, and it
typically completes its various tasks in about 10
minutes.

The bulk of the update software is written in the Perl
programming language. Perl is specifically designed
for writing Unix script programs, and it is particularly
well suited for string manipulation. The update pro-
cedure requires parsing multiple text input files (such
as the nightly e-mail message containing baseball
scores and CPLEX output files), manipulating and
combining text strings, and then writing out new text
files (such as input files for CPLEX or the updated
standings reports). These types of operations are gen-
erally much easier to code in Perl than in such lan-
guages as C or C��.

We began work on the site while the 1996 season
was in progress, and one of the more challenging parts
of the project turned out to be determining the number
of games remaining between each pair of teams. Al-
though a wealth of MLB data is available on the Web,
we had difficulty obtaining the necessary information
in a readily usable format. For our purposes, wewould
have liked a table or matrix giving the number of
games left between pairs of teams. The most common
format for this type of information, however, is an ac-
tual schedule of games that lists the games to be played
each day of the season. To find out how many games
were left between, say, the Boston Red Sox and New
York Yankees, we had to parse the list and count the
number of remaining scheduled games between the
teams; we easily automated this task. Since the sched-
ules we found on the Web contained inaccuracies, and
since different sources handled canceled and sus-
pended games in different ways, producing a correct
schedule of remaining games became an unexpectedly
difficult chore. Eventually, however, we produced an
accurate schedule. For the 1997 to 2002 seasons, gen-
erating schedules was much simpler because all of our
software was ready before the start of the season.

Two new teams, the Arizona Diamondbacks and

Tampa Bay Devil Rays, joined the major leagues in
1998. To accommodate these teams, the Milwaukee
Brewers switched from the American to the National
League and the Detroit Tigers moved from the Amer-
ican League East to the American League Central Di-
vision. While we easily adapted our system to these
changes, we may have to make more significant ad-
aptations if the play-off structure of MLB is altered.
One possibility is that two additional teams will join
MLB in the next two years and teams will be realigned
into two leagues with two eight-team divisions. If this
occurs, a second wild-card team from each league will
probably be added to the play-offs, and we will need
to develop new mathematical formulations for wild-
card elimination and clinching.

Since the RIOT Baseball Play-off Races site went on-
line during the 1996 season, it has been popular with
Web surfers. As soon as the site was listed in several
Internet directories, baseball fans started visiting the
pages. During September, when the pennant race is
most heated, the pages attract 100 to 200 hits each day.
As further testament to its popularity, the site was fea-
tured on a 1996 broadcast of the public radio program
Beyond Computers.

Mathematical Models for
Elimination and Clinching
At the core of the automated system that we developed
for updating theWeb site are the mathematical models
used for calculating the elimination and clinch num-
bers (Appendix).

When we first planned the site, our initial idea was
to simply calculate and provide first-place elimination
numbers for each team inMLB. Our initial formulation
was based on the parametric maximum flow formu-
lation given by McCormick (1999), which is an exten-
sion of the original formulation of Schwartz (1966). Us-
ing this modeling methodology, we created a separate
flow formulation for each team to determine its first-
place elimination number. To solve the instances, we
decided to translate the flow formulation into a cor-
responding integer linear program. Since we had ac-
cess to a fast, efficient IP solver in CPLEX and since the
translation resulted in small problems, it was much
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easier for us to work with an integer programming
formulation from an implementation standpoint.

After we had the models running using real MLB
data, we noticed an interesting property in our stand-
ings reports. Adding together the first-place elimina-
tion number and the current win total for any team in
a specific division k on a given date yielded a constant,
vk. Thus, we suspected that elimination numbers could
be calculated using a single formulation to determine
vk for each division, instead of utilizing a separate for-
mulation for each team. We were able to prove this
suspicion and, in addition, to show that the formula-
tions can be solved using linear programming (Appen-
dix). As a result, we calculate first-place elimination
numbers for each team in MLB by solving six small
linear programs, one for each division.

Our experimentation with the integer and linear
programs for first-place elimination led us naturally to
consider the problem of play-off elimination with
wild-card teams. Again, we began by considering a
formulation for each team separately. The primary
idea in first-place elimination models is to allocate
wins of remaining games among teams feasibly to cre-
ate an end-of-season scenario in which the team under
consideration attains at least a tie for first and finishes
with as few wins as possible. It was not too difficult to
extend this idea to the play-off elimination setting. In
this case, the idea is to create a feasible end-of-season
scenario in which the team under consideration fin-
ishes either in first place or with the best record among
all second place teams in its league. We again postu-
lated that there might exist some threshold vL that
would allow us to compute the play-off elimination
numbers for all teams in the league by solving a single
formulation. Although this was not the case, we were
able to develop a similar but weaker result that allows
us to compute the numbers by solving at most k � 1
small integer programs for each league. For MLB,
therefore, we need to solve at most eight instances
(Appendix).

At this point, it seemed natural to address clinching
problems with a similar mathematical-programming
approach. To determine clinch numbers, we decided
initially to use models that are in some sense reversed.
For example, to determine a specific team’s first-place
clinch number, we formulated an integer program that

allocated wins to create a feasible end-of-season sce-
nario in which the team maximizes its remaining wins
without finishing in first. We then find the clinch num-
ber by simply adding one to the maximized remaining
wins. We developed a similar formulation for play-off
clinching. After some reflection, however, we realized
that solving a formal integer optimization model was
not necessary to determine the first-place clinch num-
bers (Appendix).

Conclusions
The Baseball Play-off Races Web site broadcasts im-
proved, optimization-based statistics to fans daily,
providing information more precise than that found
elsewhere. Using the Internet as a public forum, we are
able to disseminate the improved information without
relying on traditional media to accept the ideas and
modify the information they normally provide to fans.
Furthermore, the site provides detailed information
about how the calculations are performed, including
an on-line copy of this paper for interested individuals.
In this way, the pages fulfill one of the goals of the
RIOTWeb site: to educate members of the on-line com-
munity about various optimization techniques
through the use of interesting real-world problems.

The Internet can be thought of as a large, distributed,
public-use database. Optimization models can be used
to add value to data: by converting unwieldy amounts
of data into a usable form, such as an optimal decision
or an interesting statistic, they increase the value of the
data. As more and more data becomes available on-
line, the potential for more meaningful value-adding
activity only increases. On the RIOT site, we have be-
gun to explore this avenue further with the develop-
ment of an on-line investment-portfolio-designsystem.
Using a database that automatically tracks the daily
closing prices of nearly 100 stocks, the system allows
users to solve a portfolio-optimization model. Both the
baseball and portfolio systems should give both re-
searchers and practitioners a glimpse at the types of
opportunities that exist to use operations research to
increase the value of online data.
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Appendix: Mathematics of Elimination and
Clinching
We describe the mathematical details behind the models developed
for the Baseball Play-off Races site. Importantly, we show how a
single linear program can be used to determine first-place elimina-
tion numbers for all teams in a single division. We then show that
play-off elimination numbers for a league with k divisions can be
determined by solving at most k � 1 small mixed-integer programs.
Next, we develop a simple arithmetic calculation for determining
first-place clinch numbers. Finally, we present a mixed-integer pro-
gramming model that can be used to calculate a single team’s play-
off clinch number.

Notation and Assumptions
Let L be the set of teams in a league (for example, the American
League) and suppose L is partitioned into a number of divisions. Let
Dk be the set of teams in division k (for example, k could be the
American League East) where �k Dk � L. For each team i in division
k, let wi be its number of current wins, gij the number of games re-
maining against team j (note that gii � 0), and ti the number of games
remaining against nondivision opponents (that is, ti � �j�L\Dk gij).
Finally, let Wi be the total number of wins attained by team i by
season’s end in some scenario.

In the models that follow, we assume that each team must play
out its entire schedule of games (consistent with MLB rules) and that
each game has a winner. In addition, we assume that finishing in a
tie in the final standings with another team(s) is sufficient to secure
a play-off spot; MLB typically resolves such ties with special one-
game play-offs.

First-Place Elimination
Now consider a single division of teams on a given day during the
season. Define the first-place-elimination problem (FEP) as follows:
given the current win-loss records of each team and the remaining
schedule of games, determine the first-place-elimination number for
each team, as previously defined. The single-team parametric
maximum-flow formulation in Gusfield and Martel (1992) could be
employed to solve (FEP) by creating and solving an appropriate in-
stance for each team. This is unnecessary, however, since we now
show that there exists for each division a first-place-elimination
threshold, the minimum number of wins at season-end necessary
and sufficient for any team to finish in first, and that this threshold
may be found by solving a single linear program. Given the thresh-
old, the first-place-elimination number for each team in the division
is simply the difference between the threshold and the team’s current
number of wins. Notably, Wayne (2001) concurrently proves the ex-
istence of a first-place-elimination threshold using a maximum-flow
formulation.

First, consider the followingminimax-type integer linear program
for determining the first-place-elimination threshold for division k.

Let vk be the decision variable representing the threshold. Further,
let xij represent the number of future games team i�Dkwins against
team j � Dk; let x denote a complete scenario of future wins, x � {xij
| i, j � Dk}. The following model allocates wins to teams in order to
minimize the number of wins attained by the division winner by
season end:

(P1) First-Place-Elimination Threshold Integer Formulation
min vk
subject to

x � x � g ∀ i, j � D , i � j, (1)ij ji ij k

v � w � x ∀ i � D , (2)k i � ij k
j�Dk

x � 0 ∀i, j � D , i � j, (3)ij k

v integer, (4)k

x integer ∀ i, j � D , i � j (5)ij k

Constraints (1) ensure that the allocation of wins accounts for all
of the remaining games between each pair of teams in the division.
Constraints (2), in conjunction with the objective function, force vk
to be the minimum number of wins attained by a division-winning
team at the end of the season. Games played against teams outside
the division are ignored; to find the minimum number of wins nec-
essary to win a division, it is only necessary to consider scenarios in
which the teams in division k lose all remaining games against non-
division opponents.

Now suppose that the optimal objective value of (P1) is v̄k. We
claim that v̄k is the first-place-elimination threshold for division k.
First, it is clear from the formulation that in the optimal solution at
least one team will win exactly v̄k games. Thus, no team winning
fewer than v̄k games can finish atop the division. To complete the
proof, it can be shown that a final standings scenario can always be
constructed in which any team l � Dk that can attain at least v̄k wins
by season end (that is, wl � tl � glj � v̄k) can win the division�j�Dk

with exactly v̄k wins. To do so, consider the optimal allocation of
future wins, x̄, in the solution to (P1) and let v̄l � wl � x̄lk. If�j�Dk

v̄l � tl � v̄k, a division-winning scenario for l can be attained by
increasing (if necessary) its number of nondivision wins such that l
wins exactly v̄k total games. It is also simple to construct a scenario
in the alternative case when v̄l � tl � v̄k, but the allocation x̄ must
change. In this case, it is assumed that l wins all of its nondivision
games and an additional v̄k � v̄l � tl division games. This reallo-
cation of division wins to l, of course, can only lower the standings
of its foes, and thus team l wins the division with v̄k wins.

Armed with the first-place-elimination threshold, we can deter-
mine the elimination status of each team in division k. First, team i
� Dk is eliminated from first-place contention if and only if wi � ti
� gij � v̄k. Since the left-hand side of the inequality is the�j�Dk

maximum number of wins attainable by team i and the right-hand
side is the threshold, this condition is clear. Furthermore, if team i
is not eliminated, its first-place-elimination number is v̄k � wi, the
minimum number of future wins team i needs to reach the threshold.
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Solving First-Place Elimination via Linear Programming
The integer formulation (P1) can be simplified to determine v̄k using
linear programming. Consider the constraint coefficient matrix of
(P1), which we denoteA. Ignoring the column corresponding to vari-
able vk, it is easy to see that the remaining submatrix, A� is totally
unimodular, since A� represents the node-edge incidence matrix of
an undirected bipartite graph (see, for example, Nemhauser and
Wolsey 1988). Since the right-hand side of the constraint system is
integer, the total unimodularity of A� guarantees that for every fixed
integer vk (including v̄k), a corresponding integer basic solution x
exists if the system is feasible. Thus, constraints (5) in (P1) can be
ignored without affecting the optimal objective, v̄k. The resulting for-
mulation contains only one integer variable, vk, and its optimal ob-
jective function value can be determined by solving the linear relax-
ation obtained by ignoring constraint (4), and then rounding the
resulting solution v̂k up to the nearest integer. Therefore v̄k � v̂k.

Play-off Elimination
Elimination from the play-offs occurs only when a team has no
chance of either (1) finishing in first place in its division or (2) fin-
ishing with the best record among all second-place teams in its
league (thus earning the wild-card berth). A scenario can arise in
which a team is eliminated from the wild card but not eliminated
from first place in its division. This may happen, for example, if the
teams with the two best records in a league play in the same division.
In this case, a team from a weaker division may be able to reach the
play-offs only by finishing first in its division. We define the play-
off-elimination problem (PEP) as follows: given the current win-loss
records of each team and the remaining schedule of games, deter-
mine the play-off-elimination number for each team, as previously
defined.

The PEP is inherently more difficult than the FEP. For each team,
the problem to be solved is similar to the problem of elimination
from lth place in a division, which McCormick (1987) showed to be
NP-complete. From a practical standpoint, play-off-elimination for-
mulations must also be slightly larger than first-place-elimination
models, since the remaining games between all teams in a league
must be considered. It is a straightforward task to formulate an in-
teger program to determine a single team’s play-off-elimination
number; solving an appropriate instance for each team would solve
PEP. In the spirit of the previous section, however, we attempt to
avoid solving a separate instance for each team unnecessarily.

We now show that the play-off-elimination numbers for each
team in a league L with k divisions can be computed by solving at
most k � 1 small mixed-integer programs. The first model (P2) is
used to compute a wild-card-elimination threshold that applies to
most teams in L. Similar to the first-place-elimination threshold, the
wild-card threshold is the minimum number of wins necessary for
any team finishing in a play-off spot at the end of the season. The
sufficiency of the threshold, however, applies only to a certain subset
of teams; at most one team from each division may require more
wins than the wild-card threshold to finish in a play-off position.
We explore these ideas below.

First, consider the following integer-programming formulation
for determining a wild-card threshold:

(P2) Wild-Card-Elimination-Threshold Integer Formulation
min u
subject to

x � x � g ∀ i, j � L, i � j, (6)ij ji ij

ku � w � x � M� ∀ k � {1, 2, 3}, i � D , (7)i � ij i k
j�L

k� � 1 ∀ k � {1, 2, 3}, (8)� i
i�Dk

x � 0 ∀ i, j � L, (9)ij

x integer ∀ i, j � L, (10)ij

u integer, (11)

k� binary ∀ k � {1, 2, 3}, i � D , (12)i k

whereM is a large integer (specifically, for example, greater than the
number of games in a season, 162) and for illustrative purposes, we
assume that league L has three divisions. This minimax model at-
tempts to allocate future wins among all teams in L such that u is at
least as large as the number of wins attained by all teams except
possibly one team from each of the three divisions; thus, the optimal
objective ū is the minimum number of wins necessary to be a play-
off team.

In the optimal solution to (P2), let F be the set of exception teams
finishing with more than ū wins; that is, wf � �j�L x̄fj � ū ∀ f � F.
The formulation guarantees that there can be at most one exception
team fk from each division Dk. We now show that teams in L\F that
can attain ū wins by season’s end can always finish in a play-off
position, either as a division winner or as the wild-card team. Again,
we employ a scenario-construction technique for the proof given the
optimal win allocation x̄ from (P2).

Consider team l � L\F, where wl � �j�Lglj � ū. Since l can attain
at least ū wins, it is always possible to construct an x̂ in which wl �
�j�L x̂lj � ū by a process similar to the one described in the previous
section. Again, we initialize x̂ � x̄ and then increase x̂lj (up to glj) for
some opponents j and correspondingly decrease x̂jl until team l has
exactly ū wins, that is, wl � �j�L x̂lj � ū. The resulting end-of-season
win scenario is:

w � x̂ ∀ i � L, i � l,i � ij
j�LW � (13)i �w � x̂ � ū i � l.l � lj
j�L

Team l makes the play-offs in this scenario with ū wins, since ū �

wi � �j�L x̄ij � wi � �j�L x̂ij for all i � L\F, where the first inequality
holds from the formulation and the second from the construction of
x̂. Thus, l necessarily finishes with at least as many wins as all teams
except possibly the division leaders. Team l may actually win its
division in this new scenario, since the wins of the division leader
given by x̄may be decreased to ū or fewer wins during the construc-
tion of x̂.

The exception teams in F may not be able to finish in a play-off
spot by winning only ū games. In the optimal solution to (P2), it is
possible that wf � �j�L x̄fj � ū for f � F; therefore, we would need
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to decrease f’s win total to find a scenario in which f makes the play-
offs with exactly ū wins. Decreasing the wins of team f requires in-
creasing other teams’ wins, which may create a scenario in which f
does not finish in a play-off position. Thus, there may be no scenario
in which fmakes the play-offs with ūwins. To address this problem,
we propose solving an additional integer program for each exception
team fk. This model, denoted (P2fk) is identical to (P2), with the ad-
ditional constraint:

k� � 0, (14)fk

which guarantees that team fk is not an exception team and therefore
no longer finishes with more wins than the optimal objective func-
tion value ūk.

We can now determine play-off-elimination numbers for each
team. For i � Dk \ F, the play-off-elimination number is min{v̄k, ū}
� wi. For each exception team fk � F, the number is min{v̄k, ūk} �

Since a team is not eliminated from the play-offs if it is not elim-w .fk
inated from first place, the elimination number is the minimum of
the first-place-elimination threshold and the wild-card-elimination
threshold minus the team’s current win total. Again, if the play-off-
elimination number for a team is greater than its number of remain-
ing games, it is eliminated from the play-offs.

By an argument similar to that made in the previous section, con-
straint (10) is unnecessary in formulation (P2) (and (P2fk)). To gen-
erate play-off-elimination numbers for each team, the RIOT system
first solves two integer linear formulations of type (P2), one for both
the American and National Leagues. Then, the exception teams from
each division are identified, and formulations of type (P2fk) are
solved for each. Thus, play-off-elimination numbers for all MLB
teams are created by solving at most eight small integer linear pro-
grams. As a final note, in the models presented here, we assume that
first-place thresholds are calculated separately before calculation of
the play-off-elimination numbers. It is possible alternatively tomod-
ify formulations (P2) and (P2fk) to calculate min{v̄k, ū} and min {v̄k,
ūk} directly; we omit the details.

First-Place Clinch
Finally, we briefly address clinching problems. First, we consider the
problem of determining a team’s first-place clinch number on a given
day during the season. For a team i � Dk to clinch first, it must win
enough remaining games to guarantee that it finishes with a record
at least as good as all other teams in its division. However, nothing
prevents any other team from winning all of its remaining games
except perhaps games against team i. Thus, first-place clinch num-
bers can be calculated easily without using optimization, as we now
describe.

Let gj be the total number of remaining games for each team j �

Dk, gj � tj � gjl. The first-place clinch number for team i, hi,�l�D \{j}j

can now be determined via the following arithmetic calculations:

1
h � min (w � g � w � (g � g )), w � g � wij j j i i ij j j i� �2

∀ j � D \ {i} (15)k

h �  max h . (16)i ij
j�D \{i}k

The definition of hi guarantees that if team iwere to win hi games,
it would finish with a record at least as good as all of its division
rivals. If hi � 0, team i has already clinched first place. Alternatively,
if hi � gi, there is no way for team i to currently guarantee at least a
first-place tie with all teams.

To briefly justify the above definition, let fi be the number of fu-
ture games won by team i. To guarantee a tie with some other team
j, it is clearly sufficient for i to win fi � wj � gj � wi future games.
However, since i has gij future games with j, imay need to win fewer
games. Consider the worst case for team i. If fi � gi � gij, we assume
that each future win by team i comes against teams other than team
j. However, if fi � gi � gij, then in the worst case for team i, exactly
fi � (gi � gij) of its future wins must come against team j, resulting
in the same number of losses for j. Thus, each win for i beyond gi �
gij effectively counts as two wins, justifying the expression for hij.

Play-off Clinch
Determining the number of future wins needed to clinch a play-off
spot is more complicated. We model this problem with a mixed-
integer linear-programming formulation for each team similar to the
play-off-eliminationmodels presented previously. However, the for-
mulation is reversed: instead of determining the minimum number
of games a team must win to finish in a play-off position, we deter-
mine the maximum number of games a team can win without finish-
ing in a play-off position.

To determine play-off clinch numbers, we solve such a problem
for each team separately. Consider the following clinch formulation
(P3) for some team a in division D1. The objective is to maximize the
number of additional wins va accrued by team a such that a finishes
with fewer wins than the first-place team in its division, and at least
one division contains two teams with better records. Since va there-
fore represents the maximum number of additional wins that a could
accrue without finishing in a play-off position, va � 1 is the play-off
clinch number for team a.

(P3) Play-off Clinch Formulation
max va
subject to

x � x � g ∀ i, j � L, i � j, (17)ij ji ij

v � w � xa i � ij
j�L

k� M� � 1 ∀ k � {1,2,3}, i � D , i � a, (18)i k

v � w � x , (19)a a � aj
j�L

k k k� � |N | � 1 � b ∀ k � {1,2,3}, (20)� i
i�Dk

3
kb � 1, (21)�

k�1

x � 0 ∀ i, j � L, (22)ij

x integer ∀ i, j � L, (23)ij

k kb , � binary ∀ k � {1,2,3}, i � D . (24)i k
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Constraints (18) force team a to finish with strictly fewer wins
than all teams for which � 0. Constraints (20) and (21) ensurek�i
that each division k contains at least one team ik with � 0, andk�i
that at least one division contains at least two teams with the prop-
erty. Therefore, va is the maximum number of wins that team a can
attain without finishing in a play-off position.
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